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Abstract

To understand and collaborate with humans, robots must account for individual
human traits, habits, and activities over time. However, most robotic assistants lack
these abilities, as they primarily focus on predefined tasks in structured environ-
ments and lack a human model to learn from. This work introduces COOPERA,
a novel framework for COntinual, OPen-Ended human-Robot Assistance, where
simulated humans, driven by psychological traits and long-term intentions, in-
teract with robots in complex environments. By integrating continuous human
feedback, our framework, for the first time, enables the study of long-term, open-
ended human-robot collaboration (HRC) in different collaborative tasks across
various time-scales. Within COOPERA, we introduce a benchmark and an ap-
proach to personalize the robot’s collaborative actions by learning human traits and
context-dependent intents. Experiments validate the extent to which our simulated
humans reflect realistic human behaviors and demonstrate the value of inferring
and personalizing to human intents for open-ended and long-term HRC.

1 Introduction
A long-standing goal in robotics is to develop agents that can effectively assist humans in their daily
lives by adapting to their preferences and habits. In order to do this, a robot agent must be able to
not only learn to interact in environments with humans in a given moment, but also reason about the
human across long periods of time, adapting its behavior to provide better assistance. For example,
such an agent should be able to fetch a cup of coffee while also understanding that someone may
prefer it cooler in the morning but stronger in the afternoon, heating up water accordingly.

Over recent years, several works have made significant advances in developing agents that can assist
humans in household tasks [52, 50, 75, 65, 47], using simulation environments to study human-robot
collaboration (HRC) in a safe and scalable manner. However, most of these works focus on episodic
settings, where a robot is evaluated over a set of short collaboration scenarios with tasks specified in
advance. These settings are very different from real-world scenarios, where humans have preferences
and long-term goals that guide their behaviors, needing different types of assistance at different times.

To advance robot agents that can assist and adapt to humans, we propose COOPERA, a novel
framework for COntinual, OPen-Ended human-Robot Assistance in complex household environments
(Fig. 1). At its core, COOPERA features a human model with preferences that supports long-term
interactions, a feedback mechanism, and benchmarks and metrics to evaluate if robots can assist
humans in long-term tasks and reason about their preferences effectively.

To model realistic humans, we simulate humans using an LLM with detailed human traits and
habits, retrieved environment information, and intention history, enabling behaviors that exhibit three
characteristics. 1) Dynamic intention-driven: Humans act based on intentions that vary over time
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I'm a highly 
motivated and 
disciplined 
individual with 
a strong focus 
on health and 
personal 
growth.

Human Traits

At 12 pm, I want to prepare a
healthy and light lunch. 

At 1 pm, I plan to do some work. 

I will start by cutting vegetables.

Let me write today’s diary.

I fetched a bowl for holding food.

I fetched scissors for cutouts.

I will hand the bowl to the human.

I will put scissors on the desk.

The human is in 
kitchen. 12 pm is 
good for lunch. 

It’s 1 pm after 
lunch, so she's 
likely to continue 
working.

Continual 
Collaboration

Day 1, 12 pm 
Interaction

Day 1, 1 pm 
Interaction

Other Day & Times 
Interaction

Figure 1: Continual human-robot collaboration for open-ended tasks over multiple days. Our framework
COOPERA entails an approach to simulate traits-driven humans with long-term, whole-day behaviors within
robot simulation platform, enabling the first study of long-term, open-ended human-robot collaboration. We also
introduce a benchmark and a method for the robot to personalize collaboration in such continual, open-ended
settings by learning human traits and context-dependent intents over time.

(e.g., setting the dinner table at 6 pm, then watching TV at 7 pm). 2) Open-ended and environment-
conditioned: Rather than following predefined tasks, humans generate spontaneous intentions based
on the environment, available objects, and time of day. 3) Traits-driven: Psychological traits and
habits shape human behavior, resulting in diverse routines even within similar environments (e.g.,
one person starts their day reading, while another prefers cleaning).

As the human interacts in the environment, we need a way to provide feedback to the robot so it
can improve over time. We structure our framework into two stages which happen on each day of
interaction. At the beginning of the day, the robot observes and collaborates with the human, assisting
in inferred tasks. At the day’s end, the human communicates with the robot and provides feedback to
help improve the robot’s collaboration success rate for subsequent days.

COOPERA presents unique challenges that are often overlooked in existing HRC benchmarks. First,
robot agents need to reason not only about the environment state but also a given human’s behavior
for effective assistance. Rather than learning a behavior that assists all possible humans, they need to
adapt to each person’s preferences and traits. Second, humans in our framework perform different
tasks depending on the time of the day or the day of the week (e.g., they may only do exercise once).
Thus, effective agents need to reason about time as a cue for how to best assist the human.

To explore this challenging framework, we provide a benchmark and propose a method that tracks
human preference profiles and uses VLMs and classifiers to predict and score human goals based on
time, observed behavior, and profile, suggesting actions to achieve these intentions. This enables the
robot to learn and mimic human behavior by capturing the underlying correlations between human
traits, temporal dependencies, and their corresponding intentions and tasks. We compare our method
against several baselines, evaluating the robot’s collaboration performance over multiple days in
different collaborative tasks and across diverse humans and scenes. Furthermore, we conduct extensive
experiments to assess how well our simulated humans reflect real human behavior, particularly their
ability to exhibit distinct, trait-driven patterns aligned with human profiles.

In summary, our main contributions are threefold:
• We present COOPERA, a novel HRC framework for continual, open-ended collaboration

with humans who exhibit individual traits across long horizons.
• We develop a method to simulate humans with long-term behavior models driven by individ-

ual traits and habits.
• Within this framework, we introduce a benchmark and an approach that enables increasingly

adaptive and personalized collaboration with humans over multiple days.

2 Related Work
Human-Robot Collaboration. Prior HRC work has largely focused on controlled lab settings [19,
10, 44, 59], where collaborative tasks are shared by both the human and the robot or narrowly defined.
More recent research has expanded to complex household environments, requiring robots to infer
human intentions from a single demonstration [50, 20, 64] or in an online fashion [51]. Subsequent
works explore human intention inference using data from images [39] or simplified environments (e.g.,
2D worlds) [5, 55, 70, 68], progressing to simulated real-world environments [20] and leveraging
recent advances in VLMs. However, these approaches typically rely on predefined, closed-form
representations of human intentions and tasks [14, 32, 2, 12, 71], and often ignore realistic human
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behavior. Furthermore, collaboration is usually limited to fixed episodes with predefined task set. In
contrast, our work considers open-ended and continual HRC, where humans spontaneously propose
their actions based on environmental factors, and the collaboration persists across days.

Human Simulation. Most embodied AI works [6, 3, 16, 17, 60] assume that environmental changes
are solely driven by a single robot [52]. Due to the challenges of real-human experiments (e.g.,
safety, scalability, cost), recent research has integrated deformable humans with plausible motion
and appearance into robot simulation platforms [49, 52], enabling the study of safe and scalable
HRC. However, these simulated humans focus only on motion feasibility, lacking the complexity and
variability of real human behavior. Another research direction simulates humans with psychological
traits and social interactions [76, 43, 46, 26, 64], but remains language-based and does not involve
environmental interaction. In contrast, we simulate humans driven by psychological traits and habits,
whose behavior is long-term and capable of interacting with their environment.

LLMs for Human Task Inference. One line of research treats human intentions as direct inputs and
investigates how LLMs can interpret open-ended natural language instructions to generate structured
robot plans [25, 24, 23, 73, 63, 38]. These works use techniques such as 3D scene graphs [56, 36, 8]
to semantically ground high-level goals and decompose them into actionable subgoals, or incorporate
human feedback [58, 33, 9] to quantify uncertainty and enable skill acquisition through interaction.
In contrast, COOPERA takes a step further by aiming to let LLMs/VLMs infer personalized task
plans, adapting to specific human traits and habits rather than general commonsense knowledge.

3 COOPERA: Continual, Open-Ended HRC Framework
Our goal is to enable the study of continual HRC in open-ended tasks. To that end, we investigate
how a robotic agent can become more effective in assisting humans by learning from their behavior.
Central to COOPERA are LLM-powered simulated humans driven by traits and long-term intentions
that the robot can reason for effective collaboration, and a human feedback mechanism for improving
collaboration over time. We first outline our framework and problem setup, detailing the collaboration
settings we explore (Fig. 2). Then, we describe our approach of simulating humans driven by traits
with long-term behaviors (Fig. 3). Finally, we propose a method to tackle our framework (Fig. 4).

3.1 Overview

Feedback
Optimization Alg. 

acts

After Each Day

Assistive 
Tasks

First Task Demo

observes

predictshelps

Human
ModelLLM

Human
Profile

Continual (Multiple-Day), Open-Ended HRC Framework

Figure 2: COOPERA: Continual, open-ended human-
robot collaboration framework. The LLM-powered
human proposes whole-day intentions and tasks, exe-
cuted in the environment. As the robot observes the
human actions, it predicts a set of tasks to assist them.
After each day, the human provides feedback to the robot,
enabling the robot to improve for subsequent days.

In order to investigate HRC in a safe and repro-
ducible manner, we consider a simulated human
agent that interacts in a 3D household environ-
ment to achieve a set of high-level goals. These
goals vary throughout the day and are driven by
human traits and habits, as well as by the activ-
ities the human has done before. The robot’s
goal is to assist the human in those tasks, with-
out receiving explicit commands about the goal
they should help with, or information about the
human’s traits. Both human and robot have full
knowledge of the environment. Each day is rep-
resented as 12 one-hour intervals covering the
time from 9 am to 9 pm (the rest is treated as
being asleep). At the beginning of each hour,
the human proposes a high-level intention (e.g.,
leisure) and decomposes it into a sequence of
tasks and executes them in the environment (e.g.,
watch TV on the sofa). As the human interacts
in the environment, the robot has to infer the
human’s goals and provide assistance. At the end of each day, the human provides feedback on the
robot’s help, which is then used to improve the robot’s collaboration success in subsequent days.

Problem Setup. We define two types of collaboration with increasing difficulty and openness.
Collaboration type 1 is an open-ended variant of the Watch-and-Help challenge [50], where one
intention (e.g., set up dinner table) is decomposed into 3 pick-and-place tasks (i.e., picking an
object and placing it on a static object). For each intention, the robot is given a video of the human
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...”
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Figure 3: Human Simulation Pipeline. We seed the human-LLM with an extended profile. At each time of
day, the human proposes an intention and decomposes it into tasks, aligning with profile traits and temporal
dependence on intention/task history. LLM inputs are optimized with Memory Retrieval and Search, and
robustness is enhanced via two rounds of Reflexion. This pipeline generates continuous, whole-day intentions
and tasks executed in the environment with expressive whole-body motion. See Appendices C and F for details.

performing the first task and its textual description, and must infer and assist with the remaining
tasks based on objects available in the scene. Collaboration type 2 is more challenging and moves
beyond pick-and-place: each intention (e.g., morning hygiene) is decomposed into 5 tasks involving
free-form human motion while interacting with static objects (e.g., the human brushes teeth at the
mirror). Unlike type 1, the robot is unconstrained by the scene and may propose any object it deems
helpful (e.g., the robot offers toothbrush). It receives only the first task video with no textual guidance.

Evaluation Settings. We define four progressively challenging settings. 1) Same human, same
scene: The robot collaborates with the same human in the same scene over 5 consecutive days (5 days,
1 scene). 2) Same human, different scenes: The robot collaborates with the same human across 5
different scenes, with a new scene each day (5 days, 5 scenes). 3) Different humans, same scene:
The robot collaborates with different humans in the same scene, rotating among Human 1, 2, and 3,
each for one day, repeating this cycle three times in the same scene (9 days, 1 scene). 4) Different
humans, different scenes: The robot collaborates with different humans across multiple scenes,
rotating through Human 1, 2, and 3 in the first scene, then repeating this sequence in the second and
third scenes (9 days, 3 scenes). In 3) & 4), we explore if knowledge gained from interacting with
different humans improves future collaboration, despite fewer interaction days per human.

3.2 Simulating Humans
We aim to model humans who interact in the environment over long periods of time, act driven by
their goals, preferences, and context, and who can react and provide feedback as a robot assists them.
To achieve this, we propose a hierarchical model that combines LLMs and 3D human motion to
simulate long-term, realistic human behaviors in indoor environments. First, our model generates
a description of human traits describing their preferences and habits. Based on these traits, the
environment, and the history of human actions, the model then generates a sequence of tasks for the
human to perform. For every task, we use the environment information to generate human motions
and interactions, providing a realistic demonstration of each task. Fig. 3 shows an overview of our
design. Next, we describe in more detail each of the human simulation components.

Generating Human Traits. We use LLMs to generate personality traits that determine the human
long-term behaviors. For this, we sample conversations from the Synthetic Human Dataset [26],
containing dialogues between different humans, and prompt an LLM to generate a description of
the human based on the conversation, inferring attributes such as their job, preferences or common
activities. Inspired by [67, 77, 48], we also prompt the LLM to generate a vector measuring Big-
5 human personality traits [18] (openness, conscientiousness, extroversion, agreeableness, and
neuroticism), allowing us to measure the diversity across generated humans and how well the robot
agents can infer the human’s personality from their interactions.

Whole-Day Intentions and Tasks. Given human traits, we generate long-term human behaviors,
with tasks featuring temporal dependences within a day and diversity across days. Temporal Depen-
dence: Given 3D environment information, we use an LLM to propose intentions for different times
of day (e.g., 9 am: clean the living room). Next, we prompt the LLM to decompose the intentions
into a sequence of inter-dependent tasks (e.g., dust the area around the white board, clean the counter).
The LLM also receives the human’s intention and task history from previous hours, and is explicitly
prompted to consider their inter-dependency. Varying Distribution: While humans with specific traits
follow general routines, their daily behavior varies daily (i.e., Monday 9 am for cleaning, Tuesday 9
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Figure 4: Our approach for human assistance. We decouple robot task inference into intention and task infer-
ence. By chaining VLM and classifier, the robot selects tasks aligned with the human’s traits and temporal context.
It maintains a human profile inferred from collaboration history, which, combined with feedback, optimizes the
robot-VLM via prompting and the classifiers via supervised learning. See Appendices D and G for details.

am for exercise). To model this, we reset the intention and task history at the start of each new day,
setting a high temperature for the human-LLM to encourage diversity across days.

Expressive Whole-Body Motion. We simulate human agents physically using expressive 3D
whole-body motions during task execution [31, 21, 42] by chaining motion sequences for each task.
For pick-and-place tasks, the sequence includes walking, reaching and picking, walking again, then
reaching and placing. For tasks involving free-form motion (e.g., sitting on a sofa), the human-LLM
describes a free-form human motion that matches each task, using examples from our human motion
dataset. The resulting sequence combines walking with the selected free-form motion.

Optimizing Long-Context Inputs. Our progressive prompting chain provides the human-LLM
with substantial information at each stage, especially during the task proposal stage, where the 3D
environment may contain hundreds of objects and the motion dataset includes thousands of data points.
Additionally, as the day progresses, the intention and task history grows long (e.g., from 9 am to 9
pm, 13 intention sentences and dozens of task descriptions accumulate). Since LLMs struggle with
long-context inputs [30, 35, 69], we introduce Search and Memory Retrieval mechanisms. Search:
Given a query text and a list of texts, we return the top-K most relevant items based on semantic
similarity. Memory Retrieval: We use recency and relevance scores to retrieve the top-K memories.
Recency decays over time with a decay factor λ from the current time, and relevance is calculated by
semantic similarity, similar to search. The final retrieval score is the product of both [46].

Self-Corrections. Given the complexity of our progressive prompting process and the LLM
responses, even state-of-the-art models can make mistakes. Therefore, during the most complex task
proposal stage, we perform two rounds of Reflexion [61, 74, 72] to identify and correct errors related
to human traits, temporal dependencies, and object use within the 3D environment.

3.3 Instantiating COOPERA with an Assistive Agent
To study COOPERA, we propose an approach (Fig. 4) for continual HRC, enabling the robot to learn
correlations between human intentions, tasks, traits, and temporal dependencies at each time of day.

At any given time, a human’s intentions/tasks can be viewed as meta-intentions/meta-tasks, encom-
passing a range of possible options due to the diversity of human behavior across days. Our solution
decouples task inference into two stages: first inferring intentions, then identifying specific tasks.
We capture the correct sets by chaining VLM to imagine multiple possible intentions/tasks and
classifiers to score and filter them. Given observation (frames uniformly extracted from a video
V = [f1, . . . , fN ]) of the human’s first task, the robot-VLM generates an intention superset. For each
positively classified intention by the intention classifier, the robot-VLM infers a set of possible tasks,
forming a task superset. The task classifier then identifies the tasks most suitable for collaboration.

We optimize the robot-VLM through prompting and the binary classifiers via supervised learning.
Using human feedback from the end-of-day discussion, the robot keeps tracks of a human profile
by prompting robot-VLM to infer and summarize the human’s traits, habits, and psychometric data.
This human profile, along with the retrieved history of intentions and tasks, is incorporated into the
robot-VLM prompts and provided as input to the classifiers in the subsequent times and days. The
robot-VLM and classifiers are optimized per day. Please see Fig. 4 for the input data format.
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Table 1: Evaluation of 1) human classification, 2) simulated human diversity, 3) human traits-psychometrics
coherence, 4) temporal dependence, and 5) user studies.

Classification (Acc ↑) Diversity (SD ↑) Coherence (R ↑) Temporal Dependence User Studies (Acc ↑)

intention task aligned mismatched Acc ↑ F1 ↑ MCQ Matching

0.995 0.830 0.939 0.342 -0.497 0.789 0.790 0.764 0.712

4 Experiments and Analysis

Within COOPERA, we first examine 1) if the central component, the simulated human model, reflects
real human behavior and to what extent. 2) We then introduce the benchmark setup (baselines,
evaluation metrics) and explore if our proposed approach leads to more personalized robot assistance
over multiple days compared to baselines. 3) Subsequently, we analyze the real-world applicability
of our framework. 4) Finally, we evaluate the effectiveness of each module through ablation studies.

4.1 Framework Implementation

Environment and Scene. We use Habitat 3.0 [52] as the robot simulation platform and HSSD [28]
as the 3D environment, which includes 18,656 static objects across diverse scenes in style and size.
Since the original HSSD includes only static objects, we develop a systematic approach to create
dynamic scenes by making small objects from specific categories (e.g., decor, kitchenware) movable.
We also sample 20 dynamic objects from the YCB Dataset [7] and place them in contextually
appropriate locations (e.g., a mug on a bedside table) using Habitat’s built-in tools. Dynamic scenes
are initialized at the start of each episode. Across days, Habitat tracks object locations as the human
and robot interact with the environment, allowing them to maintain updated environment knowledge.
We select 5 scenes with varying of rooms (4−11), static objects (51−140), and dynamic objects
(33−94). All scenes provide enough space for the human and Fetch robot [15] to navigate. Please
see Appendix B for more details.

Human Dataset. For modeling unique humans, we use the SPC: Synthetic-Persona-Chat
Dataset [26], a fully synthetic dataset that includes hundreds of short user profiles along with
their conversations and compute psychometric data (details in Appendix C). We use Motion-X [31]
and AMASS [41] as the human motion dataset. We generate 10 human profiles.

Training and Inference. We use open-source models for interpretability and benchmarking value.
For simulating humans, we use Llama-3.1-8B [13] with temperature 0.7. For search and memory
retrieval, we use MiniLM-L6-v2 [66] with a decay factor λ = 0.95, retrieving the top 3 intentions
and top 5 tasks. For the assistive agent, we use Llama-3.2-11B [13] as the robot-VLM. Classifiers are
finetuned on Mistral-7B-Instruct-v0.2 [27] using LoRA [22] in instructional format to output binary
yes/no. We train on 3 NVIDIA A10 GPUs (24GB RAM). Please see Appendix D for more details.

4.2 Analysis of Human Simulation

Distinct Simulated Humans. We examine if simulated humans with distinct Big-5 traits exhibit
machine-identifiable features. Each of 10 humans is placed in 5 scenes, living 20 days per scene.
We aggregate daily intentions and tasks into one data point per human. Two 10-way BERT-large-
uncased classifiers [11] are finetuned—one for intentions (10 epochs), one for tasks (20 epochs) with
train-test split 0.8:0.2, learning rate 5e-6, and tested on an unseen scene. As shown in Table. 1, task
classification is harder than intention classification, as intentions align more with human traits, but
tasks (e.g., drinking water) may correspond to multiple intentions (e.g., leisure, exercise).

Diverse Simulated Humans. We assess diversity by standard deviation (SD) of Big-5 traits (1–5
scale) across 10 simulated humans. We compute per-trait SD and take average. From Table. 1, the
high SD exceeds the typical 0.7–0.9 range in real-world distributions [62], validating diversity.

Human Traits and Psychometrics Coherence. In our main approach, the robot-VLM infers Big-5
traits throughout the day based on the human’s intention and task history. Using the final scores at
the end of collaboration, we assess coherence with ground truth via Pearson correlation [48, 4], and
introduce a one-step mismatch for comparison. The significant drop in correlation for mismatched
pairs (Table. 1) confirms alignment between inferred traits and psychometric data, demonstrating the
LLM’s ability to interpret human psychology from behavior.
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I’m an imaginative person with a unique 
sense of humor and a love for the 
unconventional. I’m highly open to new 
experiences and express myself 
creatively through diverse interests. I 
embrace spontaneity and prefer smaller 
gatherings with meaningful discussions.

9 am

Traits / Habits Intentions

{openness: 4.2, conscientiousness: 3.0, 
extroversion: 1.8, agreeableness: 2.9, 
neuroticism: 2.9}

10 am
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11 am

Playful activity in the living room.

Relaxing bath while listening to a quirky podcast.

Engage in a new creative project in the bedroom.

Imaginative storytelling session in the living room.

Cooking activity in the kitchen.

Dinner in the living room while watching a quirky cartoon.

1. Sit on the bed, read and brainstorming.

2. Draw inspirations from the artwork.

… …

… …
… …

Task Sequence

Figure 5: Qualitative examples of full-day intentions and tasks proposed by a human with specific human
traits and psychometric data.

Temporal Dependence in Human Behavior. We study how current-hour intentions depend on
prior hours via a next-sentence prediction task: given three earlier intentions (e.g., 9–11 am), the 12
pm intention is used as the positive example, with other-time intentions as negatives. We evaluate on
10 simulated humans, each living for 20 days in 5 scenes. BERT-large-uncased [11] is trained for 20
epochs (learning rate 5e-6). Results in Table. 1 confirm temporal dependence.

User Studies. We conduct two user studies (25 participants each) to assess: 1) Whether real
humans can identify the same simulated human across days and scenes, and 2) Whether real humans
can distinguish simulated humans with varying traits and Big-5 scores. For 1), we sample full-
day intentions and tasks of 10 simulated humans across 2 days and 2 scenes (4 samples/human),
then construct 10 multiple-choice questions showing a human profile and three behavior options (1
correct, 2 distractors). For 2), we sample full-day behaviors from 10 simulated humans with distinct
traits, and ask participants to match trait descriptions to the corresponding full-day intentions and
actions. Results in Table. 1 show higher accuracy in identifying the same simulated human than in
distinguishing between different simulated humans. This discrepancy likely arises because multiple-
choice tasks provide explicit answer options, reducing ambiguity, whereas trait-based matching
requires deeper reasoning about personality-behavior relationships, making it more challenging.

Table 2: Semantic alignment between
simulated and real-human intentions.

Generic Mismatched Main
SBERT ↑ 0.554 0.523 0.810

OpenAI Emb. ↑ 0.537 0.543 0.772

Alignment with Real-Human Behavior. We study how
simulated human intentions align with real-human intentions.
We recruit six participants who provide personality traits
and psychometric data, and record their daily intentions
over five days. Using these traits, we prompt the LLM to
generate simulated intentions for the same time span. To
assess alignment, we aggregate both sets into single paragraphs (removing time formatting like
“9am: ...” to avoid inflated structural similarity) and compute semantic similarity using SBERT (all-
mpnet-base-v2) [57] and OpenAI embeddings (text-embedding-3-small) [1]. We compare against:
1) prompting without human profile (generic) and 2) mismatched LLM-human intention pairs
(mismatched). From Table 2, both baselines yield moderate similarity (∼0.5), as sentence encoders
assign partial similarity to structurally similar content. In contrast, aligned pairs achieve much higher
scores, indicating strong alignment between simulated and real human intentions. SBERT slightly
outperforms OpenAI embeddings, likely due to its sentence-level training objective.

Qualitative Results. We present examples of full-day intentions and tasks proposed by a human
with specific human traits and psychometric data in Fig. 5.

4.3 Analysis of Continual, Open-Ended HRC

Since COOPERA involves long-term, open-ended tasks that requires the robot reasoning over human
traits and temporal context, we construct baselines using standard LLM/VLM-based approaches
adapted for task inference. These baselines reflect commonly used paradigms in open-world robot
planning [8, 29].

Baselines. 1) Direct Prompting: The robot proposes a single intention from visual input and decom-
poses it into tasks. The robot-VLM is optimized solely via prompting with retrieved intention/task
history. 2) Direct Finetuning: The robot brain is finetuned to directly output a single intention
and decompose it into tasks. 3) Oracle: The robot is given the ground-truth human intention and
decomposes it into tasks. 4) Random: Intention and task classifiers are removed; all proposed
intentions and tasks are accepted without validation. 5) Intention Agnostic: The robot directly
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predicts and filters tasks without first inferring intentions. 6) Human & Context Agnostic: The
classifiers do not learn the correlation between human traits and intentions/tasks or the temporal
dependence between previous and current intentions/tasks. They only learn the relationship between
the current time and the intentions/tasks.

Evaluation Metrics. We assess the assistive agent’s performance using F1-based success rate across
three methods, ensuring a comprehensive evaluation from simulation to real-world perspectives,
incorporating prior HRC approaches [51, 8]. 1) Predicate-based: Tasks are executed and evaluated
by predicate functions with success based on object class matches rather than instance matches,
following Watch-and-Help [50]. 2) LLM-based: Given the ground truth human intention and
predicted tasks, the human-LLM judges whether each task fulfills the intention (binary yes/no), and
F1 is computed over these labels. 3) Human verification: Same as 2) but evaluated by real human
users. In our main method, the robot-VLM generates a task superset, which is filtered by a task
classifier assigning yes/no labels used for F1 computation. For baselines without a task classifier
(e.g., Direct Prompting), all predicted tasks are treated as positive. Please see Appendices C and D
for details on predicate construction and LLM evaluation.

Setup. We follow the evaluation settings in Section 3. Setting 1 evaluates 5 humans across 2 scenes;
Setting 2 evaluates 10 humans; Setting 3 spans 3 distinct scenes; and Setting 4 spans 9 humans.

a b

Prompting Finetuning Ours AGHuman Oracle RandomAGIntent

Figure 6: Evaluation of changes in robot success rate
(predicate-based): (a) within a single day and (b) across multiple
days. See Appendix E for a detailed breakdown of the results and
additional analysis.

Analysis of Assistive Performance.
We analyze two aspects: 1) Within-day
improvement—does the robot’s collab-
oration success increase throughout the
day by learning temporal dependencies
between human intentions and actions?
2) Across-day improvement—does col-
laboration become more successful and
personalized over multiple days, using
end-of-day feedback? From Fig. 6 (a),
our method achieves the highest within-
day improvement. In contrast, prompt-
ing, random, and oracle exhibit little to
no improvement, or even decline. We
hypothesize that these methods do not
benefit from learning human intentions, which are highly correlated with human traits and temporal
context. This finding aligns with our human classification experiment in Section 4.2. From Fig. 6 (b),
our method shows the strongest improvement across days, second to oracle. The minimal gain in
prompting and finetuning highlights the challenge of varying human behavior across days, as these
methods tend to establish a 1-to-1 mapping between time and human intentions/tasks. Prompting
relies heavily on collaboration history, while finetuning prioritizes the highest probability training
data, limiting adaptability to varying human behaviors.

Table 3: Generalization perfor-
mance. We report the average
success rate (predicate-based).

Baseline Finetuned
Scene 0.269 0.465

Human 0.258 0.343

Out-of-Domain Generalization. We study 1) Scene generalization:
can the robot personalize collaboration with a human in an unseen
scene after interacting in other scenes? 2) Human generalization:
can the robot collaborate effectively with a new human after training
with others? For 1), we use models finetuned from setting 2 on four
scenes and evaluate on a fifth, unseen scene with the same human.
The baseline is the robot’s average performance during its initial
interaction in the unseen scene, without finetuning on the previous scenes, averaged over 10 humans.
For 2), we use models finetuned from setting 3 on three humans and evaluate on collaboration with a
fourth unseen human. The baseline is the robot’s unadapted performance when first interacting with
the new human, without finetuning on the previous three, averaged over 5 new humans. Result in
Table. 3 show that generalizing to a new human is much harder than to a new scene. This is likely due
to greater variability in human behaviors. While the robot can learn shared patterns across humans,
effective collaboration with a new human requires adaptation to fine-grained, person-specific traits.

Qualitative Results. We show how the robot improves collaboration within a day by inferring more
correct tasks for assistance, along with a visualization of HRC at a specific time in Fig. 7.
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At 9 am, the human wants to engage 
in a leisure activity in the living room.

Collaboration is successful.

The human sits on the sofa.

The human opens the TV.

Based on the human practicing 
relaxing yoga at 9 am on the previous 
day and current observation, the 
robot infers her intention is leisure.

The human approves the 
assistance and picks up the tea.

The robot fetches a cup of tea 
from the kitchen for relaxation.

The robot 
puts the 
tea on 
the table.

The human enjoys the tea.

a. Human proposes intention and task. b. Robot infers intention and task. c. Human judges collaboration.

Leisure in living 
room

9 am

12 pm

3 pm

6 pm

9 pm

Meditate in 
bedroom

Lunch prep in 
kitchen

Reflect & create
in bedroom

Enjoy relaxing 
evening

Read comics

Enjoy tea

Human Robot

Read cookbook

Fill pot

Wash hand  
with soap

Sip a drink

Offer cozy pillow

Video game 
with gamepad

Blanket for comfort

Offer pen

Lighter for candle
Notebook for poem

Figure 7: Qualitative examples of successful human-robot collaboration within one day. The red column
displays human intentions, while the blue column shows the robot’s correctly inferred tasks for assistance.

4.4 Analysis of Real-World Applicability

The ultimate goal of COOPERA is to develop robot agents that assist real humans by adapting to their
preferences over long-term. Yet, fully real-world experiments pose ethical, safety, and cost issues
(requiring a real human and physical robot to interact in a household over multiple days). To validate
applicability of COOPERA under real-world conditions, we take three complementary approaches.
Please see Appendix E for detailed results, qualitative examples, and additional analysis.

Table 4: Correlation between predicates, LLM, and
human evaluations (rows 1–2): L1 ↓, averaged over
collaboration types. Offline real-human and human-
in-the-loop collaboration (row 3–4): predicate-based
success rate (SR ↑), averaged over the final day.

Setting 1 Setting 2 Setting 3 Setting 4
Predicate vs. Real-Human (L1 ↓) 0.091 0.091 0.085 0.120

LLM vs. Real-Human (L1 ↓) 0.077 0.080 0.077 0.075

Offline Real Human (SR ↑) 0.498 0.471 0.426 0.322

Human-in-the-Loop (SR ↑) 0.488 0.467 0.431 0.349

Human Verification. We validate if predicate-
based and LLM-based evaluations align with hu-
man verifications by sampling one episode per
setting from our main method. From Table. 4,
the low L1 indicates strong correlation among
all three metrics, supporting our framework’s
real-world applicability. This justifies our use
of VLMs/LLMs for predicting human actions in
both baselines and main method, as their reason-
ing closely resembles human decision-making.
Also, in open-ended settings with large state spaces, LLMs/VLMs serve as effective reasoning
modules due to their generalization abilities [8, 29].

Collaborating with Offline Real Humans. Real humans exhibit greater behavioral dynamics and
emergent decisions due to temporary factors (e.g., plans, mood, weather). We recruit six participants
who provide personality traits and psychometric data, and record their daily intentions over five
days. An LLM decomposes these into tasks in HSSD scenes, where the robot collaborates across all
settings. Results in Table 4 show performance comparable to simulated humans (Table. 6 row 4),
despite increased dynamics.

Human-in-the-Loop. Six real humans replace the LLM and collaborate with the assistive agent.
They are shown retrieved object and motion sets and select which to interact with based on their
intention. For ease of implementation and usability, participants input responses as text rather
than using a keyboard to control the simulated agent. Results in Table 4 indicate that real human
collaborators do not make the task more difficult and can, in some cases, lead to higher success rates
compared to offline or simulated humans.

4.5 Ablation Studies

Human Simulation. 1) Removing human profile extension: To explore whether our method
yields the most distinct simulated humans, we remove simulated conversations and profile extension,
prompting LLM only with the original short trait paragraph. We evaluate by finetuning and measuring
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Table 5: Ablation study on human simulation. The
effects of removing profile extension on human clas-
sification and using single-shot intention proposal on
temporal dependence.

Removing Profile Extension (Acc ↑) All-Day Intention Proposal

intention cls. task cls. Acc ↑ F1 ↑
Removed 0.950 0.800 0.751 0.740

Ours 0.995 0.830 0.789 0.790

Table 6: Ablation study on assistive agent: success
rate (predicate-based) ↑ averaged over the last day.

Setting 1 Setting 2 Setting 3 Setting 4
No Traits 0.481 0.443 0.239 0.206

No Context 0.452 0.414 0.408 0.299

Changing Backbone 0.487 0.424 0.362 0.310

Ours (main) 0.505 0.465 0.439 0.344

classifiers accuracy (Section 4.2). 2) Single-shot human intention proposal: We test if our pipeline
design maximizes temporal dependence in human behavior. Instead of proposing intentions hour
by hour with access to intention/task history and using Reflexion, we remove these and generate
all intentions at once. We evaluate via next-intention prediction (Section 4.2). Results in Table. 5
confirm the effectiveness of the profile extension module and the overall pipeline design.

Assistive Agent. 1) Removing human traits inference. We examine the importance of learning
human traits by removing robot’s inference of human traits or Big-5 scores from past intentions
and tasks, preventing classifiers from learning their correlation. 2) Removing temporal context
learning: We assess the impact of learning temporal dependence between human intentions and
tasks by preventing classifiers from using past intentions/tasks when predicting the current one. 3)
Changing the robot brain backbone: We replace the robot-VLM from Llama-3.2-11B [13] to
LLaVA-1.6-Mistral-7B [34]. Using different VLMs for human and robot reduces alignment and tests
robustness. From Table 6, removing trait inference significantly reduces success rate in settings 3 and
4 involving multiple humans, as the robot struggles to distinguish them. The learning of time-based
context benefits all settings. Despite smaller model size, the robot still achieves reasonable success.

5 Conclusion

We introduce COOPERA, a framework for continual, open-ended HRC. We propose a human model
to generate long-term human behaviors driven by personality traits, a benchmark, and a method
to assist humans under by predicting their long-term intentions. Our framework opens up exciting
directions for future work, such as using communication to better infer human traits or build agents
that can perform proactive assistance (e.g. arranging a house before the start of the day based on
preferences). We hope that this work can promote future research on building agents that can work
over long time horizons and adapt to human preferences.

Limitations. Despite compelling HRC performance, COOPERA currently focuses on single-human
settings, leaving multi-human collaboration for future work. While evaluations are primarily con-
ducted in simulation, we validate sim-to-real transfer through real-human routines and interactions.
Our method uses skill primitives compatible with standard robot platforms (e.g., Fetch), making it
readily transferable to real hardware.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We conducted extensive empirical experiments to demonstrate it.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discussed limitations in the Conclusion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: We did not have theoretical assumptions.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have thoroughly discussed implementations details in the main paper and
Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: We did not provide code with the submission because of internal regulations
within the authors’ organizations but will release it after acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We discussed these in the Experiments and Appendix with a lot of details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: In our experiments, large time aand computation cost is needed to do this.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We discussed it in the Experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We followed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work does not have broader social impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No such concern.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: All well documented.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not have large-scale crowdsourcing experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not have such.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

22



Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We explained in great details in framework and experiment sections.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix for COOPERA

A Overview

This Appendix includes: 1) more details about how we construct dynamic HSSD scenes and statistics,
2) additional details of how we build, train, and evaluate the simulated human and the assistive agent,
3) additional HRC results and analysis, including both quantitative metrics and qualitative examples,
along with comparisons to human verification of our main method and baselines across collaboration
types and settings, and 4) prompt details.

B Additional Details of Scenes

B.1 Dynamic Habitat Synthetic Scenes Dataset Construction

We make certain objects in the HSSD [28, 40, 53, 54] scenes dynamic by checking if they are
supported by any structure and their object super categories. For objects that do not have support, we
classify them as follows:

dynamic_categories = [trashcan, decor, dining ware, plant, electronics, animate object, apparel,
liquid container, kitchen ware, tray, bathroom accessory, gym equipment, toy, wearable]

static_categories = [storage furniture, support furniture, seating furniture, floor covering, lighting,
sleeping furniture, bathroom fixtures, mirror, large kitchen appliance, large appliance, kitchen
bathroom fixture, vehicle, heating cooling, medium kitchen appliance, display, arch, curtain, small
kitchen appliance]

B.2 Scene Statistics

Figure 8: Distribution of object categories within the constructed dynamic HSSD scenes.

Our selected 5 scenes feature varying number of rooms (4−11), static objects (51−140), and dynamic
objects (33−94). We present the distribution of 18 representative object categories (out of 32) in
Fig. 8. The large number and diversity of objects and categories enable humans to propose a wide
range of open-ended tasks.

B.3 Scene Summarization and Visualizations

We summarize 3D environment information in each scene as a text-based dictionary, which is used
as input to the simulated humans. Specifically, we extract the bounding boxes of rooms and map
each object to its corresponding room, forming an object-room mapping in the format of object_ID:
[object_name, room]. For example:

mapping = {’Nemo Kepler Pendant, Black’: [125, ’corridor’], ’AquaVive stortdoucheset Kila met
kraan’: [123, ’main bathroom’], ’Uttermost Marlow Chandelier’: [118, ’bathroom of bedroom 1’],
’Eisa Pendant’: [114, ’main bedroom’], ’CAR - SUV’: [12, ’garage’], ’Nolan Upholstered King Bed’:
[109, ’main bedroom’], . . . }
We show visualizations of the five scenes used in COOPERA in Fig. 9.
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Figure 9: HSSD Scenes used in COOPERA.

C Additional Details of Human Simulation

C.1 Psychometric Data Computation

Since SPC dataset lacks psychometric data, we derive Big-5 OCEAN scores by prompting the LLM
to 1) directly infer the scores [48] and 2) complete the Big-5 personality test [18, 45] and compute
scores based on the formula. We then take a majority vote across five inference trials, using bins of
0.5 on a scale of 1-5.

C.2 3D Motion

For human simulation, free-form motion data is formatted in SMPL-X, enabling detailed control over
whole-body motions, including facial expressions and finger articulation. To integrate this data into
the human simulation pipeline of Habitat 3.0 [52] , we remap the format of Motion-X [31] data, as
illustrated below.

global root orientation: SMPL-X[:, :3]
body: SMPL-X[:, 3:3+63]
finger articulation: SMPL-X[:, 66:66+90]
yaw pose: SMPL-X[:, 66+90:66+93]
face expression: SMPL-X[:, 159:159+50]
global body position: SMPL-X[:, 209:209+100]
global body position: SMPL-X[:, 309:309+3]
body shape: SMPL-X[:, 312:]

C.3 Feedback

Please refer to Section F for details on our designed feedback mechanism for the robot’s predicted
assistive tasks. We emphasize that while we structure the feedback as binary answers paired with
reasoning, it can be easily adapted for other learning algorithm by modifying the prompt.

C.4 Additional Qualitative Examples

I'm a passionate foodie, marathon 
runner, and Broadway enthusiast. I'm 
about to embark on an exciting new 
chapter in my life, moving to Portland, 
Oregon to pursue my culinary dreams. 
You can find me lacing up my running 
shoes and hitting the pavement.

{openness: 4.5, conscientiousness: 4.1, 
extroversion: 3.7, agreeableness: 4.2, 
neuroticism: 3.0}

As a full-time student studying 
radiology at a local college, I'm 
passionate about learning and exploring 
the world of healthcare. Punk music is 
another one of my passions. I play in a 
band, which is a fun way for me to 
unwind and express myself.

{'openness': 4.7, 'conscientiousness': 
3.8, 'extroversion': 4.2, 'agreeableness’: 
2.4, 'neuroticism’: 3.8}

I'm a bit of a unique individual with a 
passion for collecting interesting things I 
find on my coach. I love discovering 
hidden gems and treasures in the most 
unexpected places. When I'm not 
treasure hunting, you can find me 
watching a Disney movie.

{'openness': 3.0, 'conscientiousness': 
2.7, 'extroversion': 3.0, 'agreeableness': 
3.7, 'neuroticism': 2.5}

Figure 10: Additional examples of simulated human profiles psychometric data.

We present additional examples of simulated human profiles along with their corresponding psycho-
metric data in Fig. 10.
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D Additional Details of Building and Evaluating an Assistive Agent

D.1 Navigation and Movement

To navigate the scene, the agent uses classical motion planning for path calculation, with a stopping
threshold determined by the object’s Axis-Aligned Bounding Box (AABB). For the Fetch robot’s arm
movements, inverse kinematics (IK) is applied to calculate the end effector (EE) position based on
the 3D location of the target object. Robot actions are implemented using primitives from Habitat’s
task_action registry, combining navigation and EE control to form a full pick-and-place pipeline:
1) MoveEEAction moves the EE via Cartesian steps with IK; 2) PickObjIdAction grasps objects
using a snap mechanism within a distance threshold; 3) PlaceObjIdAction releases objects via
desnap; and 4) ResetEEAction resets the EE to a default pose.

D.2 Training

Task videos from Habitat 3.0 [52] are resized to 1024× 768 and input to Llama-3.2-11B [13] (our
robot-VLM) using Llama’s default settings. Classifiers are finetuned on Mistral-7B-Instruct-v0.2 [27]
using LoRA [22] (rank 8, dropout 0.2, alpha 16; targets: q, k, v, o) in an instructional format to output
binary yes/no. We train for 5 epochs using AdamW [37] (lr 1e-5, weight decay 0.01), with batch size
1 and gradient accumulation of 4 steps, across 3 NVIDIA A10 GPUs (24GB RAM).

For training the robot’s intention and task binary classifiers via instructional finetuning of an LLM,
we structure the input data in the following format:

### Instruction:

Considering the human’s profile, traits, temporal dependence on past behaviors, and the current time,

determine if it is likely or unlikely that this human will: ... Respond with ’Yes’ or ’No’.

### Input:

Human Profile.

Big Five Traits.

Previous Relevant Intentions.

Previous Relevant Tasks.

Current Time.

### Response:

D.3 Predicate Construction

Collaboration Type 1

Collaboration Type 2

Time: 6 pm
Intention: Enjoy a playful 
and imaginative dinner 
preparation in the kitchen, 
experimenting with new 
recipes and flavors.

Task 1: Place the "tuna_fish_can" on the "KITCHEN AID ARTISAN MIXER 
RED" for setup. 
Task 2:  Place the "mustard_bottle"  on the "Edelweiss desk, ash/white" in 
the living room. 
Task 3:  Place the "fork" on the "Edelweiss desk, ash/white" in the living 
room. 

ON(food, kitchen electricals)

ON(food, table)

ON(kitchen items, table)

Time: 9 am
Intention: Engage in a 
morning workout routine in 
the living room.

Task 1: Start with a warm-up by performing yoga stretches near the 
“Marina Slipcover Sofa" to prepare the body for more intense exercises. 
Task 2:  Perform squats with dumbbells near the "Wendover Art # Morning 
Lake View I" for strength training. 
Task 3: Transition to cardio by doing jumping jacks near the "Wendover Art 
# Off the Path" to elevate heart rate.
Task 4: Engage in core exercises by doing planks near the "APPLE iMac 5K 
27" to strengthen abdominal muscles.
Task 5: Cool down with a stretching routine near the "Marina Slipcover 
Sofa" to relax muscles and prevent injury.

NEED(yoga mat)

NEED(dumbbells)

NEED(jump rope)

NEED(exercise mat)

NEED(towel)

Figure 11: Examples of predicate construction.

For collaboration type 1, we map objects to Habitat 3.0 and the YCB dataset’s predefined semantic
categories, allowing evaluation via exact match. For collaboration type 2, where the robot offers
objects from a magic box, we compute semantic similarity between the robot’s predicted tasks/objects
for assistance and the human’s desired objects, using a threshold of 0.6. Fig. 11 illustrates examples
of predicate construction.
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E Additional Experiments and Details

E.1 Results Breakdown and Analysis

In Fig. 12, we show detailed predicate-based and LLM-based evaluations in both collaboration
types across all collaboration settings. Overall, LLM-based evaluations yield higher scores than
predicate-based ones, particularly in settings 3 & 4, which are more challenging. This suggests that
predicate-based evaluations are more rigorous, requiring exact matches for collaboration type 1 and
high semantic similarity for collaboration type 2. We highlight several key findings and analyze the
performance of each baselines in detail below.

Temporal Fluctuation Patterns Across Days. In Fig. 12, we observe a consistent temporal pattern
across days: performance tends to dip around midday and recover toward the end of the day, and
improve further on the following day. We attribute this to two primary factors. First, it reflects how
human routines are structured, both in reality and in our simulation. Humans generally engage in
more predictable activities in the morning and evening (e.g., hygiene, eating, relaxing), which are
easier for the robot to infer and assist with. In contrast, midday behavior tends to be more diverse
and more strongly influenced by individual traits. Since our human simulation pipeline samples
intentions and tasks based on both traits and time, this increases the diversity of midday actions,
making inference and alignment more difficult for the robot and resulting in a temporary performance
drop. Performance recovers as routine behaviors re-emerge in the evening or the following morning.
Importantly, despite these fluctuations, overall performance improves across days. Second, the
extent of this fluctuation increases with task difficulty, as defined in our framework (Section 3.1). In
Setting 1 (same human, same scene), the robot benefits from consistent exposure to both the user
and environment, resulting in relatively small midday dips. In Setting 2 (same human, different
scenes), unfamiliar object layouts introduce grounding challenges that increase midday variability. In
Setting 3 (different humans, same scene), rotating between users interrupts personalization, making
intention interpretation more difficult—particularly around midday when behavior is less routine.
Finally, Setting 4 (different humans, different scenes) combines both challenges, resulting in the
largest fluctuations as the robot must generalize across both human and spatial contexts.

Performance Analysis: Main Method vs. Baselines. We evaluate our method against six baselines:
1) Direct Prompting, 2) Direct Fine-tuning, 3) Oracle, 4) Random, 5) Intention Agnostic, and 6)
Human & Context Agnostic. Fig. 12 shows that our method achieves both the highest adaptation
trend over time and the highest final success rate (second only to Oracle) by explicitly modeling the
correlation between human intentions/tasks, traits, and temporal dependencies. As the day progresses,
the robot accumulates interaction history and adapts its behavior to the human preferences. 1) Direct
Prompting shows minimal improvement as it depends on retrieved interaction history without learning
the human preferences. 2) Direct Finetuning performs slightly better but still struggles due to its
rigid mapping from inputs to intentions/tasks, making it biased toward frequent training examples
and overlooking the varying distribution of human behavior. 3) Oracle serves as an upper-bound
performance reference by receiving ground-truth human intentions. While this provides a significant
advantage, its performance is static by design. This is because Oracle bypasses the core challenge of
accurately mapping visual observations of humans performing detailed tasks to high-level intentions,
a fundamental problem in human-robot collaboration, even in closed-set scenarios. Moreover, since
the correct intention is provided upfront, Oracle has no need to learn temporal dependencies between
human intentions (e.g., an intense workout at 11 am typically leads to lunch preparation at 12 pm).
4) Random degrades over time due to the absence of learning or validation. 5) Intention Agnostic
shows moderate improvement but lags behind our method, as it skips intention inference and thus
loses contextual information, which is problematic since temporal dependencies between intentions
are typically stronger than between tasks (validated in Section 4.2). 6) Human & Context Agnostic
captures only superficial time-task correlations and ignores human traits or temporal context, leading
to weak within-day gains.

E.2 Human Verification Breakdown and Analysis

For human verification, we present additional results across three baselines and our main method,
analyzing how human evaluations align with predicate-based (Table. 7) and LLM-based (Table. 8)
assessments in a detailed breakdown. Due to cost constraints, we use a subset of data (one episode per
setting), resulting in 32 episodes across the four methods. We recruit eight human evaluators, each

27



Table 7: Breakdown of correlation between predicates and human evaluations. We report the L1 ↓.

Collaboration 1 Collaboration 2

Setting 1 Setting 2 Setting 3 Setting 4 Setting 1 Setting 2 Setting 3 Setting 4
Random 0.070 0.134 0.067 0.065 0.073 0.079 0.088 0.112

Oracle 0.072 0.098 0.084 0.065 0.086 0.102 0.104 0.108

Human & Context Agnostic 0.062 0.121 0.066 0.071 0.073 0.109 0.080 0.100

Main 0.092 0.096 0.094 0.087 0.090 0.085 0.076 0.153

Average 0.074 0.112 0.078 0.072 0.080 0.094 0.087 0.118

Table 8: Breakdown of correlation between LLM and human evaluations. We report the L1 ↓.

Collaboration 1 Collaboration 2

Setting 1 Setting 2 Setting 3 Setting 4 Setting 1 Setting 2 Setting 3 Setting 4
Random 0.031 0.054 0.066 0.044 0.068 0.091 0.084 0.110

Oracle 0.103 0.096 0.087 0.043 0.071 0.069 0.091 0.094

Human & Context Agnostic 0.045 0.058 0.076 0.071 0.084 0.089 0.079 0.108

Main 0.063 0.075 0.081 0.073 0.090 0.085 0.072 0.076

Average 0.061 0.071 0.078 0.058 0.078 0.084 0.082 0.097

assessing four randomly assigned episodes. The results show that the gap between predicate-based
evaluation and human verification is larger than that between LLM-based evaluation and human
verification. This is because LLMs/VLMs reason and make judgments for assistance in a way that
aligns more closely with human preferences and decision-making, whereas predicate-based evaluation
relies on strict matching criteria that may not fully capture nuanced human reasoning.

E.3 Qualitative Examples of Offline Real Human

We present qualitative examples of offline real humans in Fig. 13. Compared to simulated humans
(Fig. 5), real humans exhibit greater behavioral dynamics and emergent decisions due to temporary
factors (e.g., plans, mood, weather).

E.4 Analysis of Human-in-the-Loop Collaboration

Intuitively, one might expect lower performance when collaborating with real humans due to their
inherent variability and spontaneity. However, results in Table 4 indicate that real human collaborators
do not make the task more difficult and can, in some cases, lead to higher success rates compared to
offline or simulated humans. Through discussions with participants, we identify a likely explanation.
Unlike the offline setting where participants record their routines throughout an entire day (12 one-
hour intervals covering the time from 9 am to 9 pm), the HITL experiments take place in a short,
controlled session. As a result, participants do not act spontaneously hour-by-hour but instead recall
and follow their typical weekly routines from memory, which tend to be more consistent. This
reduced behavioral variability allows the robot to personalize more quickly. and further validates the
behavioral diversity modeled in our simulated humans.
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Figure 12: Breakdown results of HRC. We compare our main method with the baselines across days.

As a full-time PhD student studying 
computer science, I'm passionate about 
exploring the possibilities of robots and 
AI in various scenarios. Video games are 
another one of my passions. 

I see games as the "ninth art," offering 
me the chance to freely explore worlds 
full of imagination and the unknown. It 
has become one of my favorite ways to 
relax myself.

9 am

Traits / Characters Intentions (Day 1)

Short Summary

{openness: 4.0, conscientiousness: 3.9, 
extroversion: 3.8, agreeableness: 3.0, 
neuroticism: 1.5}

BIG-5 Score

10 am

11 am

12 pm

1 am

2 pm

3 pm

4 pm

5 pm

6 pm

7 pm

8 pm

9 pm

Woke up and stayed in bed scrolling through my phone.

Got up, prepared and had breakfast.

Went to the seafood market to buy various ingredients.

Came back home, made a simple lunch, and cleaned up.

Took a nap. After waking up, played with phone in bed.

Moved to my desk to study.

Continued studying, took a break to listen to some music.

Started preparing for the evening BBQ. cutting ingredients.

Friends arrived and set up BBQ.

Fired up the grill, started barbecuing and had some drinks.

Continued eating and chatting.

Finished dinner and tidied up the place.

Took a shower and relaxed in bed playing phone.

9 am

Intentions (Day 3)

10 am

11 am

12 pm

1 am

2 pm

3 pm

4 pm

5 pm

6 pm

7 pm

8 pm

9 pm

Woke up, washed up, and made a cup of coffee.

Studied at my desk.

Continued studying at my desk.

Went to the college cafeteria for lunch due to sunshine.

Took a 30-minute nap, then relaxed a bit after waking up.

Returned to my desk and continued studying.

Went grocery shopping at the supermarket.

Checked lab results and kept studying.

Prepared dinner, cooked, ate, and cleaned up afterwards.

Went to play badminton.

Came back home after playing, took a shower.

Relaxed and played some computer games.

Continued gaming for a while before bed.

… … … …

Figure 13: Qualitative examples of full-day intentions recorded by a real human with specific human traits
and psychometric data. Red boxes highlight emergent behaviors due to temporary factors (e.g., plans, mood,
weather).

29



F Prompt Details of the Simulated Human

We show exact prompts for LLMs in simulated human behavior.

Human Profile Summary and Extension.

Input:
1. Human 1 profile.
2. Human 2 profile.
3. Conversation between Human 1 and Human 2.

Instruction:
Summarize and reasonably expand Human 1’s profile into a first-person self-introduction
based on their initial profile and past conversations with other humans. Provide a detailed
description covering, if presented, the person’s job, hobbies, daily activities, food preferences,
social life, physical activity, entertainment preferences, travel habits, personal values, goals
and aspirations, stress and coping mechanisms, technological use, cultural interests, health and
wellness, community involvement, education, financial habits, and personal style.

Human Psychometric Data Computation (LLM Inference).

Input:
1. Human profile.

Instruction:
Infer Big Five personality traits (scale 1-5, float) based on the provided human profile. Write in
the following format: {’openness’: a, ’conscientiousness’: b, ’extroversion’: c, ’agreeableness’:
d, ’neuroticism’: e}

Human Psychometric Data Computation (Big-5 Personality Test).

Input:
1. Human profile.

Instruction:
Based on the provided human profile, complete the Big-5 personality test. In the questions below,
for each statement 1-50 mark how much you agree with on the scale 1-5, where 1=disagree,
2=slightly disagree, 3=neutral, 4=slightly agree and 5=agree.

Questions:
1. Am the life of the party.
2. Feel little concern for others.
. . . . . .
50. Am full of ideas.

Human Intention Proposal.

Input:
1. Current time.
2. A list of rooms in the house (ignore small spaces like closets).
3. Your Big Five scores (scale 1-5) and human profile.
4. Most relevant human intentions proposed at previous times (ignore if empty—this means it’s
the first intention of the day).
5. Most relevant human tasks proposed at previous times.ids (ignore if empty—this means it’s
the first task of the day).

You are a human living in the house. Propose your intention at the current time.

Instructions:
1. Intention must align with your Big 5 scores, reflect all aspects of the profile, and be diverse
yet reasonable based on the house layout and available objects.

30



2. Intention must be high-level and either human-centric (e.g., hygiene, sport, leisure) or room-
centric (e.g., clean, organize, set-up). Do not mention specific objects.
3. Intention must have temporal dependence but be non-repetitive with the previous intentions
and tasks.
4. Intention should be within the house.
5. All objects are rigid and cannot deform, disassemble, or transform.

Write in the following format. Do not output anything else:
Time: xxx am/pm (e.g., 9 am)
Intention: basic descriptions.
Reason_human: detailed descriptions of why it follows your Big 5 scores and profile.
Reason_intentions: detailed descriptions of why it has temporal dependence with the previous,
relevant intentions at [list of time].
Reason_tasks: detailed descriptions of why it has temporal dependence with the previous,
relevant tasks at [list of time.id].

Human Task Proposal.

Input:
1. The proposed intention at current time.
2. A dict mapping rigid, static objects to their IDs and rooms.
3. Your Big Five scores (scale 1-5).
4. Most relevant human intentions proposed at previous times (ignore if empty—this means it’s
the first intention of the day).
5. Most relevant human tasks proposed at previous times.ids (ignore if empty—this means it’s
the first task of the day).

You are a human living in the house.

Instructions:
1. Break down the intention into 5 tasks for collaboration with a robot.
2. Task types:
- Type 1: Creative, reasonable free-form human motion interacting or approaching a fixed, static
object (static objects cannot be moved) with an object in hand provided by the robot (e.g., sit on
sofa with TV remote control in hand, wipe table with tissue in hand, squat with dumbbell in
hand near rug).
3. For interacting with fixed, static objects, use only objects from the given static object dict.
For objects in hand, a robot will provide them.
4. Both interacting and inhand objects must be specified (cannot be none).
5. Tasks should be continuous and logical, and align with your Big 5 scores and profile.
6. Tasks must have temporal dependence with the intentions and tasks at previous times.
7. Free-form motion should be diverse. Examples: sampled_motion_list. Feel free to propose
others.
8. All objects are rigid and cannot deform, disassemble, or transform.

Write in the following format. Do not output anything else:
Time: xxx am/pm
Intention: basic descriptions.
Tasks:
1. Thought: detailed descriptions of the task. Reason_human: why it aligns with your Big 5
scores and profile. Reason_intentions: how it depends on previous, relevant intentions at [list
of time]. Reason_tasks: how it depends on previous, relevant tasks at [list of time.id]. Act:
[type: 1, inter_obj_id: real int, inter_obj_name: xxx, inhand_obj_name: yyy, motion: free-form
motion]
2. ...

Human Reflection (Profile).

Input:
1. The proposed intention at current time.
2. A dict mapping rigid, static objects to their IDs and rooms.
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3. Your Big Five scores and human profile.
4. Most relevant human intentions proposed at previous times (if empty, ignore it—this means
it’s the first intention of the day).
5. Most relevant human tasks proposed at previous times.ids (if empty, ignore it—this means
it’s the first intention of the day).

Your task is to check if the temporal dependence and human profile are strictly followed in each
task, and revise to make better if necessary.

Instructions:
1. Tasks should be continuous and logical, and align with your Big 5 scores and profile.
2. Tasks must have temporal dependence with the previous intentions and tasks, with detailed
explanation mentioning previous intentions and tasks explicitly.
3. For interacting with fixed, static objects, use only objects from the given static object dict.
For objects in hand, a robot will provide them.

Write in the following format. Do not output anything else:
Time: xxx am/pm
Intention: basic descriptions.
Reflect Each Task:
1. no mistake or change made.
2. ...
Revised Tasks:
1. Thought: detailed descriptions of the task. Reason_human: why it aligns with your Big 5
scores and profile. Reason_intentions: how it depends on previous, relevant intentions at [list
of time]. Reason_tasks: how it depends on previous, relevant tasks at [list of time.id]. Act:
[type: 1, inter_obj_id: real int, inter_obj_name: xxx, inhand_obj_name: yyy, motion: free-form
motion]
2. ...

Human Reflection (3D Info).

Input:
1. The proposed intention at current time.
2. A dict mapping rigid, static objects to their IDs and rooms.

Your task is to check if the instructions are strictly followed in each task, and revise to make
better if necessary.

Instructions:
1. Break down the intention into 5 tasks for collaboration with a robot.
2. Task types:
- Type 1: Creative, reasonable free-form human motion interacting or approaching a fixed, static
object (static objects cannot be moved) with an object in hand provided by the robot (e.g., sit on
sofa with TV remote control in hand, wipe table with tissue in hand, squat with dumbbell in
hand near rug).
3. For interacting with fixed, static objects, use only objects from the given static object dict
(exact name). For objects in hand, a robot will provide them.
4 Both interacting and inhand objects must be specified. Importantly, they cannot be none.
5. Free-form motion should be diverse. Examples: sampled_motion_list. Feel free to propose
others.
6. All objects are rigid and cannot deform, disassemble, or transform.

Write in the following format. Do not output anything else:
Time: xxx am/pm
Intention: basic descriptions.
Reflect Each Task:
1. no mistake or change made.
2. ...
Revised Tasks:
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1. Thought: detailed descriptions of the task. Reason_human: why it aligns with your Big 5
scores and profile. Reason_intentions: how it depends on previous, relevant intentions at [list
of time]. Reason_tasks: how it depends on previous, relevant tasks at [list of time.id]. Act:
[type: 1, inter_obj_id: real int, inter_obj_name: xxx, inhand_obj_name: yyy, motion: free-form
motion]
2. ...

Feedback.

Input:
1. Human intention at current time.
2. Current human tasks.
3. Robot-inferred tasks to enhance comfort with offered objects (if any).

You are the human. Decide if the robot’s assistance align with your needs.

Instructions:
1. Assess if each robot task supports the human tasks and intention. The robot’s task doesn’t
need to be an exact match but should be relevant in purpose, context, or object categories. Use
common reasoning to decide if it helps meet your needs.
2. Consider each robot thought and object individually against the human tasks. Approve it if it
meets any one of the human tasks; sequence does not matter.
3. Be fair in your judgment—avoid being too generous or too harsh.
4. Respond with yes/no for each, followed by an explanation. Ensure items are in a list.

Write in the following format. Do not output anything else:
Tasks: [yes, no, ...]
Reasons_tasks:
1. ...

G Prompt Details of the Assistive Agent

We show exact prompts for VLMs in building the assistive agent.

Intention Discovery.

Input:
1. Sequence of images showing human motion from your and human’s perspectives.
2. Current time.
3. Inferred Big Five personality scores (ignore if empty—this means it’s your first collaboration
with this human).
4. Inferred human profile (ignore if empty—this means it’s your first collaboration with this
human).
5. Most relevant human intentions discovered at previous times (ignore if empty—this means
it’s the first intention of the day).
6. Most relevant human tasks discovered at previous times.ids (ignore if empty—this means it’s
the first task of the day).

You are a robot assisting a human. Identify 5 possible human intentions based on the current
time and visual observations.

Instructions:
1. Map the observed human motion to 5 possible high-level intentions at the current time
(without mentioning the specific motion).
2. Intention must align with human Big 5 scores and reflect all aspects of the profile, and be
diverse yet reasonable based on the house layout and available objects.
3. Intention must be high-level and either human-centric (e.g., hygiene, sport, leisure) or room-
centric (e.g., clean, organize, set-up). Do not mention specific objects.
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4. Intention must have temporal dependence but be non-repetitive with the intentions and tasks
at previous times in the input.

Write in the following format. Do not output anything else: Time: xxx am/pm
Intention 1: basic descriptions.
Reason_human: detailed descriptions of why it follows the Big 5 scores and profile.
Reason_intentions: detailed descriptions of why it has temporal dependence with the previous,
relevant intentions at [list of time].
Reason_tasks: detailed descriptions of why it has temporal dependence with the previous,
relevant tasks at [list of time.id].
Reason_vis: detailed descriptions with respect to the visual cues.
...

Task Discovery.

Input:
1. Human intention at current time.
2. A dict mapping rigid, static furnitures to their IDs and rooms.
3. Inferred Big Five personality scores (ignore if empty—this means it’s your first collaboration
with this human).
4. Most relevant human intentions discovered at previous times (ignore if empty—this means
it’s the first intention of the day).
5. Most relevant human tasks discovered at previous times.ids (ignore if empty—this means it’s
the first task of the day).

You are a robot assisting a human.

Instructions:
1. Break down the intention into 5 tasks.
2. Task type: For each human task, provide one small, handable object from a magical box.
Furnitures in the dict are for room understanding and cannot be used.
3. Tasks should be continuous and logical, and align with your Big 5 scores and profile.
4. Tasks must have temporal dependence with the intentions and tasks at previous times.
5. All objects are rigid and cannot deform, disassemble, or transform.

Write in the following format. Do not output anything else:
Time: xxx am/pm
Intention: basic descriptions.
Tasks:
1. Thought: detailed descriptions of the task. Reason_human: why it alignes with your Big 5
scores and profile. Reason_intentions: how it depends on previous, relevant intentions at [list
of time]. Reason_tasks: how it depends on previous, relevant tasks at [list of time.id]. Act:
[obj_name: xxx]
2. ...

Traits Inference.

Input:
1. Human intentions at previous times (ignore if empty—this means it’s your first inference).
2. Human tasks at previous times.ids.
3. Human profile (ignore if empty—this means it’s your first inference).

Task: Mimic this human by:
1. Inferring Big Five personality traits (scale 1-5, float) based on the provided intentions and
task.
2. Summarizing the human profile (i.e., preferences/habits) based on the intentions and tasks
within three sentences. Revise the existing human profile if necessary.

Write in the following format. Do not output anything else:
Scores: {’openness’: a, ’conscientiousness’: b, ’extroversion’: c, ’agreeableness’: d, ’neuroti-
cism’: e}

34



Profile: ...
Reasons_ocean: explain each ocean.
Reasons_profile: explain the profile.
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