
SizeShiftReg: a Regularization Method for Improving
Size-Generalization in Graph Neural Networks

Davide Buffelli
Department of Information Engineering

University of Padova
Padova, Italy 35131

davide.buffelli@unipd.it

Pietro Liò
Department of Computer Science and Technology

University of Cambridge
Cambridge, United Kingdom CB3 0FD

pietro.lio@cl.cam.ac.uk

Fabio Vandin
Department of Information Engineering

University of Padova
Padova, Italy 35131

fabio.vandin@unipd.it

Abstract

In the past few years, graph neural networks (GNNs) have become the de facto
model of choice for graph classification. While, from the theoretical viewpoint,
most GNNs can operate on graphs of any size, it is empirically observed that
their classification performance degrades when they are applied on graphs with
sizes that differ from those in the training data. Previous works have tried to
tackle this issue in graph classification by providing the model with inductive
biases derived from assumptions on the generative process of the graphs, or by
requiring access to graphs from the test domain. The first strategy is tied to the
quality of the assumptions made for the generative process, and requires the use of
specific models designed after the explicit definition of the generative process of
the data, leaving open the question of how to improve the performance of generic
GNN models in general settings. On the other hand, the second strategy can be
applied to any GNN, but requires access to information that is not always easy
to obtain. In this work we consider the scenario in which we only have access to
the training data, and we propose a regularization strategy that can be applied to
any GNN to improve its generalization capabilities from smaller to larger graphs
without requiring access to the test data. Our regularization is based on the idea of
simulating a shift in the size of the training graphs using coarsening techniques, and
enforcing the model to be robust to such a shift. Experimental results on standard
datasets show that popular GNN models, trained on the 50% smallest graphs in the
dataset and tested on the 10% largest graphs, obtain performance improvements of
up to 30% when trained with our regularization strategy.

1 Introduction

Graph structured data are found in a large variety of domains, ranging from social networks, to
molecules and transportation networks. When dealing with graph data in machine learning settings,
it is common to resort to graph representation learning [29]. Graph representation learning is the task
of learning to generate vector representations of the nodes, or of entire graphs, that encode structural
and feature-related information that can be used for downstream tasks. In this area, Graph Neural
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Figure 1: Overview of our method: given a training set of labelled graphs, we simulate a size shift by
applying a coarsening function Gc and we regularize the model to be robust towards this shift. The
regularization enforces the distribution of node embeddings generated by the model for the original
graph and its coarsened versions to be similar.

Networks (GNNs) are a deep learning model for graph representation learning that has become the
de facto standard for many tasks, including graph classification, which is the focus of this work.

GNNs are designed to be able to work on graphs of any size. However, empirical results show that
they struggle at generalizing to graphs of sizes that differ from those in the training data [33, 25, 6, 68].
Obtaining good size-generalization performance from smaller to larger graphs is crucial for several
reasons. First, it is common for graphs in the same domain to vary in size. For example, social
networks can range from tens to millions of nodes, and molecular graphs can go from few atoms,
to large compounds with thousands of atoms. Second, in many scenarios, obtaining labels for
smaller graphs is cheaper than for larger graphs. For example, recently deep learning is being used in
combinatorial optimization problems [5], and GNNs are heavily used in this area as many problems
can be formulated as graph classification instances [53, 24, 11]. Combinatorial optimization often
deals with NP-hard problems, and obtaining ground truth labels can be extremely expensive for large
scale graphs. Third, training on smaller graphs requires less computational resources.

Two approaches have been proposed in literature to tackle the poor size-generalization of GNNs. The
first approach makes assumptions on the causal graph describing the generative process behind the
graphs in the dataset, and then designs a model that is tailored towards such causal graph [6]. This
strategy requires an explicit definition of the generative process behind the data, which, in the case of
Bevilacqua et al. [6], leads to a model requiring the computation of induced homomorphism densities
over all connected k-vertex subgraphs in order to make a prediction. While this strategy shows great
results on synthetic graphs produced by the assumed generative process, its benefits are reduced on
real-world graphs, for which the underlying generative process is unknown. The second approach
assumes access to graphs coming from different domains, or from the test distribution, and applies
domain adaptation techniques to transfer knowledge across domains [68, 17]. These methods do
not require ad-hoc models, but require knowledge about each graph’s domain, or access to the test
distribution, both of which are not always available or easily obtainable in advance.

In this work we consider the graph classification scenario in which we only have access to the
training data (as in the first approach described above). However, in contrast to prior work, we
do not try to improve the size-generalization capabilities (from smaller to larger graphs) of GNNs
by handcrafting models on the base of specific knowledge or assumptions, but we study a general
form of regularization that can be applied to any GNN, and that aims at letting the model learn to
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be robust to size-shifts. The idea behind our regularization is to simulate a shift in the size of the
training graphs, and to regularize the model to be robust towards this shift. The size-shift simulation
is obtained using graph coarsening techniques, while the regularization is performed by minimizing
the discrepancy between the distributions of the node embeddings generated by the GNN model for
the original training graphs and their coarsened versions (an overview is shown in Figure 1).

In the experimental section we evaluate GNN models on popular benchmark datasets using a particular
train/test split designed to test for size-generalizaiton. In particular, following [68, 6], we train on
the 50% smallest graphs and test on the 10% largest. This split leads to an average size of the test
graphs which is 3 to 9 times larger than the average size of the training graphs. Our results show that
our regularization method applied to standard GNN models (GCN [36], PNA [15], GIN [65]) leads
to an average performance improvement on the test set of up to 30% across datasets. Furthermore,
these performance improvements show that standard GNN models trained with our regularization
can achieve better size-generalization performance than more expensive models. The latter more
expensive models were designed after making explicit assumptions on the generative process behind
the graphs in the dataset [6], while our method relies on learning to be robust towards size-shifts.

Our contributions. Our contributions are threefold. (1) We propose a regularization strategy
that can be applied to any GNN to improve its size-generalization capabilities on the task of graph
classification. (2) We analyze the impact that our strategy has on the embeddings generated by a
GNN. (3) We test our strategy on popular GNN models, and compare against previously proposed
methods, showing that “standard” GNN models augmented with our regularization strategy achieve
comparable or better size-generalization performance than more complex models designed after
explicit assumptions on the generative process behind the data.

2 Preliminaries

Notation. Let G = (V,E) be a graph, where V is the set of nodes with size n, and E ⊆ V × V is
the set of edges. For a node v ∈ V , we use Nv to indicate the set of its one-hop neighbours (i.e., the
nodes connected to v by an edge). We represent an attributed graph G with a tuple (A,X), where
A ∈ {0, 1}n×n is the adjacency matrix (i.e., the element in position i, j is equal to 1 if there is an
edge between nodes i and j, and zero otherwise), and X ∈ Rn×d is the feature matrix, where the i-th
row, Xi, contains the d-dimensional feature vector for node i.

2.1 Graph Neural Networks

Most popular Graph Neural Networks (GNNs) [12, 64] models follow the message-passing paradigm
[26]. Let H(ℓ) ∈ Rn×d′

be the matrix containing the node representations at layer ℓ (i.e., the
representation for node i is contained in the i-th row H

(ℓ)
i ), with H(0) = X. Given an aggregation

function Φ, which is permutation invariant, and a learnable update function Ψ (usually a neural
network), a message passing layer updates the representation of every node v as follows:

H(ℓ+1)
v = Ψ(H(ℓ)

v ,m(ℓ)
v ), with m(ℓ)

v = Φ({H(ℓ)
u ∀u ∈ Nv}) (1)

where mv represents the aggregated message received by node v from its neighbours. After L
message-passing layers, the final node embeddings H(L) are used to perform a given task (e.g., they
are the input to a network performing the task), and the whole system is trained end-to-end.

2.2 Graph Coarsening

Given a graph G = (V,E), a coarsened version Gc = (V c, Ec) is obtained by partitioning
V and grouping together the nodes that belong to the same subset of the partition. More for-
mally, given a partition P = {S1, S2, . . . , Sn′} where Si ⊆ V , Si ∩ Sj = ∅, ⋃

i Si = V ,
we associate a node si to each subset Si and let V c = {s1, s2, . . . , sn′} and Ec = {(si, sj) |
there is a node in Si connected to at least one node in Sj}. The goal of graph coarsening is to gen-
erate a coarsened version of a graph (i.e., n′ < n) such that specific properties are preserved. For
instance, Loukas and Vandergheynst [45] aim at preserving the principal eigenvalues and eigenspaces,
while Jin et al. [32] aim at minimizing a distance function that measures the changes in the structure
and connectivity that occur in the coarsening process. Jin et al. [32] further prove that their algorithm
bounds the spectral distance [35] between the original and a “lifted” version of the coarsened graph.
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2.3 Central Moment Discrepancy

The Central Moment Discrepancy (CMD) [70] is a metric used to measure the discrepancy between
the distribution of high-dimensional random variables. Let p and q be two probability distributions
with support in the interval [a, b]d and let ck be the k-th order moment, then the CMD between p and
q is defined as:

CMD(p, q) =
1

|b− a| ∥E(p)− E(q)∥2 +
∞∑
k=2

1

|b− a|k ∥ck(p)− ck(q)∥2 . (2)

At a practical level, we follow Zhu et al. [72], and limit the number of considered moments to 5. To
align with the definition of CMD it is possible to treat node embeddings as realizations of bounded
high dimensional distributions by applying bounded activation functions like tanh or sigmoid at the
embeddings layer (as done in [70, 72]).

3 Our Method

The high level idea behind our method is to “simulate” a size-shift in the training dataset, and to
regularize the GNN to be robust to this shift (an overview is shown in Figure 1). While previous
works rely on models that incorporate domain-specific inductive biases and/or are tied to assumptions
on the generative process of the data, our method aims at learning to be robust towards size-shifts.

Simulating the shift. Let Gc : (G, r)→ Gc
r be a coarsening function, that takes as input a graph

G with n nodes and a ratio r ∈ (0, 1), and returns a coarsened version of the graph, Gc
r, which has

⌊r × n⌋ nodes. Our method is not bound to a specific coarsening function Gc, any existing method
can be used, e.g. [45, 43, 32]. Our method then proceeds in the following way: given a dataset
of graphs D = {G1, G2, . . . , Gℓ}, a coarsening function Gc, and a set of k coarsening ratios C =
{r1, r2, . . . , rk}, we create a coarsened datasetDrj for each ratio by applying the coarsening function
to each graph in the dataset: Drj = {Gc

rj ,1 = Gc(G1, rj), G
c
rj ,2 = Gc(G2, rj), · · · , Gc

rj ,ℓ
=

Gc(Gℓ, rj)},∀j = 1, 2, . . . , k. When the graph is attributed, we obtain the features for each node
of the coarsened version of the graph by aggregating the features of the corresponding nodes in
the original graph using simple aggregations (e.g., mean, max, sum), as commonly done in readout
functions for GNNs [64].

Regularizing the GNN. Given the graph dataset D, its coarsened versions Dr1 ,Dr2 , · · · ,Drk , and
a GNN fθ, where θ are the parameters, we aim at regularizing the GNN so that the distribution of the
node embeddings generated by the model for the graphs in the original dataset and their coarsened
version is similar. In other words, for a given graph, we want the model to generate a distribution of
node embeddings that is robust across different coarsened versions of the graph. In more detail, we
regularize a GNN by minimizing the CMD [70] between the distribution of the node embeddings
generated by the GNN for the original graph and the distribution of the node embeddings generated by
the GNN for the coarsened version(s) of the graph. We choose CMD as it has proven to be successful
and stable as a regularization term for non-linear models [42, 72]. Formally, let L be the supervised
loss function that is used to train the model (e.g. cross entropy for classification), and let λ be a term
measuring the strength of the regularization. Our optimization problem is

argmin
θ
L+ λLsize, where Lsize =

k∑
j=1

ℓ∑
i=1

CMD(fθ(Gi), fθ(G
c
rj ,i)). (3)

Our method is model-agnostic, and can hence be applied to any GNN.

Pseudocode and practical aspect. Algorithm 1 presents the pseudocode for computing our regular-
ization loss for a batch of graphs during training. The pseudocode is presented in an extended manner
for clarity, but at a practical level, the coarsened versions of the training graphs are pre-computed
before training, and the computation of the loss is done in a vectored manner so it is computed
concurrently for all graphs in the batch in one pass (i.e., we do not iterate through the graphs in the
batch). At a practical level, in our experiments we notice that training a model with our regularization
introduces a 50% overhead in the running time for a training epoch w.r.t. training the same model
without regularization.
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3.1 Limitations

Similarly to previous works [6, 68] we are assuming that there are some properties that determine the
label of a graph and that do not depend on the size of the graph. In a scenario in which small graphs
do not carry information that is relevant for solving the task on larger graphs, we do not expect our
regularization to provide substantial benefits, and the best option would be to include larger graphs in
the training set. In our experiments, the ratio between the average size of the graphs in the test set
and the average size of the graphs in the training set is between 3 and 9. While our method shows
significant performance improvements in this setting, it may show lower performance improvements
when this ratio reaches much higher values.

Algorithm 1 Computing Regularization Loss for an Input Batch during Training
Require: Coarsening ratios C, coarsening function Gc(graph, ratio)
Input: Batch B of size nb, GNN model fθ

coarsened_batches← {}
for r in C do ▷ Create a new batch of coarsened graphs for each ratio

Batch Br ← []
for G in B do

Gc
r ← Gc(G, r)

Br.add(Gc
r)

end for
coarsened_batches← coarsened_batches ∪Br

end for
ℓ← 0 ▷ Initialize loss
for Br in coarsened_batches do

for i in {1, 2, . . . , nb} do
embs_og = fθ(B[i]) ▷ Compute node embeddings for original graph
embs_coarse = fθ(Br[i]) ▷ Compute node embeddings for coarsened version of graph
ℓ← ℓ+ CMD(embs_og, embs_coarse) ▷ Compute CMD between node embeddings

end for
end for
Return ℓ

4 Analysis of Node Embeddings

Table 1: Average CKA values between the node
embeddings generated by two models, one trained
with and one without our regularization, across the
graphs in a dataset and their coarsened versions.

Dataset NCI1 NCI109 PROTEINS DD
Original 0.43± 0.06 0.58± 0.10 0.45± 0.06 0.47± 0.01

Coarsened 0.12± 0.06 0.38± 0.13 0.34± 0.08 0.40± 0.01

Before evaluating how our regularization im-
pacts the size-generalization performance of a
model, we analyze the effects that our regular-
ization has on the embeddings generated by the
model. In order to do this, we consider two iden-
tical GIN [65] models and we train one with
our regularization and one without. We then use
these models to generate node embeddings and
use the Central Kernel Alignment (CKA) [38]
to study the generated representations, similarly
to [34]. CKA takes as input two matrices A ∈ Rm×d′

, B ∈ Rm×d′′
of representations and provides a

value between 0 and 1 quantifying how aligned the representations are (allowing for d′ ̸= d′′). CKA
quantifies the similarity of representations learned by (possibly) different models and gives us a way
to study the effects of our regularization. We report results averaged over 10 different random seeds.
We show only results for the DD dataset for space limitations, but the same trends are observed for
the other datasets (see Appendix).

First, we ask if a model trained with our regularization and a model trained without our regularization
produce similar node embeddings. To compare the node embeddings between the two models we
obtain a representation for each graph by concatenating the node embeddings for that graph. We then
compute the CKA between the representations generated by the model trained with regularization
and the representations from model trained without regularization. We do this for the original graphs
and the coarsened versions of the graphs, and report the average CKA. Results shown in Table 1
highlight that there is low alignment between the embeddings generated by a model trained with
regularization and one trained without regularization (the average CKA across datasets is 0.48 for the
original graphs). This is even more apparent for the coarsened graphs, showing that our regularization
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Figure 2: (a) Average CKA values between the node embeddings from two models, one trained with
our regularization and one without, across the original graphs in the DD dataset and their coarsened
versions for different ratios. The models produce representations which are not aligned (values are
far from 1.0), specially for coarsened graphs. (b) Average CKA values between the node embeddings
generated by the same model for the original graphs in DD and their coarsened versions. A model
trained with our regularization produces representations of the coarsened graphs that are more aligned
to the representations produced for the original graphs (i.e. it learns to be robust to size shifts).

is impacting the way a model generates embeddings, especially for size-shifted versions of the graphs.
To analyze the trend more in detail, we also plot the CKA values across coarsening ratios in Figure 2
(a). Here we notice that the CKA between the embeddings generated by a model trained with our
regularization and a model trained without, decreases significantly with ratios lower than 0.8. This
shows that, while the alignment between the representations learned by the models trained with and
without our regularization is low even for a coarsening ratio of 0.9 (average CKA value is 0.47), it
becomes 15% lower (on average) for ratios smaller than 0.7, indicating that when the size shift is
strong, there is a stronger misalignment between models trained with and without regularization.

Second, we ask if a model trained with our regularization is in fact being more robust to size shifts
with respect to a model trained without our regularization. To answer this question we analyze
the alignment between the representations generated by the same model, trained with or without
regularization, on original graphs and coarsened versions of the graphs. In Figure 2 (b) we plot the
average CKA between the node embeddings for the original graphs and the node embeddings for the
coarsened versions of the graphs, both generated by the same model, for different ratios. The plot
shows that a model trained with our regularization is learning to be more robust to size shifts, as its
representation for coarsened versions of the graphs are much more aligned to the representations for
the original graphs compared to a model trained without regularization. This is even more apparent
for low coarsening ratios (i.e., when the shift is stronger), indicating that our regularization is in fact
making the model more robust to size shifts.

5 Evaluation

Datasets. Following prior works [6, 68], we evaluate on datasets from the TUDataset library [48]
with a train/test split explicitly designed to test for size-generalization. In particular, the training split
contains the graphs with size smaller or equal than the 50-th percentile, and the test split contains
graphs with a size larger or equal than the 90-th percentile. With this split, the average size of the
test graphs is 3 to 9 times larger than the average size of the training graphs (in more detail, it is 3
for NCI1 and NCI109, 9 for PROTEINS, and 5 for DD). We use 10% of the training graphs as a
validation set. More details on the datasets can be found in the Appendix.

Models. As in Bevilacqua et al. [6], we consider three standard GNN models: GCN [36], GIN
[65], and PNA [15], a more expressive GNN: RPGNN [49], and two graph kernels: the Graphlet
Counting kernel (GC Kernel) [58], and the WL Kernel [59]. We further apply the Invariant Risk
Minimization (IRM) [1] penalty to the standard GNN models, and compare against the E-Invariant
models (Γ1-hot,ΓGIN,ΓRPGIN) introduced in Bevilacqua et al. [6]. For IRM, we follow [6], and
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Table 2: Average Matthews Correlation Coefficient (MCC) for standard GNN models over the
size-generalization test set. The models have been trained with (✓) and without (✗) our regularization
method. The right-most column shows the average improvement brought by our regularization.

Dataset NCI1 NCI109 PROTEINS DD Avg.
Reg. ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ Impr.

PNA 0.19± 0.08 0.22± 0.07 0.23± 0.07 0.24± 0.07 0.22± 0.12 0.33± 0.09 0.23± 0.09 0.27± 0.08 +22%
GCN 0.17± 0.06 0.25± 0.06 0.15± 0.06 0.19± 0.06 0.21± 0.10 0.29± 0.13 0.24± 0.07 0.26± 0.07 +30%
GIN 0.19± 0.06 0.23± 0.08 0.18± 0.05 0.20± 0.05 0.25± 0.07 0.36± 0.11 0.23± 0.09 0.25± 0.09 +21%

Table 3: Comparison of average Matthews Correlation Coefficient (MCC) over the size-generalization
test data between the standard GNN models trained with our proposed regularization and previously
proposed methods. Highlighted are the first, second, and third best performing models per dataset.

Dataset NCI1 NCI109 PROTEINS DD
PNA (reg) [ours] 0.22± 0.07 0.24± 0.07 0.33± 0.09 0.27± 0.08

GCN (reg) [ours] 0.25± 0.06 0.19± 0.06 0.29± 0.13 0.26± 0.07

GIN (reg) [ours] 0.23± 0.08 0.20± 0.05 0.36± 0.11 0.25± 0.09

PNA + IRM [1] 0.17± 0.07 0.20± 0.07 0.21± 0.12 0.24± 0.08

GCN + IRM [1] 0.22± 0.06 0.20± 0.06 0.23± 0.16 0.23± 0.08

GIN + IRM [1] 0.18± 0.06 0.15± 0.04 0.24± 0.08 0.21± 0.10

WL kernel [59] 0.39± 0.00 0.21± 0.00 0.00± 0.00 0.00± 0.00

GC kernel [58] 0.02± 0.00 0.01± 0.00 0.29± 0.00 0.00± 0.00

RPGIN [49] 0.18± 0.06 0.16± 0.04 0.22± 0.08 0.13± 0.04

Γ1-hot [6] 0.15± 0.05 0.22± 0.06 0.18± 0.08 0.22± 0.09

ΓGIN [6] 0.24± 0.05 0.16± 0.07 0.28± 0.10 0.27± 0.05

ΓRPGIN [6] 0.26± 0.05 0.19± 0.06 0.26± 0.07 0.20± 0.05

artificially create two environments: one with graphs with size smaller than the median size of the
graphs in the training set, and one with graphs with size larger than the median size in the training set.

Hyperparameters and Evaluation Protocol. For the standard GNN models we adopt the same
hyperparameters of Bevilacqua et al. [6], which were obtained from a tuning procedure involving
number of layers, learning rate, batch size, hidden layers dimension, and regularization terms. All
models are trained with early stopping (i.e., taking the weights at the epoch with best performance on
the validation set). We do not modify the original hyperparameters when we apply our regularization.
We tune the regularization coefficient λ and the coarse ratios C for GIN on the PROTEINS dataset
(we found λ = 0.1 and C = {0.8, 0.9} to be the best on the validation set), and we apply these
settings to all models and datasets when using our regularization, to show that our method can work
without extensive (and expensive) hyperparameter tuning. We use the SGC coarsening algorithm
[32] to obtain the coarsened versions of the graphs (chosen for its theoretical properties). The
only hyperparameter that is tuned on a per-dataset basis is the aggregation strategy used to obtain
the features for the nodes in the coarsened versions of the graphs (in particular we take the best
performing between ‘sum’, ‘max’, and ‘mean’). For all other models we use the hyperparameters
introduced by their respective papers. Bevilacqua et al. [6] presented results by averaging over 10
runs (each time with a different random seed), but given the high variance observed, we re-run the
experiments for all the models and present the results averaged over 50 runs. More details on the
hyperparameters can be found in the Appendix and source code is publicly available1.

5.1 Results

Table 2 shows how the three considered standard GNN models perform on the test set, containing
the 10% largest graphs in the dataset, when trained with and without our regularization on the 50%
smallest graphs in the dataset. As this split leads to an imbalanced dataset, we follow previous works
and report the results in terms of Matthews correlation coefficient (MCC), which has been shown

1https://github.com/DavideBuffelli/SizeShiftReg
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to be more reliable in imbalanced settings with respect to other common metrics [14]. MCC gives
a value between −1 and 1, where −1 indicates perfect disagreement, 0 is the value for a random
guesser, and 1 indicates perfect agreement between the predictions and the true labels. The results
show that the use of the proposed regularization is always beneficial to the performance of the models,
and that it leads to an average improvement across datasets of 21 to 30%.

Table 4: Average MCC results on the
Deezer dataset for models trained with
(✓) and without (✗) our regularization.

Dataset Deezer
Reg. ✗ ✓

PNA 0.59± 0.06 0.64± 0.07

GCN 0.49± 0.10 0.59± 0.06

GIN 0.55± 0.08 0.61± 0.07

In Table 3, we compare the standard GNNs trained with
our regularization strategy against more expressive models
(RPGNN), graph kernels, models trained with the IRM
strategy, and the E-invariant models. We notice that on
3 out of 4 datasets, a “standard” GNN trained with our
regularization obtains the best performance on the test set
composed of graphs with size larger than those present
in the training set. Furthermore on all datasets there is
at least one model trained with our regularization in the
top-3 best performing models. We also confirm previous
results [6, 17] showing that IRM is not effective in the
graph domain, and that using theoretically more expressive
models, like RPGNN, does not necessarily lead to good size-generalization performance. Graph
kernels are highly dataset-dependent, and, while they can perform well for some datasets, in many
cases they fail to perform better than a random classifier. Perhaps more surprisingly, on 3 out of 4
datasets there is at least one “standard” GNN trained with our regularization that performs comparably
or better than the best E-Invariant model. In fact, E-invariant models are tied to the assumed causal
model for the generation of graphs, which is not guaranteed to hold reliably for real-world datasets
for which we do not have this kind of information. Futhermore, E-invariant models require the
computation of induced homomorphism densities over all possible connected k-vertex subgraphs
both at training time and at test time. Our method instead tries to learn to be robust to size-shifts,
does not require any additional computation at inference time, and yet can lead even simple models
like GCN to have size-generalization performance comparable to E-invariant models.

Finally, in addition to the benchmarks considered by Bevilacqua et al. [6], we also experiment on a
dataset from a different domain. In particular, we consider a social network dataset obtained from
Deezer [55]. We follow the same evaluation strategy as before: train on the 50% smallest and test
on the 10% largest, and we apply our regularization with λ = 0.1 and C = {0.8, 0.9} without any
additional hyperparameter tuning. Results shown in Table 4 confirm the effectiveness of our method.

5.2 Ablation Study

In this section we use a PNA model to study the contribution and importance of the different
components of our regularization. We choose PNA because of its performance in the previous
analysis, but similar conclusions are observed for GIN and GCN (as we report in the Appendix).

Table 5: Average MCC results on the size-
generalization test set for a PNA model trained
with our regularization strategy using different
coarsening ratios.

Datasets NCI1 NCI109 PROTEINS DD
Ratio(s)

0.1 0.07± 0.11 0.19± 0.08 0.12± 0.15 0.07± 0.14

0.2 0.11± 0.12 0.20± 0.08 0.18± 0.16 0.20± 0.11

0.3 0.15± 0.09 0.22± 0.07 0.17± 0.16 0.22± 0.10

0.4 0.18± 0.08 0.22± 0.08 0.23± 0.14 0.26± 0.11

0.5 0.22± 0.08 0.24± 0.07 0.29± 0.12 0.22± 0.09

0.6 0.23± 0.08 0.23± 0.07 0.26± 0.09 0.27± 0.10

0.7 0.22± 0.07 0.24± 0.06 0.30± 0.14 0.24± 0.06

0.8 0.24± 0.06 0.23± 0.07 0.32± 0.11 0.25± 0.09

0.9 0.19± 0.06 0.21± 0.08 0.28± 0.12 0.25± 0.10

{0.1, 0.9} 0.12± 0.10 0.20± 0.06 0.14± 0.16 0.14± 0.14

{0.5, 0.9} 0.23± 0.08 0.22± 0.07 0.32± 0.12 0.27± 0.08

{0.8, 0.9} 0.22± 0.07 0.24± 0.07 0.33± 0.09 0.27± 0.08

{0.3, 0.7} 0.22± 0.09 0.21± 0.08 0.24± 0.11 0.25± 0.09

ALL 0.18± 0.09 0.18± 0.09 0.17± 0.14 0.23± 0.10

Changing Size of Coarsened Graphs. In Ta-
ble 5 we train a PNA model with our regular-
ization strategy using different coarsening ra-
tios C. We notice an overall trend in which
the performance decreases as the coarsening ra-
tio decreases. This follows intuitively as very
low coarsening ratios may lead to uninformative
graphs. Furthermore we notice that using all
ratios (from 0.1 to 0.9) is usually not effective
and setting C = {0.8, 0.9} seems a good default
option, leading to the best performance on 3 out
of 4 datasets.

Changing Coarsening Method. In Figure 3
we show how the performance of a PNA model
change when it is regularized with our method
using graphs coming from different coarsening
functions. We consider Spectral Graph Coarsen-
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Figure 3: Average MCC on the test set of a PNA model trained with our regularization strategy using
different coarsening methods: Spectral Graph Coarsening (SGC), Multi-level Graph Coarsening
(MLGC), Spectral Clustering (SC), K-Means (KMEANS).

ing (SGC) and Multi-level Graph Coarsening (MLGC) introduced by Jin et al. [32], and two baselines,
referred to as SC and KMEANS, based on standard spectral clustering [28] and K-Means clustering
[40]. For the baselines we apply the clustering algorithm, merge the nodes belonging to the same
cluster into a single super-node, and create an edge between two super-nodes if there is at least one
edge in the original graph going from a node in one cluster to the other. For all coarsening methods
we use the same coarsening ratios as above (i.e., C = {0.8, 0.9}), and we apply the same training
procedure and regularization weight λ, keeping all hyperparameters equal across methods. We notice
that our regularization strategy is quite robust towards the choice of the coarsening method, but, on
average, specialised methods like SGC and MLGC tend to provide the best results.

6 Related Work

Graph neural networks and size-generalization. Since the first instances of graph neural networks
have appeared [60, 57], the field has exploded in recent years with a plethora of different architectures
(e.g., [36, 65, 15, 62]), applications (e.g., [69, 67, 37, 23, 8]), and studies on their expressivity and
properties (e.g., [65, 44, 47, 9]). For a complete review of the field, we refer to the excellent surveys
by Chami et al. [12] and by Wu et al. [64]. Many works have noticed poor size-generalization in
GNNs [33, 25, 6, 68]. For instance, Joshi et al. [33] consider the task of learning solutions for the
traveling salesman problem, and show that GNNs struggle at generalizing to graphs larger than
those appearing in the training set. Similarly, Gasteiger et al. [25] observe that GNNs applied to the
molecular domain can be very sensible to several shifts in the data, including shifts in the size of the
graphs. Some works have reported good size-generalization by creating ad-hoc models that leverage
the properties of the domain [2, 3, 56, 61, 22]. For example, Tsubaki and Mizoguchi [61] impose
constraints dictated by the physical properties of their data, and report good size-generalization in
predicting the energy of a molecule. While these works show that placing the right inductive biases
can help the size-generalization capabilities of GNNs, the current literature is lacking a general
method that can be applied on generic GNNs.

Bevilacqua et al. [6] tackle the issue of poor size-generalization by assuming a causal model describing
the generative process for the graphs in the dataset, and designing a specific model which can be
invariant to the size of the graphs obtained through this causal model. While this strategy shows great
size-generalization capabilities on synthetic graphs generated according to their causal model, its
benefits decrease when applied to real-world graphs where there are no guarantees that the causal
model is correct. This method requires an ad-hoc model and additional computations at both train and
test time, while our method can be applied on any GNN and does not require pre-computations at test
time. Yehudai et al. [68] provide a theoretical and empirical analysis showing that, even for simple
tasks, it is not trivial to obtain a GNN with good size-generalization properties. Yehudai et al. [68]
consider a different scenario from ours, as, together with the labelled training graphs, they assume
access to graphs from the test distribution, and treat the task as a domain-adaptation scenario.

Graph coarsening. While there is no consensus on what is the best metric to consider for coarsening
a graph, many methods and metrics have been proposed in recent years [45, 43, 18, 7, 32]. There
have also been some attempts at using GNNs for the task of graph coarsening [10, 46]. Orthogonally,
graph coarsening has been used to reduce the computational resources needed for training GNNs on
large graphs [71, 31]. For a detailed presentation of graph coarsening we refer to Chen et al. [13].
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Invariant risk minimization, domain adaptation, and regularization with discrepancy measures.
Our method is conceptually related to Invariant Risk Minimization (IRM) [1], which aims at learning
representations that are invariant across training environments (where different training environments
are intended as sets of data points collected under different conditions). IRM has been shown to
have several shortcomings, specially when the data comes from a single environment (e.g. when
there is access only to small graphs) [54, 6]. Our method does not require access to different training
environments, which may not be easy to obtain in practical scenarios, and our results show that, as
also observed in [6, 17], IRM seems ineffective for improving size-generalization in GNNs.

Similarly to IRM, the field of domain adaptation [4] subsumes access to (unlabelled) external data,
in addition to labelled training data, and aims at transferring knowledge between domains. Domain
adaptation has been used in a large variety of fields, and many surveys are available [16, 63, 27]. Ding
et al. [17] analyze how existing domain adaptation algorithms perform on graph data, and observe
that these tend to not be effective, indicating that new methods specific for graph data are needed.

Discrepancy measures that have been used for regularizing deep learning models are the Maximum
mean discrepancy (MMD) [19, 41, 66, 42] and the central moment discrepancy (CMD) [52, 70, 72],
which has been shown to be empirically more effective. We further mention the work by Zhu et al.
[72] which, similarly to ours, uses CMD to obtain a GNN that is robust to biases in the sampling
process that is used to select the nodes for the training set in node classification scenarios. Finally, we
mention the work by Joshi et al. [34] which uses CMD to study the representations of GNNs.

7 Conclusions

GNNs are heavily used models for the task of graph classification. In many domains it is typical
for graphs to vary in size, and while GNNs are designed to be able to process graphs of any size,
empirical results across literature have highlighted that GNNs struggle at generalizing to sizes unseen
during training. In this work we introduce a regularization strategy that can be applied on any GNN,
and that improves size-generalization performance from smaller to larger graphs by up to 30%.
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