
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HYPERGRAPH NEURAL NETWORK FOR INTEGER PRO-
GRAMMING WITH HIGH-DEGREE TERMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Complex real-world optimization problems often involve not only discrete deci-
sions, but also nonlinear relationships between variables represented in constraints
or objectives. A class of such problems can be modeled as integer programming
with high-degree terms, such as quadratic integer programming. The nonlinear-
ity makes integer programming problems far more challenging than their linear
counterparts. In this paper, we propose a hypergraph neural network (HNN) based
method to solve integer programming with high-degree terms. First, we present
a high-degree term-aware hypergraph representation to effectively capture both
high-degree information and variable-constraint interdependencies. Then, a hy-
pergraph neural network, that integrates convolution between variables and high-
degree terms with convolution between variables and constraints, is proposed to
predict solution values. Finally, a search process initialized from the predicted
solutions is performed to further refine the results. Comprehensive experimental
evaluations across a range of benchmarks demonstrate that our method consis-
tently outperforms both learning-based approaches and state-of-the-art solvers,
ultimately delivering superior solution quality with favorable efficiency.

1 INTRODUCTION

Integer programming has been widely applied to real-world applications involving discrete deci-
sions, such as photolithography scheduling (Deenen et al., 2023), supply chain optimization (Bai
et al., 2011), and routing optimization (Wu et al., 2022). Many integer programming problems are
NP-hard, requiring computational time and memory that grow exponentially with problem size to
be solved to optimality. In particular, nonlinear integer programming (NLIP) frequently arises in
practice due to physical laws (Ahmadi & Majumdar, 2016), statistical measures (Lejeune & Margot,
2016), nonlinear regression (Seyedan & Mafakheri, 2020), and other complex relationships. The
presence of nonlinearity makes these problems even more challenging to solve, highlighting the
need for efficient solution methods that go beyond traditional techniques.

Over the past few decades, many algorithms have been proposed to address the challenges of NLIP,
typically following two main approaches. Local approaches rely on gradient information to find
locally optimal solutions (Bazaraa et al., 2006), but often struggle with complex problem struc-
tures containing multiple local optima. Global approaches follow a divide-and-conquer strategy,
partitioning the solution space and searching within each partition to identify the optimal solution.
Examples include spatial branch-and-bound (Smith & Pantelides, 1999), which recursively parti-
tions the solution space and solves convex relaxations to establish bounds on the original problem,
and outer approximation (Kesavan et al., 2004), which iteratively constructs linear approximations
of the nonlinear feasible region. Despite their theoretical guarantees in reaching global optimality,
global approaches often incur prohibitive computational time for instances with highly nonlinear
terms or intricate constraint structures. Furthermore, algorithms for these approaches are typically
closed-source or tailored to specific NLIP, which restricts their broader application and potential for
improvement. These limitations motivate the exploration of alternative paradigms.

A promising alternative paradigm is machine learning, which has driven major advances in integer
linear programming (ILP) recently. The advances include learning better policies within specific
solvers, such as branching (Gasse et al., 2019; Nair et al., 2021; Maudet & Danoy, 2025) and pre-
solving (Liu et al., 2024), as well as learning general guidance for ILP solvers, such as solution

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

prediction (Ding et al., 2020; Geng et al., 2025) and neighborhood selection (Han et al., 2023; Ye
et al., 2023). However, due to the fundamental differences between linear and nonlinear formula-
tions, they are not directly applicable to NLIP. This gap underscores the substantial opportunity to
develop advanced learning techniques capable of addressing more complex problem classes.

Despite this promise, research on learning-based methods for NLIP remains relatively limited with
only a handful of works (Bonami et al., 2022; Ghaddar et al., 2023; Ferber et al., 2023). These
methods are mainly built on specific problem structures or algorithms, thus restricting their broader
applicability. It highlights the need for more general learning-based methods that can effectively
address a wide range of NLIP problems and operate across different solvers.

To address these limitations, this paper aims to push the frontier of learning-for-NLIP towards solv-
ing general integer programming with high-degree terms (IPHD), a natural and important subclass
of NLIP, such as quadratic and quintic integer programming. By Taylor’s formula (Rudin, 1987),
IPHD captures many practical nonlinearities and is representative of NLIP challenges that cannot be
efficiently solved by current solvers. Instead, we target learning-based NLIP and propose a hyper-
graph neural network (HNN)-based model that predicts variable values in optimal solutions based
on a hypergraph representation of problem instances. The predicted solution serves as an effective
initial solution, which can be further refined by any solver or complementary search algorithm. Our
major contributions are summarized as follows.

• We develop a hypergraph representation for general integer programming problems with
high-degree terms, which encodes interactions among variables within high-degree terms
and relations between variables and constraints in the overall problem structure.

• We propose a hypergraph neural network that learns the mapping between problem in-
stances and their corresponding optimal solutions. It applies a convolution across variables
and high-degree terms to capture variable representations, together with a convolution be-
tween variables and constraints to further involve variable-constraint interdependencies.

• We conduct experiments on diverse benchmark datasets. They demonstrate the superior
performance of our method in enhancing Gurobi and SCIP for solving quadratic and quintic
integer programming problems with much higher efficiency.

2 RELATED WORK

2.1 LEARNING-BASED METHODS FOR ILP

This line of research can be broadly categorized into two classes (Bengio et al., 2021; Zhang et al.,
2023). The first class concerns learning key policies within solvers. Among these, the most studied
include variable selection (Gasse et al., 2019; Gupta et al., 2020; Sun et al., 2021; Nair et al., 2021;
Zarpellon et al., 2021; Feng & Yang, 2025; Li et al., 2025) and node selection (Labassi et al., 2022;
Maudet & Danoy, 2025). Other policies include cutting plane selection (Deza & Khalil, 2023; Tang
et al., 2020; Huang et al., 2022; Wang et al., 2024), primal heuristic selection (Chmiela et al., 2021),
parameter tuning (Xu et al., 2011), and presolving settings (Liu et al., 2024; Kuang et al., 2025).

The second class focuses on learning general policies that are applicable across different solvers.
One approach involves predicting solutions, either as initial solution values for further refinement
(Song et al., 2020; Ding et al., 2020; Huang et al., 2024) or as direct feasible solutions (Geng et al.,
2025; Liu et al., 2025; Heydaribeni et al., 2024; Tang & Khalil, 2024). Another direction involves
learning strategies in general heuristics, including neighborhood selection strategy for large neigh-
borhood search (Liu et al., 2022; Ye et al., 2023; Han et al., 2023; Huang et al., 2023; Ye et al., 2025;
Zhang et al., 2025) and search strategy for diving heuristics (Nair et al., 2021).

2.2 LEARNING-BASED METHODS FOR NLIP

The learning-based methods for NLIP remain underexplored in the literature. A few noteworthy
contributions have developed learning-for-NLIP methods in specific problems. Bonami et al. (2022)
trained a classifier to decide whether linearizing quadratic integer programs leads to better solver
performance. Ferber et al. (2023) proposed to learn surrogate linear objective functions for nonlinear
programs with linear constraints. Tang et al. (2024) introduced differentiable correction layers for

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

end-to-end learning on parametric nonlinear programming with fixed problem structure. Chen et al.
(2025) studied the theoretical expressive power of graph neural networks for quadratic terms. While
these works represent valuable progress, they are all tailored to specific problem settings and do not
generalize to integer programming with high-degree terms (IPHD).

Two recent studies are more directly related to our work. Xiong et al. (2024) developed a hypergraph
neural network to predict solutions for quadratic programming. However, both their hypergraph rep-
resentation and neural network are restricted to quadratic terms, whereas our framework is designed
to handle IPHD with arbitrary degrees. Ghaddar et al. (2023) applied quantile regression to learn
instance-specific branching rules inside a closed-source solver. This approach requires access to in-
ternal solver modifications and is limited to a specific solver, while our approach predicts solutions
that can be applied as external initial solution values for any solver without internal changes.

Together, these studies highlight the promise and the gap of learning-based methods. Our work fills
this gap by proposing a hypergraph neural network framework that addresses integer programming
with arbitrary high-degree terms and integrates seamlessly with existing solvers.

3 PRELIMINARIES

3.1 DEFINITION OF INTEGER PROGRAMMING WITH HIGH-DEGREE TERMS

Integer programming with high-degree terms (IPHD) refers to a class of optimization problems to
maximize or minimize an objective function defined over a set of integer variables, while satisfying a
set of constraints. In IPHD, either the objective function or the constraints are expressions of linear,
quadratic, or higher-order monomial terms. Formally, the mathematical formulation of IPHD with
n variables and m constraints is presented as follows for clarity:

min
x

/max
x

∑
|α|≤d0

c0,α

n∏
i=1

xαi
i , (1)

s.t.
∑

|α|≤dj

cj,α

n∏
i=1

xαi
i ≤ bj , j = 1, 2, . . . ,m, (2)

li ≤ xi ≤ ui, i = 1, 2, . . . , n, (3)
xi ∈ Z, i = 1, 2, . . . , n, (4)

where α = (α1, α2, · · · , αn) ∈ (Z+∪{0})n represents the vector of variable degrees; |α| represents
the sum of all elements in α; c0,α and cj,α denote the coefficients of the term indexed by degree α
in the objective function and in the j-th constraint, respectively; d0 and dj are maximum degrees for
the objective function and the j-th constraint; bj is the right-hand-side scalar of the j-th constraint;
li and ui are lower and upper bounds for integer variable xi, respectively.

3.2 GRAPH REPRESENTATIONS FOR INTEGER PROGRAMMING

Graph-based representations are commonly used to transform integer programming (IP) instances
into structures suitable for graph neural network processing. The seminal work of Gasse et al. (2019)
introduced a bipartite graph in which one set of nodes represents variables and the other represents
constraints, with edges encoding variable-constraint incidences, i.e., a variable appearing in a con-
straint. Building on this idea, Ding et al. (2020) extended the representation to a tripartite graph by
adding nodes for representing the objective function, thereby enriching the structural information.
Subsequent GNN-based representations of IP are often built on bipartite graphs, owing to their ef-
fectiveness and simplicity (Gupta et al., 2020; Sun et al., 2021; Nair et al., 2021; Wu et al., 2021;
Liu et al., 2022; Labassi et al., 2022; Han et al., 2023; Ye et al., 2023; Huang et al., 2023; Liu et al.,
2024; Huang et al., 2024; Liu et al., 2025; Zhang et al., 2025).

While effectively capturing variable-constraint relationships, the current graph-based representa-
tions are restricted to pairwise interactions and thus struggle to model the nonlinear or higher-order
structures that frequently arise in practical IP problems. To overcome this limitation, Heydaribeni
et al. (2024) used hyperedges to connect variables appearing in the same constraint, and Xiong

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

𝐦𝐦𝐦𝐦𝐦𝐦 𝒇𝒇𝟏𝟏𝒙𝒙𝟏𝟏𝟑𝟑𝒙𝒙𝟐𝟐 + ⋯

s.t.

⋯+ 𝒈𝒈𝟏𝟏𝒙𝒙𝟏𝟏𝒙𝒙𝟐𝟐𝒙𝒙𝟑𝟑 + ⋯ ≤ 𝒃𝒃𝟏𝟏
⋮

⋯+ 𝒈𝒈𝒎𝒎𝒙𝒙𝒏𝒏𝟐𝟐 ≤ 𝒃𝒃𝒎𝒎
𝒍𝒍𝒍𝒍 ≤ 𝒙𝒙 ≤ 𝒖𝒖𝒖𝒖,𝒙𝒙 ∈ 𝒁𝒁

a) An IPHD instance

⋮

⋮

x1

x2

x3

xn

c1

cm

Hypergraph-based
convolution

Variable-constraint-
based convolution

Output layer

Predicted
solution

X(0)

X(1)

X(2)

C(0)

C(1)

ε

Neighborhood
search

Final solution

b) Hypergraph
representation

c) Solution prediction by
hypergraph neural network

d) Repair and refinement
by neighborhood search

𝒇𝒇𝟏𝟏,𝟑𝟑 , 𝒇𝒇𝟏𝟏,𝟏𝟏

(𝒈𝒈𝒎𝒎,𝟐𝟐]

Figure 1: The framework of the proposed method. For an IPHD problem instance shown in a),
our method first transforms it into a hypergraph shown in b), where orange circles denote hyper-
edges representing high-degree terms. Their raw features (term coefficients and variable degrees)
are illustrated in the orange dashed boxes. This hypergraph is then processed by a hypergraph neural
network shown in c) for representation learning and solution prediction, where ϵ, X(i), and C(i) rep-
resent the embeddings for hyperedges, variables after the i-th update, and constraints after the i-th
update, respectively. Finally, a neighborhood-search based repair-and-refinement process shown in
d) turns the predicted results into a high-quality feasible solution.

et al. (2024) employed hyperedges to represent quadratic terms involving both variables and con-
straints. Nonetheless, both hyperedge-based representations remain limited to specific problems
(e.g., IP with linear or quadratic terms) and cannot generalize to IP instances with arbitrary high-
degree terms. In this paper, we address this gap by proposing a hypergraph neural network tailored
for learning representations of IP with high-degree terms (IPHD).

4 METHODOLOGY

This section presents our hypergraph neural network framework for tackling IPHD problems, in-
cluding hypergraph representation, solution prediction via hypergraph neural network, and solution
repair and refinement. The overview of our framework is illustrated in Figure 1 and detailed below.

4.1 HIGH-DEGREE TERM-AWARE HYPERGRAPH REPRESENTATION

Representing general IPHDs poses two unique challenges: (i) high-degree terms induce multi-
variable interactions that cannot be captured by standard pairwise connections, and (ii) the satis-
faction of constraints depends intricately on variable assignments, forming another essential rela-
tionship. To address these challenges, we encode an IPHD instance as a hypergraph.

Formally, our hypergraph is defined as G = (V, C,H, E), where V denotes variable vertices, C de-
notes constraint vertices, H denotes hyperedges, and E denotes standard edges. In specific, each
variable xj in an IPHD instance is represented by a vertex v ∈ V , and each constraint is represented
by a vertex c ∈ C. For every high-degree term cα

∏
i′∈{1,··· ,|V|} x

αi′
i′ (with

∑
i′∈{1,··· ,|V|} αi′ ≥ 2)

appearing in either the objective function or a constraint, we create a hyperedge ϵ ∈ H that con-
nects all variables contained in the term. The raw features of the hyperedge ϵ are defined as
{ωvi′ϵ = (cα, αi′)}vi′∈Nϵ

, where Nϵ represents variables contained by ϵ. To model variable-
constraint relationships, we add an edge evc ∈ E between variable vertex v and constraint vertex c
whenever the corresponding variable appears with a nonzero coefficient in the corresponding con-
straint. The associated coefficient and variable degree are assigned as features of this edge, ensuring
that the numerical dependency between variable and constraint is preserved.

The hypergraph-based representation integrates both structural and parametric information of an
IPHD instance, and provides a foundation for the hypergraph neural network introduced in the next
subsection. A complete specification of the raw features is provided in Appendix A.1.

For example, Figure 1(b) illustrates the hypergraph representation for the IPHD instance in Fig-
ure 1(a). Variable vertices (left) and constraint vertices (right) represent variables and constraints
separately; edges (straight lines) represent variable-constraint relationships, connecting a variable to

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

each constraint in which it appears with a nonzero coefficient (e.g., x3 is connected to c1); hyper-
edges (circles) capture the complex relationships of variables in high-degree terms such as f1x3

1x2

and gm x2
n. The term f1x

3
1x2 has coefficient f1 and two variables with exponents 3 and 1, so the

raw features of its hyperedge are {(f1, 3), (f1, 1)}. Similarly, the raw features of the term gm x2
n are

{(gm, 2)}. Both raw features are illustrated in dashed boxes.

4.2 SOLUTION PREDICTION VIA HYPERGRAPH NEURAL NETWORK

According to the hypergraph representation of IPHD instances, the graph neural networks should
be able to capture two complementary relationships: (i) high-order interactions among variables in-
duced by high-degree terms, and (ii) interdependencies between variables and constraints. To this
end, we first build on concepts from Hypergraph Neural Networks (HNNs), which enable message
passing between vertices and hyperedges to model higher-order structures (Kim et al., 2024). With
an HNN, we introduce a hyperedge-based convolution that aggregates information from hyperedges
and integrates them into variable embeddings. Second, we design a variable-constraint-based con-
volution that propagates information along standard edges that represent variable-constraint interde-
pendencies. In Section 5.3, an ablation study demonstrates the effectiveness of the above modules.
Finally, the variable embeddings are passed through an output layer to generate the predictions of
variable values in high-quality solutions. The architecture of our model is illustrated in Figure 1(c).

4.2.1 HYPEREDGE-BASED CONVOLUTION

Our HNN begins with a hyperedge-based convolution, applied to hyperedges and variable vertices
contained by them, in order to effectively extract higher-order information arising from the high-
degree terms. Inspired by Huang & Yang (2021), we formulate the convolution as presented in
Eq. 5 and Eq. 6. This convolution proceeds in two steps: first, hyperedges aggregate embeddings
from all variable vertices they directly connect (Eq. 5); then, the updated hyperedge embeddings
are propagated back to the associated variable vertices (Eq. 6). In this way, information from high-
degree terms is jointly integrated into the embeddings of the variables they contain.

hϵ ←
∑
v∈Nϵ

hvhvϵ, ∀ϵ ∈ H, (5)

hv ← ϕH(hv,mean({hϵhvϵ}ϵ∈Nv)) + hv, ∀v ∈ V, (6)
Formally, hϵ and hv denote the embeddings for hyperedge ϵ and variable vertex v, respectively;
hvϵ is the embedding obtained from the raw features ωvϵ (see Section 4.1) through a two-layer
multi-layer perceptron (MLP). Nv is the set of hyperedges containing the variable v; Nϵ is the set
of variable vertices contained in the hyperedge ϵ. The function ϕH is parameterized by another
two-layer MLP activated by LeakyReLU. The hyperedge-based convolution is repeated for L itera-
tions. The input embeddings to the first iteration are initialized by applying two-layer MLPs to raw
features, while those to the latter iterations are from the previous iteration.

4.2.2 VARIABLE-CONSTRAINT-BASED CONVOLUTION

After the hyperedge-based convolution embeds higher-order relationships into variable vertices,
the model still needs to account for variable-constraint interdependencies. To this end, we apply
a variable-constraint-based convolution that explicitly processes message passing along the edges
connecting variable and constraint vertices.

This convolution operates through bidirectional message passing: variable embeddings (that already
aggregate higher-order information from the hyperedge-based convolution) are first propagated to
constraint vertices (Eq. 7), and the updated constraint representations are then passed back to the
variable vertices (Eq. 8). Through the two-step convolutions, variable embeddings are further in-
formed by the constraints in which the variables connect.

hc ← fC(hc,
∑
v∈Nc

ϕC(hc, hv, hvc)) + hc, ∀c ∈ C, (7)

hv ← fV(hv,
∑
c∈Nv

ϕV(hc, hv, hvc)) + hv, ∀v ∈ V, (8)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Formally, hc denotes the embedding for constraint vertex c; hv denotes the embedding for vari-
able vertex v; and hvc denotes the embedding of the edge ev,c connecting v and c. The set Nc

contains all variable vertices connected to constraint c, while Nv contains all constraint vertices
connected to variable v. Finally, ϕC , ϕV , fC , and fV are implemented as two-layer MLPs activated
by LeakyReLU. The variable-constraint-based convolution is executed once. The input embeddings
hv are passed from the hyperedge-based convolution while the inputs hc and hvc are initialized from
raw features of constraint vertices and edges via 2-layer MLPs, separately.

4.2.3 SOLUTION PREDICTION AND REFINEMENT

After hyperedge-based and variable-constraint-based convolutions, the variable embeddings involve
both high-order interactions from high-degree terms and the interdependencies between variables
and constraints. To generate solution predictions, we feed these embeddings into a two-layer MLP,
which outputs a scalar value for each variable representing its prediction.

The entire HNN is trained in a supervised manner using the binary cross-entropy loss: LBCE =

− 1
N

∑N
i=1[yi log(σ(ŷi)) + (1− yi) log(1− σ(ŷi))], where N is the number of logits, y ∈ {0, 1}N

and ŷ ∈ RN represent the ground truth and the predicted logits, σ(·) is the sigmoid function.

The predictions produced by our model can provide initial solution values for downstream algo-
rithms and solvers. To make use of them, we adopt a parallel neighborhood optimization framework
in (Ye et al., 2023; Xiong et al., 2024) that embeds an off-the-shelf solver to refine the predicted
solution during inference, as illustrated in Figure 1(d). Specifically, the framework employs adap-
tive large neighborhood search: it first repairs the raw predictions into feasible solutions by fixing
promising variables to their predicted values while allowing the remaining variables to be reopti-
mized by a solver such as Gurobi and SCIP, and then further refines these feasible solutions through
additional neighborhood search to achieve better objective values.

5 EXPERIMENTAL RESULTS

In this section, we conduct comprehensive experiments to demonstrate the effectiveness of our pro-
posed method in solving IPHD instances. We present and discuss the comparative results in Sec-
tion 5.2, and an ablation study on model architecture in Section 5.3.

5.1 SETUP

Benchmarks Our experiments were conducted on four IPHD benchmarks. The first two are syn-
thetic quadratic integer programming (QIP) benchmarks introduced by Xiong et al. (2024), derived
from two NP-hard problems: the Quadratic Multiple Knapsack Problem (QMKP) and the Random
Quadratically Constrained Quadratic Program (RandQCP). Each benchmark contains instances at
five scales (Mini, 1000, 2000, 5000, 10000), where the first three scales are used for training and all
but Mini are included in testing. The third benchmark is a subset of a public quadratic programming
benchmark QPLIB (Furini et al., 2019) selected by Xiong et al. (2024). Finally, we introduce a new
synthetic quintic integer programming benchmark based on the Capacitated Facility Location Prob-
lem with Traffic Congestion (CFLPTC). This dataset includes five instance scales (50×10, 50×20,
150×30, 200×30, 500×100), with the first four scales used for training and the last three for testing.
Detailed formulations and dataset descriptions are provided in Appendix B.

Baselines We compare our method against a learning-based method tailored for quadratic pro-
gramming (QP): NeuralQP (Xiong et al., 2024) which introduces a hypergraph neural network to
predict solutions for quadratically constrained QPs. Similar to our HNN model, the model of Neu-
ralQP serves as solution predictors and can be combined with exact solvers for repair and refine-
ment (see Section 4.2.3). We adopt SCIP and Gurobi as the exact solvers in this experiment, and we
also included them as standalone baselines to provide a comprehensive comparison. Hereafter, we
use “ModelName-G” and “ModelName-S” to represent a learning-based method that integrates the
“ModelName” model with Gurobi and SCIP, separately.

We also considered a very recent learning-based baseline, GNN QP (Chen et al., 2025), which pri-
marily investigates the theoretical expressive power of graph neural networks for quadratic terms.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison on QMKP datasets in terms of mean and standard deviation of gap%. The best
results are highlighted in bold and ∗ indicates statistically significant difference to the best results.

Method Train QMKP Overall
1000 2000 5000 10000

Gurobi – 14.03∗ 5.36∗ 29.12∗ 17.42∗ 16.41∗
±9.06

Neural
QP-G

Mini 3.75 0.14∗ 0.04 0.03
0.76±0.211000 4.00 0.14∗ 0.04 0.04

2000 – 0.12 0.04 0.04

Ours-G
Mini 4.06 0.14∗ 0.05 0.03

0.75±1.941000 3.59 0.15∗ 0.04 0.04
2000 – 0.09 0.04 0.03

SCIP – 5.13 31.74∗ 35.72∗ 6.92∗ 19.88∗
±13.15

Neural
QP-S

Mini 19.56∗ 0.18∗ 2.64∗ 6.21∗

5.92±6.741000 19.11∗ 0.15 2.60 5.95∗

2000 – 0.12 2.60 6.03∗

Ours-S
Mini 18.10∗ 0.20∗ 2.60 6.07∗

5.41±6.351000 16.59∗ 0.22∗ 2.60 6.18∗

2000 – 0.12 2.61 3.13

While this line of work provides valuable theoretical insights, we observed the empirical perfor-
mance of their suggested model is markedly worse than ours on the two synthetic quadratic bench-
marks. For completeness, we report and discuss these results in the Appendix D.

Metrics We evaluate performance using the relative primal gap (in percentage), defined as gap% =
|OBJ− BKS|/|BKS + 10−10| × 100, where OBJ is the objective value obtained by a method and
BKS is the best-known solution of the instance. For QPLIB instances, BKS values are publicly
available, while for synthetic datasets we set BKS to the best objective value found across our
experiments. Under the same time limit, a lower gap% indicates solutions closer to BKS and thus
stronger performance. To assess statistical significance, we apply the Mann–Whitney U test for
unpaired data and the Wilcoxon signed-rank test for paired data, both at the 95% confidence level.

Implementations During evaluation, all three learning-based methods followed the same proce-
dure: a trained model first generated a solution prediction, which was then improved using the
repair-and-refinement strategy (Section 4.2.3) under a fixed time limit. The exact-solver baselines
(SCIP and Gurobi) were instead given the same time to solve each instance from scratch. Time
budgets varied by benchmark and instance scale: 100, 600, 1800, and 3600 seconds for QMKP and
RandQCP instances at scales 1000, 2000, 5000, and 10000, respectively; 100 seconds for QPLIB
instances; and 60, 60, and 1000 seconds for CFLPTC instances at scales 150×30, 200×30, and
500×100. Each method was run five times per instance to account for randomness.

For inference, we matched training and testing benchmarks where possible. On the three synthetic
benchmarks, models trained on the same benchmark with identical or smaller instance scales were
used. For QPLIB, our model was trained on QMKP-1000 instances, which we found structurally
closest to QPLIB. To ensure fairness, we compared against two NeuralQP variants: one trained on
QMKP-1000 (as with our model) and one trained on the combined QMKP-1000 and RandQCP-1000
datasets, following the original setup in Xiong et al. (2024). For CFLPTC, our model can directly
work on this quintic dataset, whereas the QIP-tailored NeuralQP cannot. To enable comparison,
we trained NeuralQP on a quadratic reformulation of CFLPTC obtained by introducing auxiliary
variables and constraints. The details of this reformulation are provided in Appendix B. Further
details on training and repair-and-refinement settings are provided in Appendix C.

5.2 COMPARATIVE EXPERIMENTS

The solving performance of our method and baselines on the four benchmarks is presented in Ta-
ble 1, Table 2, Table 3, and Table 4. Overall, NeuralQP consistently outperforms Gurobi and SCIP
across almost all test datasets, particularly on large-scale instances, which highlights the promise of

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Comparison on RandQCP datasets by mean and standard deviation of gap%. The best
results are highlighted in bold and ∗ indicates statistically significant difference.

Method Train RandQCP Overall
1000 2000 5000 10000

Gurobi – 2.67 4.65∗ 4.58∗ 5.36∗ 4.32∗
±1.09

Neural
QP-G

Mini 3.44∗ 2.14∗ 3.13∗ 3.14
2.92∗

±0.671000 3.42∗ 2.13 3.10∗ 3.14∗

2000 – 2.15∗ 3.13∗ 3.15∗

Ours-G
Mini 3.25 2.04 3.06 3.10

2.85±0.661000 3.32∗ 2.09 3.10 3.10
2000 – 2.08 3.06 3.11

SCIP – 38.11∗ 41.41∗ 37.85∗ 53.11∗ 42.62∗
±6.39

Neural
QP-S

Mini 0.50∗ 0.37∗ 0.25∗ 0.16
0.29∗

±0.151000 0.44 0.34 0.24∗ 0.18
2000 – 0.32 0.24∗ 0.19

Ours-S
Mini 0.36 0.27 0.19 0.10

0.24±0.141000 0.44∗ 0.29 0.17 0.12
2000 – 0.32 0.19 0.09

Table 3: Comparison on QPLIB instances by mean value and standard deviation of gap%. “# ID”
denotes the index of the test instance in QPLIB. “Mix” denotes NeuralQP trained on QMKP-1000
+ RandQCP-1000, and “QMKP” denotes NeuralQP trained only on QMKP-1000. The best results
are highlighted in bold and ∗ indicates statistically significant difference.

ID Gurobi NeuralQP-G Ours-G # ID Gurobi NeuralQP-G Ours-GMix QMKP Mix QMKP

2067 7.67 21.46 28.10 9.37 3860 48.95 3.30 15.92 14.69
2085 18.85 13.17 9.96 9.60 3841 26.69 7.85 9.90 6.13
3752 14.09 0.63 1.70 1.30 3883 8.25 1.04 0.36 0.63
2036 1.89 0.57 1.57 1.10 2957 2.11 1.41 2.07 0.71
2022 2.37 1.20 1.80 1.58 3402 2.80 6.95 7.10 6.64
2017 4.87 3.16 2.49 2.27 3347 0.52 0.33 0.20 0.34
2315 59.75 11.25 15.92 13.49 2733 1.38 0.37 0.28 0.38
3584 66.75 13.58 15.04 15.03 5962 16.89 10.76 15.04 7.06

Overall Gurobi NeuralQP-G
Mix

NeuralQP-G
QMKP Ours-G

17.74∗
±21.08 6.06±6.99 7.96±7.90 5.65±6.02

learning-based approaches for integer programming. On the QIP benchmarks, our method achieves
performance that is at least comparable to, and in several cases better than NeuralQP, and it also
achieves superior overall results across each QIP dataset. This observation is noteworthy given that
NeuralQP is specifically designed for QIP, whereas our approach is developed for the more general
class of IPHD problems with higher-order terms. On the quintic CFLPTC benchmark, our method
produces significantly better solutions than both Gurobi and NeuralQP (on quadratic reformulated
instances). In addition, the results indicate that our model can generalize to instances of consider-
ably larger scale than seen during training. These results collectively demonstrate the effectiveness
and generality of our approach across diverse benchmarks and instance scales.

5.3 ABLATION STUDY

To evaluate the impact of the two convolution modules, hyperedge-based convolution (see Sec-
tion 4.2.1) and variable-constraint-based convolution (see Section 4.2.2), on the learning ability of
our model, we conducted an ablation study. Specifically, we introduced two variants for comparison:
w/o-HyConv, which retains only the variable-constraint-based convolution, and w/o-VCConv, which
retains only the hyperedge-based convolution. A straightforward removal of one convolution would
leave the model unable to capture certain relationships; for example, w/o-VCConv cannot represent
dependencies between variables and constraints. To address this and ensure fairness, we designed

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Comparison on CFLPTC datasets by mean and standard deviation of gap%. The best results
are highlighted in bold and ∗ indicates statistically significant difference.

Method Train CFLPTC Overall
150×30 200×30 500×100

Gurobi – 51.42∗ 52.76∗ 38.66∗ 48.89∗
±11.11

Neural
QP-G

Small 28.03∗ 35.77∗ 23.82∗
37.04∗

±13.95Medium 42.20∗ 57.24∗ 26.47∗

Ours-G Small 9.95∗ 8.96 2.78 6.59±6.39Medium 5.23 7.08 2.65

alternative representations that allow w/o-HyConv and w/o-VCConv to access all relationships in
IPHDs while differing as little as possible from our original hypergraph representation, which are
provided in Appendix C. Apart from the absence of one convolution and the modified representation,
all other architectural and implementation settings remain identical to our full method.

We trained w/o-HyConv and w/o-VCConv on the 1000-scaled training datasets from the QMKP
and RandQCP benchmarks, and subsequently evaluated their performance on the corresponding
1000-scaled and 2000-scaled test datasets. During inference, Gurobi was employed for repair-and-
refinement. For evaluation, we used the validation F1-score to measure predictive performance and
gap% to measure solving performance. The results, summarized in Table 5, indicate that both the
hyperedge-based and variable-constraint-based convolutions are essential to the HNN architecture,
as removing either convolution mechanism leads to a noticeable drop in performance.

Table 5: Comparison of our model and ablation baselines in terms of validation F1-score (left) and
gap% (right). The best results are highlighted in bold.

Validation F1-score Mean gap%

Method QMKP RandQCP QMKP RandQCP

1000 2000 1000 2000

w/o-VCConv 0.73 0.74 4.62 0.15 3.39 2.15
w/o-HyConv 0.74 0.77 4.82 0.13 3.37 2.15
Ours 0.78 0.79 3.59 0.15 3.32 2.09

6 CONCLUSION

This paper introduces a novel hypergraph neural network (HNN) framework for solving integer
programming problems with high-degree terms (IPHD). Our approach contributes two key innova-
tions: a high-degree-aware hypergraph representation that effectively captures variable interactions
in high-degree terms and variable-constraint interdependencies inherent in IPHD problems, and a
hypergraph neural network architecture that integrates hypergraph-based and bipartite-graph-based
convolutions to enable accurate solution prediction. Comprehensive experimental evaluation across
quadratic and quintic programming problems demonstrates that our method significantly outper-
forms both state-of-the-art exact solvers and specialized learning-based approaches, establishing its
remarkable effectiveness and practical value for challenging IPHD applications.

While promising, our work represents just one step toward addressing the broader challenges of
nonlinear integer programming. Future research directions include: 1) designing more comprehen-
sive representations for general nonlinear instances such as those with trigonometric and logarithmic
functions; 2) exploring end-to-end frameworks that directly output feasible solutions without requir-
ing repair mechanisms; and 3) integrating advanced large language models to automate problem
solving and reduce reliance on domain-specific knowledge or manual intervention.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide detailed information to ensure the reproducibility of our results. A complete description
of our method is given in Section 4.2. Components that are only briefly introduced in the main
text, including raw feature selection and the repair-and-refinement procedure, are further detailed in
Appendix A.1 and Appendix A.2, respectively. Implementation details for model training are pro-
vided in Appendix C, while the evaluation setup is described in Section 5.1. A detailed description
of the synthetic benchmarks is included in Appendix B. To further support reproducibility, we will
release our code and data on GitHub upon acceptance, enabling researchers to fully replicate our
experiments and results.

REFERENCES

Amir Ali Ahmadi and Anirudha Majumdar. Some applications of polynomial optimization in oper-
ations research and real-time decision making. Optimization Letters, 10:709–729, 2016.

Yun Bai, Taesung Hwang, Seungmo Kang, and Yanfeng Ouyang. Biofuel refinery location and
supply chain planning under traffic congestion. Transportation Research Part B: Methodological,
45(1):162–175, 2011.

Mokhtar S Bazaraa, Hanif D Sherali, and Chitharanjan M Shetty. Nonlinear programming: theory
and algorithms. John wiley & Sons, 2006.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. European Journal of Operational Research, 290(2):
405–421, 2021.

Pierre Bonami, Andrea Lodi, and Giulia Zarpellon. A classifier to decide on the linearization of
mixed-integer quadratic problems in cplex. Operations Research, 70(6):3303–3320, 2022.

Ziang Chen, Xiaohan Chen, Jialin Liu, Xinshang Wang, and Wotao Yin. Expressive power of
graph neural networks for (mixed-integer) quadratic programs. In Forty-second International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=
rcMeab1QVn.

Antonia Chmiela, Elias Khalil, Ambros Gleixner, Andrea Lodi, and Sebastian Pokutta. Learning to
schedule heuristics in branch and bound. Advances in Neural Information Processing Systems,
34:24235–24246, 2021.

Patrick Deenen, Wim Nuijten, and Alp Akcay. Scheduling a real-world photolithography area with
constraint programming. IEEE Transactions on Semiconductor Manufacturing, 36(4):590–598,
2023.

Arnaud Deza and Elias B Khalil. Machine learning for cutting planes in integer programming: a sur-
vey. In Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence,
pp. 6592–6600, 2023.

Jian-Ya Ding, Chao Zhang, Lei Shen, Shengyin Li, Bing Wang, Yinghui Xu, and Le Song. Acceler-
ating primal solution findings for mixed integer programs based on solution prediction. Proceed-
ings of the AAAI Conference on Artificial Intelligence, 34(02):1452–1459, 2020.

Shengyu Feng and Yiming Yang. Sorrel: Suboptimal-demonstration-guided reinforcement learning
for learning to branch. In The 39th Annual AAAI Conference on Artificial Intelligence, 2025.

Aaron M Ferber, Taoan Huang, Daochen Zha, Martin Schubert, Benoit Steiner, Bistra Dilkina,
and Yuandong Tian. Surco: Learning linear surrogates for combinatorial nonlinear optimization
problems. In International Conference on Machine Learning, pp. 10034–10052. PMLR, 2023.

Fabio Furini, Emiliano Traversi, Pietro Belotti, Antonio Frangioni, Ambros Gleixner, Nick Gould,
Leo Liberti, Andrea Lodi, Ruth Misener, Hans Mittelmann, et al. QPLIB: a library of quadratic
programming instances. Mathematical Programming Computation, 11:237–265, 2019.

10

https://openreview.net/forum?id=rcMeab1QVn
https://openreview.net/forum?id=rcMeab1QVn

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combi-
natorial optimization with graph convolutional neural networks. Advances in neural information
processing systems, 32, 2019.

Zijie Geng, Jie Wang, Xijun Li, Fangzhou Zhu, Jianye HAO, Bin Li, and Feng Wu. Differentiable
integer linear programming. In The Thirteenth International Conference on Learning Represen-
tations, 2025. URL https://openreview.net/forum?id=FPfCUJTsCn.

Bissan Ghaddar, Ignacio Gómez-Casares, Julio González-Dı́az, Brais González-Rodrı́guez, Beatriz
Pateiro-López, and Sofı́a Rodrı́guez-Ballesteros. Learning for spatial branching: An algorithm
selection approach. INFORMS Journal on Computing, 35(5):1024–1043, 2023.

Prateek Gupta, Maxime Gasse, Elias B. Khalil, M. Pawan Kumar, Andrea Lodi, and Yoshua Bengio.
Hybrid models for learning to branch. In Proceedings of the 34th International Conference on
Neural Information Processing Systems, NIPS ’20, Red Hook, NY, USA, 2020. Curran Associates
Inc. ISBN 9781713829546.

Qingyu Han, Linxin Yang, Qian Chen, Xiang Zhou, Dong Zhang, Akang Wang, Ruoyu Sun, and
Xiaodong Luo. A gnn-guided predict-and-search framework for mixed-integer linear program-
ming. In The Eleventh International Conference on Learning Representations, ICLR 2023, Ki-
gali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/
forum?id=pHMpgT5xWaE.

Nasimeh Heydaribeni, Xinrui Zhan, Ruisi Zhang, Tina Eliassi-Rad, and Farinaz Koushanfar. Dis-
tributed constrained combinatorial optimization leveraging hypergraph neural networks. Nature
Machine Intelligence, 6(6):664–672, 2024.

Kaj Holmberg, Mikael Rönnqvist, and Di Yuan. An exact algorithm for the capacitated facility
location problems with single sourcing. European Journal of Operational Research, 113(3):544–
559, 1999.

Jing Huang and Jie Yang. UniGNN: a unified framework for graph and hypergraph neural networks.
In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21,
2021.

Taoan Huang, Aaron M Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. Searching large
neighborhoods for integer linear programs with contrastive learning. In International conference
on machine learning, pp. 13869–13890. PMLR, 2023.

Taoan Huang, Aaron M Ferber, Arman Zharmagambetov, Yuandong Tian, and Bistra Dilkina. Con-
trastive predict-and-search for mixed integer linear programs. In Ruslan Salakhutdinov, Zico
Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
(eds.), Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pp. 19757–19771. PMLR, 21–27 Jul 2024. URL
https://proceedings.mlr.press/v235/huang24f.html.

Zeren Huang, Kerong Wang, Furui Liu, Hui-Ling Zhen, Weinan Zhang, Mingxuan Yuan, Jianye
Hao, Yong Yu, and Jun Wang. Learning to select cuts for efficient mixed-integer programming.
Pattern Recognition, 123:108353, 2022. ISSN 0031-3203. doi: https://doi.org/10.1016/j.patcog.
2021.108353. URL https://www.sciencedirect.com/science/article/pii/
S0031320321005331.

Padmanaban Kesavan, Russell J Allgor, Edward P Gatzke, and Paul I Barton. Outer approximation
algorithms for separable nonconvex mixed-integer nonlinear programs. Mathematical Program-
ming, 100:517–535, 2004.

Sunwoo Kim, Soo Yong Lee, Yue Gao, Alessia Antelmi, Mirko Polato, and Kijung Shin. A survey
on hypergraph neural networks: An in-depth and step-by-step guide. In Proceedings of the 30th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 6534–6544, 2024.

Yufei Kuang, Xijun Li, Jie Wang, Fangzhou Zhu, Meng Lu, Zhihai Wang, Jia Zeng, Houqiang
Li, Yongdong Zhang, and Feng Wu. Accelerate presolve in large-scale linear programming via
reinforcement learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 47(8):
6660–6672, 2025. doi: 10.1109/TPAMI.2025.3562286.

11

https://openreview.net/forum?id=FPfCUJTsCn
https://openreview.net/forum?id=pHMpgT5xWaE
https://openreview.net/forum?id=pHMpgT5xWaE
https://proceedings.mlr.press/v235/huang24f.html
https://www.sciencedirect.com/science/article/pii/S0031320321005331
https://www.sciencedirect.com/science/article/pii/S0031320321005331

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Abdel Ghani Labassi, Didier Chételat, and Andrea Lodi. Learning to compare nodes in branch and
bound with graph neural networks. In Proceedings of the 36th International Conference on Neural
Information Processing Systems, NIPS ’22, Red Hook, NY, USA, 2022. Curran Associates Inc.
ISBN 9781713871088.

Miguel A Lejeune and François Margot. Solving chance-constrained optimization problems with
stochastic quadratic inequalities. Operations Research, 64(4):939–957, 2016.

Sirui Li, Janardhan Kulkarni, Ishai Menache, Cathy Wu, and Beibin Li. Towards foundation models
for mixed integer linear programming. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=6yENDA7J4G.

Chang Liu, Zhichen Dong, Haobo Ma, Weilin Luo, Xijun Li, Bowen Pang, Jia Zeng,
and Junchi Yan. L2P-MIP: Learning to presolve for mixed integer programming.
In B. Kim, Y. Yue, S. Chaudhuri, K. Fragkiadaki, M. Khan, and Y. Sun (eds.),
International Conference on Representation Learning, volume 2024, pp. 7518–7539,
2024. URL https://proceedings.iclr.cc/paper_files/paper/2024/file/
1e6e0c2edb159b2ad2f9419b898f56d3-Paper-Conference.pdf.

Defeng Liu, Matteo Fischetti, and Andrea Lodi. Learning to search in local branching. In Proceed-
ings of the aaai conference on artificial intelligence, volume 36, pp. 3796–3803, 2022.

Haoyang Liu, Jie Wang, Zijie Geng, Xijun Li, Yuxuan Zong, Fangzhou Zhu, Jianye HAO, and Feng
Wu. Apollo-MILP: An alternating prediction-correction neural solving framework for mixed-
integer linear programming. In The Thirteenth International Conference on Learning Represen-
tations, 2025. URL https://openreview.net/forum?id=mFY0tPDWK8.

Gwen Maudet and Grégoire Danoy. Search strategy generation for branch and bound using ge-
netic programming. Proceedings of the AAAI Conference on Artificial Intelligence, 39(11):
11299–11308, Apr. 2025. doi: 10.1609/aaai.v39i11.33229. URL https://ojs.aaai.org/
index.php/AAAI/article/view/33229.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Lichocki, Ivan Lobov, Bren-
dan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, Ravichandra
Addanki, Tharindi Hapuarachchi, Thomas Keck, James Keeling, Pushmeet Kohli, Ira Ktena, Yu-
jia Li, Oriol Vinyals, and Yori Zwols. Solving mixed integer programs using neural networks,
2021. URL https://arxiv.org/abs/2012.13349.

Walter Rudin. Real and complex analysis. McGraw-Hill, Inc., 1987.

Mahya Seyedan and Fereshteh Mafakheri. Predictive big data analytics for supply chain demand
forecasting: methods, applications, and research opportunities. Journal of Big Data, 7(1):53,
2020.

Edward MB Smith and Constantinos C Pantelides. A symbolic reformulation/spatial branch-and-
bound algorithm for the global optimisation of nonconvex MINLPs. Computers & chemical
engineering, 23(4-5):457–478, 1999.

Jialin Song, Ravi lanka, Yisong Yue, and Bistra Dilkina. A general large neigh-
borhood search framework for solving integer linear programs. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural In-
formation Processing Systems, volume 33, pp. 20012–20023. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/e769e03a9d329b2e864b4bf4ff54ff39-Paper.pdf.

Haoran Sun, Wenbo Chen, Hui Li, and Le Song. Improving learning to branch via reinforcement
learning, 2021. URL https://openreview.net/forum?id=M_KwRsbhi5e.

Bo Tang and Elias B Khalil. Cave: A cone-aligned approach for fast predict-then-optimize with bi-
nary linear programs. In International Conference on the Integration of Constraint Programming,
Artificial Intelligence, and Operations Research, pp. 193–210. Springer, 2024.

Bo Tang, Elias B Khalil, and Ján Drgoňa. Learning to optimize for mixed-integer non-linear pro-
gramming. arXiv preprint arXiv:2410.11061, 2024.

12

https://openreview.net/forum?id=6yENDA7J4G
https://proceedings.iclr.cc/paper_files/paper/2024/file/1e6e0c2edb159b2ad2f9419b898f56d3-Paper-Conference.pdf
https://proceedings.iclr.cc/paper_files/paper/2024/file/1e6e0c2edb159b2ad2f9419b898f56d3-Paper-Conference.pdf
https://openreview.net/forum?id=mFY0tPDWK8
https://ojs.aaai.org/index.php/AAAI/article/view/33229
https://ojs.aaai.org/index.php/AAAI/article/view/33229
https://arxiv.org/abs/2012.13349
https://proceedings.neurips.cc/paper_files/paper/2020/file/e769e03a9d329b2e864b4bf4ff54ff39-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/e769e03a9d329b2e864b4bf4ff54ff39-Paper.pdf
https://openreview.net/forum?id=M_KwRsbhi5e

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer programming:
learning to cut. In Proceedings of the 37th International Conference on Machine Learning,
ICML’20. JMLR.org, 2020.

United States Bureau of Public Roads. Traffic Assignment Manual for Application with a Large,
High Speed Computer, volume 37. U.S. Department of Commerce, Bureau of Public Roads,
Office of Planning, Urban Planning Division, 1964.

Jie Wang, Zhihai Wang, Xijun Li, Yufei Kuang, Zhihao Shi, Fangzhou Zhu, Mingxuan Yuan, Jia
Zeng, Yongdong Zhang, and Feng Wu. Learning to cut via hierarchical sequence/set model
for efficient mixed-integer programming. IEEE Trans. Pattern Anal. Mach. Intell., 46(12):
9697–9713, December 2024. ISSN 0162-8828. doi: 10.1109/TPAMI.2024.3432716. URL
https://doi.org/10.1109/TPAMI.2024.3432716.

Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Learning large neighborhood search policy
for integer programming. Advances in Neural Information Processing Systems, 34:30075–30087,
2021.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuris-
tics for solving routing problems. IEEE Transactions on Neural Networks and Learning Systems,
33(9):5057–5069, 2022. doi: 10.1109/TNNLS.2021.3068828.

Zhixiao Xiong, Fangyu Zong, Huigen Ye, and Hua Xu. NeuralQP: A general hypergraph-based
optimization framework for large-scale QCQPs. arXiv preprint arXiv:2410.03720, 2024.

Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Hydra-MIP: Automated algorithm
configuration and selection for mixed integer programming. In RCRA workshop on experimental
evaluation of algorithms for solving problems with combinatorial explosion at the international
joint conference on artificial intelligence (IJCAI), pp. 16–30, 2011.

Huigen Ye, Hua Xu, Hongyan Wang, Chengming Wang, and Yu Jiang. GNN&GBDT-guided fast
optimizing framework for large-scale integer programming. In International conference on ma-
chine learning, pp. 39864–39878. PMLR, 2023.

Huigen Ye, Hua Xu, An Yan, and Yaoyang Cheng. Large language model-driven large neighborhood
search for large-scale MILP problems. In Forty-second International Conference on Machine
Learning, 2025. URL https://openreview.net/forum?id=teUg2pMrF0.

Giulia Zarpellon, Jason Jo, Andrea Lodi, and Yoshua Bengio. Parameterizing branch-and-bound
search trees to learn branching policies. Proceedings of the AAAI Conference on Artificial
Intelligence, 35(5):3931–3939, May 2021. doi: 10.1609/aaai.v35i5.16512. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/16512.

Jiayi Zhang, Chang Liu, Xijun Li, Hui-Ling Zhen, Mingxuan Yuan, Yawen Li, and Junchi Yan.
A survey for solving mixed integer programming via machine learning. Neurocomputing, 519:
205–217, 2023.

Sijia Zhang, Shuli Zeng, Shaoang Li, Feng Wu, Shaojie Tang, and Xiangyang Li. Don’t restart,
just reuse: Reoptimizing MILPs with dynamic parameters. In Forty-second International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=
ZRGZ4OcfXV.

A DETAILS OF HNN-BASED FRAMEWORK

We present two key details of the HNN-based framework that were not covered in Section 4, allow-
ing interested readers to reproduce our work.

13

https://doi.org/10.1109/TPAMI.2024.3432716
https://openreview.net/forum?id=teUg2pMrF0
https://ojs.aaai.org/index.php/AAAI/article/view/16512
https://ojs.aaai.org/index.php/AAAI/article/view/16512
https://openreview.net/forum?id=ZRGZ4OcfXV
https://openreview.net/forum?id=ZRGZ4OcfXV

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.1 RAW FEATURES OF HYPERGRAPH REPRESENTATION

We present the raw features of our hypergraph representation in Table 6. The table organizes four key
components of our hypergraph representation that participate in convolutions. Each row corresponds
to one component, with the first column identifying the component name, the second column listing
its raw features, and the third column providing detailed descriptions of these features. Specifi-
cally, the variable vertices V are assigned nine-dimensional raw features that encode variable types,
bound information, and their roles in the objective function. Constraint vertices C are assigned four-
dimensional raw features based on their constraint sense and right-hand-side values. HyperedgesH
are assigned raw features whose length varies according to the number of variables they contain, as
introduced in Section 4.1. For a variable v contained in a hyperedge ϵ, a ωvϵ containing the term
coefficient and the variable’s exponent is added to ϵ’s raw features. Finally, standard edges E are as-
signed two-dimensional features that reflect coefficients and degrees of the corresponding variables
within their associated constraints.

Table 6: Raw Features of High-Degree Term-Aware Hypergraph Representation

Tensor Feature Description

V

type (continuous, binary, integer) as a one-hot encoding
lb Lower bound value of the variable
up Upper bound value of the variable
inf lb Binary indicator (1 if the lower bound is negative infinity,

0 otherwise)
inf ub Binary indicator (1 if the upper bound is positive infinity,

0 otherwise)
avg obj coe Average value of coefficients associated with this variable

in the objective function
avg obj deg Average degree of this variable across all terms in the ob-

jective function

C sense (<, >, =) as a one-hot encoding
rhs Numerical value on the right-hand side of the constraint

ωvϵ
deg Degree of each variable in the high-degree term
coe Coefficient value associated with the high-degree term

E avg coe Average value of coefficients across all terms containing
the variable in the associated constraint

avg deg Average degree of this variable across all terms contain-
ing it in the associated constraint

A.2 NEIGHBORHOOD SEARCH FOR REPAIR-AND-REFINEMENT

We implement parallel neighborhood optimization as described in (Ye et al., 2023; Xiong et al.,
2024), which incorporates two key components: a Q-repair-based repair strategy that efficiently
repairs model predictions into feasible solutions, and an iterated multi-neighborhood search that
refines these solutions to achieve higher quality. In the following, we provide detailed descriptions
of both components.

A.2.1 Q-REPAIR-BASED REPAIR STRATEGY

The Q-repair begins by selecting the αn variables with the largest predicted loss values to optimize,
while fixing the remaining (1 − α)n variables to their predicted values. Here, α ∈ [0, 1] is a pro-
portion that determines the neighborhood search size and n represents the total number of variables.
Then Q-repair traverses constraints to identify those that cannot be satisfied. This identification fol-
lows a greedy approach: calculating the upper and lower bounds of each term in the left-hand side,
summing these bounds, and comparing the result with the right-hand side. When an unsatisfied
constraint is detected, the variables involved in this constraint are incrementally added to the neigh-
borhood until either all variables from that constraint have been incorporated or the neighborhood

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

reaches a size limit of αubn variables. Q-repair terminates after evaluating all constraints and returns
the neighborhood (i.e., variables to be optimized) for repair.

Subsequently, the repair strategy employs exact solvers (such as Gurobi and SCIP) to optimize
the subproblem defined by the Q-repair neighborhood. If no feasible solution is identified within
the allocated time, Q-repair is repeated with an enlarged initial α = αstep + len(neighborhood)/n,
followed by another neighborhood search on the new expanded neighborhood. This iterative process
continues until a feasible solution is found, or α exceeds 1, or the maximum time to repair-and-refine
has been reached.

A.2.2 ITERATED MULTI-NEIGHBORHOOD SEARCH

The iterated multi-neighborhood search begins by generating a set of initial neighborhoods using a
sequential filling approach. Specifically, this process first randomly shuffles all constraints. Then,
it iteratively processes each constraint by sequentially adding its variables to the current neighbor-
hood. When the predefined neighborhood size limit is reached, a new neighborhood is created and
the process continues, until all constraints and their associated variables have been assigned to neigh-
borhoods. This process creates multiple neighborhoods where variables from the same constraint
tend to appear together in the same neighborhoods, thereby reducing the likelihood of constraint
violations. Next, using the solution obtained by the repair strategy as a starting point, subproblems
are formulated based on each neighborhood and optimized using exact solvers.

After that, the algorithm generates crossover neighborhoods to explore combinations of different
subproblem solutions. It groups all neighborhoods into pairs. For two neighborhoods N1 and N2 in
a pair with their respective subproblem solutions x1, x2, assuming x1 has equal or better objective
value than x2, a crossover neighborhood is created through two steps: 1) constructing a crossover
solution x′ by taking x′

i = x1
i for variables in N1 and x′

i = x2
i for other variables, and 2) applying

Q-repair on x′. Then, subproblems based on these crossover neighborhoods are optimized. The al-
gorithm selects the best solution among all the candidates, both initial neighborhoods and crossover
neighborhoods, to serve as the starting point for the next iteration. These two processes repeat until
the predetermined time limit is reached, with the best solution found across all iterations returned as
the final result.

B DETAILS OF BENCHMARKS

This section introduces the details of the synthetic datasets used in our experiments.

B.1 DETAILS OF SYNTHETIC QUADRATIC INSTANCES

In Section 5.3, we evaluate the efficiency of our HNN-based framework using two synthetic
quadratic datasets: QMKP and RandQCP, which are generated and provided by (Xiong et al., 2024).
The formulations of these problems are presented below.

The Quadratic Multiple Knapsack Problem (QMKP) extends the classic knapsack problem by in-
corporating multiple weight constraints and quadratic profit terms. It involves selecting items to
place in a knapsack with limited capacity across multiple weight dimensions. Each item yields an
individual profit, while specific pairs of items generate additional interactive profits when selected
together. The objective is to maximize the total profit while adhering to capacity constraints. QMKP
can be formulated as a quadratic programming problem as shown in Eq. 9-11:

max
∑
i

cixi +
∑

(i,j)∈E

qijxixj , (9)

s.t. aki xi ≤ bk, ∀k ∈M, (10)
xi ∈ {0, 1}, ∀i ∈ N, (11)

where xi is a binary variable indicating whether item i is selected, ci represents the individual profit
for item i, and qij denotes the interactive profit obtained by selecting both items i and j. The set E
contains item pairs with interactive profits, aki represents the k-th weight of item i, and bk denotes
the knapsack’s capacity on the k-th weight dimension. M and N represent the total number of
weight dimensions and items, respectively.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The Random Quadratically Constrained Quadratic Program (RandQCP) is an extension of the in-
dependent set problem. It aims to select vertices from a hypergraph to maximize total weights
while satisfying specified constraints on each hyperedge. The quadratic programming formulation
of RandQCP is given in Eq. 12-14.

max
∑
i∈V

cixi, (12)

s.t.
∑
i∈e

aixi +
∑

i,j∈e,i̸=j

qijxixj − |e| ≤ 0, ∀e ∈ E , (13)

xi ∈ {0, 1}, ∀i ∈ V, (14)

where V represents the set of vertices, E denotes the hyperedge set, ci is the weight associated with
vertex i, and ai and qij are the limitation coefficients for selecting vertex i and vertex pair (i, j),
respectively. The term e refers to a specific hyperedge, and |e| indicates the number of vertices
contained within hyperedge e.

For details of generation and access to the generated datasets, please refer to the original paper by
(Xiong et al., 2024).

B.2 DETAILS OF SYNTHETIC QUINTIC INSTANCES

To evaluate the effectiveness of our HNN-based method on more complex integer programming
problems, we generated synthetic quintic datasets based on the Capacitated Facility Location Prob-
lem under Traffic Congestion (CFLPTC) inspired by Bai et al. (2011) and Holmberg et al. (1999).
The formulation and generation procedures are detailed below.

B.2.1 FORMULATION OF CFLPTC

CFLPTC extends the standard capacitated facility location problem by incorporating traffic con-
gestion effects. Consider a scenario with m customers J = {1, · · · ,m} and n potential facility
locations I = {1, · · · , n}. Each customer j has a demand Dj , while each facility at location i in-
curs an opening cost oi and has a capacity Ci. Once opened, a facility can serve customers provided
that the total demand it satisfies does not exceed its capacity. Each customer must be served by ex-
actly one opened facility. The transportation cost for serving customer j from facility i depends on
the distance between them dij and the traffic congestion level. The objective is to determine which
facilities to open and how to assign customers to these facilities, so that the total cost comprising
facility opening costs and transportation expenses is minimized. The mathematical formulation is
presented in Eq. 15-20.

min
∑
i∈I

oiyi +
∑
i∈I

∑
j∈J

α(1 + 0.15eβi)dijxij (15)

s.t.
∑
i

xij = 1,∀j ∈ J, (16)

xij ≤ yi, ∀i ∈ I, j ∈ J, (17)∑
j

Djxij ≤ Ciyi, ∀i ∈ I, (18)

ei =

∑
j Djxij + bi

Ti
, ∀i ∈ I, (19)

xij , yi ∈ {0, 1}, ∀i ∈ I, j ∈ J. (20)

where yi and xij are binary variables to determine whether to open the facility at location i and
whether to assign customer j to the facility at location i, separately.

In the objective function Eq. 15, the transportation cost from facility i to customer j is expressed as
α(1+ 0.15eβi)dijxij , where the term α(1+ 0.15eβi) quantifies the additional cost induced by traffic
congestion. This formulation, together with Eq. 19 which determines ei, is derived from the Bureau

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

of Public Roads (BPR) function, an empirical formula for estimating increased transportation time
corresponding to congestion level (United States Bureau of Public Roads, 1964). In this context,
Ti represents the total traffic capacity surrounding facility location i and bi denotes the background
traffic flow in the vicinity. The parameters α and β are typically set to 1 and 4 respectively, which
make CFLPTC a quintic programming problem.

While CFLPTC technically falls under the category of mixed-integer programming due to its com-
bination of binary variables (xij , yi) and continuous variables (ei), it remains essentially an inte-
ger programming problem. This is because the continuous variables ei are merely auxiliary and
completely determined by the binary assignment variables xij . Therefore, it is methodologically
reasonable to include CFLPTC as a dataset in this work, which focuses on integer programming
problems.

B.2.2 QUADRATIC REFORMULATION OF CFLPTC

In Section 5.1, we compared our method against NeuralQP on the quintic CFLPTC instances. How-
ever, NeuralQP is designed exclusively for quadratic optimization problems and cannot directly
handle the quintic terms present in the original CFLPTC formulation. To enable this comparison,
we reformulated the quintic CFLPTC instances into equivalent quadratic problems by introducing
auxiliary variables that decompose higher-order terms. The reformulation strategy systematically
replaces quintic terms with chains of quadratic relationships. Specifically, for each i ∈ I , we define
e1i = e2i and e2i = e21i, which transform the quintic terms e4ixij into quadratic terms e2ixij . The
complete quadratic reformulation is presented in Eq. 21-24.

min
∑
i∈I

oiyi +
∑
i∈I

∑
j∈J

α(1 + 0.15e2i)dijxij (21)

s.t. Eq. 16 - 20, (22)

e1i = e2i , ∀i ∈ I, (23)

e2i = e21i, ∀i ∈ I, (24)

It is important to note that while lower-degree objective functions and constraints are generally
more tractable for optimization algorithms than their higher-degree counterparts, the reformulation
process inevitably introduces additional variables and constraints that can impose significant com-
putational overhead. For CFLPTC instances, the quadratic reformulation requires 2n additional
variables (e1i, e2i) and 2n additional quadratic constraints (Eq. 23 and 24), substantially increasing
the complexity. The increase of complexity may offset or even outweigh the computational ben-
efits gained from degree reduction, as solvers must now handle a larger search space and a more
complicated constraint set. Consequently, reformulating high-degree problems into lower-degree
equivalents does not guarantee improved optimization efficiency; the net effect depends on the trade-
off between reduced degree and increased problem complexity, which varies with specific problem
characteristics and solver capabilities. This trade-off underscores the importance of developing op-
timization methods that can directly handle high-degree integer programming problems rather than
relying solely on quadratic reformulations.

B.2.3 INSTANCE GENERATION

Following the approach in (Holmberg et al., 1999), we generated datasets at four distinct scales for
training, as detailed in Table 7. The notation U(a, b) indicates that the corresponding parameters are
randomly sampled from a uniform distribution ranging from a to b (inclusive). Both customer and
facility locations were generated within a two-dimensional Euclidean space according to the ”Coor-
dinate” specifications in Table 7, with distances calculated using the Euclidean metric. Consistently
across all datasets, the total traffic capacity Ti was generated as U(1, 4) · Ci, while the background
traffic flow bi was set to U(0.1, 1) · Ti.

For testing purposes, we generated 16 instances each at the 150×30 scale and the 200×30 scale, ad-
hering to the same parameter settings used for training datasets 3 and 4, respectively. Additionally,
we created 10 larger instances at the 500 × 100 scale, following the parameter settings of train-
ing dataset 1 but with adjusted values for m and n. These testing datasets enable comprehensive

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 7: Setting for CFLPTC Training Dataset Generation

Dataset Number m n Coordinate Dj oi Ci

1 1605 50 10 U(10, 200) U(10, 50) U(300, 700) U(100, 500)
2 1119 50 20 U(10, 200) U(30, 80) U(300, 700) U(100, 500)
3 984 150 30 U(10, 300) U(10, 50) U(300, 700) U(200, 600)
4 200 200 30 U(10, 200) U(10, 50) U(500, 1500) U(500, 800)

evaluation of our model’s capability to effectively tackle complex, large-scale integer programming
problems with high-degree terms.

C IMPLEMENTATION DETAILS

Model Details First, all raw features of the input hypergraph were transformed into initial embed-
dings through 2-layer MLPs activated by LeakyReLU, where the dimensions of hidden spaces and
output features are 64 and 16, respectively. The number of iterations for executing hyperedge-based
convolution is L = 6. The negative slopes of all LeakyReLU activations are set to 0.1.

Training Details We utilized AdamW with a learning rate of 1e-4 and weight decay of 1e-4 as the
optimizer to train our model. We set the batch size to 64 and training epochs to 100. On each training
dataset, our HNN models were trained on a supercomputer node with an NVIDIA A100 GPU and
an 18-core Intel Xeon Platinum 8360Y CPU. For fair comparison, we used the same device to train
the models of NeuralQP and GNN QP, with the same hyper-parameter settings as in their original
papers.

Inference Details Inference testing was conducted on a personal computer equipped with an 8-
core AMD Ryzen 7 7840HS CPU without GPU acceleration. We used Gurobi 12.0.0 and SCIP
9.2.0, the latest versions of both solvers at the time of evaluation.

We implemented the repair-and-refinement algorithm (see Appendix A.2) following the parameter
settings proposed by Xiong et al. (2024). Specifically, for the Q-repair-based repair strategy, we ini-
tialized the parameter α at 0.1, with αub = 1 and αstep = 0.05. For the iterated multi-neighborhood
search, the neighborhood size is defined as half the number of problem variables. For each sub-
problem occurring in both the Q-repair-based repair strategy and the iterated multi-neighborhood
search, we set a maximum wall-clock time of 60 seconds when addressing largest-scale instances:
10,000-scale QMKP and RandQCP problems, and 500×100-scale CFLPTC datasets. All other test-
ing datasets were limited to 30 seconds per subproblem. The repair-and-refinement stops when the
total wall-clock time reaches the preset limit (see Section 5.1).

Details of the Ablation Baselines In the ablation studies (Section 5.3), we construct baselines
that remain as comparable as possible to our HNN model while omitting the targeted convolu-
tion modules. Since simply removing a component would disable the model from capturing one
key relationship in IPHD, we make slight but necessary adjustments to their input representations.
For w/o-HyConv, the only change is the removal of hyperedges from the representation. For w/o-
VCConv, its hypergraph representation contains the same variable and constraint vertices as in our
representation but differs in that it has no edges and uses alternative hyperedges. These hyperedges
encode both variable interactions in high-degree terms and variable-constraint interdependencies:
each term is represented by a hyperedge connecting its variables and the constraint it belongs to.
The hyperedge features follow the same design as our representation.

D ADDITIONAL EXPERIMENTS TO COMPARE WITH GNN QP

As stated in Section 5.1, we compared our method with a very recent learning-based baseline,
GNN QP (Chen et al., 2025), which primarily investigates the theoretical expressive power of graph
neural networks for quadratic terms. We trained GNN QP on the two synthetic quadratic bench-
marks, QMKP and RandQCP, and evaluated it with Gurobi as repair-and-refinement on the same

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 8: Comparison on QMKP datasets in terms of mean and standard deviation of gap%. The best
results are highlighted in bold and ∗ indicates statistically significant difference to the best results.

Method Train QMKP Overall
1000 2000 5000 10000

Gurobi – 14.03∗ 5.36∗ 29.12∗ 17.42∗ 16.41∗
±9.06

Neural
QP-G

Mini 3.75 0.14∗ 0.04 0.03
0.76±0.211000 4.00 0.14∗ 0.04 0.04

2000 – 0.12 0.04 0.04

GNN
QP-G

Mini 12.46∗ 0.13 0.05 0.04
2.52∗

±5.331000 5.65 0.12 0.05 0.04
2000 – 0.18∗ 0.05 0.03

Ours-G
Mini 4.06 0.14∗ 0.05 0.03

0.75±1.941000 3.59 0.15∗ 0.04 0.04
2000 – 0.09 0.04 0.03

Table 9: Comparison on RandQCP datasets by mean and standard deviation of gap%. The best
results are highlighted in bold and ∗ indicates statistically significant difference.

Method Train RandQCP Overall
1000 2000 5000 10000

Gurobi – 2.67 4.65∗ 4.58∗ 5.36∗ 4.32∗
±1.09

Neural
QP-G

Mini 3.44∗ 2.14∗ 3.13∗ 3.14
2.92∗

±0.671000 3.42∗ 2.13 3.10∗ 3.14∗

2000 – 2.15∗ 3.13∗ 3.15∗

GNN
QP-G

Mini 3.47∗ 2.22∗ 3.23∗ 3.20∗

2.87∗
±0.801000 3.49∗ 2.19∗ 3.19∗ 3.21∗

2000 – 2.18∗ 3.13∗ 3.22∗

Ours-G
Mini 3.25 2.04 3.06 3.10

2.85±0.661000 3.32∗ 2.09 3.10 3.10
2000 – 2.08 3.06 3.11

benchmarks. Both training and evaluation used the same implementation settings as in our main ex-
periments. The results, presented in Table 8 and Table 9, demonstrate that our method consistently
outperforms GNN QP on most testing datasets.

E ADDITIONAL EXPERIMENTS TO EVALUATE MODEL PREDICTION

In Section 5 we have demonstrated the effectiveness of the complete HNN-based framework com-
posed of both HNN prediction and repair-and-refinement. To assess the quality of our HNN model’s
predictions as initial solution values without refinement, in this section we conducted additional ex-
periments that isolate the model’s predictive performance from the overall framework. We applied
our HNN models trained on RandQCP’s training data to the RandQCP test sets with 10,000-scaled
instances, and models trained on QMKP’s training data to the QMKP test sets with 10,000-scaled in-
stances. These largest-scale testing datasets are selected to rigorously assess prediction performance
for challenging instances. Since our HNN model generates initial solution values rather than directly
producing feasible solutions, we applied the Q-Repair-Based Repair Strategy based on Gurobi (de-
tailed in Appendix A.2) to convert model predictions into feasible solutions, with no further refine-
ment performed. We compared against NeuralQP with identical settings and Gurobi configured to
prioritize finding feasible solutions by setting “Params.MIPFocus = 1”, “Params.NonConvex = 2”,
and “Params.SolutionLimit = 1”.

We evaluated performance using three comprehensive metrics listed below, and present the compar-
ative results in Table 10.

• Feasible ratio: The percentage of model predictions that yield feasible solutions before
repair. A higher feasible ratio indicates stronger constraint satisfaction capability.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

• gap%: introduced in Section 5.1.

• Wall-clock time: For our method and NeuralQP, it is the time required to obtain a feasible
solution through the repair process, while for Gurobi it is the time required to obtain the
first feasible solution. Shorter times indicate that the model’s predictions can be more
efficiently converted into feasible solutions.

The results in Table 10 demonstrate that our HNN model achieves superior solution quality, as
evidenced by consistently lower mean gap% values compared to both baselines. This indicates that
our model’s predictions, after repair, are closer to the best-known solutions and provide higher-
quality initial solution values for optimization.

Table 10 also exhibits that our method shows a lower feasible ratio before repair and longer repair
times compared to the baseline methods. While these metrics might initially suggest limitations, a
closer examination reveals that they do not represent true disadvantages. In terms of feasible ratio,
although NeuralQP achieved a higher feasible ratio, both NeuralQP and Gurobi frequently generated
trivial solutions with all variables set to zero. Such trivial solutions, while technically feasible,
provide less guidance for subsequent refinement processes. Regarding computational time, although
our method requires longer repair times than NeuralQP and Gurobi, the actual repair time remains
very short (less than 1 second), which is highly acceptable given that 10,000-variable instances
typically require extensive search times. In summary, the comparative results demonstrate that our
HNN model is a practical choice for generating high-quality initial solution values.

Table 10: Comparison of our HNN model, NeuralQP and Gurobi in terms of prediction performance.

Method QMKP RandQCP

feasible
ratio (%) gap% time (ms) feasible

ratio (%) gap% time (ms)

Gurobi – 100 5.30 – 100 2.49
NeuralQP 100 99.10 163 0 53.30 392

Ours 66.67 77.40 946 0 51.74 835

F COMPLEXITY ANALYSIS

This section analyzes the memory requirements of the proposed hypergraph representation and the
arithmetic time complexity of the proposed HNN’s inference. We consider an IPHD instance with
n variables, m constraints, and nh high-degree terms. Let s denote the total number of variable
occurrences across all high-degree terms, and let ne denote the total number of variable-constraint
incidences, i.e., the number of times any variable appears with a nonzero coefficient in any con-
straint. These parameters allow us to demonstrate the efficiency of our method in terms of both
memory usage and computational complexity, as shown in the following subsections.

F.1 MEMORY REQUIREMENT FOR THE HYPERGRAPH REPRESENTATION

According to Section 4.1 and Appendix A.1, hypergraph representation of the IPHD instance com-
prises four components:

• n variable vertices, each with 9 raw features;

• m constraint vertices, each with 4 features;

• nh hyperedges, with s vertex-hyperedge coefficients, where each coefficient contains 2
floats;

• ne edges, each with 2 features;

Variable vertices and constraint vertices can be stored using their indices, while hyperedges and
edges can be stored using tuples of vertex indices they contain. In total, hypergraph structure requires
(n+m+ s+2ne) indices to represent. Additionally, there are (9n+4m+2ne +2s) raw features.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Assuming all indices are stored as 4-byte integers and raw features are stored as 8-byte floats (double
precision), the total memory requirement for the hypergraph representation is:

bytes = 76n+ 36m+ 20s+ 24ne. (25)

To illustrate this with a concrete example, consider the largest CFLPTC instances we tested, which
involve 500 customers and 100 facilities. As detailed in Section B.2.1, these instances have
n = 50, 200,m = 50, 700, ne = 200, 300, s = 100, 000. Applying Eq. 25, the total memory
requirement is 12,447,600 bytes, or approximately 11.87 megabytes (MB). This represents a very
manageable memory overhead for modern hardware, demonstrating that our hypergraph representa-
tion remains practical even for large-scale instances.

F.2 ARITHMETIC TIME COMPLEXITY FOR THE HNN

In this subsection, we analyze the arithmetic complexity of our HNN model during inference. Let
nhid denote the largest dimension among raw features, hidden embeddings, and outputs, and assume
we perform Lhyper hypergraph-based convolutions and Lbi bipartite-graph-based convolutions. The
complexity analysis for each component is as follows:

• Initial embedding: it is a 2-layer MLP applied on all raw features, with arithmetic com-
plexity O((n+m+ s+ ne)n

2
hid);

• Hypergraph-based convolution:
– Eq. 5 performs weighted summation with complexity O(snhid);
– Eq. 6 combines weighted means, a 2-layer MLP, and a residual connection, with

complexity O(snhid), O(nn2
hid), and O(nnhid), separately. The total complexity is

O(snhid + nn2
hid);

– Overall complexity: O(Lhyper(snhid + nn2
hid));

• Bipartite-graph-based convolution:
– Eq. 7 combines summations, a 2-layer MLP, and residual connection, with complexity
O(nenhid, O(mn2

hid), and O(mnhid), separately. The total complexity is O(nenhid +
mn2

hid);
– Eq. 8 has similar structure to Eq. 7, with complexity O(nenhid + nn2

hid);
– Overall complexity: O(Lbi(nenhid +mn2

hid + nn2
hid));

• Output layer: A 2-layer MLP applied to variable embeddings, with complexity O(nn2
hid).

Therefore, the overall arithmetic complexity of HNN inference is O(nhid(Lhypers + Lbine) +
n2

hid(Lhypern + Lbin + Lbim)). Since nhid, Lhyper, and Lbi are fixed constants in our experiments
(see Section 5.2), the arithmetic complexity simplifies to O(n+m+ s+ ne), which scales linearly
with the number of variables, constraints, hyperedge density, and edge density.

Hypergraph representations for integer programming problems are typically sparse in both hyper-
edges and edges, making our HNN model highly efficient. To demonstrate robustness, we consider
the extreme case of a fully dense hypergraph representation where every pair of variable and con-
straint vertices is connected by edges, and all variable vertices are connected within each hyperedge.
In this scenario, s = nhn and ne = nm, yielding a quadratic complexity O(n(m + ne)). This
analysis shows that even in such extreme cases, which rarely occur in practice, our HNN model
maintains good computational efficiency for inference.

G LICENSE DESCRIPTION

The licenses and resources of the code, software, and datasets used in this paper are listed in Ta-
ble 11.

H STATEMENT OF THE USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were used solely for writing assistance and language polishing,
including grammar correction, sentence restructuring, and clarity improvements. LLMs were not

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 11: List of licenses for the codes, software and datasets used in this work.

Resource Type Link License

Gurobi Software https://www.gurobi.com/ Academic Li-
cense

SCIP Software https://scipopt.org/
#scipoptsuite

Apache 2.0 Li-
cense

AMPL Software https://ampl.com/ Academic Li-
cense

NeuralQP (Xiong
et al., 2024)

Code,
Dataset

https://anonymous.
4open.science/r/
NeuralQP-Anonymous-7243/

MIT License

QPLIB (Furini
et al., 2019)

Dataset https://qplib.zib.de/ CC-BY 4.0

involved in research ideation, experimental design, data analysis, or generation of technical content.
All scientific contributions, methodology, and results are entirely the work of the authors.

22

https://www.gurobi.com/
https://scipopt.org/#scipoptsuite
https://scipopt.org/#scipoptsuite
https://ampl.com/
https://anonymous.4open.science/r/NeuralQP-Anonymous-7243/
https://anonymous.4open.science/r/NeuralQP-Anonymous-7243/
https://anonymous.4open.science/r/NeuralQP-Anonymous-7243/
https://qplib.zib.de/

	Introduction
	Related Work
	Learning-based Methods for ILP
	Learning-based Methods for NLIP

	Preliminaries
	Definition of Integer Programming with High-Degree Terms
	Graph Representations for Integer Programming

	Methodology
	High-Degree Term-Aware Hypergraph Representation
	Solution Prediction via Hypergraph Neural Network
	Hyperedge-based Convolution
	Variable-Constraint-based Convolution
	Solution Prediction and refinement

	Experimental Results
	Setup
	Comparative Experiments
	Ablation Study

	Conclusion
	Details of HNN-based Framework
	Raw Features of Hypergraph Representation
	Neighborhood Search for Repair-and-Refinement
	Q-Repair-Based Repair Strategy
	Iterated Multi-Neighborhood Search

	Details of Benchmarks
	Details of Synthetic Quadratic Instances
	Details of Synthetic Quintic Instances
	Formulation of CFLPTC
	Quadratic Reformulation of CFLPTC
	Instance Generation

	Implementation Details
	Additional Experiments to Compare with GNN_QP
	Additional Experiments to Evaluate Model Prediction
	Complexity Analysis
	Memory Requirement for the Hypergraph Representation
	Arithmetic Time Complexity for the HNN

	License Description
	Statement of The Use of Large Language Models

