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Q-Ground: ImageQuality Grounding with Large
Multi-modality Models

Anonymous Author(s)

ABSTRACT
Recent advances of largemulti-modalitymodels (LMM) have greatly
improved the ability of image quality assessment (IQA) method to
evaluate and explain the quality of visual content. However, these
advancements aremostly focused on overall quality assessment, and
the detailed examination of local quality, which is crucial for com-
prehensive visual understanding, is still largely unexplored. In this
work, we introduce Q-Ground, the first framework aimed at tack-
ling fine-scale visual quality grounding by combining large multi-
modality models with detailed visual quality analysis. Central to
our contribution is the introduction of the QGround-100K dataset,
a novel resource containing 100k triplets of (image, quality text, dis-
tortion segmentation) to facilitate deep investigations into visual
quality. The dataset comprises two parts: one with human-labeled
annotations for accurate quality assessment, and another labeled
automatically by LMMs such as GPT4V, which helps improve the
robustness of model training while also reducing the costs of data
collection. With the QGround-100K dataset, we propose a LMM-
based method equipped with multi-scale feature learning to learn
models capable of performing both image quality answering and
distortion segmentation based on text prompts. This dual-capability
approach not only refines the model’s understanding of region-
aware image quality but also enables it to interactively respond to
complex, text-based queries about image quality and specific distor-
tions. Q-Ground takes a step towards sophisticated visual quality
analysis in a finer scale, establishing a new benchmark for future
research in the area. Codes and dataset will be made available.

CCS CONCEPTS
• Computing methodologies→ Computer vision tasks.

KEYWORDS
Image Quality Assessment, Large Multi-modality Models, Image
Quality Grounding

1 INTRODUCTION
As a cornerstone in the domain of digital imaging, Image Quality
Assessment (IQA) covers a wide range of methods designed to eval-
uate the perceptual quality of visual content similarly to human vi-
sual system (HVS). With the rapid increase of digital content, IQA
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Assistant: The distortion segmentation 
masks of blur, overexposure and 
noise are [Seg] [Seg] [Seg].

(Continued)
User: Please give distortion 
segmentation masks.

2.27 (5.0)

(a) Visual quality scoring

(b) Visual quality reasoning 

User: Please evaluate the quality of the image.

Assistant: The overall clarity of this image is very low, with weak lighting. 
The main subject, a dog, has lost most of its texture details and appears blurry. 
The background is also blurry. The composition is poor, with a slight tilt. The 
background is also blurry. The image has lost a significant amount of detail. 

(c) Visual quality grounding

Figure 1: An example comparison between different tasks
illustrates: (a) Visual quality scoring only provides a numeri-
cal score without an underlying rationale; (b) LMM-based rea-
soning offers clear explanations but lacks pixel-level compre-
hension; (c) the suggested approach to visual quality under-
standing not only facilitates quality reasoning but also deliv-
ers corresponding pixel-level distortion segmentationmasks.

is becoming more and more important in many areas, such as me-
dia streaming, user-generated photos and videos, smart-phone cam-
eras and the growing field of AI-generated content. These various
applications call for more powerful and understandable IQA meth-
ods to help create visual content with better quality and improve
the experience of users.

Existing IQA methods has aimed to replicate the HVS’s capabil-
ity to distinguish and assess visual information, typically by cor-
relating the mean opinion scores (MOS) labeled by humans with
features derived from images. The performance of these meth-
ods has significantly improved with the advent of more power-
ful feature extractors, moving from hand-crafted features in tradi-
tional approaches [28, 29, 31, 68] to advanced deep neural networks
[4, 15, 71]. Nonetheless, these works only give quality scores as re-
sults and face challenges in accurately evaluating and explaining

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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the details of image quality, particularly when it comes to local dis-
tortions and fine-grained analysis. Recent advances in Large Multi-
Modality Models (LMMs) mark a new chapter for IQA, offering
promising avenues for enhancing both the evaluation capabilities
and the explanatory ability of IQA systems. For example, CLIPIQA
[47] illustrates the zero-shot capabilities of multi-modality models
in IQA, and Q-Bench [52] demonstrates near-human performance
of GPT4V [33] in certain specific areas. However, despite these ad-
vancements, the application of LMMs in IQA remains focused on
overall quality assessment. This narrow focus limits their utility
for comprehensive visual analysis, particularly in contexts where
fine-scale quality grounding and detailed understanding of local
distortions are imperative.

In response to these challenges, we introduce the visual quality
grounding task to the field of IQA for the first time, with the goal of
bridging the gap in detailed image quality perception. As illustrated
in Fig. 1, traditional methods of quality scoring yield a single numer-
ical score without explanation, and existing quality reasoning meth-
ods does not account for local distortions. Our novel visual quality
grounding strategy integrates pixel-level distortion segmentation
with textual queries, substantially improving the fine-scale capabili-
ties of IQA. The major problem in realizing this advancement is the
lack of suitable datasets. Unlike standard segmentation tasks, the
boundaries of distortion regions may exhibit minor variations due
to individual subjective judgments. Therefore, we deploy two auxil-
iary methods to support the creation of more dependable mask an-
notations: 1) Preliminary segmentation of images using Semantic-
SAM [22] to pinpoint potential areas of distortion; 2) Provision of a
textual quality evaluation message during the annotation process to
serve as a reference. Our dataset is constructed on top of Q-Instruct
[53], which provides detailed textual explanations regarding the
image quality. Consequently, we have compiled a visual quality
grounding dataset containing 50K human-annotated triplet samples
(image, quality text, distortion segmentation). Recognizing the time-
consuming and costly nature of human annotation, we additionally
automate part of the dataset creation using GPT4V [33] because
of its superior performance in overall quality evaluation [52]. By
employing the set-of-mark strategy [63], we manage to collect an
additional 50K samples for our dataset. These automatically labeled
data can be easily generated, significantly broadening the diversity
of our dataset. These two parts form our final dataset, QGround-
100K , the first visual quality grounding dataset for fine-scale IQA.

The QGround-100K dataset enables the training of a quality
grounding model for IQA. Rather than constructing a traditional
visual grounding model that relies on separate embeddings for text
and image as inputs, our aim is to develop a more capable and flexi-
ble multi-modality model that incorporates both text and images as
inputs and outputs, akin to recent LMMs [18, 26, 64, 75]. Different
from these existing methods, which primarily address high-level
concepts, the visual quality grounding task places a greater empha-
sis on low-level and mid-level details. Consequently, we introduce
a multi-scale feature abstractor (MSFA) to get quality-aware visual
embeddings before merging them with text embeddings into pre-
trained large language model (LLM), thereby augmenting LMM’s ca-
pacity for low-level perception. Furthermore, we train our model us-
ing a diverse dataset comprising high-level multi-modality data, the

quality reasoning dataset [53], and the newly proposed QGround-
100K . These varied datasets enable our model to undertake com-
plex tasks, such as answering text-based questions about image
content and quality, as well as conducting distortion segmentation.
By integrating these features, our approach smoothly combines
fine-scale and overall quality perception capabilities within the in-
teractive analysis of visual contents, setting a new benchmark for
future explorations in the field.

Our contributions can be summarized as follows:
• To the best of our knowledge, we are the first to present
framework aimed at fine-scale visual quality grounding, us-
ing the strengths of LMMs for detailed visual quality analysis.

• We construct the QGround-100K dataset, the first-of-its-kind
dataset comprising 100K samples designed to support deep
investigations into visual quality, encompassing both human-
labeled and LMM-generated annotations.

• We introduce multi-scale visual feature abstractor for LMM-
based visual quality grounding. The model is capable of per-
forming image quality assessment and distortion segmenta-
tion with textual prompts, thus facilitating a fine-scale un-
derstanding of quality and interactive engagement with vi-
sual content.

• Our work establishes a new benchmark for future research in
IQA, paving the way for more sophisticated and fine-grained
analyses of image quality.

2 RELATEDWORKS
2.1 Image Quality Assessment
2.1.1 Previous Methods. Current methods in IQA can be broadly
divided into Full-Reference (FR) and No-Reference (NR) techniques.
FR methods assess the discrepancy between a reference image
and its distorted counterpart. The widely recognized Peak Signal-
to-Noise Ratio (PSNR) evaluates this difference on a pixel-wise
basis, whereas the Structural Similarity Index (SSIM) [49, 50] en-
hances this evaluation by incorporating structural similarity fea-
tures, thereby inspiring several subsequent studies [19, 20, 40, 41,
62, 67, 70]. Learning-based approaches [2, 4, 7, 17, 36, 71] have come
to dominate FR IQA with significantly better performance, provid-
ing more accurate and reliable assessments of image quality. How-
ever, the necessity for a reference image limits their applications.

The development of NR-IQA which is more challenging has
followed a similar trajectory to that of FR-IQA. Traditional methods,
exemplified by NIQE [31], rely on natural scene statistics [1, 23, 28,
30, 32, 69]. In contrast, recent advancements [15, 43, 44, 51, 60, 73]
in deep learning enable methods to directly learn to estimate MOS
in an end-to-end fashion. The efficacy of these deep learning models
is closely related to the datasets they are trained on, resulting in
capabilities that are less interpretable. For instance, a model trained
on an aesthetic assessment dataset may excel at evaluating aesthetic
quality [12, 45], yet recognizing this specialty from its output scores
is not straightforward. The emergence of multi-modality models,
notably CLIP [38], has inspired recent initiatives [13, 16, 47, 74] to
integrate the descriptive power of textual information with IQA,
proving beneficial. Consequently, the latest works [14, 53–56, 66]
employ LMMs in IQA, significantly enhancing both performance
and interpretability, and leading to a new era in IQA research.
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Table 1: Comparison of existing public IQA datasets and the
proposed QGround-100K.

Type Dataset MOS Text Seg

FR Traditional datasets
[20] [42] [35] [24] [71] ✔ ✘ ✘

NR

Traditional datasets
[9] [11] [8] [10] [65] ✔ ✘ ✘

Q-Instruct [53] ✔ ✔ ✘

QGround-100K ✔ ✔ ✔

Despite these significant advancements, current IQA methods are
limited to providing either a global score or a textual evaluation
and lack the capability to evaluate image quality within the context
of local distortions. Our work aims to bridge this gap.

2.1.2 Existing Datasets. There are numerous datasets that have
been pivotal in the development of both FR and NR IQA algorithms,
as summarized in Tab. 1. The FR datasets typically include images
with synthetic distortions like Gaussian blur and white noise, where
subjects compare two images and assign a quality score, which
is a process that can introduce score ambiguities. To address this,
BAPPS [71] introduces a two-alternative forced choice to reduce
score uncertainty. Traditional NR datasets typically require sub-
jects to provide a simple score. SPAQ [8] further requires quality
ratings specific to various distortions and contents. While these
datasets are invaluable for training and benchmarking IQA mod-
els, the reliance on simple quality scores limits their interpretabil-
ity. Therefore, Q-Instruct [53] introduces textual quality descrip-
tions, significantly enhancing the interpretability of IQA datasets.
Nevertheless, these datasets mainly focus on global quality assess-
ments, paying less attention to local distortion identification and
detailed quality analysis. This limitation narrows their utility in
applications demanding precise local distortion analysis, such as
in image enhancement and editing tasks. The proposed QGround-
100K dataset seeks to bridge this gap with comprehensive annota-
tions including MOS, textual evaluations, and segmentation masks,
establishing a more versatile tool for advanced IQA applications.

2.2 Visual Grounding with LMM
Visual quality grounding has long been an important task in com-
puter vision, serving as a bridge between visual data and textual
descriptions. Prior visual grounding, also known as referred expres-
sion comprehension, is mostly like a text conditioned localization
task, see [37] for a comprehensive survey. The evolution of LMMs
has significantly influenced recent developments. Innovations such
as Kosmos-2 [34], Shikra [5], GPT4RoI [72], VisionLLM [48] etc.,
have successfully merged generative LMMs with localization tasks,
facilitating human-model interactions at the region level. Recent
advancements, notably LISA [18], GLaMM [39], and PixelLM [75],
have significantly improved upon existing methods by introducing
pixel-level segmentation. However, the application of LMMs in the
specific context of image quality assessment and visual grounding
remains relatively unexplored. Our work takes a pioneering step
forward in advancing fine-grained quality perception, marking a
notable contribution to this evolving landscape.

Table 2: The image sources and statistics of QGround-100K .

Image Sources Original Human labeled
(Q-Pathway) GPT4V-labeled

KonIQ-10K [11] 10,373 5,182 5,168
SPAQ [8] 11,125 10,797 —

LIVE-FB [65] 39,810 800 38,946
LIVE-itw [9] 1,169 200 969

AGIQA-3K [21] 2,982 400 2,568
ImageRewardDB [59] 50,000 584 2,947

# Image – 17,963 50,599
# Annotation – 52,924 50,599

3 THE QGROUND-100K DATASET
In this section, we provide details about the process of constructing
the QGround-100K dataset, which lays the foundation for enabling
visual quality grounding. We discuss the sources of our data in
Sec. 3.1, and outline the annotation pipeline involving both human
annotators and GPT4V in Sec. 3.2. Additionally, we provide an
analysis and statistics of labels obtained from human annotators and
GPT4V in Sec. 3.3, offering insight into the dataset’s composition
and the reliability of its annotations.

3.1 Data Collection
To develop a model capable of visual quality grounding, a dataset
comprising triplet samples is essential: an input image, associated
quality descriptive text, and ground truth distortion segmentation
masks. Since the Q-Instruct [53] dataset provides comprehensive
text descriptions for images from diverse resources, we choose to
build QGround-100K upon it, as summarized in Tab. 2. We exclude
1K synthetic distorted images from COCO due to their focus on
global distortions. As outlined in Tab. 2, for images within the Q-
Pathway that already have human-labeled texts, we complement
them with human labeled segmentation masks. To enrich the di-
versity of images, we include the rest images from IQA datasets for
GPT4V labeling. Recognizing the rising popularity of AI-generated
images, we also add 5.5K images from [21, 59]. The accompanying
quality text is generated using latest Co-Instruct model1, chosen
for its performance comparable to that of GPT4V.

3.2 Data Annotation
To streamline the annotation process, we have chosen five preva-
lent types of distortions for mask annotation: blur, overexposure,
noise, jitter and low light. These categories were selected for
their frequency and significance in impacting visual quality across
a wide range of images according to the report in Q-Instruct [53].
Figure 2 showcases the comprehensive data annotation pipeline,
which incorporates both human and GPT4V annotation stages. Be-
low, we provide detailed explanations for each phase within the
pipeline, ensuring clarity and insight into our systematic approach
for annotating the QGround-100K dataset.

3.2.1 HumanAnnotation. In the human annotation phase, 15 trained
annotators with solid educational backgrounds are presented with
(image, quality description) pairs. Their task is to segment out the

1https://huggingface.co/q-future/co-instruct

https://huggingface.co/q-future/co-instruct
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SAM

This photo captures a building. The 
focus is clear, but the lighting is 
dark and lacks exposure. The 
colors appear natural but 
monotonous. There is not much 
noise. Therefore, the quality of this 
photo is average.

Q-Instruct

[GPT4V response]
1：low light
2：low light
3：low light
4：no distortion
……

SoM

Human GPT4V

1

32 6
5
4

Figure 2: The data annotation pipeline incorporates both human expertise and GPT-4V capabilities. Firstly, the input image
undergoes pre-segmentation using SAM [22]. In the human annotation phase, subjectives need to identify and categorize types
of distortions, with quality description texts from humans as reference. The subjective is free to adjust borders generated by
SAM. In the GPT4V annotation phase, the reference for quality is generated by the Q-Instruct model. Then, each region is
marked with a number, which is then coupled with the quality text and forwarded to the GPT4V model. Finally, the model
outputs the types of distortions present in each specified region.

distorted regions within the images and categorize the types of dis-
tortions present. To minimize ambiguity in the annotations, anno-
tators are instructed to consult the provided quality descriptions
throughout the annotation process. This step is crucial to ensure
that the regions of interest related to quality assessment are accu-
rately highlighted. Additionally, a pre-segmentation step utilizing
SAM [22] is implemented to improve uniformity in the segmenta-
tion boundaries associated with specific distortions. Despite this
automated assistance, annotators retain the judgement to manually
adjust the boundaries. This flexibility acknowledges that SAM’s
segmentation may prioritize object areas over actual distortion lo-
cations, thereby allowing for more precise identification of quality-
related distortions.

3.2.2 GPT4V Annotation. Following the human annotation phase,
the GPT-4V annotation employs the Set-of-Mark (SoM) technique
to facilitate mask annotation. As depicted in Fig. 2, the images are
initially segmented using SAM and labeled with numbers. Sub-
sequently, GPT4V is provided with the same (image, quality de-
scription) pairs that were utilized in the human annotation process.
Leveraging its profound comprehension of both visual and textual
content, the model identifies and labels regions of distortion. This
methodology allows GPT4V to autonomously generate segmen-
tation masks for distorted regions within an image, informed by
the provided quality descriptions. This automated process not only
speeds up the annotation effort but also provides a scalable way
to enrich the dataset with diverse interpretations of image quality,
bridging the gap between human efforts and AI efficiency.

3.3 Analysis of QGround-100K
As summarized in Tab. 2, the QGround-100K dataset comprises
rich images and annotations for visual quality grounding from
both human and GPT4V. Here, we delve into the statistics between
human and GPT4V annotations.

Given that the range and types of distortions can be subjective
and may vary among different annotators, assessing the reliability
of human annotations is crucial. To this end, we examine the agree-
ment between various human annotations within the Q-Pathway

(a) Example of agreement among three annotations.

(b) Example of disagreement among three annotations.

Dataset KonIQ-10K SPAQ LIVE-FB LIVE-itw AGIQA-3K ImageReward
Recall 0.902 0.864 0.931 0.966 0.976 0.980

(c) Pairwise recall between different annotators on different datasets.

Figure 3: Analysis of annotation agreement between different
human subjectives.

jitter
15.5%

noise

10.7%

overexposure

13.7%

blur45.7%

low light

14.4%

Human annotation

jitter
6.0%

noise 12.7%

overexposure

8.9%
blur

51.7%

low light

20.7%

GPT4V annotation

Figure 4: Statistics of human and GPT4V parts separately.

dataset, where each image is associated with at least three distinct
quality text annotations. Different annotators label the same image
but with different accompanying texts. As depicted in Fig. 3, we con-
sider the results acceptable when one mask is a subset of another
(Fig. 3(a)), and unacceptable when the same region is labeled with
different types of distortions (Fig. 3(b)). To quantitatively evaluate
the agreement score of human annotations, we employ the recall
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User: Please evaluate the 
quality of the image and give 
distortion segmentations.
Assistant: .....  <seg> <seg>

CLIP 
Image Encoder

������Word 
Embedding

Large Language Model ℱ

Decoder
�

Assistant: The image quality is poor  ......   overexposure is 

CLIP 
Image Encoder

MLP

CLIP 
Image Encoder

�

Q K V

Multi-head Attention

MLP

�
LoRA

(a) Overall framework (b) 𝜙𝑣 in [18, 75] (c) Proposed Multi-scale Feature Abstractor

Figure 5: The pipeline of our method. (a) The overall framework follows previous method [18, 75] and is designed to accept
inputs of images and text, subsequently producing textual outputs and segmentation results. (b)(c): comparison of multi-modal
projection block between previous works and our proposed multi-scale feature abstractor.

of the pairwise intersection area over the smaller masks as follows:

Recall =
1
𝑁

𝑁∑︁
𝑖

[ 1
𝑀𝑖

𝑀𝑖∑︁
𝑗

𝐴 𝑗 ∩ 𝐵 𝑗

min(𝐴 𝑗 , 𝐵 𝑗 )

]
, (1)

where𝑀𝑖 =
( 2
𝑚𝑖

)
, 𝑁 is the number of images,𝑚𝑖 is the number of

masks for image 𝑖 and 𝐴, 𝐵 are the selected pairs. The findings, il-
lustrated in Fig. 3(c), reveal that the agreement scores across dif-
ferent datasets are notably high, underscoring the reliability of our
human annotation process. Regarding GPT4V annotations, it was
observed that GPT4V consistently yields similar results across mul-
tiple runs when provided with appropriate prompts (detailed fur-
ther in the supplementary materials). This analysis confirms the
robustness and dependability of both human and GPT4V annota-
tions within our dataset, laying a strong foundation for accurate
visual quality grounding.

Besides, we provide an analysis of the distribution of distortion
types found within both human and GPT4V annotations, as detailed
in Fig. 4. Generally, the frequency of distortions observed roughly
follows the order: blur > low light > overexposure ≈ noise. A
notable deviation in this pattern is the higher incidence of jitter
in human annotations compared to those by GPT4V. This differ-
ence likely comes from the Q-Pathway’s substantial inclusion of
images from SPAQ [8], a dataset composed of smartphone-captured
images, which are prone to jitter due to hand movement. Con-
versely, the segment annotated by GPT4V primarily consists of
web-crawled images, where jitter is less common. The similarity
in the distribution of distortion annotations between human anno-
tators and GPT4V highlights the GPT4V’s effectiveness as a data
generator, thereby validating its use in supplementing and expand-
ing the dataset. Overall, the combined efforts of human and GPT4V
annotations significantly enhance the diversity and utility of the
dataset, providing a promising way to scale up datasets for visual
quality grounding.

4 METHODOLOGY
Our objective is to develop a model capable of dialogues with users
concerning the content and quality of images, while also executing

distortion region segmentation through text queries. Our frame-
work follows the simple and efficient pipeline of PixelLM [75]
(Sec. 4.1), and we improve the image to text projection block with
multi-scale features to enhance quality-aware perception of the
model (Sec. 4.2). Then, we train the model with multi-task datasets
to enhance its capabilities (Sec. 4.3).

4.1 The Overall Framework
As illustrated in Fig. 5(a), the system processes both image inputs,
denoted as 𝑥𝑖𝑚𝑔 , and textual inputs, 𝑥𝑡𝑥𝑡 , to produce corresponding
textual responses, 𝑦𝑡𝑥𝑡 , and segmentation masks, 𝑦𝑚 . The inputs
𝐼 and 𝑥𝑡𝑥𝑡 are firstly transformed into token embeddings, which
are subsequently processed by a pre-trained large language model
(LLM), such as LLaMA [46], to generate output tokens in an auto-
regressive manner. These tokens are then decoded to form 𝑦𝑡𝑥𝑡 . To
facilitate the generation of segmentation outputs, we draw inspira-
tion from previous works [18, 75] and introduce learnable segmen-
tation tokens, represented as 𝐻𝑠𝑒𝑔 = {ℎ𝑖 ∈ R𝑑 }|𝑁

𝑖=1, where 𝑁 repre-
sents the number of segmentation tokens and 𝑑 indicates the dimen-
sion of features. The segmentation masks,𝑦𝑚 , are generated using a
decoder that takes the embeddings of 𝑥𝑖𝑚𝑔 as image input and𝐶𝑠𝑒𝑔
as condition inputs. This process involves the use of the pre-trained
LLM, denoted as F , and the CLIP image encoder, represented asV .
The overall pipeline of our framework is thus formulated as follows:

{𝑦𝑡𝑥𝑡 , 𝐻𝑠𝑒𝑔} = F (𝜙𝑣 (V(𝑥𝑖𝑚𝑔)), 𝑥𝑡𝑥𝑡 , 𝐻𝑠𝑒𝑔), (2)
𝑦𝑠𝑒𝑔 = D(V(𝑥𝑖𝑚𝑔), 𝐻𝑠𝑒𝑔), (3)

where D is a mask decoder same as [75], and 𝜙𝑣 is the projector
from visual features to LLM embedding space.

As shown in Fig. 5(a), prior studies [18, 75] typically select
straightforward Multilayer Perceptron (MLP) as 𝜙𝑣 and only use
the final features from V(𝑥𝑖𝑚𝑔) ∈ R(ℎ×𝑤 )×𝑑𝑣 , focusing mainly on
high-level representations. Nonetheless, in our task centered on vi-
sual quality grounding, multi-scale features are critical for learning
quality-associated perceptions, as evidenced by previous research
[4]. Therefore, we introduce an innovative approach for 𝜙𝑣 that in-
corporates multi-scale features, as elaborated below.
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User: What is train in this image? 
Please output segmentation mask.
Assistant: Here is the segmentation 
result [SEG]

User: What type of fruit trees are in the 
image?
Assistant: The image features a row of 
orange trees.

User: How does severe under 
exposure affect the image quality?
Assistant:  Loss of texture details 
and low sharpness.

User:  Can you provide me with segment of the 
blur region?
Assistant:  Sure, blur mask is [SEG].

Visual question answering. Semantic segmentation. Visual quality reasoning. Visual quality grounding.
Figure 6: Example from various data sources for multi-task training of Q-Ground model.

4.2 Multi-scale Feature Abstractor
The architecture of our proposed Multi-Scale Feature Abstractor
(MSFA) is depicted in Fig. 5(c). Modern vision encoders mainly
employ a vision transformer structure, exemplified by ViT/14 For
an image with size 𝐻 ×𝑊 , the feature dimensions from different
layers remain the same as 𝐻

14 ×
𝑊
14 . A straightforward solution is to

directly put multi-scale features into LLM, which will significantly
increases computational cost due to the exponential rise in attention
calculation as token length extends. For example, when 𝐻 =𝑊 =

448 and 3 scales are used, the visual token length alone would
be as long as 1024 × 3. On the other hand, such extensive visual
tokens may not be essential owing to the redundancy in visual
features. Recent study [57] shows that 256 tokens might be enough
for integrating image features with LLM. Therefore, we present a
multi-scale feature abstractor that employs a fixed-length query
to distill useful information from multi-scale features. Given a set
of multi-scale features F = {𝑓𝑖 ∈ R𝑃×𝑑𝑣 }, where 𝑓𝑖 is the 𝑖-th layer
feature from V(𝑥𝑖𝑚𝑔), the proposed MSFA can be calculated as

V = MHA(Q, F, F) (4)
O = 𝜎 (V𝑊1)𝑊2 (5)

where the MHA denotes multi-head attention, 𝜎 is the activation
function, 𝑊1,𝑊2 are parameters of linear layers, and the query
feature Q ∈ R256×𝑑𝑣 . To simplify training, we use a pooled feature
from the last layer ofV(𝑥𝑖𝑚𝑔) as Q, and F includes the last layer
features in addition to features from several shallower layers.

4.3 Multi-task Training
To obtain a powerful LMM model which enables visual quality
grounding into conversations with users, we employ various public
data sources, as shown in Fig. 6.

To acquire a powerful LMM model capable of integrating visual
quality grounding into interactive dialogues with users, we use a
variety of publicly available data sources, as illustrated in Fig. 6.
Our training dataset consists of four parts, detailed as below:
• Visual question answering dataset. This dataset enhances the
model’s understanding of visual content via question and answer
pairs about the input image. We employ the LLaVA-Instruct-150K
dataset [26] directly.

• Semantic segmentation dataset. A collection used to preserve
the semantic segmentation ability of the model, avoiding model

overfitting to the distortion segmentation task. We include many
different datasets for this part, i.e., ADE20K [76], COCO images
[25], COCO-stuff [3], as well as reasoning segmentation datasets
from [18, 75].

• Visual quality reasoning dataset. The Q-Instruct dataset [53] is
utilized to enable themodel to answer questions regarding overall
visual quality.

• The proposed QGround-100K dataset.Our uniquely compiled dataset,
specifically designed to train the model on visual quality ground-
ing in conversational contexts, enriching its ability to engage in
more insightful and relevant discussions about image content
and quality.

Such diverse datasets contribute to a comprehensive understanding
of visual content, quality assessment, and interactive communica-
tion, making our model promising for real-world applications.
Training objectives. The model produces both textual outputs
and segmentation masks, employing auto-regression to train the
text generation component and supervised learning for the seg-
mentation mask. In line with prior research, we apply two distinct
loss functions for each output: cross-entropy loss for text genera-
tion and a hybrid of binary cross-entropy and DICE loss for mask
creation. The overall loss function is represented as follows:

L = 𝜆𝑡𝑥𝑡L𝑐𝑒 (𝑦𝑡𝑥𝑡 , 𝑦𝑡𝑥𝑡 ) + 𝜆𝑠𝑒𝑔L𝑠𝑒𝑔 (𝑦𝑠𝑒𝑔, 𝑦𝑠𝑒𝑔), (6)

where 𝑦𝑡𝑥𝑡 is the shifted texts, 𝑦𝑠𝑒𝑔 is the ground truth mask, and 𝜆
are loss weights. More details are given in supplementary material.

5 EXPERIMENTS
5.1 Implementation Details
5.1.1 Training Details. Our model is finetuned from the pretrained
LLaVA-7B model [26], with CLIP-ViT-L/14-336 for visual encoding.
To enhance detail capture, we follow [75] and resize the input image
to 448 × 448. The trainable modules include the word embedding,
LoRA parameters for LLM, visual projector𝜙𝑣 and themask decoder
D. We employ the AdamW [27] optimizer, setting the learning
rate at 0.0003, and utilize the WarmupDecayLR scheduler, which
begins with 100 warmup iterations. The batch size is set to 2 per
device with 10 steps of gradient accumulation. The model is firstly
pretrained with semantic segmentation datasets to obtain common
semantic abilities and then finetuned with QGround-100K dataset
for visual quality grounding. The total training process requires
approximately 2 days on 4 NVIDIA 4090 GPUs.
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Figure 7: Visual comparison of segmentation results for distortions: jitter , noise , overexposure , blur and low light .

5.1.2 Benchmark Dataset and EvaluationMetrics. As a new task, we
establish a new benchmark for evaluating visual quality grounding.
As detailed in Tab. 2, the proposed QGround-100K comprises 17, 963
unique images, each annotated with human-labeled masks. We
randomly split 1, 000 as the test set. Each image is accompanied
by a minimum of three distinct quality descriptions and may be
associated with up to three different ground truth masks.

For quantitative evaluation, we rely on the widely recognized
metrics for segmentation task, i.e., themean Intersection over Union
(mIoU) and mean classification accuracy (mAcc).

5.2 Benchmark Performance
5.2.1 Selected Methods and Evaluation Protocal. Since visual qual-
ity grounding is a new task for image quality assessment, there is
no existing works to compare directly as far as we know. We there-
fore select two kinds of methods that are closely related:
• Semantic segmentation.We select two exemplary segmenta-
tion techniques, i.e., SegFormer [58] and Mask2Former [6], along
with a recent open-vocabulary model, SAN [61], as representa-
tive methods for our analysis. Given that these models do not
process textual inputs and are capable of producing only a single
outcome per input image, we calculate their average performance
since there are multiple ground truth masks for one input image.

• LMM based reasoning segmentation. This area of study is
relatively new and closely aligns with our work. We choose two
of the most recent contributions, LISA [18] and PixelLM [75], as
methods for comparison.

Since methods based on LMMs accommodate flexible inputs and
outputs, for a fair comparison, we evaluate each method using
prompts like: “<quality text> Please segment out distorted
regions in the image.” to obtain the corresponding mask for
the identified distortions, where “<quality text>” is the global
quality reasoning text. We use “smaller region first” principle to
merge various segmentation masks in the event of overlaps, be-
cause it prioritizes precision and diversity in segmentation, ensur-
ing that more details are captured and evaluated. All these compared
methods are re-trained or finetuned with QGround-100K dataset.

5.2.2 Results Comparison on QGround Benchmark. According to
the results shown in Fig. 7 and Tab. 3, we can notice the difference
in performance between semantic segmentation models and LMM-
based approaches. The traditional semantics segmentation model,
especially Mask2Former, generates masks with better details and
cleaner boundaries and the quantitative performance is also better.
The exception, SAN, is worse likely due to its optimization for high-
level segmentation tasks and lack of suitable mask decoder for vi-
sual quality grounding. The superior performance of segmentation
methods is probably because they are better at the simple five-class
segmentation task. Meanwhile, the LMM-based approaches face the
dual challenge of identifying distortion types while concurrently
generating segmentation results. Nevertheless, LLM-based methods
demonstrate a significant advantage in versatility and capability
over traditional segmentation techniques, offering additional abili-
ties such as answering questions about image quality and content.
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Table 3: Quantitative comparison with segmentation methods and LMM-based methods on QGround-Test.

Method jitter noise overexposure blur low light Average
mIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc

SegFormer [58] 0.327 0.625 0.136 0.249 0.264 0.389 0.515 0.842 0.274 0.524 0.373 0.636
Mask2Former [6] 0.401 0.625 0.089 0.113 0.223 0.424 0.566 0.902 0.290 0.461 0.403 0.646

SAN [61] 0.119 0.239 0.011 0.018 0.143 0.454 0.387 0.584 0.162 0.223 0.228 0.401
LISA [18] 0.154 0.688 0.003 0.003 0.082 0.102 0.411 0.682 0.005 0.006 0.227 0.436

PixelLM [75] 0.400 0.823 0.050 0.200 0.117 0.380 0.429 0.632 0.131 0.185 0.252 0.519
Ours 0.434 0.720 0.051 0.176 0.125 0.459 0.460 0.648 0.219 0.337 0.271 0.539

Table 4: Ablation study of datasets used in training.

ID Q & A Seg Q-Inst QG-
human

QG-
GPT mIoU mAcc

I ✔ ✔ 0.042 0.113
II ✔ ✔ ✔ ✔ 0.267 0.538
III ✔ ✔ ✔ 0.275 0.546
IV ✔ ✔ ✔ ✔ 0.260 0.531
V ✔ ✔ ✔ ✔ ✔ 0.271 0.539

Table 5: Ablation studies. Left: scales used in Multi-Scale
Feature Abstractor; right: quality text reference in prompt.

Layers Used 𝜙𝑣 mIoU mAcc
PixelLM (23) 0.252 0.519

14, 23 0.269 0.538
7, 14, 23 0.271 0.539

Txt Ref mIoU mAcc
✘ 0.268 0.501
✔ 0.271 0.539

In LMM based approaches, PixelLM and ours outperform LISA
in mask classification. This improvement is attributed to the ben-
efit of optimizing multiple segmentation tokens, which enhances
classification accuracy. On the other hand, the utilization of multi-
scale features in visual projection further improves the quality con-
cept understanding of LMM, leading to our superior performance
compared with PixelLM, as illustrated in Fig. 7.

5.3 Analysis and Ablation Study
5.3.1 Dataset Fusion. We firstly examine the impact of mixed
datasets training on the visual quality grounding results, as de-
picted in Tab. 4. Experiment I employs no quality grounding data
and serves as a foundational baseline. From experiment II and III, it
is observed that integrating tasks related to semantic segmentation
shows little effect on the performance of quality grounding, while
replacing them with Q-Instruct can produce marginally improved
results. This suggests that these two tasks may be independent of
one another, and their integration is feasible for developing a more
capable model. When comparing IV and V, it is evident that incor-
porating data labeled by GPT4V is beneficial to performance. We
anticipate that incorporating GPT4V will prove even more benefi-
cial in the context of more complex data annotation processes, a
potential we intend to explore in future research.

5.3.2 Multi-scale Feature Abstractor. Table 5 demonstrates that in-
corporating mid-level features significantly enhances low-level per-
ceptual capabilities, while the inclusion of shallower level features

Quality text: Overall, this image is not clear enough, the focus is not
accurate enough, and the background content is too blurry .

Quality text: The main subject of the image is a wolf, with overall poor
sharpness, average lighting , severe motion blur, unclear contours, and
moderate texture clarity.

Input Image w/o quality text w/ quality text Ground Truth

Figure 8: Examples w/ and w/o quality text in prompt.

is also somewhat beneficial. Therefore, we empirically choose these
three layers to achieve a good balance.

5.3.3 Quality Text Reference in Prompt. Table 5 also shows the sig-
nificance of incorporating a global quality text reference. The mAcc
shows a considerable improvement compared to scenarios lacking
a text reference. As illustrated in Fig. 8, the model can identify dis-
tortion types mentioned in the provided text and generates cor-
responding results, thereby facilitating more effective interaction
with users.

6 CONCLUSION
In this study, we pioneer the integration of visual grounding into
image quality assessment, enabling a more fine-grained perception
of local quality. To accomplish this objective, we collected a com-
prehensive dataset comprising 100K annotated samples, namely,
the QGround-100K . This dataset was carefully labeled, with half
of the annotations provided by human participants and the remain-
ing half by GPT4V, thereby enhancing both the diversity and effi-
ciency of data labeling. With this QGround-100K , we introduced a
LMM-based approach that seamlessly incorporates quality ground-
ing within multi-modal tasks. Specifically, we developed a multi-
scale feature abstractor (MSFA) designed to augment the LMM’s
capacity to recognize low-quality attributes. Our research sets a
new benchmark for the task of image quality assessment, broaden-
ing its potential applications across a wider range of fields.
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