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Abstract

While text-to-image generation models such as
DALLE-2 and Stable Diffusion 2.0 have captured
the public psyche with the ability to create photo-
realistic images, just how “fake” are their outputs?
To better understand this question, we present a
three-prong process for extracting insights from
diffusion models. First, we show strong results in
classifying real vs. fake images by using transfer
learning with a nearly decade-old model, setting
an initial benchmark of realism not yet achieved.
After visualizing the classifier’s inference deci-
sions, we conclude that concrete, singular subject
objects – like buildings and hands – helped dis-
tinguish real from fake images. However, we
found no consensus on which features were dis-
tinct to each of DALLE-2 and Stable Diffusion.
Finally, after dissecting the prompts used to gener-
ate fake images, we found that prompts that failed
to trick our classifier contained similar types of
nouns while prompts that succeeded in this task
differed for each model. We believe our work
can serve as the first step in an iterative process
that continuously establishes increasingly diffi-
cult benchmarks of realism for diffusion models
to overcome. The code for our project is open
source: https://github.com/cpondoc/diffusion-
model-analysis.

1. Introduction
Recent research in natural language processing and com-
puter vision has shown progress in image generation from
text. Projects such as DALLE-2 (Ramesh et al., 2022) and
Stable Diffusion 2.0 (Rombach et al., 2022) are examples of
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diffusion models trained on large language datasets. These
models can create photorealistic images, transfer styles from
one image to another, and process complex queries. For
some, generative models amplify human creativity by serv-
ing as a tool that supercharges creative processes (Hoffman,
2022). However, many others feel that developments will
only lead to more problems, such as troubling deepfakes, the
replacement of human artists by artificial intelligence (AI),
and disinformation that can be more quickly created and
disseminated (Hancock & Bailenson, 2021; Wayne, 2022).

In the context of these potentially malicious applications, we
explore the realism, expressivity, and limitations of diffusion
models. Our process aims to answer three questions:

1. How can we achieve high test accuracy on classifying
between real and fake images? What is our limit with
a baseline convolutional neural network (CNN)? How
can we leverage a well-established architecture out-of-
the-box to push the bound higher?

2. When making classifications, what features distin-
guish real images from AI-generated images, and
DALLE-2 from Stable Diffusion 2.0?

3. Finally, which types of prompts generate the most
photorealistic results and successfully trick the high-
est performing classifier? Which types of prompts
are unsuccessful at this task? Does this informa-
tion connect back to the expressivity of each diffusion
model?

With this approach, we hope to offer insights into the limi-
tations of existing diffusion models and potential areas for
improvement in photorealistic image generation.

2. Related Work
In the past, image generation research has been centrally
focused on more traditional techniques, most notably gener-
ative adversarial networks (GANs) (Li et al., 2022; Marra
et al., 2018). The majority of the work regarding GAN
image identification has employed some variation of CNN
architecture (Hulzebosch et al., 2020). A simple CNN has
proven effective in this domain because the architecture of
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a GAN consists of a discriminator half, which focuses on
classification. Promising training methods for this approach
have involved parity between an original image and a GAN-
modified image (Jain et al., 2018). We translate this idea to
diffusion models by creating a prompt-based dataset with
thematic parity between real and AI-generated images.

As of late, several papers have emerged that focus on dis-
tinguishing between real and AI-generated images. Recent
literature by Sha, et al. analyzed this task for diffusion
models through two modalities: a visual modality and a
linguistic modality (Sha et al., 2022). In the visual modal-
ity, the team used universal detection to first differentiate
between real and fake images. Then, they used source attri-
bution to assign the image to either DALLE-2Pytorch (an
unofficial version of DALLE-2) or Stable Diffusion 1.0. In
the linguistic modality, the team performed prompt analysis
in a similar vein. Even more recent research pre-printed by
Corvi, et al. adapted classifiers used for GANs (Corvi et al.,
2022). Their specific niche was analyzing scenarios used in
social networks, such as during resizing and compression.

Aside from taking inspiration from existing GAN-focused
literature, there is no consensus “state-of-the-art” method for
classifying real and fake diffusion model images. From the
current discourse, we consider the scaffolded approach of
both visual and linguistic methods to be strong, one which
we embody in our own work. However, we believe that
our contribution lies in making the limitations of diffusion
models more concrete, whether through specific features of
the generated images or the prompts fed into the networks.

3. Dataset
3.1. Using the Flickr30k Dataset

Our central focus when building the prompt-based dataset
revolved around establishing parity between real and fake
images. Without this equality, the potential for overfitting
increases, as there is a higher possibility of our models
focusing on the broader subject matter of such images. In
turn, these models would conceivably learn to classify based
on the overarching topic of an image rather than features
associated with each of the two class types.

After experimenting with datasets such as Google’s Open
Images Dataset V7 – which utilizes concise image labels
focused extensively on singular details – we decided to steer
away from simpler prompts in favor of full-length sentence
descriptions (Benenson & Ferrari, 2022). When fed into
diffusion models, these labels’ short words and phrases of-
ten produced images that were overly concentrated with
minor details, unlike their expansive real-life counterparts.
After continuing to play around with DALLE-2 and Stable
Diffusion, we found that single-sentence prompts that in-
cluded multiple key aspects created a more complete and

accurate result. This led to our decision to use the Flickr30k
dataset from the University of Illinois Urbana-Champaign
(Young et al., 2014). This dataset contains a corpus of im-
ages from Flickr that are each assigned a sentence-long,
human-generated description. Supplying a few examples
of these descriptions manually to both diffusion models
generated results that actually mirrored their real image
counterparts, an outcome likely brought about thanks to the
human involvement in the description creations.

DALLE-2 Real Stable Diffusion

Figure 1. Images corresponding to the prompt: “A skier is over-
looking the beautiful white snow covered landscape.”

3.2. Generating the Dataset

In total, the Flickr30k dataset has 31782 images. With these
images and descriptions in hand, we created our DALLE-
2 and Stable Diffusion datasets. We generated 2884 total
DALLE-2 images and 8609 total Stable Diffusion images
(Rombach et al., 2022). We generated fewer DALLE-2
images due to both costs and OpenAI’s content moderation
policy, which rejected several of the prompts from Flickr30k
(OpenAI, 2022). For both datasets, we only stored one AI-
generated image for each real image to neutralize the effects
of class imbalance.

4. Methods
4.1. Classifier #1: Baseline CNN

First, we made a two-convolutional-layer neural network.
Our model works by twice running a convolutional layer to
max pooling layer pair. Afterward, we flatten the features
and run a two-layer ReLU neural network. We employed a
simple model to gauge the simplicity of the task, effectively
setting a “lower bound” on accuracy.

4.2. Classifier #2: ResNet-18

We then employed transfer learning with the 18-layer pre-
trained model ResNet-18 (He et al., 2016). Transfer learning
works by taking a model that has been trained on one dataset
and finetuning the downstream parameters for a different
dataset. In doing so, the upstream convolutional layers
become trained to recognize features that will also be helpful
in similar tasks. This method is particularly useful in low-
data settings where training a high-variance CNN model
from scratch would not be able to generalize well. Since
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DALLE-2 images are expensive to create and there were no
pre-existing fake image datasets with the same properties
as the Flickr30k dataset, we experimented with applying
transfer learning to overcome our low-data conditions. At
first, we trained the model without loading in pre-trained
weights, as we wanted to investigate the effect of a larger
number of layers on classification accuracy independently.
Then, we loaded in the pre-trained weights. Despite being a
seven-year-old architecture, we specifically used ResNet-18
as the network was trained on real pictures of people with the
ImageNet dataset, a task that we thought would be similar to
our task of recognizing DALLE-2 images prompted to look
like everyday scenes (Deng et al., 2009; He et al., 2016).

4.3. Image Pre-Processing

To reduce computational learning requirements, we con-
verted all of our input images to grayscale, cropped the
images around the center to 224 by 224 pixels, and normal-
ized all images across each RGB channel.

4.4. Training Process

Using the Adam optimizer, we trained both models for a
minimum of 8 epochs and a maximum of 15 epochs to give
the network time to learn (Kingma & Ba, 2014). When
updating our weights, we used mini-batch stochastic gradi-
ent descent, with batch size equal to 200 and learning rate
α = 0.001. We also added momentum to our mini-batch
stochastic gradient descent, where µ = 0.9. Finally, we
used cross-entropy loss for both models to stay consistent
with the ResNet-18 architecture. We defined convergence
during training to be when the difference in the loss between
two consecutive epochs was less than 0.005.

Due to the limited amount of DALLE-2 data compared to
Stable Diffusion data – and fake data as a whole relative
to real data – we wanted to analyze bias and variance to
see if training on a low amount of data would inhibit our
results. Thus, while training, we set aside 10% of data
as a test set and experimented with using proportions of
50%, 60%, 70%, 80%, and 90% of the remaining data for
training. By plotting the graphs of both our training loss
and accuracies for each proportion, we hoped to determine
whether or not there was a sweet spot for the amount of
training data or whether the network would generalize with
only a small amount of data.

4.5. Tasks

First, we evaluated each model on the tasks of classifying
between real vs. DALLE-2 images and real vs. Stable
Diffusion images. Then, we generated heatmaps to better vi-
sualize the differences between real and fake images that our
networks identified. After understanding what distinguished

real images from fake images, we then sought to differ-
entiate DALLE-2 images from Stable Diffusion images to
understand the key features of each model’s output. Finally,
we analyzed which prompts produced more effective fake
images.

5. Results
5.1. Results of Baseline CNN

Using our two-layer CNN, we saw relatively good results,
achieving a test accuracy of 78% on the real vs. DALLE-2
task as well as 85% test accuracy on the real vs. Stable
Diffusion task.

Overall, our baseline CNN seems to improve with more
data. We did not observe a falling training accuracy as we
increased the size of the training set. However, we observe
unstable performance peaks and troughs, suggesting a high
variance from training all model levels without the implicit
bias from pre-training.

5.2. Employing Transfer Learning

We saw large gains with our transfer learning model: with no
pre-trained weights, we achieved a test accuracy of 93.67%
on the DALLE-2 vs. real task and 93.57% on the Stable Dif-
fusion vs. real task. With the pre-trained weights, we came
to a test accuracy of 97.5% on both the real vs. DALLE-2
and real vs. Stable Diffusion tasks.

We observe that transfer learning demonstrates stable behav-
ior regardless of the amount of data during training, showing
low variance in stability. Though upstream weights are not
trained, we nevertheless predicted a low variance because
the original task the ResNet-18 network was trained on –
multi-class classification of real images – is similar to the
task at hand. As such, we believe there is no need to acquire
more data for DALLE-2 and Stable Diffusion to achieve
better results.

Table 1. Results from Real vs. Fake Classification Tasks
CLASSIFICATION TASKS

DALLE-2 Stable Diffusion
2-LAYER CNN 78% 85%

RESNET-18 93.67% 93.57%
RESNET-18 + WEIGHTS 97.5% 97.5%

5.3. Visualizing Real vs. Fake

After our classification tasks, we turned to Smooth Gradi-
ent Based Class Activation Mapping++ (Smooth-GRAD
CAM++) using the TorchCAM Python library (Fernandez,
2020). This method generates heatmaps to visualize what
a given convolutional layer deems imperative for image
classification (Omeiza et al., 2019).

After analyzing the heatmaps, we see the model generally
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chose to hone in on a small subset of elements of the image.
Coupled with our results from training ResNet-18, we thus
can infer that diffusion models have a difficult time pro-
ducing high-level generalizable features, which are features
a CNN can easily detect. One primary observation was
that the model would often identify hands when they were
present in both the real and generated images to motivate
its decision. Particularly surprising was the way that the
model was able to detect a variety of objects. For instance,
we found that the network was able to identify real animals
from fake animals, such as birds and dogs. We also found
that the model could focus on objects that were more distant,
such as buildings, to make its judgment rather than exclu-
sively focusing on closer ones. We believe this attention to
specific objects and ability to recognize a wide variety of
details comes from ResNet-18 being originally created as a
general-purpose classifier for single object images.

DALLE-2 Real Stable Diffusion

Figure 2. Heatmaps of DALLE-2, Flickr30k, and Stable Diffusion.

5.4. Distinguishing between Generative Models

Our heatmaps and high classification scores led us to hypoth-
esize that neither diffusion model was expressive enough
to generate realistic images. However, our network may
have also been unable to pick up on distinct features. If un-
touched upstream weights are better at pulling features from
the more expressive real images, then our current model
would be evaluating the task of “real vs. diffusion model”
rather than the tasks of “real vs. DALLE-2” or “real vs. Sta-
ble Diffusion.” To investigate this hypothesis, we tasked our
transfer learning model with classifying between DALLE-2
and Stable Diffusion. The purpose of this experiment was
to see how well the model could pick up on the unique
quirks between different model generations as well as the
possibility of these features existing.

From performing this experiment, we found that the network
achieved strong results: training on just 60% of DALLE-2
data led to an overall test accuracy of 94%. The generated
heatmaps for each class remained relatively unchanged.

5.5. Linguistically Decomposing Prompts

The last step in our research process was to determine
what distinguished an ineffective prompt from an effective
prompt. We define “ineffective prompts“ as prompts that
created fake images that were correctly classified by the
ReNet-18 transfer learning network. We define “effective
prompts“ as prompts that generate images misclassified as
real by the same network. To do so, we calculated a con-
fusion matrix and analyzed the prompts that led to both
classifications. In doing so, we identified that the ResNet-18
model misclassified 9 DALLE-2 and 11 Stable Diffusion
images while correctly classifying 280 DALLE-2 and 274
Stable Diffusion images.

When analyzing ineffective prompts, we first looked at the
frequency of nouns within each. In doing so, we found
three types of common prompt elements: people-related
elements, clothing-related elements, and setting-related ele-
ments. Alongside our visual analysis of the heatmaps, such
prompt elements suggest that these nouns are more likely
to be malformed when generated by DALLE-2 and Stable
Diffusion.

Table 2. Taxonomy of Ineffective Prompt Elements
PROMPT ELEMENTS

Type Examples
PEOPLE “MAN“, “WOMAN“, “PEOPLE“, “MEN“

CLOTHING “SHIRT“, “SHORTS“, “JEANS“, “T-SHIRT“
SETTING “BACKGROUND“, “STREET“, “FIELD“

Then, we tried to identify effective prompt characteristics.
After looking at the raw nouns in each misclassified prompt,
there was no difference in the distribution of the type of
subject: there were equally many nouns corresponding to
people, animals, and buildings. Thus, we decided to focus
on two metrics: the number of nouns and the total number
of words in a prompt.

On the networks trained on the real vs. Stable Diffusion task,
prompts misclassified as real had both a higher average num-
ber of nouns and a larger number of words in the prompt
overall. Applying bootstrapping to our data, we derived
corresponding p-values of 0.1544 and 0.2897, respectively.
Both statistics also showed low variance. However, we saw
a different trend with our real vs. DALLE-2 task. While the
variance of both statistics remained small, the average num-
ber of nouns and words in the message was smaller than the
average prompt with p-values 0.3108 and 0.6060, respec-
tively. Though these values are not statistically significant
given the size of each dataset, they suggest the possibility
of an underlying difference in the composition of “effective
prompts“ for each of the two models.

When looking at the corresponding images, misclassified
Stable Diffusion images were often malformed or busy. This
suggests that DALLE-2 may be more expressive than Stable
Diffusion. With shorter prompts, DALLE-2 was able to
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create more in-depth singular subject images, effectively
fooling the network.

6. Conclusion and Future Work
By leveraging CNN architecture and transfer learning
to compensate for our data-restricted environment, we
achieved a maximum test accuracy of 97.5% for both the
real vs. DALLE-2 and the real vs. Stable Diffusion tasks.

Our high accuracy with an almost decades-old architecture
suggests that while diffusion models have an incredible
propensity for understanding language, both the human
eye and our networks can distinguish between real and the
most hyper-realistic fake outputs. We also showed that our
networks identify concrete objects for each diffusion model
during classification. From our prompt analysis, we see that
the types of prompts that generate realistic images from each
model are different. Overall, much work is left to be done
on creating more expressive and general-purpose diffusion
models.

Since diffusion models are trained by denoising images, we
believe there might be quirks in the heuristics that these
models learn. Rather than trying to perfectly reform an im-
age from a prompt, it may be more reliable for the denoiser
to simplify some details. This perspective suggests that the
future of training diffusion models may involve integrating
GAN techniques due to their established ability to generate
photorealistic images.

In the future, we plan to expand our results by exploring
different state-of-the-art classification architectures, such as
vision transformers (Kolesnikov et al., 2021); newer diffu-
sion models, such as Midjourney (Borji, 2023); and other
prompt structure variations, such as shorter prompts. Mov-
ing forward, this work can act as the start for an iterative
process for benchmarking the realism of diffusion models.
Specifically, we can continuously use newer, more modern
architectures as the diffusion models outperform a given
classifier. As the exponential improvement of these models
introduces the prospect of more widespread disinformation,
we believe that our methods can help achieve the end goal
of creating a single classification model that can classify
any fake image from any real image.
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