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ABSTRACT

Normalization techniques, for which Batch Normalization (BN) is a popular choice,
is an integral part of many deep learning architectures and contributes significantly
to the learning success. We provide a partial explanation for this phenomenon
by proving that training normalization parameters alone is already sufficient for
universal function approximation if the number of available, potentially random
features matches or exceeds the weight parameters of the target networks that can
be expressed. Our bound on the number of required features does not only improve
on a recent result for fully-connected feed-forward architectures but also applies
to CNNs with and without residual connections and almost arbitrary activation
functions (which include ReLUs). Our explicit construction of a given target
network solves a depth-width trade-off that is driven by architectural constraints
and can explain why switching off entire neurons can have representational benefits,
as has been observed empirically. To validate our theory, we explicitly match
target networks that outperform experimentally obtained networks with trained BN
parameters by utilizing a sufficient number of random features.

1 INTRODUCTION

Normalization techniques (Salimans & Kingma, 2016; Huang et al., 2017), for which Batch Normal-
ization (BN) (Ioffe & Szegedy, 2015) is a popular choice, is an integral part of many deep learning
architectures and contributes significantly to the learning success of CNNs. It has been designed
to stabilize and accelerate the training process by normalizing intermediate feature maps during
mini-batch processing. As it also enables the use of larger learning rates, it often improves the
generalization performance (Bjorck et al., 2018). Effectively, it learns affine linear transformations of
neurons. Formally, these transformations are redundant, as they could be integrated in the weights and
biases of the preceding layer. For that reason, theoretical insights that try to explain the significant
impact of BN on generalization usually focus on its role for the training dynamics (Bjorck et al.,
2018; Santurkar et al., 2018).

Yet Frankle et al. (2021) have observed an intriguing empirical phenomenon that suggests that batch
normalization can still contribute substantially to the expressiveness of CNNs. Removing random
BN parameters from the network impacts the performance of a trained model more severely than the
removal of random parameters. This is in line with the finding that BN parameters are particularly
effective in finetuning language models Ben Zaken et al. (2022); Lu et al. (2022). Furthermore,
training BN parameters alone while keeping the remaining neural network parameters frozen to their
initial values can achieve nontrivial performance on standard image classification benchmark data,
especially, if the network with or depth are increased (Frankle et al., 2021).

To explain these observations, we delve into the role of normalization as a fundamental technique
for universal function approximation within CNNs. We prove rigorously that training normalization
layers alone is sufficient to represent a wide spectrum of target layers, as long as the underlying
architecture is sufficiently wide and deep. In doing so, we derive precise requirements on the width,
depth, and their trade-off for convolutional and residual architectures and a diverse set of activation
functions. Our insights imply improvements of bounds that have been established for fully connected
networks (Giannou et al., 2023).
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Utilizing our explicit constructions of target layers, we further provide an empirical proof of concept
that random CNNs with learned normalization layers can compete with targets that are fully trained,
which could previously not be achieved by training normalization layers from scratch.

Our results thus establish that normalization layers contribute to the expressiveness of CNNs by
linearly combining features. They furthermore lay the foundation for investigating to which degree
we could save memory and computational costs by keeping a high proportion of neural networks
fixed to random values.

Contributions 1) We prove that modern convolutional architectures with randomly initialized tensors
are fully expressive if they are wide and deep enough and only the normalization layers are trained.
Our results state precise width requirements to represent target networks of a given size. 2) These
improve previous bounds for fully-connected networks (Giannou et al., 2023). 3) Our theorems apply
to a large class of activation functions including ReLUs, LeakyReLUs, tanh, and sigmoids. 4) Our
experiments on CIFAR10 and CIFAR100 provide an empirical proof of concept that training only
normalization layers can achieve competitive performance.

1.1 RELATED WORK

Insights into BN BN has been established as default component of most modern neural network
architectures due to its significant benefit on training speed and generalization, as it enables training
with larger learning rates (Bjorck et al., 2018). It makes the training success robust to different choices
of parameter initializations, as it improves initial signal propagation (De & Smith, 2020; Joudaki
et al., 2023), and smoothens the loss landscape (Santurkar et al., 2018). An interesting mechanism
how it contributes to effective learning is the orthogonalization of features (Daneshmand et al., 2021)
in combination with learning their affine transformations.

Training only BN (Giannou et al., 2023) is closest to our work as they derive bounds for the width
of fully-connected network layers with ReLUs that are affine linearly transformed to represent an
arbitrary target layer. In comparison, our results apply to convolutional structures (which encompass
fully-connected layers as a special case), apply to a large class of activation functions, and improve
the bounds for the construction of a target layer from two source layers in the fully-connected setting.
Furthermore, we derive an novel construction that utilizes multiple source layers. It is based on CNNs
(instead of residual targets) and achieves a much lower bound on the required target width. This work
was inspired by (Frankle et al., 2021), who propose the conjecture that training BN layers might be
fully expressive based on experimental insights for CNNs and ResNets. While (Rosenfeld & Tsotsos,
2019) have also studied training only BN parameter experimentally, they could not reach the same
conclusion, as they have focused on relatively short training periods.

Alternatives to BN The high computational and memory costs of BN and the fact that it breaks
the independence of minibatch samples and prevents adversarial training (Wang et al., 2022) are
all major disadvantages, which have inspired the search for alternatives Zhang et al. (2018); Brock
et al. (2021b). A combination of scaled weight standardization and gradient clipping has recently
outperformed BN (Brock et al., 2021b). Our derivations for general affine transformations and
different normalization mechanisms also apply to this setting. Otherwise, initialization approaches
that are tailored to specific architectures can also make BN obsolete (Balduzzi et al., 2017; Burkholz
& Dubatovka, 2019; De & Smith, 2020; Zhang et al., 2018; Gadhikar & Burkholz, 2022). The
generation of such random parameters might also induce an inductive bias that could induce fewer
affine transformation parameters.

Lottery Ticket Existence Our theoretical set-up is similar to lottery ticket existence proofs in fully-
connected layers (Orseau et al., 2020; Pensia et al., 2020; Burkholz, 2022b) and CNNs (da Cunha
et al., 2022; Burkholz, 2022a; Burkholz et al., 2022) in the sense that we construct targets based
on two or more (Burkholz, 2022b; Gadhikar et al., 2023) random source network layers. Existence
results in this context are also concerned with the question of universality versus specificity to targets
that could reduce the width requirements (Burkholz et al., 2022) and solve trade-offs related to the
depth and width of a target network representation. The underlying questions are fundamentally
related, as the search for strong lottery tickets extracts information from random source networks
by pruning away connections (Zhou et al., 2019; Ramanujan et al., 2020), while this work studies a
different extraction mechanism, i.e., affine linear transformations.
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N (2)

Figure 1: Construction idea. (a) The convolution of two tensors creates a larger tensor that represents
a target tensor. (b) Target 2d-convolutional layer. Each channel is represented by a colored cuboid. A
highlighted region visualizes a filter. (c) Two layers with random weights approximate a target layer.

2 UNIVERSAL APPROXIMATION

Standard convolutional neural networks (CNNs) and fully-connected feed-forward neural networks,
which can be regarded as a special case of CNNs, possess the universal approximation property. This
means that they can approximate any continuous function if they are wide and deep enough Gühring
et al. (2022); Shen et al. (2022). Our main objective is to show how convolutional random CNNs
with trainable affine linear transformations like BatchNorm inherit this ability.

Our argument is of the following structure. We want to show that a source network fs with relatively
arbitrary weight tensors can be adapted with affine linear feature transformations to solve a general
task of interest. Let us assume that a target network ft is given that solves such a task. This target
exists because of the universal function approximation property of neural networks. Given that target
and the source weights, we thus have to find affine linear transformations parameterized by γ so that
the source approximates the target fs(x | γ) ≈ ft(x). To make these statements more precise, we
introduce a more rigorous mathematical notation.

2.1 BACKGROUND AND NOTATION

Our expressiveness results hold for general convolutional structures with or without skip connections.
A convolutional neural network f : D ⊂ Rc0×d0 → RcL×dL is defined on a compact domain D and
has channels c̄ = [c0, c1, ..., cL], i.e., depth L and width cl in layer l ∈ [L] := {0, ..., L}. Without
loss of generality, let D ⊂ [−1, 1]c0×d0 be contained in an interval (which could always be achieved
by rescaling the input). A layer l is generally parameterized by a a bias vector b(l) ∈ Rcl and a
weight tensor W(l) ∈ Rcl×cl−1×kl , which comprises the filters (or convolutional kernels).

x
(l)
i = ϕ

(
h
(l)
i

)
, h

(l)
i = C(l)(x(l−1)) =

cl−1∑
j=1

W
(l)
ij ∗ x(l−1)

j + b
(l)
i , (1)

h(l) is called pre-activation and is transformed by an univariate activation function ϕ(x). To simplify
and generalize our notation, we have flattened the filter dimension to kl. In case of the common
2d convolutions, the weight tensor would actually have the size W (l) ∈ Rcl×cl−1×k′

1,l×k′
2,l so that

kl = dim(k′1,l, k
′
2,l). The convolution operation between any 2-dimensional tensors K and X is

defined as (K ∗X)ij =
∑

i′,j′ Ki′j′X(i−i′+1)(j−j′+1) in this case. We assume that the inputs are
always suitably padded with zeros and that the symbol ∗ performs the convolutions in the right
dimensions (for simplicity with stride 1). The flattened notation just makes it easier to discuss
higher dimensional filters at the same time. The type of convolution determines the dimension of the
effective filter dim(k1, k2) that describes the composition of two consecutive filters with dimensions
k1 and k2. For instance, the composition of a k′1,1 × k′1,2 filter with a k′2,1 × k′2,2 results in a filter
with dimension dim(k1, k2) = (k′1,1 + k′2,1 − 1)× (k′2,1 + k′2,2 − 1).

In addition to convolutional layers, we also allow for residual and more general skip connections.
Skip connections modify the network above as x

(l)
i = ϕ

(
h
(l)
i

)
+
∑l−1

t=1

∑ct
j=1 S

(l,t)
ij ∗ x

(t)
j . We

could accommodate this general form but this is not required for universal function approximation.
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In residual architectures, which are often employed to improve the trainability of very deep CNNs,
usually, only one or two layers are skipped so that S(l,t) is nonzero for t = l + 1 or t = l + 2.

In addition, most modern architectures consist of additional normalization layers N (x) that tend
to substantially improve the training and generalization performance of the model. They are either
positioned before the activation function and after the convolution operation ϕ

(
N
(
h
(l)
i

))
or

immediately after the activation function N
(
ϕ
(
h
(l)
i

))
in case of a post-activation structure. As

pre-activations usually lead to better performance, at least for Batch Normalization (BN) Ioffe &
Szegedy (2015) in ResNets He et al. (2015b), we focus our analysis on this case. However, our
general approach would also transfer to post-activations. Most normalization strategies apply an
(affine) linear transformation of their input vector. Examples include BN, one of the most effective
and frequently deployed approaches. Yet, it is highly memory intensive, since it works best in
combination with relatively high batch sizes. Other variants like weight normalization (Salimans &
Kingma, 2016; Huang et al., 2017), weight standardization (Qiao et al., 2019), instance normalization
(Ulyanov et al., 2016), Instance Enhancement Batch Normalization (Liang et al., 2020), or switch
normalization (Luo et al., 2019) can address this issue and still achieve competitive performance in
several cases (Brock et al., 2021b;a). They all can be formulated effectively as N (h) := γh+ β,
where each channel is transformed separately. γ, β ∈ Rcl are learnable parameters in most cases.
The shift is not always tuned but crucial to avoid singularites, in which neurons get switched off
completely (Qiao et al., 2019). β thus replaces the bias parameter of the previous convolutional layer,
which is often removed by a centering operation. γ and β both have components that are estimated
based on parameter Salimans & Kingma (2016) or batch statistics Ioffe & Szegedy (2015), which
are implicitly integrated in the above formulation. Regarding them explicitly would not change our
theoretical results.

Note that in standard neural network architectures, γ, β do not contribute to the expressiveness of
the architectures and thus the functions that the networks can potentially represent, as they could be
integrated into the weight tensor and bias of the previous convolutional layer. Thus, γ, β contribute
to the overparameterization of the networks. Their main role is to change the training dynamics and
help avoid exploding weight norms or switching off neurons by accident.

Interestingly, our results together with (Frankle et al., 2021; Giannou et al., 2023) indicate that
the normalization parameters might not just control the range of activations but might significantly
contribute to learning meaningful representations, especially in the presence of high width and/or
depth overparameterization. Given a convolutional layer, γ, β define linear combinations and shifts
of pre-activation features that give the architecture full expressive power if sufficiently many features
are available. As we prove, even if the weight tensor and the biases remain frozen in their initial
random state and are not trained, learning only the normalization parameters γ, β allows the network
to represent any target layer of a certain size.

2.2 TWO CONVOLUTIONAL LAYERS FOR ONE TARGET LAYER

Our main goal is to derive a potentially random convolutional source network structure S that is
able to represent arbitrary target convolutional layers C(t) of a given dimension only with the help of
affine transformations. This implies that the affine transformations of the normalization layers of S
are fully expressive. Our main construction approach represents each convolutional target layer by
the composition of two convolutional source layers S = N (2)C(2)N (1)C(1) as visualized in Fig. 1.
For simplicity, let us first assume that the activation functions of the first source layer are the identity,
while the activation functions that follow the target layer and the second source layer coincide. Later,
we will also discuss how to adapt our results to almost arbitrary activation functions of the first layer.

For each possible target with parameters (w
(t)
ijk, b

(t)
i ), we have to find source param-

eters (γ
(2)
i , β

(2)
i , γ

(1)
J , β

(1)
J ) for i ∈ [c2], J ∈ [c1], j ∈ [c0] so that w

(t)
ijk =

γ
(2)
i

∑
J

∑
(p,q)∈I(k) w

(2)
iJpγ

(1)
J w

(2)
Jjq, where the kernel indices p, q ∈ I(k) correspond to the po-

sition k in the tensor that is formed by the composition C(2)C(1) (see Fig. 1 (a) for an example). The
biases fulfill β(1)

J = 0 for linear activation functions and β
(2)
i = β

(t)
i . While this system of equations

is quadratic, we can reduce it to a linear one in γ(1) by solving for γ(2)
i first. For each i ∈ [c2], we
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choose a pivotal element (ji, ki) = argmaxj,k|w
(t)
ijk| and use γ

(2)
i to make sure that w(t)

ijiki
is exactly

represented. Note that we could pick any element (ijk) with nonzero |w(t)
ijk|. We simply pick the

pivotal one for numerical stability. This transforms our problem to

Mγ(1) = 0, for M = (mIJ) with mIJ :=
∑

(p,q)∈I(k)

w
(2)
iJpw

(1)
Jjq −

w
(t)
ijk

w
(t)
ijiki

∑
(pi,qi)∈I(ki)

w
(2)
iJpi

w
(1)
Jjiqi

(2)

that we have to solve for nontrivial γ(1) ̸= 0. The index I corresponds to the position of the index set
(i, j, k) in a flattened representation, while J denotes the index of γ(l)

J in that same representation.
The following theorem states the conditions when this system of linear equations has a solution.
Lemma 2.1 (Single layer reconstruction). Let two consecutive convolutional and normalization layers
S (x) = N (2)

(
C(2)

(
N (1)

(
C(1) (x)

)))
of channel dimensions c2, c1, c0 and kernel dimensions k2,

k1 be given. Then, each target convolutional layer C(t) of dimensions c2, c0, and kt with nonzero
output channels

∑
j,k |w

(t)
ijk| > 0 for all i ∈ [c2] can be represented exactly by adjusting N (1) and

N (2) if M = (mIJ) as defined by Eq. (2) has nullspace dimension kerM ≥ 1.

Can all target networks be represented this way? Importantly, the matrix M with
c2c0dim(k2, k1) − c2 rows depends on the target, which has c2c0kt degrees of freedom. Thus,
if we picked the target network dependent on the source S, we could reduce the dimension of M’s
column space by 1, for instance, if k1 = 1 and w

(t)
ijk/w

(t)
ijiki

= w
(2)
i1pw

(1)
1jq/(w

(2)
i1pi

w
(1)
1jiqi

), which can
only be fulfilled if the right hand side’s magnitude is bounded by 1. We therefore have to incorporate
an additional assumption on the target network to translate this insight into a bound on the source
width. In practice, this excludes an irrelevant target space, as we will also demonstrate in experiments.
Theorem 2.2 (Minimum width requirement). Assume that the tensor entries of S are drawn inde-
pendently from the target and mutually independently of each other from continuous probability
distributions with finite mean and nonzero variance. Then Problem (2) has a nontrivial solution with
high probability if (i) ∆k = dim(k2, k1)− kt ≥ 0 and (ii) c1 ≥ c2c0dim(k2, k1)− c2 + 1.

This result also covers fully-connected layers, where all channel dimensions are one-dimensional
k2 = k1 = kt = 1. In contrast to Giannou et al. (2023), we only require a width of c1 ≥ c2c0−c2+1
instead of c2c0. The reason is that we also use the scale parameters γ(2) of the second layer for
representing the target. Yet, we also have to exclude pathological targets in this statement. The
maximum width requirement to really represent any possible target network can be derived by setting
γ(2) to arbitrary nonzero values, which makes M independent of the target network itself so that it
becomes generally invertible.
Theorem 2.3 (Maximum width requirement). Let the tensor entries of S in Theorem 2.1 be drawn
independently from continuous probability distributions with finite mean and finite nonzero variance.
Then S can represent any nonzero target with high probability if (i) ∆k = dim(k2, k1)− kt ≥ 0 and
(ii) c1 ≥ c2c0dim(k2, k1).

Note that (ii) implies that our width requirement depends on how well our source kernel dimensions
align with the kernel dimension of the target. Our flattened representation of the kernel dimension
hides the fact that we need the kernel of the target layer to be fully covered by the convolution of the
two source layers. If additional elements are produced by the product that are not present in the target
kernel, we need more parameters to guarantee that we can learn a representation of the target that
sets such elements to zero. Thus, ideally, we consider convolutional layers with dim(k2, k1) = kt
to minimize our width requirement in (i). This can be achieved most easily by choosing one of the
convolutional source layers to be one-dimensional, e.g., k1 = 1 and the other layer to have identical
kernel dimensions as the target layer, i.e., k2 = kt. To simplify notations in the following, we assume
that k2 = kt and skip the index k1 = 1.

Residual blocks. While we have focused our exposition on convolutional source layers, Frankle et al.
(2021) have primarily analyzed residual source blocks, as they could train deeper architectures more
easily. Our results can be easily adapted to this case still assuming a convolutional target layer. The
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adaptation depends on the position of the second normalization layer relative to the skip connections.
In the simpler case, we have S = N (2)C(2)N (1)C(1) + C(skip). Applying our previous results to the
modified target W (t) −W (skip), where W (skip) is defined so that it is compatible with W (t), would
suffice. In the more common case of an outer normalization S = N (2)

[
C(2)N (1)C(1) + C(skip)

]
, we

have to solve a modified system of linear equations that relies on the same matrix M but does not
solve for 0 but a vector c with

Mγ(1) = c, for cI =
w

(t)
ijk

w
(t)
ijiki

w
(skip)
ij . (3)

2.3 ALMOST ARBITRARY ACTIVATION FUNCTIONS

Previously, we have assumed that the first layer of the source network has the identity as activation
function, which made the biases of N (1) obsolete. Yet, most common neural network architectures
employ non-linear activation functions after every layer. To explain the experimental findings by
(Frankle et al., 2021), we therefore have to cover at least ReLUs ϕ(x) = max{x, 0} after the first
source layer. As we show, many activation functions enable an approximate reconstruction of a target
layer by modifying our results for linear activation functions. We just need to be able to scale and
shift the bounded input so that it is approximately linearly transformed by ϕ, as visualized in Fig. 2.

Theorem 2.4. Assume that the conditions of Lemma 2.1 are met by Ŝ. Let another source S be
defined as S (x) = N (2)

(
C(2)

(
ϕ
(
N (1)

(
C(1) (x)

))))
with the same convolutional layers as S̃

but potentially different normalization layers. Based on the normalization layers of S̃, define two
constants Q1 := maxJ |γ̃(1)

J |∑jk |w
(1)
Jjk| and Q2 := maxi,k |γ̃(2)

i |∑J |w(2)
iJk|.

If for a given ϵ > 0 there exist constants γ, b,m, c ∈ R so that |ϕ(γx + b) − (mγx + mb +
c)| ≤ ϵγm/Q2 for all x ∈ [−Q1, Q1], then the normalization layers can be adjusted such that
|S(x)− C(t)(x)| ≤ ϵ for all x ∈ [−1, 1]c0 , where | · | denotes the supremum norm.
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Figure 2: Approximation of the iden-
tity. After linear transformation of an in-
put, the activation function ϕ(x) is eval-
uated in an approximately linear region.
Another linear transformations maps the
output back to the original input.

The proof is presented in the appendix. Essentially,
this theorem states that we can transfer our previous
results to nonlinear activation functions as long as we
find a region of the activation function that is approxi-
mately linear and the error scales sublinearly. Several
relevant activation functions have this property. For
instance, ReLUs ϕ(x) = max{x, 0} and leakyReLUs
ϕ(x) = max{x, 0} − αmax{−x, 0} inflict zero error
with γ = 1, b = Q1, m = 1, c = 0, and thus even work
with ϵ = 0. ϕ(x) = tanh(x) fulfills |x−ϕ(x)| ≤ x3/3 for
|x| ≤ 1. Thus, the choice γ = min{(3ϵ/Q2)

1/2, 1/Q1},
b = 0, m = 1, c = 0 would be sufficient. Similarly,
sigmoids ϕ(x) = (tanh(x/2) + 1)/2 work with γ =
min{(12ϵ/Q2)

1/2, 1/Q1}, b = 0, m = 1/4, c = 1/2.
Thus, our theory attests that the experimental evidence
for ReLUs Frankle et al. (2021) and theoretical results for
ReLUs on fully-connected networks (Giannou et al., 2023)
also transfer to other activation functions.

2.4 TRADE-OFF BETWEEN WIDTH AND DEPTH

So far we have established representation results for train-
ing only the normalization layers of randomly initialized
weight tensors for different activation functions, where we
would approximate one target layer by exactly two source layers.

Multiple target layers. Similarly to lottery ticket existence proofs (Burkholz, 2022b; da Cunha
et al., 2022), our results for the representation of a single target layer can also be transferred to the
composition of multiple target layers by utilizing two consecutive layers in the source network to
approximate a target layer. In consequence, the source network would have double the depth of a
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potential target network. As long as each layer inflicts an error of maximally O(ϵ/L), where L is the
depth of the network, under mild assumptions on the target (Burkholz, 2022b; da Cunha et al., 2022)
the overall approximation error can be bounded below ϵ > 0.

Implications of 2-layer construction. The width c1 of the first source layer in our construction
is very large in comparison with the input and output dimensions. To achieve full expressiveness,
it has to scale quadratically in the input and output, i.e., c1 ∝ c2c0k2k1, which corresponds to the
dimension of a potential target tensor and thus the trainable parameters. Even if a high proportion
of the network parameters is set to random values, we still need to ensure that we have a sufficient
number of degrees of freedom. Thus the number of trainable parameters in the normalization layer
cannot be reduced magically. Only if the target tensor and the random weight would align well, could
we expect to require fewer parameters. The experiments by Frankle et al. (2021), however, were
conducted with an architecture that consists of multiple layers of more similar size. Yet, the authors
observed that roughly 1/3 of output neurons was learned to be switched off.

Why can it be beneficial to switch off neurons? According to our theoretical results, removing
neurons in the output layer has the effect that the number of channels c1 in the first source layer could
reach the required with to represent a target output layer. Alternatively creating additional random
outputs would negatively influence the representation, as random combinations would contribute to
each output of the next layer. Yet, switching off neurons is not the only option to effectively utilize
the available degrees of freedom.

Utilizing multiple source layers. Instead of using two source layers with very wide hidden dimension,
also more source layers of lower (and thus more balanced) width can be employed to represent a
single target layer. This can be shown trivially for residual source networks that have at least twice the
width of the input channel dimension, as a target tensor can be represented as composition of multiple
residual layers that concatenate the input x and a current state of the target tensor construction as
y = x+

∑
i Wix (see (Giannou et al., 2023) for a construction for fully-connected source and target

networks). The downside of this representation is that it requires a higher number of total trainable
parameters (at least by a factor of 4) than a representation based on 2 layers. Our next next result for
convolutional targets and source networks establishes a much stronger width requirement.
Theorem 2.5 (Deeper source networks). Let the the source network S consist of L consecutive random
convolutional layers (with linear activation functions). Then the parameters of the normalization
layers can be adjusted with high probability such that a given target convolutional layer can be
represented exactly if (i) ∆k = dim(k1, ..., kL)−kt ≥ 0 and (ii)

∑L
l=1 cl ≥ cLc0dim(k1, ..., kL)+L

and (iii) cl ≥ c0 for all source layers l ∈ [L].

In conclusion, to utilize lower source widths ci, we have to pay with L more trainable parameters.
L degrees of freedom are lost as the parameters γl of different layers are scale invariant. The main
construction idea of the proof is to show inductively that we can decompose the problem into a linear
system of equations and a system that is polynomial in fewer parameters γl

i than the original problem.

Implications. While it is remarkable that learning normalization layers is fully expressive, our
theoretical results study primarily the conditions that allow us to represent almost arbitrary target
networks of a given size and thus imply strong width requirements. In practice, however, specific
random tensor distributions that fit to a learning task might possess a relevant inductive bias that allows
the training of smaller random networks. Understanding the nature of promising random distributions
could be a viable strategy to effectively reduce the number of required trainable parameters in future.

3 EXPERIMENTS

3.1 RECONSTRUCTION ALGORITHMS

To reconstruct specific target tensors in our experiments based on random source networks, we have
to solve large scale systems of linear equations. While there exist numerical algebra solvers such as
the pytorch function torch.linalg.solve, they suffer from accumulating approximation errors for larger
matrices. To reduce the error, we finetune the resulting solutions with LBFGS as implemented by the
Pytorch function torch.optim.LBFGS that minimizes the mean squared error between our constructed
network and the target. The error can still be sufficiently high to hamper exact reconstruction (see
Tables 1 and 2). Interestingly, solving an overparameterized linear system with LBFGS that focuses
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on solving γ1 and fixes γ2 to almost arbitrary values reduces the approximation error greatly and
enables near perfect reconstruction.

3.2 PROOF OF PRINCIPLE: BATCH NORMALIZATION IS SUFFICIENT

The goal of our experiments is to verify the validity of our construction and provide empirical evidence
for the fact that random features allow us to reconstruct a target network with exactly the same number
of trainable parameters as we need to represent the target. All experiments were conducted on a
machine with Intel(R) Core(TM) i9-10850K CPU @ 3.60GHz processor and GPU NVIDIA GeForce
RTX 3080 Ti and we report averages and 95%-confidence intervals for 3 independent repetitions. To

Table 1: Target reconstruction for CIFAR10. Averages and 0.95 standard confidence intervals are
reported for 3 independent source network initializations. Columns correspond to different random
feature distributions and rows to networks with different activation functions.

TARGET HE NORMAL HE UNIFORM ORTHOGONAL SPARSE HE NORMAL

RELU 94.12 94.1 ± 0.08 94.0 ± 0.1 94.12 ± 0.07 94.12 ± 0.07
LRELU 94.37 94.34 ± 0.05 94.1 ± 0.1 94.4 ± 0.2 94.3 ± 0.1
TANH 93.66 93.5 ± 0.1 93.6 ± 0.1 93.45 ± 0.05 93.5 ± 0.1
SIGMOID 92.9 92.8 ± 0.04 92.5 ± 0.1 92.7 ± 0.1 92.8 ± 0.04

obtain suitable targets with different activation functions, we have trained VGG18-like structures that
consists of 18 layers (17 convolutional with 3-dimensional filters, one final linear layer) of channel
width 64 in the intermediary layers with 592657 parameters in total. We consider two standard image
classifcation benchmark datasets, CIFAR10 and CIFAR100 (Krizhevsky, 2009) and use a standard
training procedure: SGD with 5 warmup epochs and linear learning rate increase, followed by 200
epochs of cosine annealing with initial learning rate 0.1.

Our targets have only width c = 64, as this enables us to repeatedly solve the related large scale
systems of linear equations with memory and time intensive specialized numerical linear algebra
methods (as implemented by Pytorchs torch.linalg.solve function). These equations arise when we
explicitly match the targets according to the construction of our theorems. As the number of rows of
the involved matrix M scales as c2kt − c+ 1 = 6429− 64 + 1 = 36801, we are still able to match
target networks with different activation functions. Note that our target performance still exceeds the
accuracy of the networks which resulted from training only BN parameters of wide and deep ResNet
or VGG architectures (Frankle et al., 2021). While previous experimental work was focused on
ReLUs, we demonstrate that the same principles apply also to other activation functions. Specifically,
we report results for ReLU, LeakyReLU, tanh, and sigmoid.

To verify the practical relevance of our theoretical claims, we explicitly construct scale and shift
parameters of networks with random weights so that the source network with adapted affine linear
transformations matches a given target network. To achieve that, we consider source networks
where two layers represent one target layer as stated in Theorem 2.2, where the first layer has kernel
dimension 1. The source weight tensors have been randomly sampled from standard distributions
that are commonly applied to initialize neural networks before training. We consider normal or
uniform distributions as proposed by He et al. (He et al., 2015a), random orthogonal weight tensors
(Pennington et al., 2017; Burkholz & Dubatovka, 2019), and a sparse He normal distribution, where
each weight tensor element is set to 0 with probability 0.5 (Liu et al., 2021).

Table 2: Target reconstruction for CIFAR100. (See Table 1 for a detailed description.)

TARGET HE NORMAL HE UNIFORM ORTHOGONAL SPARSE HE NORMAL

RELU 70.46 70.34 ± 0.02 70.1 ± 0.2 70.3 ± 0.2 70.2 ± 0.2
LRELU 70.22 94.37 ± 0.01 93.88 ± 0.16 94.12 ± 0.07 94.12 ± 0.07
TANH 69.65 69.5 ± 0.03 69.3 ± 0.2 69.4 ± 0.1 69.6 ± 0.05
SIGMOID 67.42 94.1 ± 0.08 93.88 ± 0.16 94.12 ± 0.07 94.12 ± 0.07
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Note that the random weight matrix M̃ , which is required to have full rank, meets this requirement.
However, the approximation error for problems of this size is high enough to induce small performance
variations in the reconstruction as visible in Tables 1 and 2. This problem is not substantially amplified
for larger targets. As a proof of concept, we have additionally obtained target networks with width
c = 100 and ReLUs that reach an accuracy of 94.94 and 73.34 on CIFAR10 and CIFAR100,
respectively. For He normal random weights, we our performance after reconstruction is 94.93±0.03
and 73.37± 0.05. Altogether, our experiments verify our theory and target construction approach.

We could also attain a higher reconstruction accuracy if we were willing to further increase the width
of the source network above the required minimum, as our gradient based solution algorithms benefit
greatly from this small amount of overparameterization in terms of learning speed and accuracy, as
has also been observed in the context of learning deep neural networks. If we increase the width
by less than 80 or 120 parameters per layer, we do not observe any performance degradation if we
employ overparameterized LBFGS (a variant of gradient descent) to minimize the mean squared error
between our construction and the target.

Adjusting only BN parameters is computationally feasible. From a conceptual point of view, we
have thus presented not only a theoretical but also practical existence proof that training only BN
parameters is sufficient, the required models are of feasible size and can still outperform the results
that were obtained by learning only BN parameters from scratch Frankle et al. (2021).

Training from scratch misses the mark. Frankle et al. (2021) have conducted experiments with
standard convolutional and residual architectures on common image benchmark data, yet, could not
achieve the expected performance of similar architectures. A possible explanation might be that the
considered architectures were not designed based on the derived based on the presented insights and
thus were neither sufficiently large nor structurally promising.

To test this hypothesis, we have trained a convolutional architecture that would theoretically corre-
spond to a VGG18-like architecture with hidden width 100 on CIFAR10. Each target layer could
be represented by two random source networks with linear activation function after the first layer.
This choice avoids potential issues with switched off ReLUs after the first layer that could result
from unstable learning dynamics. Yet, even if we provide it with additional overparameterization
(like 104 additional channels) and extended warmup cycles, training the normalization parameters
only achieves a generalization error of 90.35± 0.1 in three independent runs. These are clearly not
competitive with the generalization accuracy of potential target models (of at least 94%).

Training normalization parameters alone seems to require different specialized learning schedules.
The future development of such algorithms could positively affect the learning dynamics of normal-
ization layers also when they are trained in combination with the remaining network parameters.

4 CONCLUSIONS

Our work shows that normalization layers of modern convolutional neural network architectures
are fully expressive if the weight tensors are sufficiently wide or deep and stay fixed to their initial
random values. This rigorously proves the conjecture by (Frankle et al., 2021) and derives the precise
width and depth requirements for a random source network relative to a target network that enable
the exact reconstruction of a target network. In comparison with previous experimental results, we
have extended the theoretical and experimental evidence to a relatively general class of activation
functions (that includes but is not limited to ReLUs) and different random tensor distributions.

Based on the derived target reconstruction, we have provided an empirical proof of principle that
normalization layers alone can achieve the expected performance on standard benchmark data, which
was previously not attainable by training the normalization layers from scratch with standard learning
schedules (Frankle et al., 2021).

This evidence complements insights into the diverse roles or normalization layers, in particular BN
layers. As they add redundant parameters, normalization is primarily believed to impact the training
dynamics positively, for instance, by enabling larger learning rates. The derived expressiveness of
normalization layers suggests, however, that they could also contribute in a representational sense by
learning linear combinations of currently available features.
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A APPENDIX

A.1 PROOF OF LEMMA 2.1

Statement (Lemma 2.1 in main manuscript). Let two consecutive convolutional and normalization
layers S (x) = N (2)

(
C(2)

(
N (1)

(
C(1) (x)

)))
of channel dimensions c2, c1, c0 and kernel dimen-

sions k2, k1 be given. Then, each target convolutional layer C(t) of dimensions c2, c0, and kt with
nonzero output channels

∑
j,k |w

(t)
ijk| > 0 for all i ∈ [c2] can be represented exactly by adjusting

N (1) and N (2) if M = (mIJ) as defined by Eq. (2) has nullspace dimension kerM ≥ 1.

Proof. For each possible target with parameters (w
(t)
ijk, b

(t)
i ), we have to find source parameters

(γ
(2)
i , β

(2)
i , γ

(1)
J , β

(1)
J ) for i ∈ [c2], J ∈ [c1], j ∈ [c0] so that

w
(t)
ijk = γ

(2)
i

∑
J

∑
(p,q)∈I(k)

w
(2)
iJpγ

(1)
J w

(2)
Jjq, (4)

where the kernel indices p and q correspond to the position k in the tensor that is formed by C(2)C(1)

(see Fig. 1 (a) for an example). The biases fulfill β(1)
J = 0 for linear activation functions and

β
(2)
i = β

(t)
i .

While this system of equations is quadratic, we can reduce it to a linear one in γ(1) by solving for
γ
(2)
i first. For each i ∈ [c2], we choose a pivotal element (ji, ki) = argmaxj,k|w

(t)
ijk| and use γ

(2)
i to

make sure that w(t)
ijiki

is exactly represented.

This results in

γ
(2)
i =

w
(t)
ijiki∑

J

∑
(pi,qi)∈I(ki)

w
(2)
iJpi

γ
(1)
J w

(2)
Jjiqi

. (5)

Replacing this expression in Eq (4) leads to the stated definition of M.
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A.2 PROOF OF THM. 2.2

Statement (Thm. 2.2 in main manuscript). Assume that the tensor entries of S are drawn inde-
pendently from the target and mutually independently of each other from continuous probability
distributions with finite mean and nonzero variance. Then Problem (2) has a nontrivial solution with
high probability if (i) ∆k = dim(k2, k1)− kt ≥ 0 and (ii) c1 ≥ c2c0dim(k2, k1)− c2 + 1.

Proof. Overall, we have to account for c2c0kt degrees of freedom of the target. Condition (i)
ensures that the kernel dimension of our construction matches the kernel dimension of our target
network. If ∆k > 0, we obtain additional constraints, as the constructed kernel also needs to assign
0 to values that do not overlap with the target kernel. Overall, we therefore have c2c0dim(k2, k1)
degrees of freedom. c2 of those are automatically fulfilled by our choice of γ2 that results in

matrix entries mIJ :=
∑

(p,q)∈I(k) w
(2)
iJpw

(1)
Jjq −

w
(t)
ijk∑

(pi,qi)∈I(ki)
w

(t)
ijiki

w
(2)
iJpi

w
(1)
Jjiqi

. Yet, we need

an additional column to ensure that the nullspace dimension is ker M ≥ 1 such that a nontrivial
solution γ(1) exists to the respective system of linear equations. M therefore needs to have at least
c1 ≥ c̃ = c2c0dim(k2, k1)− c2 + 1 columns.

To construct a solution, we effectively add another condition to our set of equations, namely∑c̃
d=1 γ

(1)
d = 1 that demands a non-trivial γ(1) and invert the respective matrix.

What is left to show is that a quadratic submatrix Ms of M with c̃ − 1 rows and c̃ − 1 columns
has full rank and is thus invertible with high probability. In this case, a possible solution for our
construction would fulfill γ(1)

s = M−1
s z, where the vector z is defined via a column of M that

is not included in the submatrix. Without loss of generality, let this column be the first one and
Ms = (mIJ)I,J∈{2,...,c̃} so that z = −M:1 and γ

(1)
1 = 1−∑c̃

d=2 γ
(1)
d .

Our proof concludes when we can show that Ms has a full rank with high probability. To do so, we
employ a similar strategy as Giannou et al. (2023), who show that the Khatri-Rao product of two
random matrices is full rank with high probability. Therefore, we also use the following Lemma 5 of
(Giannou et al., 2023).

Lemma A.1 (Lemma 5 of (Giannou et al., 2023)). Let p(x) be a polynomial of degree d, x ∈ Rn. If
p is not the zero polynomial, then the set S := {x ∈ Rn | p(x) = 0} is or measure zero (with respect
to the Lebesgue measure).

As a consequence, it is sufficient to show that det M̃s is nonzero for a specific assignment M̃ of the
otherwise random tensor elements. As this would imply that detMs is not the zero polynomial, the
set S of source weight tensors that lead to non-invertible Ms with detMs = 0 has zero probability
measure.

A specific assignment that we consider for this purpose has elements w̃(2)
iJpi

= 0 and w̃
(2)
iJp = δiiJ δppJ

and w
(1)
Jjq = δjjJ δqqJ for one (p, q) ∈ I(k), where δ stands for the Kronecker delta. Consequently,

m̃IJ simplifies to the identity matrix (m̃IJ) = (δIJ) Thus, we have det M̃s = 1 ̸= 0 and random
Ms are invertible with high probability.

A.3 PROOF OF THM. 2.3

Statement (Thm. 2.3 in main manuscript). Let the tensor entries of S in Theorem 2.1 be drawn
independently from continuous probability distributions with finite mean and finite nonzero variance.
Then S can represent any nonzero target with high probability if (i) ∆k = dim(k2, k1)− kt ≥ 0 and
(ii) c1 ≥ c2c0dim(k2, k1).

Proof. The proof of this theorem is essentially already contained in the previous one. (ii) ensures
that we can set γ(2)

i = 1 and still solve the resulting system of linear equations Mγ(1) = wt, I with
c1 ≥ c2c0dim(k2, k1) rows and columns, where mIJ =

∑
(p,q)∈I(k) w

(2)
iJpw

(1)
Jjq .

We have already shown in the last proof that also a matrix with structure M =∑
(p,q)∈I(k)(w

(2)
iJpw

(1)
Jjq) is invertible with high probability. We can simply use again the assign-
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ment w̃(2)
iJp = δiiJ δppJ

for a (p, q) ∈ I(k) and w
(1)
Jjq = δjjJ δqqJ to construct the identity matrix,

which has nonzero determinant.

A.4 PROOF OF THM. 2.4

Statement (Thm. 2.4 in main manuscript). Assume that the conditions of Lemma 2.1 are met by Ŝ.
Let another source S be defined as S (x) = N (2)

(
C(2)

(
ϕ
(
N (1)

(
C(1) (x)

))))
with the same convo-

lutional layers as S̃ but potentially different normalization layers. Based on the normalization layers
of S̃ , define two constants Q1 := maxJ |γ̃(1)

J |∑jk |w
(1)
Jjk| and Q2 := maxi,k |γ̃(2)

i |∑J |w(2)
iJk|.

If for a given ϵ > 0 there exist constants γ, b,m, c ∈ R so that |ϕ(γx + b) − (mγx + mb +
c)| ≤ ϵγm/Q2 for all x ∈ [−Q1, Q1], then the normalization layers can be adjusted such that
|S(x)− C(t)(x)| ≤ ϵ for all x ∈ [−1, 1]c0 , where | · | denotes the supremum norm.

Proof. We have to show that |S(x)− C(t)(x)| ≤ ϵ under the stated assumptions.

To do so, let us first define the normalization parameters of S that impose the required scaling so that
we can approximate ϕ(x) ≈ mx+ c.

γ
(1)
J = γγ̃

(1)
J , β(1)

J = b, γ(2)
i = γ̃

(2)
i /(mγ), and β

(2)
J = ˜β(2)

J − mb+c
mγ . If the activation function

were ϕm(x) = mx+ b, then these normalization parameters would make Sm identical to S̃ and thus
also identical to the target layer Ct = Sm according to Lemma 2.1.

With this definition, we get
∣∣∣ϕ (N (1)

(
C(1) (x)

))
J
−mγ

(
Ñ (1)

(
C(1) (x)

))
J
− b
∣∣∣ =∣∣∣ϕ(γγ̃(1)

J w
(1)
J:: ∗ x+ b

)
J
−mγγ̃

(1)
J w

(1)
J:: ∗ x+ b

∣∣∣ ≤ ϵγm/Q2 based on our assumption on ϕ,

since the input |∑J γ̃
(1)
J w

(1)
J:: ∗ x| ≤ Q1.

It follows that∣∣∣S(x)− C(t)(x)
∣∣∣ = |S(x)− Sm(x)| ≤ max

i,x
|S(x)i − Sm(x)i| (6)

= max
i,x

∣∣∣∣∣∣γ(2)
i

∑
J,p

w
(2)
iJp

[
ϕ
(
N (1)

(
C(1) (x)

))
J
−mγ

(
Ñ (1)

(
C(1)

))
J
− b
]∣∣∣∣∣∣ (7)

≤ Q2

mγ
max
J,x

∣∣∣ϕ(N (1)
(
C(1) (x)

))
J
−mγ

(
Ñ (1)

(
C(1)

))
J
− b
∣∣∣ ≤ Q2

mγ
ϵγ

m

Q2
(8)

= ϵ (9)

A.5 PROOF OF THM. 2.5

Statement (Thm. 2.5 in main manuscript). Let the the source network S consist of L consecutive
random convolutional layers (with linear activation functions). Then the parameters of the normaliza-
tion layers can be adjusted with high probability such that a given target convolutional layer can be
represented exactly if (i) ∆k = dim(k1, ..., kL)−kt ≥ 0 and (ii)

∑L
l=1 cl ≥ cLc0dim(k1, ..., kL)+L

and (iii) cl ≥ c0 for all source layers l ∈ [L].

Proof. We will prove this statement by mathematical induction. The base case is covered by Thm. 2.2
with two source networks.

We want to show that for any target network can solve with high probability

L∑
l=1

cl∑
Il=1

L∏
l=1

w
(l)
IlIl−1ql

γ
(l)
Il

= wt,ILI0k. (10)
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As in the derivation of Thm. 2.2, we can always eliminate the outer γ(L)
IL

and reformulate our problem

mIJ =

L∏
l=1

w
(l)
IlIl−1ql

− wt,J

wt,J∗
L

w
(L)
J∗
LIL−1q∗L

L−1∏
l=2

w
(l)
IlIl−1ql

w
(1)
J∗
1 Il−1q∗1

(11)

such that
L−1∑
l=1

cl∑
Il=1

mIJ

L−1∏
l=1

γ
(l)
Il

= 0 (12)

with respect to a tensor M = (mIJ) that depends on a flattened index set with indicees I and J that
correspond to index combinations (I1, ..., IL, q1, ..., qL) and pivotal elements wt,JL

whose indicees
are signified with ∗.

Induction hypothesis: Assume that L − 1 layers can represent any target network of the stated
dimensions in the theorem. We furthermore assume that

L−1∑
l=1

cl∑
Il=1

mIJ

L−1∏
l=1

γ
(l)
Il

= 0 (13)

can be solved for a full rank M.

Induction step: Our goal is to show that there exists a nontrivial solution to the larger system
L∑

l=1

γ
(L)
IL

cl∑
Il=1

mILIJ

L−1∏
l=1

γ
(l)
Il

= 0 (14)

To do that, we derive a tensor of reduced rank B = (bIJ) such that
cL∑

IL=1

γ
(L)
IL

bILJ = 0 (15)

is solvable and

bILJ =
∑
IL,I

mILIJ

L−1∏
l=1

γ
(l)
Il
. (16)

Essentially, B helps us to decompose the original problem in two solvable smaller problems. The first
one is linear and therefore feasible if B has full rank and the second one is covered by the induction
hypothesis.

To derive B, let us distinguish two complementary subsets of all possible c̃ =
∑L

l=1 cl constraints.
These index subsets are defined as S and Sc so that S

⋃
Sc = [c̃]. The sizes correspond to the

last layer width |S| = cL and the number of equations that can be solved based on our induction
hypothesis, i.e., |Sc| = c̃− cL.

Solving Eq. (15) is only possible if the nullspace ker(B) ≥ 1 has a nonzero dimension. Furthermore,
solving only cL equations must imply that the remaining c̃− cL equations are automatically fulfilled.
Thus, we require the columns of B to be linearly dependent. Concretely, there must exist scalars λscs

such that

bILsc =
∑
s∈S

λscsbILs.

Combining this with Eq. (16), we obtain the following system of equations∑
I

mILIsc

L−1∏
l=1

γ
(l)
Il

=
∑
s∈S

λscs

∑
I

mILIs

L−1∏
l=1

γ
(l)
Il

(17)

or, equivalently, ∑
I

(
mILIsc −

∑
s∈S

λscsmILIs

)
L−1∏
l=1

γ
(l)
Il

= 0. (18)
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If there exist constants gIsc =
(
mILIsc −

∑
s∈S λscsmILIs

)
, then the equation above becomes

solvable according to the induction hypothesis. But do there exist λssc such that the right hand side
varies only I and sc? In fact, λssc also solves a linear system of equations with exactly cL(c̃− cL)
constraints corresponding to the indicees IL and sc. This can be easily derived by eliminating gIsc ,
for instance, by establishing mĨLIsc

−mILIsc =
∑

s λssc(mĨLIs −mILIs). Solving this system
leads us to define gIsc , which enables us to solve Eq. 18 based on the induction hypothesis. Given∏L−1

l=1 γ
(l)
Il

, we have also identified B based on Eq. 16 and can finally solve Eq. 15 for
∑cL

IL=1 γ
(L)
IL

.

Finally, note that all of relevant matrices are invertible, since they have sufficient random elements.
This can also be shown rigorously as in the other proofs by finding an exemplary assignment to the
weight tensors that is invertible.

We thus have shown that we can solve the induction step, which concludes the proof.
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