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Abstract
We introduce the first highly multilingual001
speech and American Sign Language (ASL)002
comprehension dataset by extending BELE-003
BELE. Our dataset covers 74 spoken languages004
at the intersection of BELEBELE and FLEURS,005
and one sign language (ASL). We evaluate 2M-006
BELEBELE dataset for both 5-shot and zero-007
shot settings and across languages, the speech008
comprehension accuracy is ≈ 10% average009
lower compared to reading comprehension.010

1 Introduction011

From an AI perspective, text understanding and012

generation services are used globally in more than013

a hundred languages, but the scarcity of labeled014

data poses a significant challenge to developing015

functional systems in most languages. Although016

natural language processing (NLP) datasets with017

extensive language coverage, such as FLORES-018

200 (NLLBTeam, 2024), are available, they mainly019

concentrate on machine translation (MT). Multilin-020

gual evaluation benchmarks such as those for mul-021

tilingual question answering (Lewis et al., 2020;022

Clark et al., 2020), natural language inference (Con-023

neau et al., 2018), summarization (Hasan et al.,024

2021; Ladhak et al., 2020), and reasoning datasets025

(Ponti et al., 2020; Lin et al., 2021) collectively026

cover only about 30 languages. Furthermore, the027

extension of such datasets to speech or American028

Sign Language (ASL) is lacking, with the excep-029

tion of FLEURS (Conneau et al., 2022; Tanzer,030

2024), which is based on FLORES-200.031

The recent BELEBELE benchmark is the first cor-032

pus that addresses text reading comprehension for033

a large number of languages following a multi-way034

parallel approach (Bandarkar et al., 2023). The035

entire BELEBELE text statistics are summarized036

in Table 3 in Appendix A. Currently, there are no037

highly multilingual evaluation datasets for natu-038

ral language understanding that cover either both039

speech and text, or ASL.040

Figure 1: 2M-BELEBELE entry: beyond passage, ques-
tion and multiple choice answers in text from BELE-
BELE, we extend to ASL and 74 speech languages.

In this work, we extend the BELEBELE dataset 041

to speech and sign (Section 3). By doing so, we 042

create the first highly multilingual speech and sign 043

comprehension dataset: 2M-BELEBELE, which is 044

composed of human speech recordings covering 045

74 languages and human sign recordings for ASL. 046

As a by-product of 2M-BELEBELE, we also ex- 047

tend the FLEURS dataset (which is widely used 048

to benchmark language identification and ASR) by 049

providing recordings for more FLORES-200 sen- 050

tences than were previously available and adding 051

sign language, creating a new 2M-FLORES. This 052

2M-FLORES extends FLEURS by 20%. 053

Finally, we provide a very basic set of experi- 054

ments that evaluate 2M-BELEBELE and provide 055

some reference results. We use direct and/or cas- 056

caded systems to evaluate 2M-BELEBELE dataset 057

(Section 4). We also list several further experimen- 058

tation that 2M-BELEBELE unblocks. Note that the 059

main contribution of this paper is the creation of the 060

first highly multilingual speech and sign compre- 061

hension dataset. The complete set of experiments 062

is out of the scope of this paper (Limitations). By 063

open-sourcing our dataset, we encourage the scien- 064

tific community to pursue such experimentation. 065
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2 Related Work066

Speech Comprehension The outstanding perfor-067

mance of some MT and text-to-speech (TTS) mod-068

els has enabled a rise in the number of works using069

synthetically generated training data. Furthermore,070

some recent works propose to also use synthetic071

data for evaluation; e.g., (Üstün et al., 2024; SEAM-072

LESSCommunicationTeam, 2025; Nguyen et al.,073

2024; Nachmani et al., 2023). This strategy al-074

lows researchers to extend datasets to low-resource075

languages and to other modalities, such as speech.076

However, we prove that using synthetic data for077

evaluation does not provide comparable conclu-078

sions as relying on human speech for the particular079

task of automatic speech recognition (ASR) and the080

FLEURS domain (Appendix E). The evaluation081

dataset that is closest to the speech comprehension082

evaluation dataset presented in this paper is the gen-083

erative QA dataset proposed in (Nachmani et al.,084

2023). The dataset covers 300 questions in English.085

ASL Comprehension Compared to spoken lan-086

guages, sign languages are considered low-087

resource languages for natural language processing088

(Yin et al., 2021). Most popular datasets cover089

small domains of discourse; e.g., weather broad-090

casts (Camgoz et al., 2018), which has limited091

real world applications. There have been previ-092

ous releases of large scale open domain sign lan-093

guage datasets; e.g., (Albanie et al., 2021; Shi et al.,094

2022; Uthus et al., 2024). However, the results and095

challenges on such datasets suggest that compu-096

tational sign language research still requires addi-097

tional datasets to reach the performance of their098

spoken language counterparts (Müller et al., 2022,099

2023). With the release of the ASL extension of the100

BELEBELE dataset, we aim to provide additional,101

high quality sign language data with gloss annota-102

tions to underpin further computational sign lan-103

guage research. Furthermore, due to the paragraph-104

level nature of the BELEBELE dataset, we enable105

paragraph-context sign language translation, which106

has been reported to improve translation perfor-107

mance (Sincan et al., 2023).108

3 2M-BELEBELE109

FLEURS and BELEBELE passage alignment.110

Since BELEBELE uses passages constructed from111

sentences in the FLORES-200 dataset, and112

FLEURS (Conneau et al., 2022) is a human speech113

version of FLORES-200 for a subset of its lan-114

Figure 2: FLEURS vs New Recordings from 2M-
BELEBELE for sentences in passages.

guages, we create a speech version of BELEBELE 115

by aligning its passages with the speech segments 116

available in FLEURS. This extension can be done 117

without extra human annotation, just by comput- 118

ing the alignment between FLEURS and BELE- 119

BELE passages. However, such alignment does 120

not cover the entire BELEBELE corpus because 121

FLEURS does not cover the entirety of FLORES- 122

200. There are 74 languages shared between 123

FLEURS and BELEBELE. FLEURS does not 124

cover the same passages as BELEBELE in all those 125

74 languages, which means that some languages 126

have more speech passages than others. In gen- 127

eral, we are able to match almost ≈ 80% of the 128

passages. Figure 2 shows the number of FLEURS 129

paragraphs we can match, thus obtaining the num- 130

ber of paragraphs that must be recorded in order to 131

cover all passages BELEBELE. 132

Speech recordings. We commission human 133

recordings for the part of the BELEBELE dataset 134

that is not covered by existing FLEURS record- 135

ings, as well as for elements of BELEBELE that do 136

not exist in FLEURS (i.e. questions and answers). 137

Recording participants must be native speakers of 138

the languages they record. They must have an im- 139

peccable grasp of the conventions used in their 140

respective languages for the narration of texts. The 141

three tasks that participants are asked to perform 142

are: (1) Read aloud and record the text passages 143

provided (from FLORES-200); (2) Read aloud 144

and record the provided written questions; (3) Read 145

aloud and record the provided written answers. For 146

the task, we provide the participants with (a) the 147

text of the sentences to be recorded in TSV format 148

(the number of passages may differ from language 149

to language), (b) the written questions (900 per lan- 150

guage, and (c) the written answer options (3,600 151
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per language). Additional details on the recording152

guidelines provided to annotators are reported in153

the appendix B. We verify the quality of the record-154

ings by randomly selecting 270 recordings (30%155

of sample size) and ensuring that the recordings do156

not contain background or ambient noise and that157

the voices of the participants are clearly audible.158

Sign recordings. To obtain ASL sign recordings,159

we provide translators of ASL and native signers160

with the English text version of the sentences to161

be recorded. The interpreters are then asked to162

translate these sentences into ASL, create glosses163

for all sentences, and record their interpretations164

into ASL one sentence at a time. The glosses are165

subjected to an additional quality check by expert166

annotators to harmonize the glossing format. To167

harmonize the recording conditions and eliminate168

visual bias, the videos are recorded against plain169

monochrome backgrounds (e.g., white or green),170

and signers are requested to wear monochrome171

upper body clothing (e.g., black). All videos are172

captured in 1920x1080p resolution with all of the173

signing space covered in FOV. The recordings are174

done in 60 frames per second to address most of175

the motion blur that happens during signing.176

2M-BELEBELE Statistics. The final dataset is177

composed of 75 languages (74 in speech, 1 in sign).178

Each of the languages’ respective subsets includes179

2,000 utterances organized in 488 distinct passages,180

900 questions, and 4 multiple choice answers per181

question. For our recorded data (the red portion of182

Figure 2 plus questions and answers), we have one183

audio file or two per sentence, depending on the184

number of available participants (one participant185

only in 23 languages, and two participants in 51186

languages). When two speakers are available, we187

request that one should represent a higher-pitch188

range, and the other a lower-pitch range for each189

passage. More details are available in Appendix A.190

In addition, the data set includes video record-191

ings in ASL for 2,000 FLORES sentences (not192

including the test partition) and is similarly orga-193

nized in 488 distinct passages, as well as 900 ques-194

tions and 4 multiple-choice answers for each ques-195

tion (see summary table 3). The ASL dataset was196

recorded by two interpreters, but, contrary to what197

was possible in other languages, each interpreter198

could only cover one-half of the dataset each.199

4 Experiments 200

We evaluate 2M-BELEBELE, and compare per- 201

formance across modalities. Our comparison is 202

limited in number of systems and combination of 203

modalities. 2M-BELEBELE offers the opportunity 204

to check multimodal comprehension by combining 205

speech/text/sign passages; questions and answers. 206

In our case, we only provide results for entire text 207

passages, questions and answers and speech pas- 208

sages, text questions and answers. A more compre- 209

hensive set of experiments is out of the scope of 210

this paper, which aims at unblocking such experi- 211

mentation by open-sourcing the dataset itself. 212

Systems. We use the speech section of the 2M- 213

BELEBELE dataset to evaluate the speech com- 214

prehension task with a cascaded system consist- 215

ing of first speech recognition (ASR) using the 216

WHISPER-LARGE-V3 model (Radford et al., 2022) 217

(hereinafter, WHISPER) and SEAMLESSM4T (cor- 218

responding to SEAMLESSM4T-LARGE V2) model 219

(SEAMLESSCommunicationTeam, 2025) feeding 220

into LLAMA-31. We also provide results with a uni- 221

fied system SPIRITLM (Nguyen et al., 2024), which 222

is a multimodal language model that freely mixes 223

text and speech. Since the size of this model is 7B 224

and is based on LLAMA-2, we also add a compar- 225

ison to the LLAMA-2 model. We compare these 226

results with LLAMA-3 and LLAMA-3-CHAT using 227

the BELEBELE text passage as input. For these 228

systems, we report the results in 5-shot in-context 229

learning and zero-shot on 59 at the intersection of 230

WHISPER and 2M-BELEBELE and 39 languages 231

at the intersection of WHISPER, SEAMLESSM4T 232

and 2M-BELEBELE (see Appendix A). 233

Zero-shot Evaluation. We use the same evalua- 234

tion strategy as in (Bandarkar et al., 2023). SPIR- 235

ITLM is not available in chat mode. 236

5-shot In-Context Learning. The few-shot ex- 237

amples are taken randomly from the English train- 238

ing set and they are prompted as text format to the 239

model. Different from (Bandarkar et al., 2023), we 240

do not pick the answer with the highest probability 241

but directly assess the predicted letter of the answer. 242

For 5-shot and zero-shot settings, our instruction 243

prompt is as follows “Given the following passage, 244

query, and answer choices, output the letter corre- 245

sponding to the correct answer. Do not write any 246

explanation. Only output the letter within A, B, C, 247

1https://ai.meta.com/blog/meta-llama-3/
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Dataset Model Size Vocab #Lang AVG % ≥ 50 % ≥ 70 Eng non-Eng

5-Shot In-Context Learning (examples in English)

BELEBELE LLAMA-3 70B 128K 59 85.4 96.6 94.9 94.8 85.2
2M-BELEBELE WHISPER + LLAMA-3 70B 128K 59 77.4 88.1 72.9 94.4 77.1

BELEBELE LLAMA-3 70B 128K 39 84.9 97.4 94.9 94.8 84.7
2M-BELEBELE WHISPER + LLAMA-3 70B 128K 39 77.1 89.7 71.8 94.4 76.6
2M-BELEBELE SEAMLESSM4T + LLAMA-3 70B 128K 39 81.7 94.9 92.7 93.5 81.4
2M-BELEBELE WHISPER + LLAMA-2 7B 32K 1 - - - 49.9 -
2M-BELEBELE SPIRITLM 7B 37K 1 - - - 25.9 -

Zero-Shot

BELEBELE LLAMA-3-CHAT 70B 128K 59 87.5 98.3 96.6 95.8 87.3
2M-BELEBELE WHISPER + LLAMA-3-CHAT 70B 128K 59 79.4 93.2 78.0 95.7 79.2

BELEBELE LLAMA-3-CHAT 70B 128K 39 87.0 97.4 94.9 95.8 86.7
2M-BELEBELE WHISPER + LLAMA-3-CHAT 70B 128K 39 79.1 92.3 76.9 95.7 78.7
2M-BELEBELE SEAMLESSM4T + LLAMA-3-CHAT 70B 128K 39 84.8 94.9 94.9 95.5 84.5

Table 1: Summary of accuracy results on 2M-BELEBELE compared to BELEBELE across models and evaluation
settings. % ≥ 50/70 refers to the proportion of languages for which a given model performs above 50/70% for
question and answer in text and passage in speech.

or D that corresponds to the correct answer.” and248

we report the averaged accuracy over 3 runs2.249

Results. Table 1 reports the summary of the re-250

sults at the intersection of languages between sys-251

tem availability (either 59 or 39 as reported in252

detail in Table 2). The English drop from direct253

text to speech task does not vary much between 5-254

shot and zero-shot strategies, being slightly higher255

in the zero-shot setting (coherently with previous256

LLAMA-3 results that show better performance in257

zero-shot in other tasks3). When comparing speech258

and text comprehension, we observe that speech259

decreases performance in about 10% when compar-260

ing for 59 languages (using WHISPER for ASR).261

However, this decrease shortens (to about 2-3%262

average) when comparing for 39 languages (using263

SEAMLESSM4T for ASR). 2M-BELEBELE accu-264

racy results per language compared to BELEBELE265

are shown in Figure 3 in Appendix D. Differences266

in speech and text vary slightly depending on the267

languages. Low-resource languages have a greater268

variation between text and speech BELEBELE. The269

ten languages with the largest gap are: Burmese,270

Maltese, Assamese, Mongolian, Southern Pashto,271

Sindhi, Telugu, Javanese, Tajik, Georgian.272

Additionally, Table 1 reports English results for273

SPIRITLM, a direct multimodal model. One of the274

reasons SPIRITLM may be performing worse is that275

5-shot examples are in text, while the passage on276

the asked question is in speech. Best results in277

average for speech comprehension are achieved278

with the SEAMLESSM4T + LLAMA-3 cascade.279

2Random seeds: 0, 1, 2.
3https://ai.meta.com/blog/meta-llama-3-1/ and

https://ai.meta.com/blog/meta-llama-3/

ASL We know from previous large-scale trans- 280

lation attempts (Albanie et al., 2021; Müller et al., 281

2022) that models struggle to generalize over both 282

individuals/appearance and large domain of dis- 283

course. Compared to speech and text models, sign 284

language models suffer from having to learn gen- 285

eralized representations from high-dimensional in- 286

puts, i.e. videos, without overfitting to limited train- 287

ing dataset. Previous attempts have been made to 288

create a more generalizable abstraction layer in the 289

form of subunits (Camgoz et al., 2020), similar to 290

phonemes for speech, which achieved promising 291

results on a translation task with a small discourse 292

domain. However, this work is yet to be applied to 293

large discourse domain translation tasks. The best 294

results in the FLORES domain have been achieved 295

with close models that are not available (Zhang 296

et al., 2024). Trying (Rust et al., 2024) as an open 297

model did not perform above chance in the final 298

reading comprehension dataset. However, we be- 299

lieve that the release of this new dataset with the 300

additional gloss annotation will help in training 301

models that generalize over individuals better and 302

improve large-scale sign language translation. 303

5 Conclusions 304

The 2M-BELEBELE dataset4 allows to evaluate 305

natural language comprehension in a large num- 306

ber of languages, including ASL. 2M-BELEBELE 307

is purely human-made and covers the BELEBELE 308

passages, questions, and answers for 74 languages 309

in the speech modality and ASL. As a by-product, 310

2M-FLORES extends FLEURS by 20% 5 311

42M-BELEBELE dataset is freely available in BLIND
52M-FLORES is freely available in BLIND

4

https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3/


Limitations and ethical considerations312

Our speech annotations do not have the entire set313

completed with two annotators. Due to the high314

volume of the dataset, not every recording has been315

thoroughly verified. Some of the languages in316

2M-BELEBELE are low-resource languages, which317

pose a challenge in sourcing professionals to record.318

Therefore, some of the audios were recorded in319

home settings and may contain minor background320

noise, static noise, echoes, and, occasionally, the321

speech could be slightly muffled or soft. All an-322

notators are native speakers of the target language,323

but they may have regional accents in their speech,324

and their personal speech styles may be present325

in the audio as well. However, the mentioned im-326

perfections should not affect intelligibility; all the327

recordings can be clearly understood by human328

standards. Note that we are planning to release329

more languages as reported in Appendix C.330

We can group the ASL limitations under two331

categories, namely visual and linguistic. For vi-332

sual limitations, ASL sequences are recorded in333

what can be considered laboratory environments334

with few signer variance. This makes it harder for335

models trained on them to generalize to unseen336

environments and signers. For linguistic limita-337

tions, ASL sequences are collected one sentence338

at a time. Although this enables pairwise training339

and evaluation, such as classical text-based NMT,340

the generated sequences may not be fully realistic341

in terms of real-world signing. An example would342

be the use of placement. In sentence-per-sentence343

sequence generation, a signer would refer to an344

entity with their sign each sentence, whereas in345

long-form conversation, a signer would place the346

entity in their signing space after first reference and347

refer them in via use of placement in the following348

sentences.349

Our benchmarking is limited compared to the350

potential capabilities of the dataset. For example,351

since we have spoken questions, passages and re-352

sponses, instead of just using a fix modality (spoken353

passages, text questions and responses), we could354

explore the performance when using all combina-355

tions among modalities (e.g., question in speech,356

answer in speech, passage in speech; or question357

in speech, answer in text, passage in speech; or358

question in speech, answer in speech and passage359

in text.)360

In terms of compute budget, we estimate it as361

47K Nvidia A100 hours by taking into account the362

product of following factors: number of languages 363

(59 / 39), number of random seeds (3), number of 364

GPUs required by model (8), number of experi- 365

ment setups (5) and estimated number of hours per 366

experiment (10). 367

Speakers and signers were paid a fair rate. Our 368

recorded data reports self-identified gender by par- 369

ticipant. Each of the speakers and signers signed a 370

consent form agreeing on the dataset and its usage 371

that they were participating in. 372
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España-Bonet, Roman Grundkiewicz, et al. 2022.456
Findings of the first wmt shared task on sign lan-457
guage translation (wmt-slt22). In Proceedings of the458
Seventh Conference on Machine Translation (WMT),459
pages 744–772.460

Eliya Nachmani, Alon Levkovitch, Roy Hirsch, Ju-461
lian Salazar, Chulayuth Asawaroengchai, Soroosh462
Mariooryad, Ehud Rivlin, RJ Skerry-Ryan, and463
Michelle Tadmor Ramanovich. 2023. Spo-464
ken question answering and speech continua-465
tion using spectrogram-powered llm. Preprint,466
arXiv:2305.15255.467

Tu Anh Nguyen, Benjamin Muller, Bokai Yu, Marta R.468
Costa-jussa, Maha Elbayad, Sravya Popuri, Paul-469
Ambroise Duquenne, Robin Algayres, Ruslan Mav-470
lyutov, Itai Gat, Gabriel Synnaeve, Juan Pino, Benoit471
Sagot, and Emmanuel Dupoux. 2024. Spirit-lm:472

Interleaved spoken and written language model. 473
Preprint, arXiv:2402.05755. 474

NLLBTeam. 2024. Scaling neural machine translation 475
to 200 languages. Nature, 630:841–846. 476

Edoardo Maria Ponti, Goran Glavaš, Olga Majewska, 477
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A Languages540

Table 2 reports details on languages covered by541

FLEURS, TTS and ASR.542

B Annotation Guidelines543

Recording process. Find a quiet place free from544

distractions and noises, and choose a headphone545

that is comfortable to wear and a good quality mi-546

crophone that will not distort or break your voice.547

Read aloud and record the scripts in a pleasant tone548

and at a constant and even pace, as if you were549

reading a formal document. Try not to speak too550

quickly or slowly and aim for a natural pace that551

is easy to follow. The audio files below provide552

examples of paces that are expected, too fast, or553

too slow, for the sentence. The hearing also marks554

the date for the suspect’s right to a rapid trial.555

To achieve the best sound quality when record-556

ing, position the microphone close to your mouth557

so that the voice will sound clear and present, but558

not too close that it sounds muddy or you can hear559

a puff of air. Clearly enunciate the words and avoid560

mumbling. Be sure to provide a 2-second pause be-561

tween sentences to add clarity and keep the overall562

pace down. When dealing with long, complicated563

sentences that contain multiple clauses or phrases,564

there are several approaches to ensure clarity and565

a natural flow as follows. Break it down: Separate566

the sentence into smaller parts or clauses. Prac-567

tice reading aloud several times before starting the568

recording. This can help you get a feel for the569

rhythm and pacing of the sentence. Pace yourself:570

Try to maintain a steady, even pace. If the sentence571

is particularly long, it is possible to take a brief572

pause at a natural breakpoint to catch your breath.573

You should read the provided passages aloud with-574

out repairs (a repair is the repetition of a word that575

was incorrectly pronounced to correct its pronunci-576

ation).577

To achieve this, familiarize yourself beforehand578

with the correct pronunciation of difficult words,579

proper nouns, and transliterated words, as well 580

as signs and symbols, dates and times, numbers, 581

abbreviations, and punctuation marks. Some ele- 582

ments may have more than one correct pronuncia- 583

tion. In this case, use the one that comes the more 584

naturally to you, as long as it is an accepted pronun- 585

ciation (i.e., it is acknowledged in your language’s 586

dictionaries). Practice reading the passages aloud 587

several times to become more comfortable with 588

the material. Please pay particular attention to the 589

following items: 590

Numbers. Number formats can vary from lan- 591

guage to language; it is important to follow the 592

pronunciation rules in your language. Here are 593

some general guidelines and examples: Decimal 594

numbers: Read the whole part of the number as 595

a whole number and then individually read every 596

number after the decimal point. For example, in 597

English, the decimal number 3.14 should be read 598

as ”three point one four.” Different languages may 599

have different rules, and you should follow the rules 600

that are appropriate for your language. Cardinal 601

numbers represent quantities or amounts. Ordinal 602

numbers represent positions or ranks in sequential 603

order and should be read with the appropriate suffix. 604

For example, in English, the ordinal number 1st 605

is read ”first” (not ”onest”) and 5th is read ”fifth” 606

(not ”fiveth”). Different languages may have dif- 607

ferent rules, and you should follow the rule that is 608

appropriate for your language. 609

Roman numerals are a collection of seven sym- 610

bols that each represent a value: I = 1, V = 5, X 611

= 10, L = 50, C = 100, D = 500, and M = 1,000. 612

The can be pronounced in slightly different ways 613

depending on the context, but they are never pro- 614

nounced as individual letters. For example, in En- 615

glish, VIII in Henry VIII is pronounced ”Henry the 616

eighth”, while Superbowl LVIII is pronounced ”Su- 617

perbowl fifty-eight”, but they are never pronounced 618

”Henry v i i i” or ”Superbowl l v i i i”. Different 619

languages may have different rules, and you should 620

follow the rules that are appropriate for your lan- 621

guage. Punctuation marks: As a general rule, punc- 622

tuation marks should not be pronounced, except 623

quotation marks. 624

For example, in English, punctuation marks such 625

as periods, commas, colons, semicolons, question 626

marks, and exclamation points are typically not 627

pronounced. For example, the sentence. As a result 628

of this, a big scandal arose. will be pronounced 629

”As a result of this a big scandal arose” - not ”As 630
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Language Code Script Family FLEURS SeamlessM4T Whisper 2M-BELEBELE

Mesopotamian Arabic acm Arab Arab Afro-Asiatic
Afrikaans afr Latn Latn Indo-European (1)
Tosk Albanian als Latn Latn Indo-European
Amharic amh Ethi Ethi Afro-Asiatic (2)
North Levantine Arabic apc Arab Arab Afro-Asiatic
Modern Standard Arabic arb Arab Arab Afro-Asiatic
Modern Standard Arabic arb Latn Latn Afro-Asiatic
Najdi Arabic ars Arab Arab Afro-Asiatic
Moroccan Arabic ary Arab Arab Afro-Asiatic
Egyptian Arabic arz Arab Arab Afro-Asiatic (2)
Assamese asm Beng Beng Indo-European (2)
North Azerbaijani azj Latn Latn Turkic (1)
Bambara bam Latn Latn Niger-Congo
Bengali ben Beng Beng Indo-European (2)
Bengali ben Latn Latn Indo-European
Standard Tibetan bod Tibt Tibt Sino-Tibetan
Bulgarian bul Cyrl Cyrl Indo-European (2)
Catalan cat Latn Latn Indo-European (2)
Cebuano ceb Latn Latn Austronesian (1)
Czech ces Latn Latn Indo-European (2)
Central Kurdish ckb Arab Arab Indo-European
Danish dan Latn Latn Indo-European (2)
German deu Latn Latn Indo-European (2)
Greek ell Grek Grek Indo-European (2)
English eng Latn Latn Indo-European (2)
Estonian est Latn Latn Uralic (1)
Basque eus Latn Latn Basque
Finnish fin Latn Latn Uralic (2)
French fra Latn Latn Indo-European (2)
Fulfulde (Nigerian) fuv Latn Latn Atlantic-Congo
Oromo (West Central) gaz Latn Latn Afro-Asiatic ( )
Guarani grn Latn Latn Tupian
Gujarati guj Gujr Gujr Indo-European (1)
Haitian Creole hat Latn Latn Indo-European
Hausa hau Latn Latn Afro-Asiatic ( ) (2)
Hebrew heb Hebr Hebr Afro-Asiatic (2)
Hindi hin Deva Deva Indo-European (2)
Hindi hin Latn Latn Indo-European
Croatian hrv Latn Latn Indo-European (2)
Hungarian hun Latn Latn Uralic (2)
Armenian hye Armn Armn Indo-European (1)
Igbo ibo Latn Latn Atlantic-Congo (1)
Ilocano ilo Latn Latn Austronesian
Indonesian ind Latn Latn Austronesian (2)
Icelandic isl Latn Latn Indo-European (1)
Italian ita Latn Latn Indo-European (2)
Javanese jav Latn Latn Austronesian (1)
Japanese jpn Jpan Jpan Japonic (2)
Jingpho kac Latn Latn Sino-Tibetan
Kannada kan Knda Knda Dravidian
Georgian kat Geor Geor Kartvelian (2)
Kazakh kaz Cyrl Cyrl Turkic (1)
Kabuverdianu kea Latn Latn Indo-European (1)
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Language Code Script Family FLEURS SeamlessM4T Whisper 2M-BELEBELE

Mongolian khk Cyrl Cyrl Mongolic ( ) (2)
Khmer khm Khmr Khmr Austroasiatic (1)
Kinyarwanda kin Latn Latn Atlantic-Congo
Kyrgyz kir Cyrl Cyrl Turkic
Korean kor Hang Hang Koreanic (1)
Lao lao Laoo Laoo Kra-Dai
Lingala lin Latn Latn Niger-Congo
Lithuanian lit Latn Latn Indo-European (2)
Ganda lug Latn Latn Atlantic-Congo (1)
Luo luo Latn Latn Atlantic-Congo (2)
Standard Latvian lvs Latn Latn Indo-European ( ) (2)
Malayam mal Mlym Mlym Dravidian (2)
Marathi mar Deva Deva Indo-European
Macedonian mkd Cyrl Cyrl Indo-European (2)
Maltese mlt Latn Latn Afro-Asiatic
Maori mri Latn Latn Austronesian
Burmese mya Mymr Mymr Sino-Tibetan (2)
Dutch nld Latn Latn Indo-European (2)
Norwegian Bokmål nob Latn Latn Indo-European (2)
Nepali npi Deva Deva Indo-European (2)
Nepali npi Latn Latn Indo-European
Northern Sotho nso Latn Latn Atlantic-Congo
Nyanja nya Latn Latn Afro-Asiatic
Odia ory Orya Orya Indo-European (1)
Eastern Panjabi pan Guru Guru Indo-European (2)
Southern Pashto pbt Arab Arab Indo-European ( ) (1)
Western Persian pes Arab Arab Indo-European ( ) (1)
Plateau Malagasy plt Latn Latn Austronesian
Polish pol Latn Latn Indo-European (2)
Portuguese por Latn Latn Indo-European (2)
Romanian ron Latn Latn Indo-European (2)
Russian rus Cyrl Cyrl Indo-European (2)
Shan shn Mymr Mymr Tai-Kadai
Sinhala sin Latn Latn Indo-European
Sinhala sin Sinh Sinh Indo-European
Slovak slk Latn Latn Indo-European (1)
Slovenian slv Latn Latn Indo-European (2)
Shona sna Latn Latn Atlantic-Congo (2)
Sindhi snd Arab Arab Indo-European (2)
Somali som Latn Latn Afro-Asiatic
Southern Sotho sot Latn Latn Atlantic-Congo
Spanish spa Latn Latn Indo-European (2)
Serbian srp Cyrl Cyrl Indo-European (2)
Swati ssw Latn Latn Atlantic-Congo
Sundanese sun Latn Latn Austronesian
Swedish swe Latn Latn Indo-European (2)
Swahili swh Latn Latn Atlantic-Congo (1)
Tamil tam Taml Taml Dravidian (2)
Telugu tel Telu Telu Dravidian (2)
Tajik tgk Cyrl Cyrl Indo-European (1)
Tagalog tgl Latn Latn Austronesian ( ) (2)
Thai tha Thai Thai Tai-Kadai (2)
Tigrinya tir Ethi Ethi Afro-Asiatic
Tswana tsn Latn Latn Atlantic-Congo
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Language Code Script Family FLEURS SeamlessM4T Whisper 2M-BELEBELE

Tsonga tso Latn Latn Afro-Asiatic
Tsonga tso Latn Latn Afro-Asiatic
Turkish tur Latn Latn Turkic (1)
Ukranian ukr Cyrl Cyrl Indo-European
Urdu urd Arab Arab Indo-European (2)
Urdu urd Latn Latn Indo-European
Northen Uzbek uzn Latn Latn Turkic
Vietnamese vie Latn Latn Austroasiatic (2)
Waray war Latn Latn Austronesian
Wolof wol Latn Latn Atlantic-Congo (1)
Xhosa xho Latn Latn Atlantic-Congo (1)
Yoruba yor Latn Latn Atlantic-Congo (2)
Chinese zho Hans Hans Sino-Tibetan (2)
Chinese zho Hant Hant Sino-Tibetan ( )
Standard Malay zsm Latn Latn Austronesian ( )
Zulu zul Latn Latn Atlantic-Congo

American Sign Language ase - Sign Language (2)

Table 2: Languages details. Column FLEURS reports the languages covered by Speech BELEBELE v1. Column
ASR shows the languages reported in the experiment section, note that Hausa is covered by WHISPER-LARGE-V3
but not for SEAMLESSM4T. The number in brackets shows the number of annotations per language.

Passages Questions/Answers

Distinct Passages 488 Distinct Q 900
Questions per passage 1-2 Multiple-choice A 4
Avg words (std) 79.1 (26.2) Avg words Q (std) 12.9 (4.0)
Avg sentences (std) 4.1 (1.4) Avg words A (std) 4.2 (2.9)

Table 3: Statistics for 2M-BELEBELE, which covers 74
spoken languages plus ASL. Average words are com-
puted for English.

a result of this comma a big scandal arose period”.631

However, in formal-register English (in the news,632

for example), a difference is made between content633

created by the news team and content that should634

be attributed to someone else by explicitly pro-635

nouncing quotation marks. For example, the news636

transcript The fighter said: ”I am here to try to win637

this.” will be pronounced: ”The fighter said, quote,638

I am here to try to win this. End of quote.” In this639

case, different languages may have different rules,640

and you should follow the rules that are appropriate641

for your language. Signs and symbols. Signs and642

symbols need to be pronounced as they would be643

heard in a speech-only setting. Attention should be644

paid: (a) to potential number or gender agreement645

(for example, in English, ”40%” should be read646

as ”forty percent” — not ”forty percents”) (b) to647

potential differences between the place of the sign648

or symbol in writing and in speech (for example,649

in English, the ”$” sign should be read as ”dollar”650

and should be read after the number it precedes;651

i.e. ”$22” should be read as ”twenty-two dollars”652

— not ”dollars twenty-two”) (c) to the way the sign 653

or symbol gets expanded in speech (for example, 654

in English, ”Platform 9 ¾” should be read ”plat- 655

form nine and three quarters” — not ”platform nine 656

three quarters”). Similarly, 50 km/h would be pro- 657

nounced ”fifty kilometers per hour” — not ”fifty 658

kilometers hour”). Different languages may have 659

different rules, and you should follow the rules that 660

are appropriate for your language. 661

Proper nouns and foreign expressions. Even 662

the same language may have at least 2 different 663

ways to pronounce foreign expressions of proper 664

nouns: (a) one way is to try to approach the way 665

they would sound in the foreign language from 666

which they come (for example, in English, Louis 667

in Louis XIV is pronounced ”lewee” as it would be 668

in French); (b) the other way is to pronounce them 669

according to the rules of the adopting language (for 670

example, in English, Louis in the City of St Louis is 671

pronounced as in the English proper noun ”Lewis”) 672

Abbreviations. Abbreviations should be ex- 673

panded as much as possible. However, it is sug- 674

gested to refrain from expanding them if their ex- 675

pansion results in unnatural speech. For example, 676

in English, abbreviations such as Dr. or etc. are 677

pronounced ”doctor” and ”et cetera”, respectively 678

(not ”d r” nor ”e t c”). However, abbreviations such 679

as AM or PhD are pronounced as a sequence of 680

letters without being expanded (”a m” and ”p h 681

d”, respectively - not ”ante meridiem” nor ”philos- 682
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ophy doctorate”). Different languages may have683

different conventions, and you should follow the684

conventions that are appropriate for your language.685

C Extra languages pending for collection686

We plan to collect in total 91 languages with both687

high-pitched and low-pitched. This is the list of all688

the languages in planning.689

• Central Kurdish690

• Nigerian Fulfulde691

• West Central Oromo692

• Kannada693

• Kyrgyz694

• Lao695

• Lingala696

• Marathi697

• Maltese698

• Maori699

• Northern Sotho700

• Chewa701

• Somali702

• Ukrainian703

• Northern Uzbek704

• Malay705

• Zulu706

D Detailed results per Language707

E Ablation study: Synthetic extension in708

speech evaluation datasets709

In this part of our work, we aim to analyze the feasi-710

bility of synthetically extending text benchmarks to711

speech using TTS systems, thereby creating multi-712

modal datasets. Our goal is to understand if it713

would have been feasible to obtain the speech ver-714

sion of BELEBELE by using state of the art TTS715

systems, instead of human recordings.716

For this study we use FLEURS dataset, that717

contains ASR data in the same domain as BELE-718

BELE. We chose to perform this study in the ASR719

task because it is simpler compared to other speech720

tasks, due to its monotonic alignment process and 721

minimal need for reasoning. This ensures that the 722

overall model performance and the complexity of 723

the task are less likely to influence the results. 724

For our experiments, we generate a synthetic 725

copy of the FLEURS dataset using the MMS TTS 726

(Pratap et al., 2024) system on the FLEURS tran- 727

scripts. Then, we benchmark state-of-the-art mod- 728

els (WHISPER, SEAMLESSM4T and MMS ASR) 729

on both the original and synthetic datasets and an- 730

alyze whether the conclusions remain consistent 731

across both datasets. 6 732

It is important to note that a decrease in sys- 733

tem performance is expected when using synthetic 734

data. However, if this decrease occurs proportion- 735

ally across all models, the synthetic data could still 736

be useful to benchmark models. Conversely, if 737

the model performance ranking changes, we can 738

conclude that synthetic data is not reliable when 739

benchmarking models. 740

To measure the variability in model rankings be- 741

tween the original and the synthetic data, we track 742

the inversions that occur in the order of the models 743

in the two settings. We define an inversion as a 744

swap between two models that appear in adjacent 745

positions on the list. We count how many swaps 746

are needed in the ranking obtained using synthetic 747

data to match the ranking from the original dataset. 748

SEAMLESSM4T WHISPER MMS
Hum Syn Hum Syn Hum Syn Inv

Bengali 14.1 21.1 114.7 105.8 14.6 25.0
Catalan 8.2 13.2 6.7 16.4 10.3 21.8
Dutch 9.9 20.0 8.5 19.7 12.4 28.3
English 6.0 11.7 4.5 9.8 12.3 19.2
Finnish 20.1 20.8 12.5 18.9 13.1 18.4
French 9.5 10.8 6.7 11.3 12.4 16.6
German 8.5 13.9 5.2 12.3 10.5 20.8
Hindi 11.9 13.4 33.5 28.7 11.1 18.3
Indonesian 12.1 12.8 8.7 14.2 13.2 21.9
Korean 25.7 40.3 15.4 29.9 47.8 61.2
Polish 13.0 14.7 8.1 13.3 11.6 18.1
Portuguese 9.0 8.0 4.1 6.9 8.7 10.4
Romanian 12.6 11.7 13.5 25.4 12.0 15.4
Russian 10.2 18.6 5.6 17.4 18.8 34.3
Spanish 6.3 9.1 3.4 10.0 6.4 10.8
Swahili 19.5 19.0 64.2 58.4 14.2 19.0
Swedish 15.4 20.1 11.3 19.1 21.0 27.8
Telugu 27.4 28.0 132.2 133.9 24.2 27.8
Thai 127.8 135.5 104.0 121.3 99.8 99.9
Turkish 18.6 23.0 8.4 16.5 19.2 30.3
Ukrainian 15.0 23.5 9.8 21.8 18.1 34.7
Vietnamese 16.0 20.1 10.2 14.2 25.8 25.3

Table 4: WER(↓) results on the ASR task. Last column
marks if the language has at least 1 inversion in ASR
performance ranking comparing human vs TTS inputs.

6Note that we perform the study on the FLEURS lan-
guages that are covered by all MMS, WHISPER and SEAM-
LESSM4T.
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Figure 3: Speech and Text BELEBELE accuracy results in 59 languages. We compare text performance with
LLAMA-3-CHAT (zero-shot) and speech performance with WHISPER +LLAMA-3-CHAT (asr+zero-shot).

In Table 4 we see that in the ASR setting, con-749

clusions regarding model performance can vary750

depending on whether human or synthetic data is751

used. Although these conclusions are specific to752

the evaluated tasks and datasets, we demonstrate753

that even with the outstanding performance of cur-754

rent TTS methods, this does not guarantee the re-755

liability of the data they generate when it comes756

to evaluation purposes. This is true not only for757

low-resource languages, but also for high-resource758

languages such as French or Spanish. These find-759

ings show that speech benchmarks might not be760

reliable if synthetically generated even in widely761

researched areas, further supporting the creation of762

evaluation datasets by humans.763
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