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Abstract
Causal discovery aims to recover causal structures generating the observational data.
Despite its success in certain problems, in many real-world scenarios the observed
variables are not the target variables of interest, but the imperfect measures of
the target variables. Causal discovery under measurement error aims to recover
the causal graph among unobserved target variables from observations made with
measurement error. We consider a specific formulation of the problem, where
the unobserved target variables follow a linear non-Gaussian acyclic model, and
the measurement process follows the random measurement error model. Existing
methods on this formulation rely on non-scalable over-complete independent
component analysis (OICA). In this work, we propose the Transformed Independent
Noise (TIN) condition, which checks for independence between a specific linear
transformation of some measured variables and certain other measured variables.
By leveraging the non-Gaussianity and higher-order statistics of data, TIN is
informative about the graph structure among the unobserved target variables. By
utilizing TIN, the ordered group decomposition of the causal model is identifiable.
In other words, we could achieve what once required OICA to achieve by only
conducting independence tests. Experimental results on both synthetic and real-
world data demonstrate the effectiveness and reliability of our method.1

1 Introduction

PM2.5

Figure 1: Example of
measurement error. Gray
nodes are latent underly-
ing variables and white
nodes are observed ones.

Discovery of causal relations is a fundamental goal of science. To identify
causal relations from observational data, known as causal discovery,
has thus drawn much attention in various scientific fields, including
economics, biology, and social science [45, 27, 11]. Methods for causal
discovery can be roughly categorized into constraint-based ones (e.g.,
PC [43]), score-based ones (e.g., Greedy Equivalence Search (GES) [8]),
and ones based on structural equation models (SEM) [38, 17, 51]. Almost
all these methods assume that the recorded values are values of the
variables of interest, which however, is usually not the case in real-world
scenarios. Some variables may be impossible to observe or quantify, so
recorded values are actually a proxy of them (e.g., measure one’s mental
status by survey questionnaire), and some variables, though quantifiable,
may subject to error introduced by instruments (e.g., measure brain signals
using functional magnetic resonance (fMRI)). The difference between
quantities of interest and their measured value is termed as measurement error [12].

1An online demo and codes are available at https://cmu.edu/dietrich/causality/tin.
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Measurement error adversely impairs causal discovery [28, 24, 36]. The measuring process can be
viewed as directed edges from underlying variables of interest (unobservable) to measured values
(observable), and the d-separation patterns on underlying variables typically do no hold on measured
ones. Consider the causal effects from factory emissions to air quality then to residents’ lung
health , as shown in Figure 1, while we only have corresponding measured quantities: chimney
statistics , PM2.5, and hospital reported cases . Though and are independent given ,
and are however dependent given PM2.5. If measurement error is severe, and even tend to
be marginally independent [53, 36], which makes PM2.5 look like a collider (common child). One
might thus incorrectly infer that, lung cancer causes air pollution. In fact, such measurement error is
always a serious threat in environmental epidemiologic studies [30, 10].

Denote by X̃ = {X̃i}ni=1 the latent measurement-error-free variables and X = {Xi}ni=1 observed
ones. While there are different models for measuring process [12, 6, 49], in this paper, we consider
the random measurement error model [36], where the observed variables are generated from the
latent measurement-error-free variables X̃i with additive random measurement errors E = {Ei}ni=1:

Xi = X̃i + Ei. (1)

Measurement errors E are assumed to be mutually independent and independent of X̃. We
assume causal sufficiency relative to X̃ (i.e., no confounder of X̃ who does not have a respective
measurement), and focus on the case where X̃ is generated by a linear, non-Gaussian, acyclic
model (LiNGAM [38], see §3.1). Note that here w.l.o.g., the linear weights of {X̃i ! Xi}ni=1 are
assumed to be one (since we do not care about scaling). Generally, if observations are measured by
Xi = ciX̃i + Ei with weights {ci}ni=1 not necessarily being one, all results in this paper still hold.

The objective of causal discovery under measurement error is to recover causal structure among
latent variables X̃, denoted as G̃, a directed acyclic graph (DAG), from contaminated observations
X. As illustrated by Figure 1, causal discovery methods that utilize (conditional) independence
produce biased estimation (see Proposition 1 for details). SEM-based methods also typically fail to
find correct directions, since the SEM for X̃ usually do not hold on X. Unobserved X̃ are actually
confounders of X, and there exists approaches to deal with confounders, such as Fast Causal Inference
(FCI [44]). However, they focus on structure among observed variables instead of the unobserved
ones, which is what we aim to recover here. With the interest for the latter, another line of research
called causal discovery with latent variables is developed, which this paper is also categorized
to. However, existing methods [41, 42, 47, 46, 1, 23, 50, 35] cannot be adopted either, since they
typically require at least two measurements (indicators) for each latent variable, while we only have
one for each here (and is thus a more difficult task). Specifically on the measurement error problem,
[16] proposes anchored causal inference in the binary setting. In the linear Gaussian setting, [53]
presents identifiability conditions by factor analysis. A main difficulty here is the unknown variances
of the measurement errors E, otherwise the covariance matrix of X̃ can be obtained and readily used.
To this end, [2] provides an upper-bound of E and [34] develops a consistent partial correlations
estimator. In linear non-Gaussian settings (i.e., the setting of this paper), [54] shows that the ordered
group decomposition of G̃, which contains major causal information, is identifiable. However, the
corresponding method relies on over-complete independent component analysis (OICA [19]), which
is notorious for suffering from local optimal and high computational complexity [39, 18]. Hence, the
identifiability results in [54], despite the theoretical correctness, is far from practical achievability.

The main contributions of this paper are as follows: 1) We define the Transformed Independent Noise
(TIN) condition, which finds and checks for independence between a specific linear transformation
(combination) of some variables and others. The existing Independent Noise (IN [40]) and General-
ized Independent Noise (GIN [50]) conditions are special cases of TIN. 2) We provide graphical
criteria of TIN, which might further improve identifiability of causal discovery with latent variables.
3) We exploit TIN on a specific task, causal discovery under measurement error and LiNGAM, and
identify the ordered group decomposition. This identifiability result once required computationally
and statistically ineffective OICA to achieve, while we achieve it merely by conducting independence
tests. Evaluation on both synthetic and real-world data demonstrate the effectiveness of our method.

2 Motivation: Independence Condition and Structural Information

The example in Figure 1 illustrates how the (conditional) (in)dependence relations differ between
observed X and latent X̃, and thus lead to biased discovery results. To put it generally, we have,
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Proposition 1 (rare d-separation). Suppose variables follow random measurement error model
defined in Equation (1). For disjoint sets of observed variables Z,Y,S and their respective latent
ones Z̃, Ỹ, S̃, d-separation Z ??dY|S holds, only when marginally Z̃ ??dỸ, and Z̃ ??dỸ|S̃ hold.

By ‘rare’ we mean that the d-separation patterns among X̃ usually do not hold among X (except
for rare marginal ones), since the observed variables are not causes of any other (though the latent
variables they intend to measure might be). For example, consider the underlying G̃ to be chain
structure (Figure 2a) and fully connected DAG (Figure 2c). There exists no (conditional) independence
on either, and PC algorithm will output just a fully connected skeleton on both cases. Then, without
(conditional) independence (which is non-parametric) to be directly used, can we create independence,
by leveraging the parametric assumption (LiNGAM) and benefit from non-Gaussianity?

Naturally we recall the Independent Noise (IN) condition proposed in Direct-LiNGAM [40]:
Definition 1 (IN condition). Let Yi be a single variable and Z be a set of variables. Suppose variables
follow LiNGAM. We say (Z, Yi) satisfies IN condition, denoted by IN(Z, Yi), if and only if the
residual of regressing Yi on Z is statistically independent to Z. Mathematically, let !̃ be the vector of
regression coefficients, i.e., !̃ := cov(Yi,Z) cov(Z,Z)�1; IN(Z, Yi) holds iff Yi � !̃|Z ?? Z.

Here “cov” denotes the variance-covariance matrix. IN identifies exogenous (root) variables, based
on which the causal ordering of variables can be determined (Lemma 1 in [40]). However, IN
cannot be applied to measurement error model. With hidden confounders (X̃) behind observed X,
independence between regressor and residual typically does not exist on any regression among X. In
fact, X follows errors-in-variables models [15, 7], for which the identifiability w.r.t. G̃ is not clear.

However, we might still benefit from this idea to leverage non-Gaussianity of exogenous noises.
Consider the Figure 1 example and abstract it to X̃1 !a X̃2 !b X̃3 with {X̃i !1 Xi}3i=1. Although
IN does not hold on any of X, interestingly, there exists a linear transformation of observations
bX2 �X3, which contains only {Ẽ3, E2, E3} (Ẽ1 and Ẽ2 are cancelled out) and shares no common
non-Gaussian noise term with X1. Hence, by the Darmois–Skitovich theorem [21], bX2 � X3 is
independent of X1. This finding is echoed in Generalized Independent Noise (GIN [50]) condition:
Definition 2 (GIN condition). Let Z and Y be two sets of random variables that follow LiNGAM.
We say (Z,Y) satisfies the GIN condition, denoted by GIN(Z,Y), if and only if the following two
conditions are satisfied: 1) There exists nonzero solution vectors ! 2 R|Y| to equation cov(Z,Y)! =
0, and 2) Any such solution ! makes the linear transformation !|Y independent of Z.

Here |Y| denotes the dimensionality of Y. The intuition of GIN is that, despite no independent resid-
ual by normal regression, it is possible to realize independent “pseudo-residuals” [5] by regressing
with “reference variables”. [50] shows IN as a special case of GIN (Proposition 2), and further gives
graphical criteria (Theorem 2), based on which a recursive learning algorithm is developed to solve the
latent-variable problem. Each latent variable is required to have at least two observations. Interestingly
we find that, in measurement error models, if each latent variable X̃i has two measurements Xi1 , Xi2 ,
then the GIN condition can be readily used to fully identify the structure of G̃, which is already a
breakthrough over existing methods [42, 47, 46, 23]. See Appendix B for the whole procedure. With
regard to our more challenging task where each X̃i has only one measurement Xi, a natural question
is that, can GIN also help? Given the example in Figure 1 illustrated above, the answer seems to be
affirmative: GIN({Xi},X\{Xi}) only holds for i = 1, so the root can be identified. More generally:
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Figure 2: Graph structure G̃ exam-
ples. For simplicity, observed X,
measurement edges are omitted.

Example 1 (GIN on chain structure). Consider cases where the
underlying graph G̃ is a chain structure with n (n � 3) vertices
and directed edges {X̃i ! X̃i+1}n�1

i=1 . Figure 2a is an example
with n = 5. We find that GIN(Z = X1,Y = X2,3,4,5) holds
(where X2,3,4,5 denotes {X2, X3, X4, X5}; same below), with
solution ! = [�bx � bcy � bcdz, x, y, z]|, x, y, z 2 R. !|Y
cancels noise components in Y that are also shared by Z, and
thus !|Y ?? Z. However, GIN(Xi,X\{Xi}) is violated for
any other i 6= 1 (see Example 12 for a detailed derivation).
With this asymmetry, the latent root X̃1 can be identified. Fur-
thermore, GIN(Xi, Xi+1,···,n) holds for any i = 1, ··· , n� 2.

Example 1 might give us an intuition that by recursively testing
GIN (over the newly found subroot and the remaining vari-
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ables), we could identify the causal ordering of first n� 2 variables for any DAG. However, this is
over-optimistic thanks to the sparsity of chain structure. Consider a denser structure:
Example 2 (GIN on fully connected DAG). Consider cases where G̃ is a fully connected DAG
with n (n � 3) vertices and directed edges {X̃i ! X̃j} for every i < j. Figure 2c is an example
with n = 4. We first find that GIN(X1, X2,3,4) holds. However, in contrast to the chain structure,
GIN(X2, X3,4) does not hold - there is no way to cancel both Ẽ1,2 from X3,4. More generally we
have: GIN(X1, X2,···,n), GIN(X1,2, X3,···,n), ···, GIN(X1,···,k, Xk+1,···,n), k = b(n� 1)/2c.

Since a fully connected DAG is the densest extreme, Example 2 might give us an intuition that GIN
could identify at least the causal ordering of the first half of variables. Unfortunately, this is still
over-optimistic, since we could not know beforehand the structure type of G̃.
Example 3 (GIN on chain structure with triangular head). Figure 2b shows a variation of chain
structure, with edges X̃1 ! X̃2, X̃1 ! X̃3, X̃3 ! X̃2, and {X̃i ! X̃i+1}n�1

i=3 . We name it “chain
structure with triangular head”. Interestingly, GIN(X2, X3,···,n), which is satisfied on Figure 2a,
is also satisfied here. E.g., in Figure 2b (n = 5), the solution ! = [�dx � dey, x, y]|, x, y 2 R.
!|Y cancels Ẽ1,3 from Y, and thus !|Y ?? Z. Actually, the chain structure with triangular
head G̃OC is unidentifiable with chain structure G̃C w.r.t. GIN conditions, i.e., for any two sets of
observed variables Z,Y ✓ X, GIN(Z,Y) holds on G̃OC if and only if GIN(Z,Y) holds on G̃C.
Consequently, if directly using any recursive algorithm by GIN as in Example 1, the output causal
ordering would still be X̃1, X̃2, X̃3, ···, which is incorrect due to X̃3 ! X̃2 in the triangular head.

The above examples show that it is not as simple as it seems to use GIN for one-measurement model:
only part of the causal ordering can be identified, and worse yet, rather complicated error correction
is needed to deal with possible incorrect orderings. However, after a closer look at the unidentifiable
examples above, we find that actually more information can be uncovered beyond the GIN condition:

Example 4 (Asymmetry beyond GIN). 1) Consider Example 2 where only the root variable X̃1 can
be identified by GIN and X̃2,3,4 are unidentifiable, i.e., permutation of the labeling of X2,3,4 will still
preserve the GIN condition over any two subsets Z,Y. However, there actually exists an asymmetry
between X2 and X3,4: we could construct linear transformation of X1,3,4: cd�be

d X1 +
df+e
d X3 �

X4 s.t. it is independent of X2, while there exists no such linear transformation of X1,2,4 to be
independent of X3, and also for X1,2,3 to X4. 2) Consider Examples 1 and 3 where G̃C and G̃OC
are unidentifiable w.r.t. GIN conditions. Let Z := X4 and Y := X1,2,3, GIN(Z,Y) is violated on
both graphs. However, an asymmetry actually exists: on G̃OC, we could construct aX1 �X2 + bX3

(which cancels Ẽ1,3) to be independent to X4, while this is impossible on G̃C.

To put simply, the motivation of independent “pseudo-residual” behind GIN actually limits the
power of non-Gaussianity, with the coefficients vector ! only characterized from variance-covariance
matrix (2nd-order). There are actually two cases for GIN(Z,Y) to be violated: 1) though not all
solution ! makes !|Y ?? Z, there exists non-zero ! s.t. !|Y ?? Z, and 2) there naturally exists no
non-zero ! s.t. !|Y ?? Z. The original GIN cannot distinguish between these two cases. Hence in
this paper, we first aim to distinguish between the two, generalizing GIN condition to TIN condition.

3 With Transformed Independent Noise Condition
In the above discussion, one can see that the presence of measurement error affects the conditional
independence relations among the variables and the independent noise condition. However, we
will show in Theorem 3 (§4) that a specific type of independence conditions are shared between
the underlying error-free variables and the measured variables with error. In this section, we will
formulate such independence conditions and investigate their graphical implications for error-free
variables (i.e., variables generated by the LiNGAM without measurement error). In §4, we will then
extend the results to the measured variables. Please note that in contrast to other sections, the notation
used in this section, including X, Y, and S, denotes error-free variables generated by the LiNGAM.

3.1 Notations
Let G be a directed acyclic graph with the vertex set V (G) = [n] := {1, 2, · · · , n} and edge set
E(G). A directed path P = (i0, i1, · · · , ik) in G is a sequence of vertices of G where there is a
directed edge from ij to ij+1 for any 0  j  k � 1. We use notation i  j to show that there
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exists a directed path from vertex i to j. Note that a single vertex is also a directed path, i.e., i i
holds. Let Z ✓ [n] be a subset of vertices. Define ancestors Anc(Z) := {j|9i 2 Z, j  i}. Note
that Z ✓ Anc(Z). Further let S be a subset of vertices. We use notation i  ⇢⇢[S] j to show that there
exists a directed path from vertex i to j without passing through S, i.e., there exists a directed path
P = (i,m0, · · · ,mk, j) in G s.t. i, j 62 S and ml 62 S for any 0  l  k. Define ancestors outside S
accordingly: for two vertex sets Y,S, denote ancestors of Y that have directed paths into Y without
passing through S as Ancout(S)(Y) := {j|9i 2 Y, j  ⇢⇢[S] i}. Note that the graphical definitions here
can also be translated to trek [47] language (see Appendix C for details).

Assume random variables X := {Xi}i2[n] are generated by LiNGAM w.r.t. graph G, i.e.,

X = AX+E = BE, with B = (I�A)�1. (2)

where E = {Ei}i2[n] are corresponding mutually independent exogenous noises. A is the adjacency
matrix where entry Aj,i is the linear weight of direct causal effect of variable Xi on Xj . Aj,i 6= 0 if
and only if there exists edge i ! j. X can also be written directly as a mixture of exogenous noises
X = BE. If the entry of mixing matrix Bj,i 6= 0, then i 2 Anc({j}). Note that here and in what
follows, we use boldface letters A,B to denote matrices, and use boldface letters S,W,X,Y,Z
with notation abuse: it can denote vertices set, respective random variables set, or random vector.
When we say “two variables sets Z,Y”, if not otherwise specified, Z,Y need not be disjoint.

3.2 Independent Linear Transformation Subspace and its Characterization
We first give the definition and characterization of the independent linear transformation subspace.
Definition 3 (Independent linear transformation subspace). Let Z and Y be two subsets of random
variables. Suppose the variables follow the linear non-Gaussian acyclic causal model. Denote:

⌦Z;Y := {! 2 R|Y| | !|Y ?? Z}. (3)

By the property of independence, ⌦Z;Y is closed under scalar multiplication and addition, and thus is
a subspace in R|Y|. In fact, ⌦Z;Y can be characterized as a nullspace as follows:
Theorem 1 (Characterization of ⌦Z;Y). For two variables subsets Z and Y, ⌦Z;Y satisfies:

⌦Z;Y = null(B|

Y,nzcol(BZ,:)
). (4)

where null(·) denotes nullspace. BY,nzcol(BZ,:) denotes the submatrix of mixing matrix B, with rows
indexed by Y and columns indexed by nzcol(BZ,:). nzcol(BZ,:) denotes the column indices where
the submatrix BZ,: has non-zero entries. nzcol(BZ,:) actually corresponds to the exogenous noises
that constitute Z. Particularly, if assuming “if i j then Bj,i 6= 0”, then, nzcol(BZ,:) = Anc(Z).

Proof of Theorem 1 is straight-forward by the Darmois–Skitovich theorem [21]: linear transformation
!|Y ?? Z if and only if !|Y shares no common non-Gaussian exogenous noise components with Z.

Example 5 (Revisiting examples in §2 from ⌦Z;Y perspective). For illustration, now we revisit the
examples in §2 from the perspective of independent linear transformation subspace.

1 0 0 0 0
a 1 0 0 0
ab b 1 0 0
abc bc c 1 0
abcd bcd cd d 1

2

66664

3

77775

,

1 0 0 0 0
a+ bc 1 b 0 0

c 0 1 0 0
cd 0 d 1 0
cde 0 de e 1

2

66664

3

77775

,

1 0 0 0
a 1 0 0

ad+ b d 1 0

a(df + e) + bf + c df + e f 1

2

664

3

775

(5)

Equation (5) shows the corresponding mixing matrix B for graph G̃ in Figures 2a to 2c, re-
spectively. Suppose we have access to underlying variables X̃i and only focus on G̃. Colored
blocks denote submatrices of B. 1) For the fully connected DAG (Figure 2c, the right matrix),
to identify the root X̃1, GIN(X̃1, X̃2,3,4) is satisfied, corresponding to ⌦Z;Y = null(

|

). For
(Z,Y) := (X̃2, X̃3,4) or (X̃4, X̃1,2,3), there exists no non-zero ! s.t. !|Y ?? Z, because the lower

part and are full row rank. However, if we set (Z,Y) := (X̃2, X̃1,3,4), we actually have
X̃2 ?? cd�be

d X̃1 +
df+e
d X̃3 � X̃4, because the stacked two parts of has rank 2 < 3 - though

GIN is still violated because cov(Z,Y) has rank 1 < 2. 2) For the chain structure G̃C (Figure 2a,
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the left matrix) and chain with triangular head G̃OC (Figure 2b, the middle matrix), GIN is satis-
fied on (X̃1, X̃2,3,4,5), X̃2, X̃3,4,5), (X̃3, X̃4,5), with the BY,Anc(Z) submatrices being , ,
respectively. Note that though the shape of submatrices are different between G̃C and G̃OC, their
ranks are always equal, and is thus unidentifiable by GIN. However, let (Z,Y) := (X̃4, X̃1,2,3), an
asymmetry actually exists: in G̃OC, X̃4 ?? aX̃1 � X̃2 + bX̃3, because in the right matrix has
rank 2 < 3, while in the left matrix is full row rank, so there is no such independence in G̃C.

3.3 Graphical Criteria of Independent Linear Transformation Subspace
§3.2 characterizes ⌦Z;Y by submatrix of B, which entails information on graph structure and edge
weights. The following sections go one step further, explicitly exhibit the graphical criteria of ⌦Z;Y,
and investigate how ⌦Z;Y could help to identify the causal structure. We first give the assumption:
Assumption 1 (Rank faithfulness). Denote by B(G) the parameter space of mixing matrix B
consistent with the DAG G. For any two subsets of variables Z,Y ✓ X, we assume that

rank(BY,Anc(Z)) = max
B02B(G)

rank(B0
Y,Anc(Z)). (6)

Roughly speaking, we assume there are no edge parameter couplings to produce coincidental low
rank. This is slightly stronger than “nzcol(BZ,:) = Anc(Z)”. See Appendix F.1 for elaboration. In
other words, the graphical criteria holds on a dense open subset of the edge parameter space. Note
that Assumption 1 is the only other parametric assumption we make besides LiNGAM throughout
the paper, where violation of Assumption 1 is of Lebesgue measure 0, and LiNGAM is testable.

Graphically, we first define vertex cut, and then give the graphical criteria based on it:
Definition 4 (Vertex cut). Let W,Y,S be three vertices subsets of V (G) which need not be disjoint.
We say that S is a vertex cut from W to Y, if and only if there exists no directed paths in G from W
to Y without passing through S. With basic notations in §3.1, the following statements are equivalent:
1) S is a vertex cut from W to Y; 2) 8i 2 W, j 2 Y, i ⇢⇢[S] j does not hold; 3) Ancout(S)(Y)\W =
?; 4) S’s removal from G ensures there is no directed paths from W\S to Y\S.

More details on vertex cut are in Appendix C. Note that trivially W itself and Y itself are vertex cuts.
Theorem 2 (Graphical criteria of ⌦Z;Y). Let Z,Y be two subsets of variables (vertices), we have:

|Y|� dim(⌦Z;Y) = min{|S| | S is a vertex cut fromAnc(Z) to Y}. (7)

where dim(⌦Z;Y) denotes the dimension of the subspace ⌦Z;Y, i.e., the degree of freedom of !.

By Theorem 1, |Y|� dim(⌦Z;Y) is exactly the rank of BY,Anc(Z). Theorem 2 can then be proved
by a combinatorial interpretation of mixing matrices’ determinants. See Appendix A for details.

From the graphical view, a vertex cut S from Anc(Z) to Y means that the causal effect from Z
and the common causes of Z and Y, if there is any, must affect Y through S - there is no any
bypass. To interpret in trek-separation [47] language, it is equivalent to “(?,S) t-separates (Z,Y)”2.

Z

S

Y

N
o

such
bypass

7

Anc(
Z)

Ancout(S)(Y)

Figure 3: Illustra-
tion of vertex cut S
from Anc(Z) to Y.

From the noise view, the noise components that constitute variables Z are
exactly the exogenous noises corresponding to vertices Anc(Z). All these
noises must contribute to Y (if any) via S, and thus Y can be written as
Y = LS + E0

Y, where L denotes a linear transformation, and E0
Y ?? Z.

Denote by S⇤
Z;Y the critical vertex cut from Z to Y3, the noise components

of !|Y is exactly the exogenous noises corresponding to Ancout(S⇤
Z;Y)(Y).

3.4 Formal Definition of TIN
With the graphical criteria given in §3.3, we could use it for structure inference
as long as we have the (dimension of) independent linear transformation
subspace ⌦Z;Y. In §5 we will comprehensively discuss methods to estimate
⌦Z;Y, while for now, we could just safely suppose we have ⌦Z;Y: since
independence is testable, theoretically one could get ⌦Z;Y at least by traversing over R|Y|.

2See Definition 2.7 in [47] for definition of t-separation. See Appendix C for details.
3See Appendix D.1 for definition. Roughly speaking, “critical” means a smallest and last vertex cut.
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Table 1: Examples of TIN on different (Z,Y) pairs over different graph structures in Figure 2.
(Z,Y) ({X1, X2}, {X3, X4, X5}) ({X1, X2}, {X4, X5}) ({X3}, {X1, X2, X4, X5}) ({X1, X4}, {X3, X4, X5})
Graph ID (a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d)

TIN(Z,Y) 1 1 2 1 1 1 2 1 3 2 3 1 2 2 3 2
dim(⌦Z;Y) 2 2 1 2 1 1 0 1 1 2 1 3 1 1 0 1
Anc(Z) X1,2 X1,2,3 X1,2 X1,2 X1,2 X1,2,3 X1,2 X1,2 X1,2,3 X1,3 X1,2,3 X3 X1,2,3,4 X1,3,4 X1,2,3,4 X1,2,3,4
S⇤

Z,Y X3 X3 X1,2 X4 X4 X4 X4,5 X4 X1,2,4 X1,3 X1,2,3 X3 X3,4 X3,4 X3,4,5 X3,4

Ao(S⇤)(Y) X4,5 X4,5 X3,4,5 X3,5 X5 X5 ? X3,5 X5 X2,4,5 X4,5 X1,2,4,5 X5 X5 ? X5

Definition 5 (TIN function). Let Z and Y be two subsets of observed random variables. Suppose
variables follow LiNGAM. We define a function TIN as follows:

TIN(Z,Y) := |Y|� dim(⌦Z;Y). (8)

TIN is a function that takes as input two random vectors Z,Y and returns an integer in range [0, |Y|].
Note that this is different to IN or GIN, which returns only a bool value (satisfied or not). GIN
can be viewed as a special case of TIN, i.e., GIN(Z,Y) is satisfied if and only if TIN(Z,Y) =
rank(cov(Z,Y)) < |Y| (where rank(cov(·)) can be characterized by [47]). IN can also be viewed
as a special case of TIN, i.e., IN(Z, Yi) is satisfied if and only if TIN(Z,Z [ {Yi}) = |Z|.
Example 6 (Review TIN graphical criteria on graphs). For better understanding of TIN, we demon-
strate some representative examples of TIN over different graph structures. Results are shown
in Table 1. We use the four graph structures in Figure 2. For illustration, assume we have access to
latent variables to directly conduct TIN over X̃. Graphical criteria correspond to G̃. For readability,
we omit all˜notation. We assume there are 5 vertices in the fully connected DAG (Figure 2c): con-
sider for example, GIN(X3, X1,2,4,5) does not hold, since rank(cov(Z,Y)) is only one (restricted
by Z size). However, there exists ! with degree of freedom 1 s.t. !|Y ?? Z - this corresponds to a
3-variables vertex cut X1,2,3 (Anc(Z) itself). Consider on Figure 2d, TIN(X1,2, X4,5) = 1, corre-
sponding to the 1-variable vertex cut X4. This example shows that vertex cut does not necessarily
yield a d-separation pattern (but blocking, instead), since here X5 6?? X1|X4.

The graphical criteria for TIN over any two sets of variables Z,Y are given as above. Interestingly, we
find that a special type of TIN is particularly simple in form and informative for structure inference:
Lemma 1 (Graphical criteria of TIN on one-and-others). Assume we have access to all variables X
on a DAG G. For each singleton variable Xi 2 X, let Z := {Xi} and Y := X\{Xi}, we have,

TIN({Xi},X\{Xi}) =
⇢
|Anc({Xi})| Xi is a non-leaf node
|Anc({Xi})|� 1 Xi is a leaf node

(9)

Due to a page limit, here we only give the main criteria of TIN. See Appendix D for more properties.

4 TIN Condition-Based Method for Measurement Error Models
In §3 we propose TIN condition over general LiNGAM model and give its graphical criteria. In
this section, we aim to exploit TIN on our specific task of interest: measurement error models.

X̃1

X̃2

X̃3

X̃6 X̃4

X̃5

X̃7

Figure 4: An exam-
ple of ordered group
decomposition.

4.1 Identifiability of Ordered Group Decomposition
Under our problem setting where X̃ follows LiNGAM, identifiability results
can greatly benefit from the non-Gaussianity of data. [54] shows that the
ordered group decomposition of G̃ is identifiable. First review definitions:
Definition 6 (Pure leaf child). On a DAG G, a vertex j is said to be a “pure
leaf child” of another vertex i, iff j is a leaf node with only one parent, i.

Particularly, if a variable X̃j is a pure leaf child of X̃i in G̃, then X̃j and X̃j

are naturally unidentifiable (e.g., X̃2 and X̃7 in Figure 4). The reason is that
the exogenous noise Ẽj of leaf X̃j does not contribute to any other variables,
just like its measurement noise Ej . Consequently, Xi and Xj can be viewed
as two equally positioned measurements of X̃i, without any asymmetry.
Definition 7 (Ordered group decomposition). Consider the underlying causal model G̃. The ordered
group decomposition can be defined by the following procedure: at each step, remove root vertices
and their pure leaf children nodes (if any) from graph, and append the removed ones as a new group.
Repeat this procedure to remove root vertices from the remaining graph, until the graph is empty.
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This procedure is equivalent to Definition 2 in [54]4. See Figure 4: roots are removed from graph in
order (color dark to light). The ordered group decomposition is X̃1 ! X̃2,7 ! X̃3,6 ! X̃4,5.

4.2 Exploit TIN to Identify Ordered Group Decomposition
Our task is to recover G̃ over X̃ by testing TIN over X. In notations above, X̃ and X are strictly
distinguished to denote unobserved and observed variables. However, actually this can be escaped:
Theorem 3 (Equivalence of TIN over latent and observed variables). For two disjoint observed
variables subsets Z,Y, and their respective underlying latent variables subsets Z̃, Ỹ,

TIN(Z,Y) = TIN(Z̃, Ỹ). (10)

Theorem 3 can either be proved by graphical criteria, or by showing how the rank of submatrices of
B is preserved among latent and observed variables. Interestingly, recall Proposition 1, we show the
inequivalence of d-separation and IN condition held between X̃ and X (raw independence). However,
TIN condition, which essentially finds transformed independence, holds equivalently on latent and
observed variables. With this equivalence, we can conduct TIN over observed variables X just as
if we have access to the latent ones X̃. Thus the problem can be restated without measurement error:
assuming causal sufficiency, by only using TIN over disjoint Z,Y, to what extent is G identifiable?

Under this equivalent problem, Lemma 1 can be used directly to identify the ordered group
decomposition of G̃: for each singleton observed variable Xi, test TIN and assign an order
ord(Xi) := TIN({Xi},X\{Xi}). Group variables with same ord, and then sort the groups by their
orders. Obviously, the ordered groups obtained by this procedure is consistent with Definition 7.
Example 7 (TIN on Figure 4). ord(Xi)7i=1 are respectively 1, 2, 3, 4, 4, 3, 2 (can verify by charac-
terization or graphically), so the group ordering is identified as X̃1 ! X̃2,7 ! X̃3,6 ! X̃4,5.

5 Estimating Linear Independent Transformation Subspace ⌦Z;Y

In the above sections we safely assume that we can always get⌦Z;Y, since theoretically independence
is testable and ! can be exhaustively traversed. In this section, we give practical methods to estimate
⌦Z;Y. Due to page limit we only give a summary for each. Please see Appendix E for details.

5.1 Tackling Down to Subsets of Y
Theorem 4 (TIN over Y subsets). For two variables sets Z,Y, TIN(Z,Y) = k (assume k > 0), iff
the following two conditions hold: 1) 8Y0 ✓ Y with |Y0| = k + 1 (if any), there exists non-zero !
s.t. !|Y0 ?? Z; and 2) 9Y0 ✓ Y with |Y0| = k, there exists no non-zero ! s.t. !|Y0 ?? Z.
This transforms the task of estimating the dimension of ⌦Z;Y to a simpler one: counting size of the
subsets Y0. Instead of all independence, here we only need to check existence of independence.

5.2 Constrained Independent Subspace Analysis (ISA)
Conduct Independent Subspace Analysis (ISA [48]) over variables Z and Y in the following form:

s =


I 0
0 WYY

� 
Z
Y

�
, (11)

where the de-mixing matrix is masked to only update the lower-right |Y|⇥ |Y| block WYY, with
upper-left |Z|⇥ |Z| block fixed as the identity and elsewhere fixed as zero. The independence between
WYYY as a group to Z is maximized. Since WYY is invertible, its rows span the whole R|Y|, so
the maximum number of rows that achieves WYY

|

i,:Y ?? Z is exactly the dimension of ⌦Z;Y.

5.3 Stacked Cumulants: Ranks Stopped Increasing
Definition 8 (Stacked 2D slices of cumulants). For two variables sets Z,Y and order k � 2, define:

 (k)
Z;Y :=

h
C(2)|
Z,Y · · · C(k)|

Z,Y

i
|

, where C(k) is matrix with C(k)
i,j := cum(Xi, · · · , Xi| {z }

k�1 times

, Xj). (12)

 (k)
Z;Y is a (k � 1)|Z| ⇥ |Y| matrix that vertically stacks 2D cumulants slices between Z,Y with

orders from 2 to k. When k = 2 it is cov(Z,Y). Ranks of (k)
Z;Y in the sequence k = 2, 3, ... satisfies:

4There is actually trivial difference, depending on how case with multiple roots is considered. See Example 13.
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Figure 5: Distance to truth group ordering (lower better). 4 implementations of TIN + 7 competitors.

Theorem 5 (rank( (k)
Z;Y) stopped increasing). For two variables sets Z,Y, there exists a finite order

k � 2 s.t. rank( (k+1)
Z;Y ) = rank( (k)

Z;Y). Moreover, TIN(Z,Y) equals rank( (k)
Z;Y) with this k.

We will show detailed characterization and graphical criteria of  (k)
Z;Y in Appendix E.1.

5.4 TIN in Two Steps: Solve Equations, and then Test for Independence
Motivation of §5.3 is that independence yields zero cumulants (not only 2nd-order uncorrelatedness),
i.e., ⌦Z;Y ✓ null( (k)

Z;Y), for any k � 2. Hence, we could solve equations introduced at each order
k and then check whether all solution ! 2 null( (k)

Z;Y) makes !|Y ?? Z (similar to GIN procedure).
More generally, ⌦Z;Y ✓ null(cov(f(Z),Y)) for any real-valued function f(·). E.g., solve equations
system {cov(log(Z2),Y)! = 0; cov(sin(Z),Y)! = 0; ···} and test whether !|Y ?? Z holds.

6 Experimental Results

In this section, we evaluate the performance of TIN in recovering the ordered group decompo-
sition of G̃ under measurement error. Specifically, four implementations of TIN are evaluated:
TIN-subsets(§5.1), TIN-ISA(§5.2), TIN-rank(§5.3), and TIN-2steps(§5.4). We compare our
method with PC [43], GES [8], ICA-LiNGAM [38], Direct-LiNGAM [40], CAMME-OICA [54],
NOTEARS [55], and SCORE [32]. Experiments are conducted on both synthetic and real-world data.

6.1 Synthetic Data
While our proposed method outputs correct ordered group decomposition for any G̃ (without as-
sumptions on graph structure), in the following simulation we consider specifically two cases: fully
connected DAG (Figure 2c) and chain structure (Figure 2a), of which the ordered group decomposition
are both X̃1 ) ··· ) X̃n�2, X̃n�1,n. We consider G̃ with the number of vertices n = 3, ··· , 10. Edges
weights (i.e., the nonzero entries of matrix A) are drawn uniformly from [�0.9,�0.5] [ [0.5, 0.9].
Exogenous noises Ẽ are sampled from uniform [[0, 1] to the power of c, c ⇠ [[5, 7], and measure-
ment errors are sampled from Gaussian N (0, 1) to the power of c, c ⇠ [[2, 4]. Sample size is 5, 000.
Observations are generated by Xi = X̃i +Ei. To show the effect of measurement error, we simulate
with noise-to-signal ratio NSR := var(Ei)/ var(X̃i) in {0.5, 1, 2, 3, 4}. To evaluate the output group
ordering, we use Kendall tau distance [22] to the ground-truth (in range [0, 1], the lower the better).
For algorithms returning DAG/PDAG, its ordering is first extracted according to Definition 7. Figure 5
shows the results. Each column subplot indicates an NSR setting. The error bar is from 50 random
generated instances. We can see that TIN-subsets and TIN-2steps are two best methods (ranks first
on 68/80 cases), which steadily stick near x-axis. They both find/check independence by solving equa-
tions cov(f(Z),Y)! = 0. TIN-ISA is slightly inferior (though still ranks 3rd), maybe due to the
bias to independence (of ! vectors) by ISA. TIN-rank fluctuates and performs worst (among TINs),
especially on the fully connected dense case. This might be explained by higher order cumulants’
sensitivity to outliers, and unreliable numerical rank tests (we simply use SVD and thresholding).
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Among the competitors, ICA-LiNGAM and SCORE are the strongest two, which remain relatively
stable with NSR growing larger (while e.g., Direct-LiNGAM deteriorates rapidly). Interestingly, they
both perform much better on fully connected DAGs than on chain structures, and ICA-LiNGAM
even performs better on larger graphs than on smaller ones. We will investigate the reason. Consider
CAMME-OICA, it relies heavily on mixing matrix parameter initialization, and thus performs gen-
erally weak. Weak results by PC, GES might be because of the unfair setting for them: they output
CPDAG and in both cases (fully connected and chain) here, naturally no ordering (directions) can
be determined. More experimental configuration and results discussions are in Appendix G.2.

6.2 Real-World Data
Sachs’s [33] is a real dataset that measures the expression levels of proteins in human cells under
various phospholipids. The ground-truth graph structure [33] contains 17 edges on 11 variables
(cell types), of which the ordered group decomposition is {plc,pkc}){pip2,pip3,pka,p38,jnk}){raf})
{mek}){erk,akt}. Result given by TIN-subsets achieves the best distance score 0.33: {plc,pkc,p38})
{raf,mek,pip2,pka,jnk}){pip3}){erk,akt}. This score on PC, GES, ICA-LiNGAM are 0.49, 0.69, 0.8
respectively. E.g., PC outputs {raf,pka}){mek}){plc,pip2,pip3,pkc,p38,jnk}){erk,akt}. Experiments
on another dataset, Teacher Burnout [4], also show TIN’s good performance. See Appendix H.5.

7 Conclusion and Discussions
In this work we define the Transformed Independent Noise (TIN) condition based on LiNGAM
causal model, which finds and checks for independence between a specific linear transformation
of some variables and others. We provide graphical criteria of TIN, which might further improve
identifiability of the latent-variable problem. Specifically on causal discovery under measurement
error, we exploit TIN to achieve identifiability of ordered group decomposition.

We summarize the future work as three fold: 1) For the measurement error model, in addition to
the special type (one-over-others), TIN over general Z,Y pairs can further improve identifiability.
See Appendix F.2; 2) TIN now only considers the dimension of ⌦Z;Y, while parameters might also
help to recover edges weights. See Appendix F.3; and 3) Reliable estimation of ⌦Z;Y can be formu-
lated as an orthogonal research problem. We believe there exists more solutions. See Appendix F.4.
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