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Abstract

Existing “needle-in-a-haystack” (NIAH) benchmarks for long-context LLM evalu-1

ation often overlook “context engineering”, using random distractors rather than2

biased outputs of retrieval systems. We present HaystackCraft, a new NIAH bench-3

mark built on the full English Wikipedia hyperlink network, which evaluates LLMs4

against ranked distractors from sparse, dense, hybrid, and graph-based retrievers.5

Experiments on 10 LLMs show significant performance degradation as context6

size increases. We find that distractor composition is crucial: semantically similar7

documents are more challenging than lexically similar ones. Graph-based reranking8

mitigates harmful distractors, improving the LLM performance by up to 44%.9

1 Introduction10

Long-context reasoning is fundamental for large language models (LLMs). Recent innovations have11

driven significant progress in this area (Su et al., 2024; Peng et al., 2024; Dao et al., 2022; Xiao et al.,12

2024). Consequently, modern LLMs can often achieve near-perfect recall on synthetic “needle-in-a-13

haystack” (NIAH) benchmarks (Yen et al., 2025), which test whether a model can retrieve relevant14

information (i.e., needle) from a large context that contains many distractors (i.e., haystack).15

However, these successes can be misleading as they overlook “context engineering” (Mei et al.,16

2025), i.e., the practice of selecting and structuring information for an LLM’s context. In practical17

applications like retrieval-augmented generation (RAG) (Lewis et al., 2020), distractors are not18

independent random samples, but ranked outputs of imperfect and biased retrieval systems. For19

instance, a sparse retriever populates the haystack with documents that are lexically similar but20

potentially semantically irrelevant (Robertson et al., 1994; Robertson & Zaragoza, 2009), while a21

dense retriever may return semantically related but factually incorrect “near misses” (Karpukhin22

et al., 2020). It is therefore essential to consider a representative set of heterogeneous retrievers.23

Furthermore, for complex multi-hop queries, needle documents are often interconnected within a24

larger document graph (e.g., webpage hyperlink networks). Graph-based retrieval methods are central25

to information retrieval and search engines (Page et al., 1999).26

To systematically study the impact of context engineering on long-context reasoning, we introduce27

haystack engineering: the principled construction of noisy contexts using heterogeneous retrieval28

strategies. We explore this concept through HaystackCraft, our newly proposed NIAH benchmark29

built on the full English Wikipedia hyperlink network. HaystackCraft systematically examines30

how different retriever choices shape the distractor composition, haystack ordering, and the LLM31

performance. It evaluates a broad spectrum of widely adopted retrievers, including sparse, dense,32

hybrid, and graph-based methods. Previous NIAH benchmarks mostly consider query- and retriever-33

independent distractors (Kamradt; Yuan et al., 2024; Hsieh et al., 2024; Kuratov et al., 2024). While34

HELMET (Yen et al., 2025) employs a dense retriever for distractor construction, it does not address35

retriever heterogeneity, network-structured corpora, or the role of retriever-ranked ordering.36
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Our experiments on 10 long-context LLMs yield several key insights. We find that all models37

suffer a significant performance drop as context size increases to 128K tokens, with decreases38

ranging from 7.6% to 61.8%. Semantically similar distractors from dense retrievers are more39

challenging than lexically similar distractors from sparse retrievers. Furthermore, we observe that40

graph-based reranking using Personalized PageRank (PPR) substantially mitigates harmful distractors41

and improves performance across all models and base retrievers, particularly for multi-hop questions42

and at larger context sizes, with improvements as high as 44%. Finally, our analysis shows that43

haystack ordering has a complex, model-dependent impact, underscoring the importance of evaluating44

LLMs under retriever-ranked orders that reflect practical RAG systems.45

2 HaystackCraft46

2.1 A Framework for Haystack Engineering47

We formalize the NIAH problem through the lens of context engineering to study distractor composi-48

tion and haystack ordering. Let D be a document corpus. Given a query q, Nq ⊂ D denotes the set49

of ground-truth documents required to correctly answer q, which we term the needle. A retriever R50

assigns each document d ∈ D a relevance score R(q, d) ∈ R, where a larger value indicates a higher51

relevance, thereby inducing a ranking of the documents. Given a target context size of S tokens, we52

construct the haystack set HR
q (S) by including all needles Nq and then filling the remaining token53

budget with the top-ranked distractors from D \ Nq . Finally, HR
q (S) is linearized into a sequence by54

an ordering policy π(q,R,HR
q (S)) = (d1, · · · , d|HR

q (S)|) for LLM consumption.55

Retriever Choice (R). The retriever choice is the primary mechanism for engineering the haystack’s56

composition. HaystackCraft incorporates a broad spectrum of retrievers. 1) Sparse Retriever (i.e.,57

BM25 (Robertson et al., 1994; Robertson & Zaragoza, 2009)): a classical retriever that measures58

lexical similarity. 2) Dense Retriever (i.e., Qwen3-Embedding-0.6B (Zhang et al., 2025)): a retriever59

that captures semantic similarity. We choose it in light of its competitive retrieval performance on60

MMTEB (Enevoldsen et al., 2025), small size, and applicability to long documents. 3) Hybrid61

Retriever (i.e., BM25 + Qwen3-Embedding-0.6B): a combination of the two using reciprocal rank62

fusion (Cormack et al., 2009), which is robust to score magnitude differences across retrievers and63

often yields better performance (Lee et al., 2023).64

Graph-Based Retrieval for Multi-Hop Question Answering (QA). For complex multi-hop ques-65

tions where needles are interconnected, standard retrievers fall short as they ignore inter-doc structures,66

which can offer strong retrieval cues. For instance, PageRank (Page et al., 1999), a foundational67

algorithm for modern search engines, leverages this by considering a document structurally important68

if it is heavily referenced by other important documents. Building on this idea, we employ Personal-69

ized PageRank (PPR) (Haveliwala, 2002) to study the impact of graph-based retrieval on distractor70

composition and downstream LLM performance. Specifically, we first use one of the three base71

retrievers above, then perform PPR reranking seeded on the top-N documents.72

Haystack Ordering (π). LLMs exhibit strong positional biases, and the order of documents can73

significantly impact their long-context performance (Liu et al., 2024; Xiao et al., 2024; Yang et al.,74

2025c). While prior NIAH benchmarks often use random permutations to analyze this bias, practical75

RAG systems present documents in a ranked order determined by the retriever. To bridge this gap,76

we evaluate both retriever-ranked ordering and random permutations. This dual approach allows us to77

assess LLM performance in a realistic RAG setting while also isolating the effects of positional bias.78

2.2 Corpus and QA samples79

Networked Corpus. We employ the 2025-04-04 English Wikipedia dump as a unified corpus for80

both needles and distractors, which comprises 6, 954, 909 articles interconnected by 97, 442, 47281

unique hyperlinks. We use full Wikipedia articles as the unit of retrieval, rather than smaller chunks,82

to preserve document integrity and present a more realistic long-context reasoning challenge.83

QA Datasets. We use Natural Questions (NQ) (Kwiatkowski et al., 2019) for single-hop questions84

and MuSiQue (Trivedi et al., 2022) for multi-hop questions. Since both NQ and MuSiQue were85

created using older Wikipedia versions, we manually filter the samples to ensure validity against our86
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Figure 1: Evaluation of retrievers as the number of retrieved documents (N) increases.

updated corpus, yielding a final set of 500 high-quality samples where answers are unambiguous and87

fully grounded in the text. See Appendix A for further details like data contamination discussions.88

3 Experiments89

We evaluate 10 widely used long-context LLMs, including thinking models (Qwen3-14B (Yang90

et al., 2025b), Gemini 2.5 Flash-Lite, and o4-mini) and general-purpose models, such as GPT-4.191

mini and the open-source Llama-3.1 (Dubey et al., 2024), Qwen2.5-1M (Yang et al., 2025a), and92

Gemma 3 (Kamath et al., 2025) families. We evaluate each model across input context sizes of93

S ∈ {8K, 16K, 32K, 64K, 128K}. For more details, see Appendix B.94

Retrieval Effectiveness. To ensure distractor quality, we first evaluate retriever effectiveness using95

NDCG @N (Järvelin & Kekäläinen, 2000, 2002) in addition to Recall @N to account for retrievers’96

ranking performance. As NIAH scales the number of distractors for long-context study, we study the97

scaling behaviors of the retrievers by gradually increasing N , the number of retrieved documents.98

Fig. 1 presents the evaluation results. Among the base retrievers, the dense retriever (Qwen3-0.6B)99

consistently outperforms the sparse retriever (BM25) in both metrics, and combining them with100

a hybrid retriever further improves the performance. The retrieval effectiveness decreases as the101

question hop increases. Graph-based reranking substantially boosts all base retrievers, especially102

for multi-hop questions. Importantly, the retrieval performance exhibits nice scaling properties and103

continues to improve as N increases, without noticeable troublesome pattern shifts.104

Impact of Retriever Choice. To holistically study the impact of retriever choice on haystack105

composition and ordering, we first employ retriever-ranked haystack ordering. Fig. 2 presents the106

evaluation results. All LLMs exhibit a substantial performance degradation as the context size extends107

to 128K tokens, with performance drops ranging from 7.6% to 61.8%. For larger context sizes,108

distractors constructed by the dense retriever (Qwen3-0.6B) based on semantic similarity are generally109

more challenging for the models than the lexical distractors from the sparse retriever (BM25). This is110

evidenced by additional performance drops of up to 9.6% (Llama-3.1-8B-Instruct) when faced with111

semantic distractors. Interestingly, the use of a hybrid approach, which mixes both semantic and112

lexical distractors, does not appear to introduce more severe challenges for the models.113

Impact of Graph-Based Retrieval. For larger context sizes, using PPR for graph-based reranking in114

distractor construction provides a significant performance uplift across LLMs and base retrievers.115

By comparing the solid lines with the dashed lines in Fig. 2, we observe that for nearly every model116

and retriever, the performance curve paired with PPR is noticeably higher, especially at context sizes117

of 64K and 128K. This demonstrates that exploiting the relational structure among documents is118

a powerful method for mitigating distraction. The largest improvement of 44% was observed for119

Llama-3.1-70B-Instruct with the hybrid retriever, highlighting how prioritizing structurally central120

documents can mitigate more harmful structurally isolated lexical and semantic distractors.121
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Figure 2: Impact of retriever choice on NIAH performance as context size increases. 0 stands for the
case without distractors.

Figure 3: Performance difference in F1 score between using a retriever-ranked ordering and an
average of three random permutations.

Retrieval Effectiveness vs NIAH Performance. Jin et al. (2025) suggests that better retrievers122

introduce harder distractors for shorter-context reasoning and single-hop QA. Our study shows that123

the interplay between the retriever mechanism and task setting plays a crucial role, where a proper124

retriever can be simultaneously more effective in retrieval and hard distractor mitigation.125

Impact of Haystack Ordering. To isolate the effect of haystack ordering (π), we compare the126

performance of retriever-ranked ordering against the average of three random permutations. The127

results in Fig. 3 reveal complex and highly model-dependent patterns. While Gemma-3 and Qwen2.5-128

1M families derive a significant and growing benefit from retriever-ranked ordering as context size129

expands, others exhibit a more volatile, retriever-dependent, or even negative response. This finding130

carries a crucial implication: to faithfully assess a model’s practical long-context utility in RAG,131

evaluations must mirror the canonical, retriever-ranked input. Furthermore, contrasting this setup132

with random permutations allows us to better understand the positional biases of individual models.133

4 Conclusion134

We introduce haystack engineering for a principled NIAH benchmark framework. Through our new135

benchmark, HaystackCraft, we demonstrate that the composition and ordering of the haystack, as136

determined by heterogeneous retrieval strategies, critically impact model performance.137
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A More Dataset Details231

In preparing the Wikipedia hyperlink network, we filter out empty and redirect pages.232

Table 1 provides a dataset breakdown over hop count.233

Table 1: Question breakdown over hop count.

# hops %

1 20
2 58
3 15.6
4 6.4

Data Contamination Mitigation. A critical concern in LLM evaluation is data contamination, where234

exposure to benchmark data during pretraining inflates performance (Sainz et al., 2023). While the235

models we evaluate have likely been trained on Wikipedia and even the QA datasets, our benchmark’s236

design inherently mitigates this risk. The core task demands in-context reasoning—locating the237

“needle" within a long context of plausible, retriever-selected distractors—rather than simple fact recall.238

This challenge is amplified for our multi-hop questions, which require synthesizing information239

across multiple documents, a process robust to memorization. Furthermore, our use of a recent240

Wikipedia dump post-dates the training cutoffs of most current LLMs, minimizing data overlap.241

Crucially, our empirical results confirm this mitigation: all models show substantial performance242

degradation as context size increases, demonstrating that they are actively reasoning over the provided243

text, not merely recalling memorized answers.244

B Additional Setup Details245

B.1 Haystack Construction246

The token counts are standardized by the Qwen2.5-1M tokenizer for fair comparison247

B.2 LLM Setup248

For each LLM, we utilize the recommended inference hyperparameters as specified on its Hugging249

Face model card. These settings include sampling parameters like temperature, Top-P, Top-K, and250

Min-P, along with the “thinking budget” for thinking LLMs. All models considered in this work251

possess native long-context support for at least 128K tokens, with the exception of the Qwen3 models.252

To ensure the Qwen3 models could process a 128K-token input and generate a 32K-token output,253

we extend their context window to 164K tokens using YaRN (Peng et al., 2024).254

B.3 PPR Setup255

We perform a hyperparameter search for PPR per retriever using 10% of the QA samples. For retrieval256

criteria, we adopt Normalized Discounted Cumulative Gain (NDCG) @ 10K (Järvelin & Kekäläinen,257

2000, 2002) for ranking ground truth supporting documents among the corpus. Table 2 presents the258

best hyperparameters for each retriever based on three random seeds.259

Table 2: Retriever-specific PPR hyperparameters.

Retriever # Seed Documents Damping Factor

BM25 10 0.5
Qwen3-0.6B 5 0.5
Hybrid 5 0.85
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C Evaluation for Data Contamination260

To quantify data contamination, we evaluate LLM performance under two conditions: 1) without261

context, to test reliance on parametric knowledge, and 2) with ground-truth supporting documents.262

We measure F1 scores across an increasing number of question hop to assess how performance varies263

with reasoning complexity.264

Fig. 4 presents the evaluation results.265

• Contamination is evident. All models achieve non-zero F1 scores without context. This266

indicates a degree of data contamination.267

• Context is crucial. Despite contamination, providing ground-truth documents substantially268

improves the performance of all models.269

• Complexity remains a challenge. F1 scores generally decrease as the question hop count270

increases, even when context is provided. This also suggests that evaluation with multi-hop271

questions suffers less from data contamination.272

Figure 4: LLM performance with vs without context across question hop.

D Implementation Details273

We employ vLLM for LLM inference (Kwon et al., 2023).274
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