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ABSTRACT

Today, the cities we live in are far from being truly smart: overcrowding, pollution,
and poor transportation management are still in the headlines. With wide-scale de-
ployment of advanced Artificial Intelligence (AI) solutions, however, it is possible
to reverse this course and apply appropriate countermeasures to take a step for-
ward on the road to sustainability. In this research, explainable AI techniques are
applied to provide public transportation experts with suggestions on how to con-
trol crowding on subway platforms by leveraging interpretable, rule-based models
enhanced with counterfactual explanations. The experimental scenario relies on
agent-based simulations of the De Ferrari Hitachi subway station of Genoa, Italy.
Numerical results for both prediction of crowding and counterfactual (i.e., coun-
termeasures) properties are encouraging. Moreover, an assessment of the quality
of the proposed explainable methodology was submitted to a team of experts in
the field to validate the model.

1 INTRODUCTION

1.1 BACKGROUND

According to the European Directorate-General for Mobility and Transport (Commission et al.,
2022), the total passenger transport activities in the EU-27 was estimated in 4446 billion pkm (pas-
senger kilometers) in 2022. This estimate includes intra-EU air and sea transport and of course
ground transportation. Intra-EU air and intra-EU maritime transport contributed for 4% and 0.2%,
respectively. Passenger cars accounted for 80.6%, powered two-wheelers for 2.3%, buses and
coaches for 6.6%, railways for 5% and tram and subways only for 1.2%. It is therefore clear that
European citizens still prefer to travel by their own means rather than use public transportation to
avoid possible delays and overcrowding. Thus, it is extremely necessary to improve public services
in order to make the population more inclined to use them with the aim of obtaining advantages both
in terms of safety and environmental sustainability. As a matter of fact, Artificial Intelligence (AI)
can play a central role in improving public transportation and managing the influx of passengers
(Ushakov et al., 2022). This topic is growing in importance and the amount of available literature
has increased rapidly in recent years. Below, we present and discuss the most relevant research, with
specific focus on the use of AI for subway passenger flow monitoring.

1.2 RELATED WORKS

By definition, a smart city is a system in which integrated technologies, AI and services are com-
bined to improve the quality of life of the citizens. Within this extremely broad scope, smart trans-
portation proposes advanced solutions for monitoring and improving mobility efficiency through the
use of transportation means (Sundaresan et al., 2021). With improved methodologies, technologi-
cal innovations, and an increase in the number of inhabitants in medium and large cities, scientific
research on these issues has become of paramount importance. For example, in Tang et al. (2023)
a synthetically augmented balanced dataset of smart-card data has been used to train a deep neural
network for the prediction of hourly passenger boarding demand on buses. In Niyogisubizo et al.
(2023), the authors propose a Wide Deep Learning model for crash severity prediction where SHap-
ley Additive exPlanations (SHAP) technique is used to increase model transparency by assessing the
importance of each input feature in predicting the model output. Focusing on subways, several solu-
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tions for monitoring and controlling the flow of passengers have been recently proposed. In Zheng
et al. (2023), a novel methodology to monitor the congestion around the platform screen doors of
the Guangzhou Subway station based on real-time surveillance videos analysis and position entropy
is proposed. The study reported in Yuan et al. (2023) developed a model to predict the pedestrian
distribution in subway waiting areas based on the bacterial chemotaxis algorithm. Passenger flow
estimation is one of the hot topics in this field, and as for example Feng et al. (2023) introduces a
novel model that combines convolution layers and multi-head attention mechanism to provide better
inter-trip services, integrating and forecasting the passenger flow of multi-level rail transit networks
to improve the connectivity of different transport modes. Passenger flow is not only about opti-
mizing transportation, but also about the impact it can make on the surrounding area, such as the
design of new subway stations, as stated in Gong et al. (2019) or the monitoring of environmental
sustainability, as studied in Park et al. (2022) and Wu et al. (2022). In addition, the recent COVID-
19 pandemic emphasized the importance of controlling and monitoring passenger flow to prevent
overcrowded situations in which it is impossible to maintain a safe distance (Lu et al., 2023). In
this context, eXplainable AI (XAI) methods can be extremely helpful since they allow the decisions
made by a certain black-box model to be interpreted, increasing trust in the use of prediction models
(Ferrario & Loi, 2022). More importantly, XAI methods may allow quantitative characterization
of crowding situations based on data-driven approaches. This can be extremely beneficial to public
transport companies in order to take countermeasures based on the decisions provided by prediction
models. Despite this, recent literature (e.g., Zhao et al. (2020); Zou et al. (2022)) mainly focuses on
the use of XAI techniques to prioritize and select features based on their importance in passenger
flow prediction, rather than providing quantitative suggestions potentially applicable in practice.

1.3 CONTRIBUTION

The main objective of this paper is to combine explainable-by-design and post-hoc XAI techniques
for the short-term prediction of crowding conditions in specific subway areas (i.e., the platforms)
using a dataset derived from simulations. To the best of our knowledge, this is the first work that
combines rule-based interpretable models with counterfactual explanations to (i) predict possible
crowding situations and (ii) suggest quantitative actions to prevent those situations based on what-if
scenarios.
This preliminary analysis will focus on a simple but straightforward use case in the city of Genoa,
Italy. The Genoa subway system is a double-track single line of 7.1 km (4.4 mi) that connects the
two main valleys of Genoa (Val Bisagno to the northeast with the Brignole stop and Valpolcevera
to the northwest with the Brin stop) via the city center. The analysis will be devoted to the
prediction of potential crowding situations in the De Ferrari Hitachi subway station, located below
the main square of the city. The application of the proposed methodology to a real problem
highlights the contribution of the research, making possible future developments of fully reliable
XAI countermeasures for crowd prevention in city subways.

All codes and tests are publicly available, but will be shared after double-blind review.

2 MATERIALS AND METHODS

2.1 DATASET

In this work, a dataset containing simulations of the De Ferrari Hitachi subway station of Genoa
was used. The dataset contains 28 variables (summarized in the Appendix, Table 5) derived from
12696 simulations of 2 hours each. The simulations were generated using an agent-based model that
allows to simulate the individual behavior of passengers and the interaction with other passengers
and the surrounding environment, based on parameters measured on-site or agreed upon interactions
with stakeholders. In particular, the range of input parameters was set based on field-assessed values
on weekdays, during off-peak hours. This simulation approach proved very useful in generating a
sufficiently large set of realistic simulated scenarios in a cheaper and less time consuming way with
respect to on-field experimental data collection (Nikolenko, 2021). The dataset was used to charac-
terise the parameters related to a situation of potential crowding and suggest which values to act on
(quantitatively) in the short run, to obtain the alternative uncrowded scenario i.e., its counterfactual.
In particular, we were interested in predicting the level of crowding on the two platforms of the
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subway station (i.e., towards Brin and towards Brignole) during the last 15 minutes of simulation,
that is, in the time window [t, t +∆t], with ∆t = 15 minutes. The input variables of the prediction
model were extracted in the time window [t − 2∆t, t], i.e., we considered the situation of the sim-
ulated subway station between 45 minutes and 15 minutes before the end of the simulation. Based
on the simulated data, a critical crowding threshold THR of 30 people was selected and used as a
discriminating value to identify the output of the classification problem. Having defined this thresh-
old, 2 possible scenarios can thus be tested for each platform: average number of people waiting at
the platform in the time window [t, t+∆t] lower than THR (class 0) or greater than THR (class 1).
Based on the available data, the following distributions of output classes result:

• platform towards Brin: 6509 simulations belonging to class 0, 6187 simulations belonging
to class 1.

• platform towards Brignole: 11718 simulations belonging to class 0, 978 simulations be-
longing to class 1.

De Ferrari Hitachi subway station is only one stop away from Brignole station, therefore, a smaller
number of critical cases (i.e., class 1 points) on the corresponding platform is considered plausible.
A subset of 7 variables was selected to be used in the counterfactual analysis and denoted as
V 1, . . . , V 7. The subset of variables is listed in Table 5 of the Appendix. These variables were
considered meaningful to ensure a trade-off between ability to represent the evolution of the crowd-
ing scenario and clarity of the explanation, based on preliminary interaction with transportation
experts and feature ranking analysis.

2.2 EXPLAINABLE AI TECHNIQUES

2.2.1 LOGIC LEARNING MACHINE

The Logic Learning Machine (LLM) is an XAI method belonging to the family of transparent-by-
design, global, rule-based models that provides a set of n interpretable rules. The rule learning
procedure can be summarized in four steps. First (Discretization), continuous inputs are discretized
while maintaining a trade-off between number of discrete values and information retained. Then,
the discretized values are converted into binary strings (Binarization) that are in turn used to extract
a set of positive Boolean functions (Synthesis). Finally, the obtained Boolean functions are mapped
into a set of rules (Rules extraction). Each rule is defined as an if (premise) then (consequence)
statement, where premise is a logical AND of m conditions cj , and consequence is the assigned
output class (Muselli & Ferrari, 2011). After computing TP (Ri), FP (Ri), TN(Ri), and FN(Ri)
that are, respectively, the true positives, false positives, true negatives, and false negatives associated
with a certain rule Ri, we can define two main measures of the goodness of that rule:

C(Ri) =
TP (Ri)

TP (Ri) + FN(Ri)
(1)

E(Ri) =
FP (Ri)

FP (Ri) + TN(Ri)
(2)

where C(Ri) is the covering and E(Ri) is the error. C(Ri) measures the number of data samples
that is correctly covered by Ri, whereas E(Ri) measures the number of data samples that is wrongly
covered by Ri i.e., the number of samples that satisfies the premise of Ri but belongs to a different
output class. Thus, the greater the covering, the higher is the generality and the correctness of that
rule and the larger is the error, the lower is the quality of the rule.

2.2.2 FEATURE AND VALUE RANKING

The importance of a feature in predicting the output can be derived from equation 1 and equation 2
by considering the rule conditions in which that feature is involved. Specifically, the importance of
a condition (i.e., of the related feature) Imp(cj) can be calculated as:

Imp(cj) = (E(R′
i)− E(Ri))C(Ri) (3)

by comparing the error of rule Ri, in which condition cj occurs, and the error of the same rule
without that condition, that is R′

i. Features importance can then be ordered to provide a feature
ranking. The same argument can be extended to intervals of values, thus giving rise to value ranking.
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2.2.3 COUNTERFACTUAL EXPLANATIONS

Counterfactual explanations (from now on simply referred to as counterfactuals) belong to the fam-
ily of local XAI techniques. In a binary classification problem, a counterfactual explanation is
defined as the set of minimal changes that can be applied to the input features related to a specific
record in order to change its predicted class. In other works (Lenatti et al., 2022; Carlevaro et al.,
2022), the authors proposed an original methodology to construct counterfactuals from Support
Vector Domain Description (SVDD) (Huang et al., 2011). Named S1 and S2 the two regions indi-
viduated by the SVDD, defined a subset of controllable features u and a subset of non-controllable
features z, so that a feature x ∈ X can be thought as x =

(
u1, u2, . . . , un, z1, z2, . . . , zm

)
∈ Rn+m,

the counterfactual model consists in finding the minimal variation (∆u) of the controllable variables
so that the feature x = (u, z) ∈ S1 moves to the opposite class x∗ = (u + ∆u∗, z) ∈ S2. This
implies the solution of the following optimization problem

min
∆u∈Rn

d
(
x, (u+∆u, z)

)
subject to x∗ /∈ S1 and x∗ ∈ S2

where d is a distance that best fits with the topology of the data. In other words, the counterfactual
x∗ is the nearest point, with respect to distance d, that belongs to the class opposite to the original
class of a given point x, taking into account that only controllable features u can be modified.
It is worth underling that the SVDD model for defining the input regions S1 and S2 was trained on
all variables in the dataset to obtain a complete and accurate representation of the system. Then,
counterfactuals were extracted only on V 1, . . . , V 7 for better comprehensibility and visualization
purposes, as pointed out in Section 2.1.

To make the counterfactual analysis more specific, three different, alternative counterfactual expla-
nations were generated for each input observation, obtained by applying different constraint condi-
tions to some of the input variables (i.e., imposing the no-variation condition to a subset of features,
in the counterfactuals search algorithm):

• Unconstrained counterfactuals (C) are defined as the counterfactual explanations obtained
without imposing any constraint on the input data, i.e., allowing all features to vary.

• Counterfactuals constrained on People-related features (CCP) are defined as the counterfac-
tual explanations obtained by constraining the features more strictly related to people flow,
namely V 1, V 2, and V 7.

• Counterfactuals constrained on Trains-related features (CCT) are defined as the counterfac-
tual explanations obtained by constraining the features related to trains, namely V 3, V 4,
V 5, and V 6.

We remark that people-related features (i.e., V 1, V 2, and V 7) are common to the 2 models, whereas
train-related features (i.e., V 3, V 4, V 5 and V 6) depends specifically on each model, relate specif-
ically to the platform to which the model refers. As an example, in Section 4 the counterfactual
explanations of two different simulated scenarios are shown, one for each subway destination (Brin,
Brignole). To quantitatively evaluate the proposed counterfactual explanations in terms of their abil-
ity to be distinguished from data points in the factual class discriminative power was calculated,
as defined in Lenatti et al. (2022). The general structure of the methodology is summarized in the
flowchart in Figure 1. During the training phase we collected simulation data in the time window
[t − 2∆t, t] and train a SVDD to learn the mapping function f : Xt −→ yt+∆t ∈ {0, 1} between
input and output. Then, during the operational phase, we use the information vector collected up to
t̃ to forecast the crowding situation in the next time window, using the previously learnt mapping
function f . If the prediction f(xt̃) is below THR there is no need to control the system as the
crowding situation is under control. Otherwise, if the prediction f(xt̃) is above THR, we can gen-
erate the counterfactual explanation of xt̃ and use the changes suggested by the latter to implement
a data-driven control action to bring the system back toward a non-crowding situation. The actions
of the counterfactual example will be visible in the subsequent time intervals, t̃ + ∆t̃ and t̃ + 2∆t̃
depending on the changed variables.
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Figure 1: Methodology flow chart describing the SVDD training phase from a set of simulations
(top panel) and the operational phase (bottom panel).

2.3 APPLICATION GROUNDED EVALUATION

XAI methods have shown great potential in increasing user confidence in automatic decision models,
however, how to evaluate those techniques is still a matter of debate (Doshi-Velez & Kim, 2017).
One of the most straightforward way is to perform an application grounded evaluation, that is, to
assess the quality of explanations in their applicative context, involving domain experts (Jesus et al.,
2021). A team of 5 experts in the field of transportation and logistics that possess only basic AI
knowledge was asked to fill out a survey anonymously. The survey was delivered using Microsoft
Forms. Respondents participated in the survey on a voluntary basis, with no incentive. The survey
included different sections. First, the experts were asked to evaluate four scenarios showing the
average values of variables V 1-V 7 for each specific output class and each specific model. The
experts were blinded to the actual output class and were asked to select whether each scenario
corresponded to a situation with a number of people on the platform below or above THR. They were
also asked to specify their level of confidence on a 4-level scale. This first part of the questionnaire
aimed to assess whether the chosen features and the output were considered sufficiently explanatory
of the problem to be modeled. Then, the experts were asked to evaluate four examples of factuals
with the corresponding counterfactuals C, CCP and CCT (2 related to Brin destination and 2 related
to Brignole destination). For each example, the experts were asked to specify the level of agreement
with the proposed suggestions on a scale of 1 to 5 and to provide an optional brief justification.
In addition, the experts had to specify which of the 3 proposed solutions was considered the best.
Finally, each expert was asked to assess the plausibiity and applicability of the results and to provide
overall feedback on the proposed methodology. In addition, experts were asked to evaluate which
features, among those considered in the model, are more easily controllable in the short run and to
suggest any additional variables to be considered in a follow-up study.

3 RESULTS

3.1 LLM FOR CROWDING PREDICTION

Two separate LLMs (one per platform), were trained on 70% of the data and tested on the remain-
ing 30%. Accordingly, we will refer to two distinct models: LLMBg aims to predict the state of
crowding on the platform in the Brignole direction, whereas LLMBr focuses on predicting crowd-
ing on the platform in the Brin direction. The classification performance via LLM (for each model)
are reported in Table 1. Table 2 reports the main characteristics of LLMBg and LLMBr in terms
of number of decision rules, covering and error. BgPPt−2∆t, PISt−2∆t, and BgTIt−∆t were par-
ticularly decisive in predicting the exceedance of THR in the LLMBg model (i.e., feature ranking
> 0.2), whereas the most relevant variables for the LLMBr model are PISt−2∆t, PIEt−∆t, PISt−∆t,
and APIt−∆t, all of which are variables closely related to the flow of passengers entering and circu-
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Table 1: Performance results of LLMBg and LLMBr.

Model training
accuracy

test
accuracy

sensitivity
(on test set)

specificity
(on test set)

LLMBg 0.82 0.82 0.73 0.83

LLMBr 0.75 0.70 0.71 0.69

lating through the station in the 2 previous intervals. Feature ranking demonstrates once again how
the number of passenger at the platform is largely influenced by the flow of passengers entering and
stationing within the subway station in the 2 time intervals considered (i.e., [t − 2∆t, t − ∆t] and
[t −∆t, t]), as well as by the trains frequency. The use of XAI techniques such as the LLM allows
for a more in-depth exploration of these intuitive considerations, by providing quantitative cut-off
values in the form of a value ranking. For example, the value ranking provides thresholds equal to 27
for BgPPt−2∆t, 538 for PISt−2∆t, and 14 for BgTIt−∆t when applied to the LLMBg model. This
means that in general, values of these variables above the identified cut-off values are associated
with a higher probability of providing an output of 1 in the model and therefore associated with a
situation of potential crowding.

Table 2: Main characteristics of LLMBg and LLMBr: # of rules, covering and error.

Model # of rules C(Ri)
(mean ±s.d.)

E(Ri)
(mean ±s.d.)

LLMBg 34 (23;11) 11.00%± 8.14% 4.6%± 0.51%

LLMBr 50 (25;25) 7.20%± 4.46% 4.77%± 0.65%

Table 3: Mean and standard deviation of the changes suggested by C, CCP and CCT for variables
V 1, . . . , V 7.

Brin Brignole

Feature C CCP CCT C CCP CCT

V 1 -174 ±127 - -287 ±167 -115 ±123 - -254 ±185

V 2 -84 ±129 - -131 ±200 -23 ±116 - -41 ±256

V 3 [s] -16 ±155 -8 ±270 - -48 ±158 0 ±271 -

V 4 [s] -197 ±170 -281±237 - -178 ±157 -247 ±255 -

V 5 -16 ±77 -30±119 - 3 ±78 -9 ±118 -

V 6 9 ±34 17±47 - 6 ±17 5 ±24 -

V 7 0 ±14 - 0 ±22 4 ±14 - 0 ±24

3.2 EVALUATION OF COUNTERFACTUAL EXPLANATIONS

3.2.1 QUANTITATIVE EVALUATION

A set of factuals was extracted from test records having output equal to 1 (i.e., 1051 for the Brin
travel direction and 214 for the Brignole travel direction) and counterfactual explanations for each of
the three typologies described in Section 2.2.3 were generated for each factual. The discriminative
power of counterfactual explanations generated for the Brin travel direction was of about 90.6%,
91.8%, and 93.9% for C, CCP and CCT, respectively. The discriminative power of counterfactual
explanations generated for the Brignole travel direction was on average slightly lower compared
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to that of Brin (86.7%, 94.5%, and 89.8% for C, CCP and CCT, respectively). Table 3 reports the
average changes in V 1, . . . , V 7 as suggested by C, CCP and CCT, together with the corresponding
standard deviation. For the sake of clarity, variables V 3 and V 4 have been reported in seconds
instead of minutes as in the rest of the article. These values suggest what is the global trend that each
variable needs to observe in order to move toward a non-crowded situation. However, these average
values are only indicative, as they could differ significantly depending on the specific observation
considered, i.e., depending on the specific values of the factual. The counterfactual explanations
require on average to reduce V 1, . . . , V 5, to slightly increase V 6, and to not intervene on V 7.
In general, when some variables are constrained like in CCP and CCT, the remaining controllable
variables vary more significantly, as it can be seen by an increase in the absolute value of the mean
change and a greater standard deviation.

Table 4: Average values of variables V 1, . . . , V 7 on the training set, for each specific output class
and each specific model.

Brin Brignole

Feature A B C D

V 1 418 280 342 477

V 2 386 316 345 386

V 3 10 10 10 10

V 4 11 9 10 14

V 5 218 201 173 174

V 6 42 32 11 22

V 7 38 38 38 38

Output 1 0 0 1

3.3 APPLICATION GROUNDED EVALUATION

The average survey completion time was 18 minutes. Despite reporting minimal or basic knowledge
in AI, respondents believe that AI will play a pivotal role in crowd management in public environ-
ments. In the first series of questions the experts were asked to select the crowding class (i.e., 0 or
1) given a set of 7 features (V 1–V 7) describing a specific scenario, as shown in Table 4. In general,
crowded scenarios (output=1, case A and D) show higher V 1, V 2, V 4, V 5, V 6 with respect to non-
crowded scenarios (output=0, case B and C), whereas V 3 and V 7 are similar in both scenarios, for
both platforms. All experts correctly assessed case A as a situation where the number of people on
the platform is above the threshold, stating fairly high (3 out of 5) or high (2 out of 5) confidence in
the answer given. Similarly, 4 out of 5 experts correctly assessed case D, although with a decrease
in reported confidence (low confidence: 2; fairly high confidence: 2; high confidence: 1). As for
non-crowded scenarios, Case B was correctly classified by 3 out of 5 experts (low confidence: 2;
fairly high confidence: 3), whereas case C was correctly classified only by 2 out of 5 experts (low
confidence: 1; fairly high confidence: 4). In 3 out of 4 examples, the experts correctly predicted
the output class; the output class 1 was predicted more accurately, by an higher number of experts,
although they were rarely completely confident in the answer given.

Then, the experts were asked to evaluate a set of counterfactual explanations. One example related
to the platform in Brin direction is reported in Figure 2. Referring to this example, the majority
of experts were found to agree with the proposed suggestions (moderately agree: 3; neither agree
nor disagree: 1; moderately disagree: 1). CCP was judged to be the most realistic solution, as it
suggests preventing a crowded situation on the platform by reducing V 3 and V 4 by 3 minutes, that
is, reducing the interval between trains in the previous two time windows. Furthermore, the presence
of fewer people on the platform at time t − 1 (lower V 6) is associated with a lower probability of
crowding at time t. In contrast, counterfactual C was considered counter intuitive by one of the
experts, since the passengers inflow in the previous two time intervals (V 1 and V 2) is reduced, but
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at the same time there is an increase in the number of people waiting at the platform (V 6). This
might suggest that the crowding condition is related to the combination of passengers on the stairs
and at the platform rather than the number of passengers in a specific station area.
In general, the proposed counterfactual explanations were considered realistic by all the experts,
however they were not always considered readily applicable (realistic and applicable: 3; realistic
but not applicable: 2). Among the variables considered in the simplified simulation scenario, the
passengers inflow was rated as the most controllable variable in the short-run (15-30 minutes) (4
votes), followed by the number of people boarding the train and train frequency (2 votes each).
According to the surveyed experts, the countermeasures deemed most effective in achieving the
values suggested by the counterfactual explanations include turnstiles blockage to reduce station
entrances and a reorganization of the timetable to adjust time intervals between consecutive trains.
Additional suggested controllable variables include the waiting time at the platform, the number of
carriages per train and the train length of stay at the station.

4 DISCUSSION

4.1 LLM FOR CROWDING PREDICTION

The use of historical data for short-term passenger flow prediction has proved of paramount impor-
tance for efficiently improving subway system management (Wei et al., 2023). In this work, LLM
has shown the ability to predict the evolution of crowding in a given station area (i.e., a specific sub-
way platform, in this case) by having information on the incoming, outgoing, and current passenger
flow of the platforms in a previous time window. Prediction accuracy can be considered satisfactory,
with values above 80% when considering LLMBg and slightly lower values (around 70%) when
considering LLMBr. The two models are characterized by a quite high number of rules that can
sufficiently represent both classes, with a covering that can reach up to 30% and an error associ-
ated with individual rules lower than 5%. Rule-based models can be further refined by filtering out
redundant rules or conditions and merging similar rules, allowing the logic underlying knowledge
extraction to be streamlined while maintaining satisfactory predictive performance.

Rule-based approaches have been already used for passenger flow prediction. For example, Zhao
et al. (2020) explored the influence of temporal, spatial and external features in predicting daily
passenger flow using tree based ensemble methods (random forest and gradient boosting decision
tree) on data from the Shanghai Metro Automatic Fare Collection system. However, feature ranking
was used only for feature selection purposes. In our work, the analysis of feature ranking allowed
to identify the main features that the model uses to predict a particular output, whereas the further
value ranking analysis allowed to quantitatively specify the values of those features that are most
determinant for a certain output. In particular, the value ranking given for LLMBg in Section 3.1 are
similar or slightly higher with respect to the average values for output equal to 1 (e.g., V2 and V4 in

(a) Brin - unconstrained (b) Brin - constraints on people (c) Brin - constraints on trains

Figure 2: Spiderplot of the three proposed scenarios containing the factuals and respective counter-
factuals for the platform in Brin direction.
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case D, Table 4) but definitely higher with respect to the average values for output equal to 0 (e.g., V2
and V4 in case C, Table 4), thus showing high discrimination capabilities between the two classes.
Although this analysis has enabled the identification of global discrimination cut-off values related
to individual features, the user could benefit from additional analyses of individual scenarios through
local explanations. Thus, an extremely useful tool is the generation of counterfactual explanations
that provide quantitative suggestions by varying multiple features simultaneously while focusing on
a single scenario.

4.2 COUNTERFACTUAL EXPLANATIONS FOR CROWDING PREVENTION

The quality of the set of counterfactual explanations was verified both quantitatively through the
calculation of discriminative power and qualitatively by consulting expert opinion by means of a
questionnaire. The discriminative power is around 90% for C, CCP and CCT in both platforms,
hence, the set of explanations belonging to class 0 can be accurately distinguished from the source
class of factuals (class 1). Moreover, we can observe that the average changes suggested by the coun-
terfactuals (Table 3) are consistent with the distributions of the training input data in the 2 classes
(Table 4). However, to verify the actual applicability of the method this metric was not sufficient and
interaction with experts was necessary. According to the experts, the suggestions produced through
counterfactual explanations can be considered as realistic, however, in the future it might be useful
to consider additional controllable features, such as train dwell time at the station and the number
of carriages per train which could possibly be added if the station is expected to be significantly
crowded. An additional interesting insight that emerged from the questionnaire is that the suggested
changes may not systematically be applicable in the short run, as the logistic infrastructure may not
be able to intervene quickly enough (e.g., increase train capacity, dynamically control station ac-
cess). This aspect was in part considered through the introduction of different explanations focusing
on different subgroups of features and can be further developed through iterative interaction with
the stakeholders.

4.3 LIMITATIONS AND FUTURE RESEARCH

In this study, the method was applied to a specific station location, but it can be easily generalized
to other areas of the station such as entrances, and emergency exits. Moreover, in this preliminary
study, a relatively low critical crowding threshold (30 people on the platform) was chosen based on
considerations due to the chosen facility and its normal passenger flow. In fact, the objective of the
study is to predict potential crowding in everyday situations, in the short term, whereas the pres-
ence of exceptional events with excessively higher than normal flows (e.g., events, concerts, soccer
games) is known with due advantage and managed differently. However, it is important to note that
the proposed analysis may be easily applied to different threshold values. Future developments of
the study may cover different aspects, such as the extension of the prediction window to consider
possible inner dynamics in the medium to long term, the comparison of counterfactual explanations
obtained with different critical crowding threshold levels or the customization of the set of con-
trollable and non-controllable features defined based on requirements established together with the
transportation infrastructure stakeholders. Furthermore, expert comments highlighted the need to
analyze the causal relationships between variables in order to obtain more realistic suggestions.

5 CONCLUSION

Encouraging the use of public transportation by improving infrastructures and passenger flow man-
agement is one of the main steps to promote environmental sustainability. From this perspective, our
research focused on the analysis of passenger flow at subway stations through explainable AI, par-
ticularly rule-based models and counterfactual explanations. A specific use case in the city of Genoa
was selected for this purpose. Besides quantitative evaluation, the proposed explanations were pre-
liminarily assessed by a team of experts in the field of transportation, in terms of their realism and
applicability. Results suggest that counterfactual explanations may provide interpretable insights
that can be used as a reference point for experts in the decision-making process when developing
countermeasures for efficient crowd management.

9
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6 REPRODUCIBILITY STATEMENT

All examples and results shown in this article are fully reproducible, but the code will be shared
after the double-blind review phase.
Below is a detailed description of the dataset used for model evaluation.

Table 5: Dataset features capturing the two time intervals of interest: minimum value, maximum
value, mean, and standard deviation. V 1, . . . , V 7, denotes the variables used in the counterfactual
analisys.

Name Min Max Mean Std Description

Common



PISt−2∆t 36 711 347 176 Passenger Inflow from Stairs in the time window
[t− 2∆t, t−∆t], [passengers/h] (V1)

PISt−∆t 37 713 345 178 Passenger Inflow from Stairs in the time window
[t−∆t, t], [passengers/h] (V2)

PIEt−2∆t 0 7 4 2 Passenger Inflow from Elevator in the time
window [t− 2∆t, t−∆t], [passengers/h]

PIEt−∆t 0 8 3 2 Passenger Inflow from Elevator 15 minutes
before, [passengers/h]

APIt−2∆t 3 79 38 14
Average number of Passengers on the
Intermediate level in the time window
[t− 2∆t, t−∆t], [passenger]

APIt−∆t 4 78 38 14
Average number of Passengers on the
Intermediate level in the time window [t−∆t, t],
[passenger]

MPIt−2∆t 1 24 8 3
Maximum number of Passengers on the
Intermediate level in the time window
[t− 2∆t, t−∆t] [passenger]

MPIt−∆t 1 24 8 3
Maximum number of Passengers on the
Intermediate level in the time window [t−∆t, t],
[passenger] (V7)

Brignole



BgTIt−2∆t 5 15 10 4
Average Time Interval between trains on the
platform in Brignole direction in the time
window [t− 2∆t, t−∆t], [min] (V3)

BgTIt−∆t 5 15 10 4
Average Interval between Trains on the platform
in Brignole direction in the time window
[t−∆t, t], [min](V4)

BgPBt−2∆t 8 412 190 81

Average number of Passengers on the train
Before the stop on the platform in Brignole
direction in the time window [t− 2∆t, t−∆t],
[passenger]

BgPBt−∆t 6 412 193 80

Average number of Passengers on the train
Before the stop on the platform in Brignole
direction in the time window [t−∆t, t],
[passenger] (V5)

BgPGOt−2∆t7 71 37 16
Average number of Passengers Getting Off the
train on the platform in Brignole direction in the
time window [t− 2∆t, t−∆t], [passenger]

BgPGOt−∆t 7 72 36 17
Average number of Passengers Getting Off the
train on the platform in Brignole direction in the
time window [t−∆t, t], [passenger]

BgTAt−2∆t 1 414 193 82

Average number of passengers on the Train After
departing from De Ferrari station in Brignole
direction in the time window [t− 2∆t, t−∆t],
[passenger]

BgTAt−∆t 1 414 170 81

Average number of passengers on the Train After
departing from De Ferrari station in Brignole
direction in the time window [t−∆t, t],
[passenger]

BgPPt−2∆t 0 95 12 11
Average number of Passengers waiting at the
Platform in Brignole direction in the time
window [t− 2∆t, t−∆t], [passenger]

BgPPt−∆t 0 109 13 12
Average number of Passengers waiting at the
Platform in Brignole direction in the time
window [t−∆t, t], [passenger] (V6)

Brin



BrTIt−2∆t 5 15 10 4
Average Time Interval between trains on the
platform in Brin direction in the time window
[t− 2∆t, t−∆t], [min] (V3)

BrTIt−∆t 5 15 10 4
Average Time Interval between trains on the
platform in Brin direction in the time window
[t−∆t, t], [min] (V4)

BrPBt−2∆t 1 412 180 87
Average number of Passengers on the train
Before the stop on the platform in Brin direction
in the time window [t− 2∆t, t−∆t], [passenger]

BrPBt−∆t 1 412 180 87
Average number of Passengers on the train
Before the stop on the platform in Brin direction
in the time window [t−∆t, t], [passenger] (V5)

BrPGOt−2∆t0 16 8 17
Average number of Passengers Getting Off the
train on the platform in Brin direction in the time
window [t− 2∆t, t−∆t], [passenger]

BrPGOt−∆t 0 17 7 17
Average number of Passengers Getting Off the
train on the platform in Brin direction in the time
window [t−∆t, t], [passenger]

BrTAt−2∆t 3 415 209 87

Average number of passengers on the Train After
departing from De Ferrari station in Brin
direction in the time window [t− 2∆t, t−∆t],
[passenger]

BrTAt−∆t 3 414 211 88

Average number of passengers on the Train After
departing from De Ferrari station in Brin
direction in the time window [t−∆t, t],
[passenger]

BrPPt−2∆t 0 213 36 26
Average number of Passengers waiting at the
Platform in Brin direction in the time window
[t− 2∆t, t−∆t], [passenger]

BrPPt−∆t 0 216 37 26
Average number of Passengers waiting at the
Platform in Brin direction in the time window
[t−∆t, t], [passenger] (V6)
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