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Abstract

Open source intelligence (OSINT) investigators face the challenge of veri-
fying the location of media shared online. Traditional geolocation requires
manual effort and cannot scale with the ever-growing volume of images and
videos shared on social media. We present GeoFT, a fine-tuned version
of GeoCLIP specifically optimized for geolocation in Russia and Ukraine.
By focusing on street-level imagery and leveraging community-validated
datasets, our model achieves significantly improved accuracy compared to
existing solutions. On our test set, GeoFT reduces the average error from
3,520km to 2,150km while maintaining interpretable confidence scores. We
demonstrate the model’s potential for aiding OSINT investigations and dis-
cuss pathways for deployment in real-world applications.

1 Introduction

The verification of media location, or geolocation, has traditionally been a crowdsourced
effort relying on human investigators using resources like Google Street View and building
databases. While effective, this manual process cannot keep pace with the thousands of new
images appearing daily on platforms like Decrypt. We present GeoFT, a fine-tuned model
that specifically targets street-level imagery in regions of active conflict, where traditional
solutions like Google Street View may be outdated or unavailable.

2 Related Work

Recent approaches to AI geolocation include GeoCLIP (Vivanco Cepeda et al., 2023), PI-
GEOTTO (Haas et al., 2024), and GeoDecoder (Qi et al., 2024). GeoCLIP utilizes con-
trastive learning between image and location embeddings but exhibits high average error
(3,520km). PIGEOTTO and GeoDecoder showed promising results but lack open-source
implementations. Commercial solutions like GeoSpy (GeoSpy, 2024) rely heavily on static
image databases, limiting their effectiveness in rapidly changing environments. These ap-
proaches demonstrate the challenge of accurate geolocation at scale.

3 Methodology

3.1 Data Collection and Filtering

We curated a dataset combining two primary sources:

1. Eyes on Russia (EoR): 2,887 community-geotagged images from the conflict region
(Eyes on Russia Project, 2024)

2. Google Street View (GSV): 16,159 street-level images gathered via API (Google
LLC, 2024)

To ensure data quality, we employed GPT-4-mini as a binary classifier to filter images with
the prompt: ”Does this image contain street features?” This preprocessing step significantly
improved training data relevance by removing indoor scenes and irrelevant imagery. The
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final dataset contained approximately 19,000 images after filtering. The test set consisted
of only EoR images to reflect realistic images from social media.

3.2 Model Architecture

We build upon GeoCLIP’s architecture, consisting of:

1. Location encoder L(*) that transforms 2D GPS coordinates into high-dimensional
features through:

(a) Equal Earth Projection to minimize geographic distortion
(b) Random Fourier Features (RFF) for positional encoding
(c) Hierarchical representation using multiple RFF frequencies
(d) MLP layers for processing

2. Image encoder V(*) based on a pre-trained CLIP ViT-L/14 model with two addi-
tional trainable linear layers (h1: 768 dimensions, h2: 512 dimensions)

During training, we keep the CLIP backbone frozen and only train the linear layers of the
image encoder and the location encoder components. Training uses contrastive learning
with batch and queue-based negatives to minimize the loss:

Li = −
P∑

j=1

log
exp(Vij · Lij/τ)∑|B|

i=0 exp(Vij · Lij/τ) +
∑S

i=0 exp(Vij · L̄i/τ)
(1)

where τ is the temperature parameter, |B| is the batch size, S is the queue size, and L̄i

represents the queue of GPS embeddings used as additional negatives.

4 Results

Our evaluation reveals three key findings that demonstrate GeoFT’s effectiveness and prac-
tical applicability.

First, when trained on the combined Eyes on Russia (EoR) and Google Street View (GSV)
dataset, GeoFT demonstrates significant improvements over baseline models. Specifically,
GeoFT achieves state-of-the-art performance on the Im2GPS3k dataset with improvements
of +1.31%, +0.97%, +3.95%, +8.67%, and +3.72% at 1km, 25km, 200km, 750km, and
2500km thresholds respectively compared to prior work.

Second, the fine-tuned model exhibits substantially higher confidence in its predictions.
While the baseline model shows uncertainty in its geolocation estimates (mean confidence:
0.03), GeoFT produces well-calibrated confidence scores reaching up to 0.61 for high-
confidence predictions, with confidence scores strongly correlating with prediction accuracy.
The standard deviation in confidence scores increased from 0% to 5%, indicating a better
ability to distinguish between high and low confidence predictions.

Third, and perhaps most significantly for practical applications, GeoFT demonstrates
strong performance even when trained solely on GSV data, without requiring region-specific
human-labeled datasets like EoR. This finding is crucial for extending the approach to new
geographic regions where specialized datasets may not be available. Table 1 compares per-
formance between models trained on the combined dataset versus GSV data only.

As shown in Table 1, while performance does decrease without EoR data, particularly at
finer granularities, the model still achieves strong results at continental (2500km) and coun-
try (750km) scales using only GSV data. This is particularly noteworthy since GSV data
is widely available globally, making our approach extensible to new regions without requir-
ing specialized datasets. The model trained only on GSV data still outperforms baseline
methods, demonstrating the effectiveness of our approach even with limited training data.

The confidence metrics also reflect this pattern - the GSV-only model exhibits lower but
still well-calibrated confidence scores (max 2% vs 61% with combined data), appropriately
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Table 1: Performance comparison between models trained on combined EoR+GSV data
versus GSV data only. While performance decreases without EoR data, the model still
achieves strong results at larger scales using only widely-available GSV data.

Distance EoR+GSV GSV Only Difference
2500km 100% 92% -8%
750km 95% 54% -41%
200km 59% 7% -52%
25km 38% 6% -32%
1km 6% 0% -6%

indicating its reduced certainty in predictions. This ability to produce reliable confidence
estimates, even with limited training data, is crucial for practical applications where under-
standing prediction reliability is important.

5 Discussion and Future Work

While GeoFT shows promising results, several extensions could enhance its utility:

1. Integration with production systems for continuous model improvement using new
validated data

2. Expansion to video and aerial imagery analysis

3. Extension to other regions of interest with similar data collection methodology

The model can be deployed both as a standalone tool for OSINT investigators and integrated
into existing intelligence platforms, providing automated first-pass location estimates for
human verification.

6 Conclusion

GeoFT demonstrates that fine-tuning foundation models on carefully curated regional data
can significantly improve geolocation accuracy. The success of our approach using only
Google Street View data suggests that this methodology could be extended to other regions
of interest, even without access to specialized OSINT datasets. This work represents a step
toward scalable, automated support for OSINT investigations.
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