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ABSTRACT

Fine-tuning pre-trained Large Language Models (LLMs) for downstream tasks
using First-Order (FO) optimizers presents significant computational challenges.
Parameter-Efficient Fine-Tuning (PEFT) methods have been proposed to address
these challenges by freezing most model parameters and training only a small
subset. While PEFT is efficient, it may not outperform full fine-tuning when
high task-specific performance is required. Zeroth-Order (ZO) methods offer an
alternative for fine-tuning the entire pre-trained model by approximating gradients
using only the forward pass, thus eliminating the computational burden of back-
propagation in first-order methods. However, when implementing ZO methods,
it is crucial to ensure prompt-based text alignment, and relying on simple, fixed
hard prompts may not be optimal. In this paper, we propose a bilevel optimization
framework that complements ZO methods with PEFT to mitigate sensitivity to
hard prompts while efficiently and effectively fine-tuning LLMs. Our Bilevel
ZOFO (Zeroth-Order-First-Order) method employs a double-loop optimization
strategy, where only the gradient of the PEFT model and the forward pass of the
base model are required. We provide convergence guarantees for Bilevel ZOFO.
Empirically, we demonstrate that Bilevel ZOFO outperforms both PEFT and ZO
methods in single-task settings. Additionally, we show its strong potential for
multitask learning. Compared to current first-order meta-training algorithms for
multitask learning, our method has significantly lower computational demands
while maintaining or improving performance.

1 INTRODUCTION

Fine-tuning pretrained Large Language Models (LLMs) has become a standard approach for down-
stream tasks. Traditional first-order (FO) optimizers like Adam (Kingma & Ba, 2015), commonly
used for this process, rely on backpropagation. However, as highlighted in Malladi et al. (2023),
computing gradients for LLMs can require up to 12 times the memory needed for inference. This scal-
ing challenge becomes even more pronounced as models grow larger, imposing significant memory
demands and complicating the fine-tuning process, especially in resource-constrained environments.

To address these computational challenges, Parameter-Efficient Fine-Tuning (PEFT) methods have
been developed. These techniques freeze most of the model’s parameters and train only a small
subset, significantly reducing both memory and computational overhead. Popular PEFT approaches
include prompt tuning, LoRA fine-tuning, and prefix tuning. Prompt tuning (Lester et al., 2021; Qin
& Eisner, 2021; Yu et al., 2023) optimizes continuous prompt vectors that are concatenated with
the input embeddings, while prefix tuning (Li & Liang, 2021) introduces learnable prefix tokens
that serve as conditioning variables at each transformer layer. LoRA (Low-Rank Adaptation) (Hu
et al., 2022; Houlsby et al., 2019) modifies the model’s attention and feedforward layers by injecting
low-rank trainable matrices, further reducing the resources required for fine-tuning.

While Parameter-Efficient Fine-Tuning (PEFT) methods reduce training costs and memory usage,
they may not always achieve the same level of task-specific performance as full model fine-tuning.
Research has shown that for tasks requiring high accuracy, complex adaptations, or domain-specific
knowledge, full fine-tuning often outperforms PEFT approaches due to its ability to adjust all model
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parameters for better adaptation (Hu et al., 2022; Li & Liang, 2021; Zaken et al., 2022). To make
full model fine-tuning more computationally feasible, zeroth-order methods offer an alternative
by reducing the high computational cost. Rather than computing gradients via backpropagation,
zeroth-order methods estimate the gradient using only the forward pass. Initially explored in the
1990s (Spall, 1992; Nesterov & Spokoiny, 2017; Ghadimi & Lan, 2013; Duchi et al., 2015; Liu
et al., 2020), these methods have recently gained traction for fine-tuning LLMs (Malladi et al., 2023;
Deng et al., 2023a; Ling et al., 2024) and have been shown to be able to outperform first-order PEFT
methods given enough training time (Zhang et al., 2024b).

However, zeroth-order methods often rely on simple, fixed prompts during fine-tuning. In tasks
like sentiment analysis with the SST-2 dataset, templated prompts (e.g., “< CLS > text data. It
was [terrible | great]. < SEP >”) are crucial for success (Zhang et al., 2024b). These prompts
effectively align the text data with task-specific objectives. Therefore, selecting such templates
becomes a key hyperparameter, raising the question: Can we automatically discover effective prompts
for zeroth-order fine-tuning through prompt tuning? More broadly, can PEFT methods complement
zeroth-order fine-tuning for large models? In this work, we propose a new framework to answer this
question.

While our focus has thus far been on single-task fine-tuning, many scenarios necessitate multi-task
fine-tuning. Multi-task learning (MTL) enables a model to handle multiple tasks simultaneously,
fostering knowledge transfer between tasks and improving overall efficiency (Min et al., 2022; Yang
et al., 2024). This approach is particularly valuable in low-resource settings, where collecting large
labeled datasets can be costly, as is often the case with medical data. In such environments, few-shot
learning—where a model is fine-tuned on a high-resource dataset to quickly adapt to new tasks with
minimal data—becomes essential (Ye et al., 2021).

To address the challenges of multi-task and few-shot learning in natural language processing, several
meta fine-tuning methods have been proposed (Huang et al., 2023; Zhao et al., 2024; Ye et al.,
2021; Asadi et al., 2024). However, traditional meta fine-tuning approaches, such as MetaICL Min
et al. (2022), still require full-model first-order gradient calculations, which become computationally
expensive with large language models (LLMs) containing billions of parameters. Given the success
of zeroth-order methods in fine-tuning LLMs for individual tasks, the potential for adapting their
applicability to multi-task learning remains largely unexplored.

With the effectiveness of zeroth-order fine-tuning and the advantages of PEFT for single tasks,
a natural question arises: Can we develop a new multi-task and few-shot learning methodology
that significantly reduces computational costs while maintaining or even enhancing performance?
Specifically, can we leverage the efficiency of zeroth-order fine-tuning alongside the adaptability of
PEFT within multi-task and few-shot learning for large language models?

1.1 CONTRIBUTIONS

In this work, we propose a bilevel framework that leverages Parameter-Efficient Fine-Tuning (PEFT)
methods to automatically enhance the performance of zeroth-order fine-tuning for large pre-trained
language models. The framework introduces two optimization levels: an upper-level problem focused
on fine-tuning the pre-trained base model and a lower-level problem dedicated to selecting the most
effective PEFT model for fine-tuning the base model. This dual-level approach allows us to identify
the optimal combination of PEFT model and pre-trained model.

To solve the bilevel optimization problem, we propose the Bilevel Zeroth-Order-First-Order (Bilevel
ZOFO) method. By incorporating zeroth-order approximations into the first-order bilevel method,
Bilevel ZOFO avoids calculating the gradient of the full pre-trained model. Our method further
addresses the high memory and computational costs of existing bilevel optimization methods, making
it especially suitable for fine-tuning large language models (LLMs) with billions of parameters.
Additionally, we provide theoretical guarantees for the convergence of the Bilevel ZOFO method.

Furthermore, we extend our method from single-task to multi-task learning. The zeroth-order fine-
tuning at our upper level for the full model significantly reduces the computational cost required
compared to existing multi-task learning techniques. Additionally, the use of a PEFT model at the
lower level allows for efficient fine-tuning across multiple tasks. The proposed framework, combined
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with the newly introduced method, offers an extremely lightweight meta-training process that can be
rapidly adapted to new tasks.

We conducted extensive experiments to verify the effectiveness of Bilevel ZOFO. In single-task
settings, the Bilevel ZOFO method outperforms both traditional PEFT and standard zeroth-order
methods fine tuning on average. In multi-task learning settings, we also show that our method
achieves superior results over existing methods.

Overall, our contributions include:

• A bilevel optimization framework that enables zeroth-order fine-tuning for large pre-trained
models using PEFT methods for single tasks.

• The Bilevel ZOFO method that is suitable for fine-tuning large pre-trained models and
significantly reduces the computational cost of existing bilevel methods, with theoretical
convergence guarantees.

• An extremely lightweight meta-training process for multi-task learning.

• Empirical results that validate the superiority of our approach in both single-task and
multi-task scenarios.

2 RELATED WORK

2.1 ZEROTH ORDER IN FINE TUNING LLMS

MeZO (Malladi et al., 2023) is the first work to apply ZO tuning to LLMs. MeZO apply the zeroth-
order method to fine-tune large language models (LLMs) for downstream tasks. They demonstrate that
their method is compatible with both full-parameter tuning and parameter-efficient tuning techniques,
such as LoRA and prefix tuning, while being significantly more computationally efficient. Zhang
et al. (2024b) provide a benchmark for zeroth-order optimization in the context of LLM fine-tuning,
comparing different zeroth-order optimizers and applying the method to various models. Gautam et al.
(2024) introduce variance reduction techniques into zeroth-order methods for fine-tuning, improving
both stability and convergence. In addition, zeroth-order methods are applied in federated fine-tuning
by Qin et al. (2024) and Ling et al. (2024). Deng et al. (2023b) implement zeroth-order optimization
for softmax units in LLMs. Guo et al. (2024b) and Liu et al. (2024b) explore fine-tuning a minimal
subset of LLM parameters using zeroth-order methods by sparsifying gradient approximation or the
perturbations used in gradient estimation. Tang et al. (2024) investigate the privacy of zeroth-order
optimization methods.

In contrast to previous approaches, we propose a bilevel training algorithm that effectively combines
the strengths of both first-order parameter-efficient fine-tuning (PEFT) and zeroth-order full-model
fine-tuning. Our experiments demonstrate that the bilevel structure, when paired with the most
suitable PEFT technique, outperforms both zeroth-order full-model fine-tuning and first-order PEFT
methods individually.

2.2 FINE-TUNING LLMS FOR MULTITASK AND FEW-SHOT LEARNING

Typical meta-tuning approaches employ first-order methods to train autoregressive LLMs on a
multitask dataset for various tasks (Zhong et al., 2021; Min et al., 2022; Guo et al., 2024a). Zhong
et al. (2021) apply meta-training to tasks such as hate speech detection, question categorization, topic
classification, and sentiment classification. Guo et al. (2024a) adopt the method from Min et al. (2022)
for generating stylistic text. While Min et al. (2022) focus on enhancing the in-context learning ability
of the meta-trained model for multitask learning, Zhong et al. (2021) focus on improving zero-shot
performance.

During training, Min et al. (2022) sample a task from the dataset for each iteration to perform
in-context learning. In contrast to Zhong et al. (2021) and Min et al. (2022), our approach uses a
bilevel structure: the full LLM is fine-tuned at the upper level, while parameter-efficient fine-tuning
(PEFT) models are tuned at the lower level. At test time, we freeze the meta-tuned base model
and fine-tune only the PEFT model using a few-shot setup, which is both more cost-effective and
efficient. Crucially, we employ a zeroth-order method in meta-tuning the base model at the upper
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level, which allows us to bypass the need for backpropagation in the meta-model, significantly
reducing computational costs.

2.3 PENALTY METHODS FOR BILEVEL OPTIMIZATION

Solving a bilevel optimization problem is challenging because the function value in the upper-level
objective depends on the optimizer of the lower-level problem. This makes it difficult to compute the
gradient of the upper-level objective, also known as the hypergradient. Classical methods require
calculating Hessian-vector multiplications to approximate the hypergradient (Franceschi et al., 2017;
2018; Finn et al., 2017; Li et al., 2022; Rajeswaran et al., 2019; Ghadimi & Wang, 2018; Chen et al.,
2022; Lorraine et al., 2020). However, when fine-tuning large language models, this process becomes
extremely expensive due to the high computational and memory demands.

Recently, new frameworks for bilevel optimization have been introduced (Lu & Mei, 2024; Shen &
Chen, 2023; Liu et al., 2024a; Kwon et al., 2023; Liu et al., 2022). These methods bypass the need
for second-order information by reformulating the bilevel problem as a constrained optimization
problem. The constraint is penalized, allowing the problem to be tackled as a minimax problem using
only first-order information. These methods significantly reduce computational costs by eliminating
the need for second-order information. Nevertheless, when fine tuning LLMs, back propagation for
calculating the gradient of an LLM is still too expensive.

Liu et al. (2024a) and Lu & Mei (2024) explore the convergence of their proposed methods to the
original bilevel problem, while other approaches only demonstrate convergence to the penalized
problem. In this paper, we adapt the method from Lu & Mei (2024) to approximate part of the
upper-level parameters using a zeroth-order approximation, addressing the challenge posed by the
vast number of training parameters in large language models. We also provide convergence guarantees
for this adapted zeroth-order-first-order method.

3 BILEVEL MODEL AND ZEROTH-ORDER-FIRST-ORDER METHOD

In this section, we present our bilevel model and the zeroth-order-first-order method for solving it.
Let p represent the parameters of the PEFT model, and θ represent the parameters of the pretrained
base model. Given a single downstream task, such as classification, we aim to solve the following
optimization problem:

min
θ∈Rd

F (θ,p;Df ), (1)

where p ∈ Rd′
and F (θ,p;B) := 1

|B|
∑

x∈B F (θ,p;x) is a loss function given a dataset B.

When p corresponds to the embeddings of the hard prompt (as shown in Table 13 in the appendix of
Malladi et al. (2023)), the model above reduces to classical fine-tuning on a single downstream task.
In model (1), the parameters of the PEFT model, p, are fixed.

To enhance fine-tuning performance, we split the dataset into two parts: one for tuning the PEFT model
(denoted as Dp) and another for fine-tuning the LLM (denoted as Df ). To maximize performance on
downstream tasks, we need the optimal PEFT model parameters that are best suited for the current
LLM base model. To achieve this, p should satisfy the following condition:

p(θ) ∈ argmin
p∈Rd′

F (θ,p;Dp).

This condition reveals that as the parameters θ of the LLM change, the parameters p in the PEFT
model should also be updated accordingly. Therefore, instead of solving (1), our true objective
becomes:

min
θ∈Rd

F (θ,p(θ);Df )

s.t. p(θ) ∈ argmin
s∈Rd′

F (θ, s;Dp).
(2)

In this way, we find the optimal pair of parameters for both the PEFT model and the LLM base model
to achieve the best performance on downstream tasks.
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To solve the bilevel optimization problem (2), classical bilevel methods (as discussed in related
work) view (2) as a single-level problem minθ F (θ,p(θ)). Since p(θ) is the minimizer of an-
other optimization problem, these methods typically require computing the Hessian-vector product
(matrix multiplication of ∇θpF (θ,p) and some vector v) multiple times to estimate the gradient
of F (θ,p(θ)) with respect to θ. However, for large language models (LLMs), this approach is
computationally prohibitive because the number of parameters in θ is too large.

To reduce the computational cost, we consider using a penalty method for the bilevel problem (2), as
mentioned in related work. Specifically, (2) is equivalent to the following constrained optimization
problem:

min
θ∈Rd,p∈Rd′

F (θ,p;Df )

s.t. F (θ,p;Dp)− inf
s
F (θ, s;Dp) ≤ 0.

(3)

By penalizing the constraint, we obtain the following penalized problem:

min
θ∈Rd,p∈Rd′

F (θ,p(θ);Df ) + λ(F (θ,p;Dp)− inf
s∈Rd′

F (θ, s;Dp)), (4)

where λ > 0. As λ increases, the solution to the penalized problem approaches the solution to (3),
and thus the solution to (2) (see Lemma 1 for an explicit relationship between the stationary points of
(4) and those of the original problem (2)). Note that the penalized problem (4) is equivalent to the
following minimax problem:

min
θ∈Rd,p∈Rd′

max
s∈Rd′

Gλ(θ,p, s) := F (θ,p(θ);Df ) + λ(F (θ,p;Dp)− F (θ, s;Dp)). (5)

In this way, we can solve the bilevel problem as a minimax problem. The basic minimax algorithm
works as follows: at iteration k, we first solve the maximization problem maxs Gλ(θ

k,pk, s) with
(θk,pk) fixed. For example, we can update sk using an inner loop with stochastic gradient descent
(SGD). Let sk+1 be the result of this inner loop. Then, in the outer loop, we update (θk,pk) by
solving minθ,p Gλ(θ,p, s

k+1) with sk+1 fixed. Again, SGD can be used to update θk and pk. The
conceptual algorithm and pipeline is presented in Algorithm 1 and Figure 3 respectively.

Algorithm 1 Bilevel first-order method

1: Input: η > 0, ζ > 0, s0 = sk, K,T ∈ N+, λ ≥ 0.
2: for k=0,. . . ,K do
3: for t = 0, . . . , T − 1. do
4: Let skt+1 = skt − η∇sGλk

(θk,pk, skt ).
5: Output sk+1 = skT .
6: end for
7: Let θk+1 = θk − ζ∇θGλk

(θk,pk, sk) and pk+1 = pk − ζ∇pGλ(θ
k,pk, sk).

8: end for

However, note that

∇θGλk
(θk,pk, sk) = ∇θF (θk,pk;Df ) + λk(∇θF (θ,pk;Dp) +∇θF (θk, sk;Dp)), (6)

requires calculating the gradient with respect to θ, i.e, ∇θF (θk,pk;Df ). Given the large scale of θ
in LLMs, this is computationally expensive. To avoid this, we use zeroth-order (ZO) information
to approximate the gradient ∇θG. Following Malladi et al. (2023); Zhang et al. (2024b); Guo et al.
(2024b), we employ the Simultaneous Perturbation Stochastic Approximation (SPSA) as a classical
zeroth-order gradient estimator. Specifically, at each iteration k, we sample zk ∼ N(0, Id), where d
is the dimension of θ. We then approximate the gradient as follows:

∇̂θF (θk,pk;x) :=
F (θk + ϵzk,pk;x)− F (θk − ϵzk,pk;x)

2ϵ
zk. (7)

As opposed to the number of LLM parameters θ, the number of PEFT parameters p is very small.
So it is feasible to compute the exact gradient with respect to p. Thus, we calculate ∇pF (θ,p;B)
exactly.

5
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Additionally, in each iteration k and inner iteration t of Algorithm 1, we sample a mini-batch B of
size B. We use ∇̂θF (θk,pk;B) to substitude ∇θGλk

(θk,pk, sk) in (6). We also use mini-batches
when calculating the gradients with respect to the PEFT parameters s and p.

This approach leads to the final algorithm (Algorithm 2) for fine-tuning LLMs using the bilevel model
(2). We refer to this method as the Bilevel Zeroth-Order-First-Order (Bilevel ZOFO) method.

Algorithm 2 Bilevel Zeroth-order-first-order Method (Bilevel ZOFO)

1: Input: η > 0, ζ > 0, batchsize B, s0 = sk, K,T ∈ N+, λ > 0.
2: for k=0,. . . ,K do
3: for t=0,. . . ,T-1 do
4: Sample a batch Bk

t,p from Dp.
5: Let skt+1 = skt − η∇sF (θk, skt ;Bk

t,p)

6: Output sk+1 = skT .
7: end for
8: Sample a batch {Bk

f} from Df and {Bk
p} from Dp.

9: For x ∈ Bk
p ∪ Bk

f , calculate ∇̂θF (θk,pk;x) following (7).
10: Let

pk+1 = pk − ζ
(
∇pF (θk,pk;Bk

f ) + λk

(
∇pF (θk,pk;Bk

p)
))

θk+1 = θk − ζ
(
∇̂θF (θk,pk;Bk

f ) + λk(∇̂θF (θk,pk;Bk
p)− ∇̂θF (θk, sk+1;Bk

p))
) (8)

11: end for

4 EXPERIMENTS

We conduct extensive experiments on various language models of different scales to demonstrate the
effectiveness of bilevel-ZOFO in both single-task and multi-task meta-training settings.

4.1 BILEVEL-ZOFO FOR SINGLE-TASK FINE-TUNING

Following MeZO (Malladi et al., 2023), we evaluate our approach on a range of classification and
multiple-choice tasks. In this setting, training and testing are conducted on the same task. We employ
prompt-tuning (Lester et al., 2021), prefix-tuning (Li & Liang, 2021), and LoRA (Hu et al., 2022)
for lower-level training to validate bilevel-ZOFO under different conditions and resource constraints.
During each lower-level update, we update only the PEFT parameters, and during the upper-level
optimization step, we tune the full model using zeroth-order gradient approximation. We perform 10
lower-level updates between each pair of upper-level updates. For each task, we randomly sample
1000 examples for training, 500 examples for validation, and 1000 examples for testing. We use the
Adam optimizer (Kingma & Ba, 2015) and report test accuracy or F1-score.

We compare our method against several baselines, including MeZO for Full Model Fine-tuning,
MeZO for PEFT, and First-order PEFT. More specifically, MeZO is replacing the gradient in the
model with the approximation (7) and then doing SGD or adam. We fix the total memory budget of
each step across bilevel-ZOFO and the baselines. We train zeroth-order methods for 10,000 steps,
and first-order methods for 5000 steps. We compare the memory requirements of our method with
the baselines in Figure 5, and provide wall-clock analysis in Table 6. For all experimental details,
refer to the Appendix B.1.3 and Appendix B.1.4.

Table 1 presents the test metrics when applying bilevel-ZOFO and baselines to fine-tune OPT-
1.3B (Zhang et al., 2022) on a downstream task. Table 2 demonstrates the results for Llama2-
7b (Touvron et al., 2023). We can make the following observations:

Bilevel-ZOFO outperforms MeZO on almost all tasks: With the same memory allocation per
training step, bilevel-ZOFO outperforms MeZO, even when trained for half the number of iterations
across most tasks.

Bilevel-ZOFO outperforms FO PEFT on average:

6
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Trainer Mode BoolQ CB Copa ReCoRD RTE SST2 WIC WinoGrande WSC Average

MeZO

ft 0.6927 0.7767 0.7000 0.6980 0.6587 0.8214 0.5543 0.5480 0.5054 0.6617
lora 0.6860 0.7607 0.7200 0.7083 0.6755 0.8501 0.5549 0.5607 0.5570 0.6748
prefix 0.6573 0.7945 0.7033 0.7047 0.6972 0.8218 0.5622 0.5370 0.5105 0.6654
prompt 0.6260 0.5821 0.7067 0.7070 0.5415 0.7463 0.5574 0.5556 0.4654 0.6098

average 0.6655 0.7285 0.7075 0.7045 0.6432 0.8099 0.5572 0.5503 0.5096 0.6529

FO

lora 0.7456 0.8512 0.7500 0.7206 0.7292 0.9258 0.6463 0.5806 0.6474 0.7330
prefix 0.7300 0.8571 0.7167 0.7093 0.7136 0.8133 0.5387 0.5787 0.5705 0.6920
prompt 0.7150 0.7142 0.7466 0.7163 0.6936 0.8016 0.5386 0.5980 0.5062 0.6700

average 0.7302 0.8075 0.7378 0.7154 0.7121 0.8470 0.5745 0.5857 0.5747 0.6977

Ours

lora 0.7433 0.9167 0.7400 0.7183 0.7401 0.9331 0.6447 0.5903 0.6428 0.7410
prefix 0.7340 0.8690 0.7267 0.7140 0.7304 0.8550 0.6317 0.5710 0.5810 0.7125
prompt 0.7367 0.7679 0.7633 0.7257 0.6867 0.8335 0.6267 0.5900 0.5133 0.6938

average 0.7380 0.8512 0.7433 0.7193 0.7191 0.8739 0.6344 0.5838 0.5790 0.7158

Table 1: Single-Task Experiments on OPT-1.3B with 1000 samples. Values correspond to mean
across three random seeds. FO: First-Order. FT: full-model fine-tuning. See Table 4 in the Appendix
for standard deviation values.

Comparing each FO-PEFT setting with the corresponding bilevel-ZOFO setting, we see that bilevel-
ZOFO outperforms the corresponding FO-PEFT methods across most instances and on average.

Figure 1: Number of additional parameters PEFT
methods introduce to each model.

Bilevel-ZOFO outperforms baselines more
significantly in resource-constrained settings:
Figure 1 compares the number of parameters
tuned by bilevel-ZOFO and first-order baselines.
The number of parameters tuned for prefix tun-
ing and prompt tuning is lower than for LoRA.
As shown in Table 1, when fewer parameters
are tuned, bilevel-ZOFO demonstrates a larger
improvement over first-order methods in tuning
FEPT models. Since memory usage and training
steps remain the same, bilevel-ZOFO proves to
be a more suitable option for fine-tuning LLMs
in constrained environments compared to PEFT
and MeZO.

Bilevel-ZOFO generalizes effectively to larger
LLMs: Table 2 compares bilevel-ZOFO with
the baselines when fine-tuning Llama2-7b (Tou-
vron et al., 2023) on various classification and
open-ended generation tasks. The results show that bilevel-ZOFO’s advantages are not confined to
smaller models like OPT-1.3b, but also extend to larger LLMs.

4.2 MULTI-TASK FINE-TUNING EXPERIMENTS

Following the methodology of Min et al. (2022), we evaluate the performance of bilevel-ZOFO
as a fast and efficient meta-learning algorithm. We perform experiments using four of the distinct
meta-learning settings outlined in MetaICL (Min et al., 2022): classification-to-classification, non-
classification-to-classification, QA-to-QA, and non-QA-to-QA. For instance, in non-classification-to-
classification setting, we train on a number of non-classification subtasks and test on a number of
distinct classification subtasks. Each of these meta-learning tasks includes a set of training sub-tasks
and a different set of test sub-tasks. The sub-tasks are sourced from CROSSFIT (Ye et al., 2021) and
UNIFIEDQA (Khashabi et al., 2020), comprising a total of 142 unique sub-tasks. These sub-tasks
cover a variety of problems, including text classification and question answering all in English. We
use GPT2-Large Radford et al. (2019) as the base model for these experiments.

We compare our method against several baseline approaches:
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Trainer Mode BoolQ ReCoRD SQuAD SST2 Average

MeZO

ft 0.7915 0.7890 0.7737 0.8646 0.8047
lora 0.8020 0.7970 0.7412 0.8529 0.7983
prefix 0.7830 0.7905 0.7093 0.8364 0.7798
prompt 0.7787 0.7935 0.7014 0.8246 0.7746

average 0.7888 0.7925 0.7489 0.8397 0.7825

FO
lora 0.8420 0.7920 0.8197 0.9557 0.8524
prefix 0.7783 0.8013 0.7946 0.9243 0.8246
prompt 0.8083 0.8023 0.7805 0.9284 0.8299

average 0.8095 0.7985 0.7983 0.9361 0.8356

Ours
lora 0.8473 0.8290 0.8160 0.9629 0.8638
prefix 0.8193 0.8067 0.8090 0.9382 0.8433
prompt 0.8145 0.8108 0.7960 0.9222 0.8359

average 0.7937 0.8155 0.8070 0.9414 0.8394

Table 2: Single-Task Experiments on Llama2-7B with 1000 samples. Values correspond to mean
across three random seeds. FO: First-Order. FT: full-model fine-tuning. See Table 5 for full details.

• MetaICL (Min et al., 2022): A method for meta-learning with in-context learning. MetaICL
tunes all the parameters of the base model using the first-order method. In both training
and testing, the model is given k demonstration examples, (a1, b1), . . . , (ak, bk), where
bi represents either classification labels or possible answers in question-answering tasks,
along with one test example (a, b). The input is formed by concatenating the demonstration
examples a1, b1, . . . , ak, bk, a. The model then computes the conditional probability of each
label, and the label with the highest probability is selected as the prediction.

• Zero-shot: This method uses the pretrained language model (LM) without any tuning,
performing zero-shot inference without any demonstration examples.

• In-context Learning (ICL): This method uses the pretrained LM with in-context learning
by conditioning on a concatenation of k demonstration examples and 1 actual test sample
similar to MetaICL.

We sample 768 examples from each training sub-task. We train MetaICL in their original setting
for 30,000 steps. To train our method, we split the training dataset of each sub-task to two subsets,
256 samples as the development dataset for upper-level updates and 512 samples for lower-level
training. For each outer iteration of our method, we randomly sample a subset of 5 training tasks.
We perform 10 lower-level updates between each pair of upper-level updates. To keep bilevel-
ZOFO as lightweight as possible, unlike MetaICL, we do not include demonstration examples in the
inputs. Since bilevel-ZOFO uses significantly less memory and has much faster updates compared
to MetaICL, theoretically we are able to train it for many more iterations within the same total
training duration as MetaICL. However, due to resource constraints, we only train bilevel-ZOFO for
50,000 iterations. Similar to Malladi et al. (2023), we did not observe a plateau in performance for
bilevel-ZOFO, indicating that further training can yield additional improvements.

For both ICL and MetaICL, during the testing phase the model is given k = 4 demonstration examples
for each test data point. We don’t use demonstration examples in test samples for bilevel-ZOFO
evaluation. We evaluate the zero-shot capabilities of our method as well as the performance of the
final model LoRA-tuned for 10 additional iterations on 4 demonstration samples from each class of
each test sub-task. Similar to Min et al. (2022), we report Macro-averaged F1 as the evaluation
metric. See Appendix B.4 for all training details.

Table 3 presents the Meta-learning results. We observe that zero-shot bilevel-ZOFO outperforms
zero-shot on all tasks. While bilevel-ZOFO does not surpass ICL or MetaICL in the zero-shot setting,
this is expected. It is crucial to note that 1) MetaICL fine-tunes the entire base model using first-order
methods, which incurs a significantly higher computational cost. Additionally, as noted by Malladi
et al. (2023) and confirmed in our experiments, zeroth-order methods typically require many more
iterations to converge, with performance improving as training progresses. 2)Both ICL and MetaICL
with k = 4 demonstration examples take 4 times more time to do inference than a method with no
demonstration examples.
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(a) λ (b) Number of lower-level training steps

Figure 2: Ablation over λ in (5) and the number of lower-level training steps before each upper-level
update.

Nonetheless, after a lightweight 10-iteration LoRA fine-tuning phase, bilevel-ZOFO surpasses
ICL and MetaICL on nearly every hyper-task, highlighting its strong potential as a meta-learning
algorithm.

Method class non class qa non qa
→ class → class → qa → qa

Zero-shot 34.2 34.2 40.2 40.2
Few-shot 34.9 (1.4) 34.9 (1.4) 40.5 (0.3) 40.5 (0.4)
MetaICL 46.4 (1.1) 37.7 (1.7) 45.5 (0.3) 40.2 (0.6)

Ours (Zero-shot) 34.5 34.3 41.8 40.4
Ours(Tuned) 47.1 42.4 43.5 (1.3) 41.9

Table 3: Multi-task Meta learning results using GPT2-Large as the base model. Values correspond to
the mean and standard deviation over 5 test seeds which include different demonstration samples for
each test task. class: Classification, qa: Question Answering

4.3 ABLATIVE STUDIES

We perform an ablation study by varying the regularization parameter λ (as defined in Equation (5))
and the number of lower-level training steps between each pair of upper-level updates. Figure 2
shows the results. From Figure 2a, the effect λ appears to be non-linear, indicating the need to find
an optimal balance. Nontheless, a moderate value like 10 or 100 seems to work reasonably well
on all tasks. As anticipated, Figure 2b demonstrates that performance generally degrades when the
total number of upper-level updates is reduced, suggesting there is a trade-off between latency and
performance. While more upper-level updates improve results, they also extend the overall training
time.

5 ANALYSIS

In this section we give convergence guarantee for Bilevel ZOFO. Suppose (θ,p) ∈ Rd+d′
and

s ∈ Rd′
. The following assumptions are made throughout this section.

Assumption 1. We make the following assumptions:

• G(θ,p, ·) can be potentially nonconvex and G(·, ·, s) is τ− strongly concave; F (θ,p) is
twice continuously differentiable in θ,p.

• G is ℓ-Lipschitz smooth in Rd+2d′
, i.e. ∀(θ1,p1, s1), (θ2,p2, s2) ∈ Rd+2d′

,

∥∇G(θ1,p1, s1)−∇G(θ2,p2, s2)∥ ≤ ℓ∥(θ1,p1, s1)− (θ2,p2, s2)∥.

We define κ := ℓ/τ as the problem condition number.

9
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• ∀(θ,p, s) ∈ Rd+2d′
, sample estimates satisfy

E[G(θ,p, s; ξ)] = G(θ,p, s),

E[∇G(θ,p, s; ξ)] = ∇G(θ,p, s),

E∥∇G(θ,p, s; ξ)−∇G(θ,p, s)∥2 ≤ σ2

B
for sample ξ with size |ξ| = B and constant σ > 0.

• maxs G(θ,p, s) is lower bounded.

We first discuss the relationship between the optimality condition (4) and (2). We start with defining
the ϵ-stationary points of (4) and (2) for general bilevel and minimax problems 1.
Definition 1. Given a bilevel optimization problem

f∗ = min
x

f(x,y∗(x)),y∗(x) ∈ argmin
z

g(x, z)

and any ϵ > 0, a point (xϵ,yϵ) is called an ϵ-stationary point if
E[∥∇f(xϵ,y

∗(xϵ))∥] ≤ O(ϵ), f(xϵ,yϵ)−min
z

f(xϵ, z) ≤ ϵ.

Definition 2. Given a minimax problem
f∗ = min

x
max
y

f(x,y)

and any ϵ > 0, a point (xϵ,yϵ) is called an ϵ-stationary point if
E[∥∇xf(xϵ,yϵ)∥2] ≤ ϵ2, E[∥∇yf(xϵ,yϵ)∥2] ≤ ϵ2.

Lemma 1. If assumption 1 holds and λ = 1/ϵ, assume that ∇2F (θ, ·) is Lipschitz continuous and
(θ,p, s) is an ϵ-stationary point of (4), then (θ, s) is an ϵ-stationary point of (2).

The following is the low effective rank assumption from Malladi et al. (2023). This assumption
avoids dimension d in the total complexity. Following Malladi et al. (2023), we assume here that zk

in (7) is sampled from shpere in Rd with radius
√
d for ease of illustration.

Assumption 2. For any (θ,p, s) ∈ Rd+2d′
, there exists a matrix H(θ,p, s) such that

∇2G(θ,p, s) ⪯ H(θ,p, s) ⪯ ℓ · Id and tr(H(θ,p, s)) ≤ r · ∥H(θ,p, s)∥.
Theorem 1. If Assumptions 1 and 2 hold, by setting

η =
1

2ℓ
, ζ =

1

2ℓr
, λ =

1

ϵ
, B = O(σ2ϵ−2),

α = O(ϵκ−1(d+ d′)−1.5), T = O
(
κ log(κϵ−1)

)
,K = O(κrϵ−2),

there exists an iteration in Algorithm 2 that returns an ϵ-stationary point (θ,p, s) for (5) and it
satisfies

E[∥∇F (θ,p∗(θ);Df )∥] ≤ O(ϵ), F (θ, s;Dp)−min
p

F (θ,p;Dp) ≤ ϵ.

Remark 1. The total number of zeroth order gradient calculations is
TKB1 +KB2 = O(σ2κ2rϵ−4 log(κϵ−1)).

This result matches the complexity in previous zeroth order minimax algorithm in Wang et al. (2023)
but solves our bilevel optimization problem (2) and does not depend on the dimensionality d thanks
to the efficient rank assumption 2, providing efficiency guarantee for our algorithm.

6 CONCLUSIONS

In this work, we introduced a novel bilevel optimization framework designed to mitigate the downsides
of PEFT and zeroth-order full model fine-tuning. We propose a new method that is more efficient
than existing bilevel methods and thus more suitable for tuning full pre-trained large language models.
Theoretically, we provide convergence guarantees for this new method. Empirically, we show that
this method outperforms both zeroth-order methods and PEFT methods when solving one single
task settings on average. Additionally, we demonstrate that this method is effective and efficient
when adapted to do multi-task learning. With competitive and even better performance compared to
existing meta-training methods, our method offers a significantly cheaper training process.

1In the following definitions, the expectation is taken over the randomness in the algorithm that (x,y) is
generated.
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A METHOD

A.1 PROOFS

In the proofs we use the simplified notations x := (θ,p), y := s, f(x,y) := G(θ,p, s), y∗(x) :=
argmaxy f(x,y) and g(x) := f(x,y∗(x)).

A.1.1 PROOF OF LEMMA 1

First we introduce some lemmas from previous literature.
Lemma 2. (Lemma 1.2.3, Theorem 2.1.8 and Theorem 2.1.10 in Nesterov (2013))

• Suppose a function h is Lh-gradient-Lipschitz and has a unique maximizer x∗. Then, for
any x, we have:

1

2Lh
∥∇h(x)∥22 ≤ h(x∗)− h(x) ≤ Lh

2
∥x− x∗∥22. (15)

• Suppose a function h is τh-strongly concave and has a unique maximizer x∗. Then, for any
x, we have:

τh
2
∥x− x∗∥22 ≤ h(x∗)− h(x) ≤ 1

2τh
∥∇h(x)∥22. (16)

From lemma 2 and the definition of ϵ-stationary point (in definition 2) we can get the following
lemma.
Lemma 3. Suppose assumption 1 holds and (xϵ,yϵ) is an ϵ-stationary point of minx maxy f(x,y),
let (θϵ,pϵ) = xϵ we have

F (θϵ, sϵ)−min
s

F (θϵ, s) ≤ O(
ϵ2

λ2
).

Proof.

F (θϵ, sϵ)−min
s

F (θϵ, s) ≤
1

τ
∥∇sF (θϵ, sϵ)∥2 =

1

λ2τ
∥∇yf(xϵ,yϵ)∥2 ≤ O(

ϵ2

λ2
),

here the first inequality is from Lemma 2 applied to −F and the second inequality from definition
2.

The following is a rephrase of theorem 2 in Lu & Mei (2024).

Proof. (proof of lemma 1) By Lemma 3 and the value of λ we have

F (θϵ, sϵ)−min
s

F (θϵ, s) ≤ O(ϵ4).

Therefore, by Theorem 2 in Lu & Mei (2024) we have E[∥∇F (θ,p∗(θ))∥] ≤ O(ϵ) and Lemma 1 is
proven.

A.1.2 PROOF OF THEOREM 1

Based on Lemma 1, it suffices to prove that the algorithm 2 outputs an ϵ-stationary point of
minx maxy f(x,y). In this section we will prove this conclusion.

First we introduce the smoothed function of f , which will be useful in the proof.
Lemma 4. (Lemma C.2 in Zhang et al. (2024a)) Let u be uniformly sampled from the Euclidean
sphere

√
dsd−1 and v be uniformly sampled from the Euclidean ball

√
dBd = {x ∈ Rd | ∥x∥ ≤

√
d}.

For any function f(x) : Rd → R and α > 0, we define its zeroth-order gradient estimator as:

∇̂fα(x) =
f(x+ αu)− f(x− αu)

2α
u,

17
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and the smoothed function as:
fα(x) = Ev[f(x+ αv)].

The following properties hold:

(i) fα(x) is differentiable and Eu[∇̂fα(x)] = ∇fα(x).

(ii) If f(x) is ℓ-smooth, then we have that:

∥∇f(x)−∇fα(x)∥ ≤ ℓ

2
αd3/2.

If we use f(x,y; ξ) to denote a forward evaluation with random samples ξ and let batch size B = |ξ|,
then f(x, ·; ξ) is a function from Rd to R and ℓ-smooth. The above lemma can be used on f(x, ·)
and f(x, ·; ξ). We can define its smoothed function fα(x, ·; ξ) and has the properties above.
Lemma 5. If assumption 1 holds, for fα defined in Lemma 4, ∇xfα(x,y) is ℓ-continuous on y, i.e.

∥∇xfα(x,y1)−∇xfα(x,y2)∥ ≤ ℓ∥y1 − y2∥,

for any x ∈ Rd,y1,y2 ∈ Rd′
.

Proof.

∥∇xfα(x,y1)−∇xfα(x,y2)∥
=∥Ev[f(x+ αv,y1)]− Ev[f(x+ αv,y2)]∥
≤Ev∥f(x+ αv,y1)− f(x+ αv,y2)∥
≤ℓ∥y1 − y2∥.

Here the first inequality is from the convexity of norm and the second inequality is from the ℓ-
smoothness of f .

We first give the iteration complexity of the inner loop of Algorithm 2. Using the simplified notations
we can write the update step in the inner loop as yk

t+1 = yk
t + η∇yf(x

k,yk
t ; ξt). We use B1, B2 to

denote the batch size for the inner loop and outer loop, respectively. But finally we will prove that
they are in fact of the same order.
Lemma 6. In Algorithm 2, by setting η = 1/2ℓ, T = O(κ log( 1ϵ )) and B1 = O(ϵ−2) we have

E[∥yk
T − y∗(xk)∥2] ≤ ϵ2

in outer loop k.

Proof.

∥yk
t+1 − y∗(xk)∥2

=∥yk
t + η∇yf(x

k,yk
t ; ξt)− y∗(xk)∥2

=∥yk
t − y∗(xk)∥2 + 2η⟨∇yf(x

k,yk
t ; ξt),y

k
t − y∗(xk)⟩+ η2∥∇yf(x

k,yk
t ; ξt)∥2.

Now taking expectations on both sides we have

E[∥yk
t+1 − y∗(xk)∥2]

≤E[∥yk
t − y∗(xk)∥2] + 2ηE[⟨∇yf(x

k,yk
t ),y

k
t − y∗(xk)⟩] + η2(E[∥∇yf(x

k,yk
t )∥2] +

σ2

B1
)

≤E[∥yk
t − y∗(xk)∥2]− 2ηE[f(xk,y∗(xk))− f(xk,yk

t )] + 2ℓη2E[f(xk,y∗(xk))− f(xk,yk
t )] +

η2σ2

B1

=E[∥yk
t − y∗(xk)∥2]− 1

2ℓ
E[f(xk,y∗(xk))− f(xk,yk

t )] +
σ2

4ℓ2B1

≤E[∥yk
t − y∗(xk)∥2]− τ

4ℓ
E[∥yk

t − y∗(xk)∥2] + σ2

4ℓ2B1
.
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The first inequality is from Assumption 1, second and last inequalities from Lemma 2 and the equation
is from the value of η.

In order for E[∥yk
T − y∗(xk)∥2] ≤ ϵ2 we need T = O(κ log( 1ϵ )) and B1 = O(ϵ−2).

The following lemma is from Theorem 1 in Malladi et al. (2023).

Lemma 7. If Assumption 2 holds, there exists a constant γ = θ(r) such that

E[∇̂xf(x
k,yk+1; ξ)TH(xk,yk+1)∇̂xf(x

k,yk+1; ξ)] ≤ ℓγE[∥∇xf(x
k,yk+1; ξ)∥2].

Finally, we give the proof for Theorem 1. In this part we assume both θ and p updates with
zeroth order gradient for the convenience of analysis and this does not change the order of the total
complexity.

Proof. (proof of Theorem 1)

From Assumption 2, taking expectation conditioning on xk and yk+1 we have

E[g(xk+1)] ≤g(xk)− ζ⟨∇xg(x
k),E[∇̂xf(x

k,yk+1; ξ)]⟩

+
ζ2

2
E[∇̂xf(x

k,yk+1; ξ)TH(xk,yk+1)∇̂xf(x
k,yk+1; ξ)]

≤g(xk)− ζ⟨∇xg(x
k),∇xfα(x

k,yk+1)⟩+ ζ2

2
ℓγE[∥∇xf(x

k,yk+1; ξ)∥2]

Let us bound the inner product term:

− ζ⟨∇xg(x
k),∇xfα(x

k,yk+1)⟩
≤ − ζ⟨∇xf(x

k,y∗(xk))−∇xfα(x
k,y∗(xk)) +∇xfα(x

k,y∗(xk))

−∇xfα(x
k,yk+1) +∇xfα(x

k,yk+1),∇xfα(x
k,yk+1)⟩

≤ 1

ℓγ
∥∇xf(x

k,y∗(xk))−∇xfα(x
k,y∗(xk))∥2 + ζ2ℓγ

4
∥∇xfα(x

k,yk+1)∥2

+
1

ℓγ
∥∇xfα(x

k,y∗(xk))−∇xfα(x
k,yk+1)∥2 + ζ2ℓγ

4
∥∇xfα(x

k,yk+1)∥2

− ζ⟨∇xfα(x
k,yk+1),∇xfα(x

k,yk+1)⟩

≤α2ℓ2d3

4ℓγ
+

ℓ2

ℓγ
∥y∗(xk)− yk+1∥2 + ζ2ℓγ

2
∥∇xfα(x

k,yk+1)∥2

− ζ⟨∇xfα(x
k,yk+1),∇xfα(x

k,yk+1)⟩.

Here the last inequality is from Lemma 4 and Lemma 5.

Now back to the original inequality, taking expectations over all the randomness in the algorithm we
have

ζ(1− ζℓγ

2
)E[∥∇xfα(x

k,yk+1)∥2]

≤E[g(xk)− g(xk+1)] +
ℓ

γ
E[∥y∗(xk)− yk+1∥2] + ζ2ℓγ

2
E[∥∇xf(x

k,yk+1; ξ)∥2] + α2ℓd3

4γ

≤E[g(xk)− g(xk+1)] +
ℓ

γ
E[∥y∗(xk)− yk+1∥2] + ζ2ℓγ

2
E[∥∇xf(x

k,yk+1)∥2] + ζ2ℓγσ2

2B2
+

α2ℓd3

4γ
,

where the last inequality is from Assumption 1.
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Figure 3: Pipeline for Zeroth-order-first-order bilevel method.

On the other hand, from Lemma 4, by letting ζ = 1
2ℓγ we have

E[∥∇xf(x
k,yk+1)∥2]

≤2E[∥∇xfα(x
k,yk+1)∥2] + α2ℓ2(d+ d′)3

2

≤16

3
ℓγE[g(xk)− g(xk+1)] +

16

3
ℓ2E[∥y∗(xk)− yk+1∥2]

+
2

3
E[∥∇xf(x

k,yk+1)∥2] + 2σ2

3B2
+

11

6
α2ℓ2(d+ d′)3

⇒E[∥∇xf(x
k,yk+1)∥2] ≤ 16ℓγE[g(xk)− g(xk+1)] + 16ℓ2E[∥y∗(xk)− yk+1∥2]

+
2σ2

B2
+

11

2
α2ℓ2(d+ d′)3.

Taking summation of k from 1 to K we have

1

K

K+1∑
k=1

E[∥∇xf(x
k,yk+1)∥2]

≤16ℓγ

K
E[g(x1)− g(xK+1)] +

16ℓ2

K

K∑
k=1

E[∥y∗(xk)− yk+1∥2] + 2σ2

B2
+

11

2
α2ℓ2(d+ d′)3

≤16ℓγ

K
E[g(x1)−min

x
g(x)] +

16ℓ2

K

K∑
k=1

E[∥y∗(xk)− yk+1∥2] + 2σ2

B2
+

11

2
α2ℓ2(d+ d′)3.

Thus, by setting parameters as in Theorem 1 we have mink E[∥∇xf(x
k,yk+1)∥2] ≤ ϵ2.

On the other hand, since
E[∥∇xf(x

k,yk+1)∥2] = E[∥∇xf(x
k,yk+1)−∇yf(x

k,y∗(xk)∥2] ≤ ℓ2E[∥yk+1 − y∗(xk)∥2],
similar to Lemma 6 we have E[∥∇xf(x

k,yk+1)∥2] ≤ ϵ2 by setting T = O(κ log(κϵ )) and B1 =

O(ϵ−2).

B EXPERIMENTAL SETUP

To recall the proposed Algorithm 2, we present a pipeline of the proposed Algorithm 2 in figure 3.
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B.1 SINGLE-TASK EXPERIMENTS

Following MeZO (Malladi et al., 2023), we evaluate our approach on a range of classification and
multiple-choice tasks. In this setting, training and testing are conducted on the same task.

B.1.1 TASKS

We use the following tasks for evaluating the fine-tuning capabilities of Bilevel-ZOFO in a single-task
setting.

BoolQ (Clark et al., 2019): A yes/no question-answering task where each question is paired with a
paragraph that contains the answer.

CB (Wang et al., 2019): The CommitmentBank task involves determining whether a given sentence
in context entails, contradicts, or is neutral to a premise.

COPA (Roemmele et al., 2011): The Choice of Plausible Alternatives (COPA) task requires
selecting the most plausible cause or effect from two alternatives for a given premise.

ReCoRD: (Zhang et al., 2018) The Reading Comprehension with Commonsense Reasoning
Dataset (ReCoRD) is a cloze-style task where models must predict masked-out entities in text based
on the surrounding context.

RTE (Wang, 2018): The Recognizing Textual Entailment (RTE) task involves determining whether
a given hypothesis is entailed by a provided premise.

SST2 (Wang, 2018): The Stanford Sentiment Treebank (SST-2) task focuses on binary sentiment
classification of sentences as positive or negative.

WiC (Pilehvar & Camacho-Collados, 2018): The Word-in-Context (WiC) task involves determin-
ing whether the same word is used in the same sense in two different sentences.

WinoGrande (Sakaguchi et al., 2021): A commonsense reasoning task where the goal is to resolve
pronoun references in ambiguous sentences by identifying the correct antecedent.

WSC (Levesque et al., 2012): The Winograd Schema Challenge (WSC) tests a model’s ability to
resolve pronoun references in sentences, requiring commonsense reasoning.

SQuAD (Rajpurkar, 2016): The Stanford Question Answering Dataset (SQuAD) is a reading
comprehension task where models must answer questions based on a given passage of text.

B.1.2 PEFT VARIANTS

We utilize three PEFT techniques—prompt-tuning (Lester et al., 2021), prefix-tuning (Li & Liang,
2021), and LoRA (Hu et al., 2022)—for lower-level training to evaluate bilevel-ZOFO across various
conditions and resource constraints.

1. LoRA: For all single-task LoRA experiments, we set r = 8 and α = 16.

2. Prefix Tuning: We use 5 prefix tokens across all experiments.

3. Prompt Tuning: We configure 10 soft prompt tokens for every experiment.

B.1.3 HYPERPARAMETER SEARCH

Given resource limitations, we focus on sweeping only the learning rate as the key hyperparameter.
For MeZO and first-order PEFT experiments, we explore learning rates from the set {1e− 2, 1e−
3, 1e−4, 1e−5, 1e−6}. For Bilevel-ZOFO, we sweep both the upper-level and lower-level learning
rates: lrupper ∈ {1e− 4, 1e− 5, 1e− 6} and lrlower ∈ {1e− 2, 1e− 3, 1e− 4, 1e− 5}. We perform all
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Figure 4: Training loss for the lower-level objective of the bilevel framework with Lora as the PEFT
model.

experiments in tables 4 and 5 using three random seeds and report the average and standard deviation.
We also set ϵ = 1e− 3, following MeZO Malladi et al. (2023).

B.1.4 TRAINING

All experiments used a batch size of 8 and were conducted in bfloat16 precision on a single A6000
Ada 48GB GPU. MeZO was run for 10,000 steps, while FO and Bilevel-ZOFO methods were run for
5,000 steps. Our implementation builds upon MeZO’s codebase, and memory profiling as well as
latency calculations are based on their framework.

For each task, 1000 examples are randomly sampled for training, 500 for validation, and 1000 for
testing. For bilevel-ZOFO, the training set is split into upper-level and lower-level subsets with a
1:2 ratio. During each lower-level update, only the PEFT parameters are optimized, while in the
upper-level step, the entire model is fine-tuned using zeroth-order gradient approximation. We set
λ = 10000 and perform 20 lower-level updates between each upper-level update for all bilevel-ZOFO
experiments.

All experiments use the Adam optimizer (Kingma & Ba, 2015),including baselines and both lower-
level and upper-level optimizers. No weight decay was applied, and the models were trained with a
constant learning rate schedule. Batch size is set to 16 for all experiments. We load all models in
bfloat16. We find the best performing model based on validation loss and report test results from that
checkpoint. We report the test accuracy or F1-score based on the test dataset being imbalanced or not.

We fix the memory budget of each step across bilevel-ZOFO and the baselines. We train zeroth-
order methods for 10,000 steps, and bilevel-ZOFO and first-order methods for 5000 steps. We use
A6000ada 48GPUs in our experiments. We load all models in bfloat16.

B.2 RESULTS

Figure 4 presents the training loss for the lower-level objective of the bilevel framework with Lora
as the PEFT model. As shown, consistent with the guarantees provided by our theoretical analysis,
Bilevel-ZOFO converges.

Table 4 presents the test metrics when applying bilevel-ZOFO and baselines to fine-tune OPT-
1.3B (Zhang et al., 2022) on a downstream task.

Trainer Mode BoolQ CB Copa ReCoRD RTE SST2 WIC WinoGrande WSC Average

MeZO

ft 0.6927± 0.0660 0.7767± 0.1162 0.7000± 0.0289 0.6980± 0.0053 0.6587± 0.0271 0.8214± 0.0042 0.5543± 0.0146 0.5480± 0.0108 0.5054± 0.0056 0.6617± 0.0321
lora 0.6860± 0.0012 0.7607± 0.0515 0.7200± 0.0058 0.7083± 0.0049 0.6755± 0.0110 0.8501± 0.0067 0.5549± 0.0057 0.5607± 0.0050 0.5570± 0.0000 0.6748± 0.0102
prefix 0.6573± 0.0379 0.7945± 0.0309 0.7033± 0.0208 0.7047± 0.0010 0.6972± 0.0055 0.8218± 0.0127 0.5622± 0.0127 0.5370± 0.0137 0.5105± 0.1313 0.6654± 0.0285
prompt 0.6260± 0.0056 0.5821± 0.0179 0.7067± 0.0058 0.7070± 0.0053 0.5415± 0.0063 0.7463± 0.0218 0.5574± 0.0048 0.5556± 0.0038 0.4654± 0.0618 0.6098± 0.0159

average 0.6655 0.7285 0.7075 0.7045 0.6432 0.8099 0.5572 0.5503 0.5096 0.6529± 0.0217

FO

lora 0.7403± 0.0055 0.8512± 0.0412 0.7500± 0.0058 0.7206± 0.0035 0.7292± 0.0165 0.9258± 0.0032 0.6463± 0.0276 0.5806± 0.0055 0.6474± 0.0200 0.7324± 0.0143
prefix 0.7300± 0.0035 0.8571± 0.0644 0.7167± 0.0115 0.7093± 0.0032 0.7136± 0.0110 0.8133± 0.0050 0.5387± 0.0050 0.5980± 0.0029 0.5705± 0.0294 0.6941± 0.0141
prompt 0.7150± 0.0156 0.7142± 0.0714 0.7466± 0.0115 0.7163± 0.0063 0.6936± 0.0185 0.8016± 0.0779 0.5386± 0.0197 0.5980± 0.0090 0.5062± 0.0434 0.6700± 0.0306

average 0.7284 0.8075 0.7378 0.7154 0.7121 0.8470 0.5745 0.5922 0.5747 0.6982± 0.0197

Ours

lora 0.7433± 0.0191 0.9167± 0.0103 0.7400± 0.0200 0.7183± 0.0031 0.7401± 0.0108 0.9331± 0.0020 0.6447± 0.0218 0.5903± 0.0058 0.6428± 0.0855 0.7410± 0.0209
prefix 0.7340± 0.0095 0.8690± 0.0206 0.7267± 0.0153 0.7140± 0.0044 0.7304± 0.0091 0.8550± 0.0178 0.6317± 0.0282 0.5710± 0.0130 0.5810± 0.0338 0.7125± 0.0179
prompt 0.7367± 0.0850 0.7679± 0.0644 0.7633± 0.0058 0.7257± 0.0153 0.6867± 0.0208 0.8335± 0.0779 0.6267± 0.0462 0.5900± 0.0173 0.5133± 0.1493 0.6938± 0.0536

average 0.7380 0.8512 0.7433 0.7193 0.7191 0.8739 0.6344 0.5838 0.5790 0.7158± 0.0308

Table 4: Single-Task Experiments on OPT-1.3B with 1000 samples. Values correspond to mean
across three random seeds. FO: First-Order. FT: full-model fine-tuning.
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Trainer Mode BoolQ ReCoRD SQuAD SST2 Average

MeZO

ft 0.7915 ± 0.0516 0.7890 ± 0.0001 0.7737 ± 0.1634 0.8646 ± 0.0216 0.8047
lora 0.8020 ± 0.0014 0.7970 ± 0.0001 0.7412 ± 0.0013 0.8529 ± 0.0117 0.7983
prefix 0.7830 ± 0.0131 0.7905 ± 0.0007 0.7093 ± 0.0207 0.8364 ± 0.0010 0.7798
prompt 0.7787 ± 0.0049 0.7935 ± 0.0007 0.7014 ± 0.0451 0.8246 ± 0.0216 0.7746

FO
lora 0.8420 ± 0.0104 0.7920 ± 0.0053 0.8197 ± 0.0043 0.9557 ± 0.0007 0.8524
prefix 0.7783 ± 0.0021 0.8013 ± 0.0012 0.7946 ± 0.0419 0.9243 ± 0.0053 0.8246
prompt 0.8083 ± 0.0142 0.8023 ± 0.0074 0.7805 ± 0.0633 0.9284 ± 0.0072 0.8299

Ours
lora 0.8473 ± 0.0025 0.8290 ± 0.0044 0.8160 ± 0.0041 0.9629 ± 0.0053 0.8638
prefix 0.8193 ± 0.0127 0.8067 ± 0.0065 0.8090 ± 0.0302 0.9382 ± 0.0064 0.8433
prompt 0.8145 ± 0.0012 0.8108 ± 0.0065 0.7960 ± 0.0028 0.9222 ± 0.0039 0.8359

Table 5: Single-Task Experiments on Llama2-7B with 1000 samples. Values correspond to mean and
std across three random seeds. FO: First-Order. FT: full-model fine-tuning

Figure 5: Memory consumption of MeZO and first-order PEFT methods varies across tasks, with
one occasionally surpassing the other. Our Bilevel-ZOFO method demonstrates comparable memory
usage to both baselines. Values correspond to memory usage for fine-tuning OPT1.3b Zhang et al.
(2022) on each task using a batch size of 8 and on a singel A6000ada 48GB GPU.

Table 5 demonstrates the results for fine-tuning Llama2-7b (Touvron et al., 2023) on various classifi-
cation and open-ended generation tasks.

B.3 MEMORY PROFILING AND WALL CLOCK TIME ANALYSIS

Figure 5 demonstrates the memory profiling of Bilevel-ZOFO, MeZO and First-order prefix tuning
on four different tasks. Memory consumption of MeZO and first-order PEFT methods varies across
tasks, with one occasionally surpassing the other. Each lower-level update in our method matches
that of the corresponding PEFT method. Similarly, each upper-level update requires the greater
memory usage between MeZO and PEFT under comparable settings. As a result, the total memory
requirement of our method corresponds to the maximum memory usage of the PEFT and MeZO
experiments. Nonetheless, as demonstrated in Table 4, our method outperforms both PEFT and
MeZO on average.

We also present a wall-clock time analysis of bilevel-ZOFO compared to the baseline. As shown in
Table 6, similar to MeZO Malladi et al. (2023), we observe that zeroth-order steps exhibit higher
latency compared to first-order steps. The results indicate that our bilevel-ZOFO achieves comparable
delays to the FO-PEFT method while significantly reducing step duration compared to MeZO.
Moreover, as highlighted in Table 1, bilevel-ZOFO outperforms both methods on average.

B.4 MULTI-TASK EXPERIMENTS

In this section we explain the experimental details of mutil-task experiments.
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Table 6: Wallclock time per step of different training methods when finetuning OPT1.3b. The values
are measured on a single A6000ada 48GB GPU. The wallclock time is averaged over 3 different runs
that produced the values of Table 1. We use a batch size of 8 for all experiments.

Task MeZO FO Prefix-Tuning Bilevel-ZOFO (Prefix)
Copa 0.299 0.127 0.135
MultiRC 0.622 0.474 0.502
WSC 0.278 0.120 0.164

B.4.1 META-TASKS

Following the methodology of Min et al. (2022), we evaluate the performance of bilevel-ZOFO
as a fast and efficient meta-learning algorithm. We perform experiments using four of the distinct
meta-learning settings outlined in MetaICL (Min et al., 2022): classification-to-classification, non-
classification-to-classification, QA-to-QA, and non-QA-to-QA. Each of these meta-learning tasks
includes a set of training sub-tasks and a different set of test sub-tasks. The sub-tasks are sourced
from CROSSFIT (Ye et al., 2021) and UNIFIEDQA (Khashabi et al., 2020), comprising a total of 142
unique sub-tasks. These sub-tasks cover a variety of problems, including text classification, question
answering, and natural language understanding, all in English. Table 7 shows the number of tasks in
each training and testing meta-learning setting and the total number of examples in each training task.

Meta-train Setting # tasks # examples Target Setting # tasks
Classification 43 384,022 Classification 20

Non-Classification 37 368,768
QA 37 486,143 QA 22

Non-QA 33 521,342

Table 7: Details of four different meta-learning settings. Each row indicates meta-training/target tasks
for each setting. There is no overlap between the training and test tasks.

See Tables 14 and 15 of MetaICL (Min et al., 2022) for a list of all sub-tasks.

B.4.2 BASELINES

We use GPT2-Large Radford et al. (2019) as the base model for these experiments.We compare our
method against several baseline approaches:

• MetaICL (Min et al., 2022): A method for meta-learning with in-context learning. MetaICL
tunes all the parameters of the base model using the first-order method. In both training
and testing, the model is given k demonstration examples, (a1, b1), . . . , (ak, bk), where
bi represents either classification labels or possible answers in question-answering tasks,
along with one test example (a, b). The input is formed by concatenating the demonstration
examples a1, b1, . . . , ak, bk, a. The model then computes the conditional probability of each
label, and the label with the highest probability is selected as the prediction.

• Zero-shot: This method uses the pretrained language model (LM) without any tuning,
performing zero-shot inference without any demonstration examples.

• In-context Learning (ICL): This method uses the pretrained LM with in-context learning
by conditioning on a concatenation of k demonstration examples and 1 actual test sample
similar to MetaICL.

We sample 768 examples from each training sub-task. We use these samples to train MetaICL in their
original setting for 30,000 steps. This includes learning rate of 1e− 5, batch size of 1 on 8 GPUs,
8-bit Adam optimizer and fp16 half precision. See MetaICL(Min et al., 2022) for full details. To
train our method, we split the training dataset of each sub-task to two subsets, 256 samples as the
development dataset for upper-level updates and 512 samples for lower-level training. For each outer
iteration of our method, we randomly sample a subset of 5 training tasks. We perform 10 lower-level
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updates between each pair of upper-level updates. To keep bilevel-ZOFO as lightweight as possible,
unlike MetaICL, we do not include demonstration examples in the inputs. Since bilevel-ZOFO uses
significantly less memory and has much faster updates compared to MetaICL, theoretically we are
able to train it for many more iterations within the same total training duration as MetaICL. However,
due to resource constraints, we only train bilevel-ZOFO for 50,000 iterations. Similar to Malladi
et al. (2023), we did not observe a plateau in performance for bilevel-ZOFO, indicating that further
training can yield additional improvements. We use Adam optimizer and a learning rate of 1e− 6 for
both upper and lower-level training. We employ a batch size of 4 and train on a single rtx6000ada
GPU.

For both ICL and MetaICL, during the testing phase the model is given k = 4 demonstration examples
for each test data point. We don’t use demonstration examples in test samples for bilevel-ZOFO
evaluation. We evaluate the zero-shot capabilities of our method as well as the performance of the
final model LoRA-tuned for 10 additional iterations on 4 demonstration samples from each class of
each test sub-task. Similar to Min et al. (2022), we report Macro-averaged F1 as the evaluation
metric.

25


	Introduction
	Contributions

	Related work
	Zeroth order in fine tuning LLMs
	Fine-tuning LLMs for Multitask and Few-Shot Learning
	Penalty Methods for Bilevel Optimization

	Bilevel model and Zeroth-order-first-order method 
	Experiments
	Bilevel-ZOFO for Single-task Fine-tuning
	Multi-Task Fine-Tuning Experiments
	Ablative Studies

	Analysis
	Conclusions
	Method
	Proofs
	proof of lemma 1
	proof of theorem 1


	Experimental Setup
	Single-Task experiments
	Tasks
	PEFT Variants
	Hyperparameter Search
	Training

	Results
	blue Memory Profiling and Wall Clock Time Analysis
	Multi-task experiments
	Meta-Tasks
	Baselines



