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ABSTRACT

Complex real-world optimization problems often involve not only discrete deci-
sions, but also nonlinear relationships between variables represented in constraints
or objectives. A class of such problems can be modeled as integer programming
with high-degree terms, such as quadratic integer programming. The nonlinear-
ity makes integer programming problems far more challenging than their linear
counterparts. In this paper, we propose a hypergraph neural network (HNN) based
method to solve integer programming with high-degree terms. First, we present
a high-degree term-aware hypergraph representation to effectively capture both
high-degree information and variable-constraint interdependencies. Then, a hy-
pergraph neural network, that integrates convolution between variables and high-
degree terms with convolution between variables and constraints, is proposed to
predict solution values. Finally, a search process initialized from the predicted
solutions is performed to further refine the results. Comprehensive experimental
evaluations across a range of benchmarks demonstrate that our method consis-
tently outperforms both learning-based approaches and state-of-the-art solvers,
ultimately delivering superior solution quality with favorable efficiency.

1 INTRODUCTION

Integer programming has been widely applied to real-world applications involving discrete deci-
sions, such as photolithography scheduling (Deenen et al., 2023), supply chain optimization (Bai
et al., 2011), and routing optimization (Wu et al., 2022). Many integer programming problems are
NP-hard, requiring computational time and memory that grow exponentially with problem size to
be solved to optimality. In particular, nonlinear integer programming (NLIP) frequently arises in
practice due to physical laws (Ahmadi & Majumdar, 2016), statistical measures (Lejeune & Margot,
2016), nonlinear regression (Seyedan & Mafakheri, 2020), and other complex relationships. The
presence of nonlinearity makes these problems even more challenging to solve, highlighting the
need for efficient solution methods that go beyond traditional techniques.

Over the past few decades, many algorithms have been proposed to address the challenges of NLIP,
typically following two main approaches. Local approaches rely on gradient information to find
locally optimal solutions (Bazaraa et al., 2006), but often struggle with complex problem struc-
tures containing multiple local optima. Global approaches follow a divide-and-conquer strategy,
partitioning the solution space and searching within each partition to identify the optimal solution.
Examples include spatial branch-and-bound (Smith & Pantelides, 1999), which recursively parti-
tions the solution space and solves convex relaxations to establish bounds on the original problem,
and outer approximation (Kesavan et al., 2004), which iteratively constructs linear approximations
of the nonlinear feasible region. Despite their theoretical guarantees in reaching global optimality,
global approaches often incur prohibitive computational time for instances with highly nonlinear
terms or intricate constraint structures. Furthermore, algorithms for these approaches are typically
closed-source or tailored to specific NLIP, which restricts their broader application and potential for
improvement. These limitations motivate the exploration of alternative paradigms.

A promising alternative paradigm is machine learning, which has driven major advances in integer
linear programming (ILP) recently. The advances include learning better policies within specific
solvers, such as branching (Gasse et al., 2019; Nair et al., 2021; Maudet & Danoy, 2025) and pre-
solving (Liu et al., 2024), as well as learning general guidance for ILP solvers, such as solution
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prediction (Ding et al., 2020; Geng et al., 2025) and neighborhood selection (Han et al., 2023; Ye
et al., 2023). However, due to the fundamental differences between linear and nonlinear formula-
tions, they are not directly applicable to NLIP. This gap underscores the substantial opportunity to
develop advanced learning techniques capable of addressing more complex problem classes.

Despite this promise, research on learning-based methods for NLIP remains relatively limited with
only a handful of works (Bonami et al., 2022; Ghaddar et al., 2023; Ferber et al., 2023). These
methods are mainly built on specific problem structures or algorithms, thus restricting their broader
applicability. It highlights the need for more general learning-based methods that can effectively
address a wide range of NLIP problems and operate across different solvers.

To address these limitations, this paper aims to push the frontier of learning-for-NLIP towards solv-
ing general integer programming with high-degree terms (IPHD), a natural and important subclass
of NLIP, such as quadratic and quintic integer programming. By Taylor’s formula (Rudin, 1987),
IPHD captures many practical nonlinearities and is representative of NLIP challenges that cannot be
efficiently solved by current solvers. Instead, we target learning-based NLIP and propose a hyper-
graph neural network (HNN)-based model that predicts variable values in optimal solutions based
on a hypergraph representation of problem instances. The predicted solution serves as an effective
initial solution, which can be further refined by any solver or complementary search algorithm. Our
major contributions are summarized as follows.

• We develop a hypergraph representation for general integer programming problems with
high-degree terms, which encodes interactions among variables within high-degree terms
and relations between variables and constraints in the overall problem structure.

• We propose a hypergraph neural network that learns the mapping between problem in-
stances and their corresponding optimal solutions. It applies a convolution across variables
and high-degree terms to capture variable representations, together with a convolution be-
tween variables and constraints to further involve variable-constraint interdependencies.

• We conduct experiments on diverse benchmark datasets. They demonstrate the superior
performance of our method in enhancing Gurobi and SCIP for solving quadratic and quintic
integer programming problems with much higher efficiency.

2 RELATED WORK

2.1 LEARNING-BASED METHODS FOR ILP

This line of research can be broadly categorized into two classes (Bengio et al., 2021; Zhang et al.,
2023). The first class concerns learning key policies within solvers. Among these, the most studied
include variable selection (Gasse et al., 2019; Gupta et al., 2020; Sun et al., 2021; Nair et al., 2021;
Zarpellon et al., 2021; Feng & Yang, 2025; Li et al., 2025) and node selection (Labassi et al., 2022;
Maudet & Danoy, 2025). Other policies include cutting plane selection (Deza & Khalil, 2023; Tang
et al., 2020; Huang et al., 2022; Wang et al., 2024), primal heuristic selection (Chmiela et al., 2021),
parameter tuning (Xu et al., 2011), and presolving settings (Liu et al., 2024; Kuang et al., 2025).

The second class focuses on learning general policies that are applicable across different solvers.
One approach involves predicting solutions, either as initial solution values for further refinement
(Song et al., 2020; Ding et al., 2020; Huang et al., 2024) or as direct feasible solutions (Geng et al.,
2025; Liu et al., 2025; Heydaribeni et al., 2024; Tang & Khalil, 2024). Another direction involves
learning strategies in general heuristics, including neighborhood selection strategy for large neigh-
borhood search (Liu et al., 2022; Ye et al., 2023; Han et al., 2023; Huang et al., 2023; Ye et al., 2025;
Zhang et al., 2025) and search strategy for diving heuristics (Nair et al., 2021).

2.2 LEARNING-BASED METHODS FOR NLIP

The learning-based methods for NLIP remain underexplored in the literature. A few noteworthy
contributions have developed learning-for-NLIP methods in specific problems. Bonami et al. (2022)
trained a classifier to decide whether linearizing quadratic integer programs leads to better solver
performance. Ferber et al. (2023) proposed to learn surrogate linear objective functions for nonlinear
programs with linear constraints. Tang et al. (2024) introduced differentiable correction layers for
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end-to-end learning on parametric nonlinear programming with fixed problem structure. Chen et al.
(2025) studied the theoretical expressive power of graph neural networks for quadratic terms. While
these works represent valuable progress, they are all tailored to specific problem settings and do not
generalize to integer programming with high-degree terms (IPHD).

Two recent studies are more directly related to our work. Xiong et al. (2024) developed a hypergraph
neural network to predict solutions for quadratic programming. However, both their hypergraph rep-
resentation and neural network are restricted to quadratic terms, whereas our framework is designed
to handle IPHD with arbitrary degrees. Ghaddar et al. (2023) applied quantile regression to learn
instance-specific branching rules inside a closed-source solver. This approach requires access to in-
ternal solver modifications and is limited to a specific solver, while our approach predicts solutions
that can be applied as external initial solution values for any solver without internal changes.

Together, these studies highlight the promise and the gap of learning-based methods. Our work fills
this gap by proposing a hypergraph neural network framework that addresses integer programming
with arbitrary high-degree terms and integrates seamlessly with existing solvers.

3 PRELIMINARIES

3.1 DEFINITION OF INTEGER PROGRAMMING WITH HIGH-DEGREE TERMS

Integer programming with high-degree terms (IPHD) refers to a class of optimization problems to
maximize or minimize an objective function defined over a set of integer variables, while satisfying a
set of constraints. In IPHD, either the objective function or the constraints are expressions of linear,
quadratic, or higher-order monomial terms. Formally, the mathematical formulation of IPHD with
n variables and m constraints is presented as follows for clarity:

min
x

/max
x

∑
|α|≤d0

c0,α

n∏
i=1

xαi
i , (1)

s.t.
∑

|α|≤dj

cj,α

n∏
i=1

xαi
i ≤ bj , j = 1, 2, . . . ,m, (2)

li ≤ xi ≤ ui, i = 1, 2, . . . , n, (3)
xi ∈ Z, i = 1, 2, . . . , n, (4)

where α = (α1, α2, · · · , αn) ∈ (Z+∪{0})n represents the vector of variable degrees; |α| represents
the sum of all elements in α; c0,α and cj,α denote the coefficients of the term indexed by degree α
in the objective function and in the j-th constraint, respectively; d0 and dj are maximum degrees for
the objective function and the j-th constraint; bj is the right-hand-side scalar of the j-th constraint;
li and ui are lower and upper bounds for integer variable xi, respectively.

3.2 GRAPH REPRESENTATIONS FOR INTEGER PROGRAMMING

Graph-based representations are commonly used to transform integer programming (IP) instances
into structures suitable for graph neural network processing. The seminal work of Gasse et al. (2019)
introduced a bipartite graph in which one set of nodes represents variables and the other represents
constraints, with edges encoding variable-constraint incidences, i.e., a variable appearing in a con-
straint. Building on this idea, Ding et al. (2020) extended the representation to a tripartite graph by
adding nodes for representing the objective function, thereby enriching the structural information.
Subsequent GNN-based representations of IP are often built on bipartite graphs, owing to their ef-
fectiveness and simplicity (Gupta et al., 2020; Sun et al., 2021; Nair et al., 2021; Wu et al., 2021;
Liu et al., 2022; Labassi et al., 2022; Han et al., 2023; Ye et al., 2023; Huang et al., 2023; Liu et al.,
2024; Huang et al., 2024; Liu et al., 2025; Zhang et al., 2025).

While effectively capturing variable-constraint relationships, the current graph-based representa-
tions are restricted to pairwise interactions and thus struggle to model the nonlinear or higher-order
structures that frequently arise in practical IP problems. To overcome this limitation, Heydaribeni
et al. (2024) used hyperedges to connect variables appearing in the same constraint, and Xiong
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𝐦𝐦𝐦𝐦𝐦𝐦 𝒇𝒇𝟏𝟏𝒙𝒙𝟏𝟏𝟑𝟑𝒙𝒙𝟐𝟐 + ⋯

s.t.

⋯+ 𝒈𝒈𝟏𝟏𝒙𝒙𝟏𝟏𝒙𝒙𝟐𝟐𝒙𝒙𝟑𝟑 + ⋯ ≤ 𝒃𝒃𝟏𝟏
⋮

⋯+ 𝒈𝒈𝒎𝒎𝒙𝒙𝒏𝒏𝟐𝟐 ≤ 𝒃𝒃𝒎𝒎
𝒍𝒍𝒍𝒍 ≤ 𝒙𝒙 ≤ 𝒖𝒖𝒖𝒖,𝒙𝒙 ∈ 𝒁𝒁
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⋮

⋮
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(𝒈𝒈𝒎𝒎,𝟐𝟐 ]

Figure 1: The framework of the proposed method. For an IPHD problem instance shown in a),
our method first transforms it into a hypergraph shown in b), where orange circles denote hyper-
edges representing high-degree terms. Their raw features (term coefficients and variable degrees)
are illustrated in the orange dashed boxes. This hypergraph is then processed by a hypergraph neural
network shown in c) for representation learning and solution prediction, where ϵ, X(i), and C(i) rep-
resent the embeddings for hyperedges, variables after the i-th update, and constraints after the i-th
update, respectively. Finally, a neighborhood-search based repair-and-refinement process shown in
d) turns the predicted results into a high-quality feasible solution.

et al. (2024) employed hyperedges to represent quadratic terms involving both variables and con-
straints. Nonetheless, both hyperedge-based representations remain limited to specific problems
(e.g., IP with linear or quadratic terms) and cannot generalize to IP instances with arbitrary high-
degree terms. In this paper, we address this gap by proposing a hypergraph neural network tailored
for learning representations of IP with high-degree terms (IPHD).

4 METHODOLOGY

This section presents our hypergraph neural network framework for tackling IPHD problems, in-
cluding hypergraph representation, solution prediction via hypergraph neural network, and solution
repair and refinement. The overview of our framework is illustrated in Figure 1 and detailed below.

4.1 HIGH-DEGREE TERM-AWARE HYPERGRAPH REPRESENTATION

Representing general IPHDs poses two unique challenges: (i) high-degree terms induce multi-
variable interactions that cannot be captured by standard pairwise connections, and (ii) the satis-
faction of constraints depends intricately on variable assignments, forming another essential rela-
tionship. To address these challenges, we encode an IPHD instance as a hypergraph.

Formally, our hypergraph is defined as G = (V, C,H, E), where V denotes variable vertices, C de-
notes constraint vertices, H denotes hyperedges, and E denotes standard edges. In specific, each
variable xj in an IPHD instance is represented by a vertex v ∈ V , and each constraint is represented
by a vertex c ∈ C. For every high-degree term cα

∏
i′∈{1,··· ,|V|} x

αi′
i′ (with

∑
i′∈{1,··· ,|V|} αi′ ≥ 2)

appearing in either the objective function or a constraint, we create a hyperedge ϵ ∈ H that con-
nects all variables contained in the term. The raw features of the hyperedge ϵ are defined as
{ωvi′ϵ = (cα, αi′)}vi′∈Nϵ

, where Nϵ represents variables contained by ϵ. To model variable-
constraint relationships, we add an edge evc ∈ E between variable vertex v and constraint vertex c
whenever the corresponding variable appears with a nonzero coefficient in the corresponding con-
straint. The associated coefficient and variable degree are assigned as features of this edge, ensuring
that the numerical dependency between variable and constraint is preserved.

The hypergraph-based representation integrates both structural and parametric information of an
IPHD instance, and provides a foundation for the hypergraph neural network introduced in the next
subsection. A complete specification of the raw features is provided in Appendix A.1.

For example, Figure 1(b) illustrates the hypergraph representation for the IPHD instance in Fig-
ure 1(a). Variable vertices (left) and constraint vertices (right) represent variables and constraints
separately; edges (straight lines) represent variable-constraint relationships, connecting a variable to
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each constraint in which it appears with a nonzero coefficient (e.g., x3 is connected to c1); hyper-
edges (circles) capture the complex relationships of variables in high-degree terms such as f1x3

1x2

and gm x2
n. The term f1x

3
1x2 has coefficient f1 and two variables with exponents 3 and 1, so the

raw features of its hyperedge are {(f1, 3), (f1, 1)}. Similarly, the raw features of the term gm x2
n are

{(gm, 2)}. Both raw features are illustrated in dashed boxes.

4.2 SOLUTION PREDICTION VIA HYPERGRAPH NEURAL NETWORK

According to the hypergraph representation of IPHD instances, the graph neural networks should
be able to capture two complementary relationships: (i) high-order interactions among variables in-
duced by high-degree terms, and (ii) interdependencies between variables and constraints. To this
end, we first build on concepts from Hypergraph Neural Networks (HNNs), which enable message
passing between vertices and hyperedges to model higher-order structures (Kim et al., 2024). With
an HNN, we introduce a hyperedge-based convolution that aggregates information from hyperedges
and integrates them into variable embeddings. Second, we design a variable-constraint-based con-
volution that propagates information along standard edges that represent variable-constraint interde-
pendencies. In Section 5.3, an ablation study demonstrates the effectiveness of the above modules.
Finally, the variable embeddings are passed through an output layer to generate the predictions of
variable values in high-quality solutions. The architecture of our model is illustrated in Figure 1(c).

4.2.1 HYPEREDGE-BASED CONVOLUTION

Our HNN begins with a hyperedge-based convolution, applied to hyperedges and variable vertices
contained by them, in order to effectively extract higher-order information arising from the high-
degree terms. Inspired by Huang & Yang (2021), we formulate the convolution as presented in
Eq. 5 and Eq. 6. This convolution proceeds in two steps: first, hyperedges aggregate embeddings
from all variable vertices they directly connect (Eq. 5); then, the updated hyperedge embeddings
are propagated back to the associated variable vertices (Eq. 6). In this way, information from high-
degree terms is jointly integrated into the embeddings of the variables they contain.

hϵ ←
∑
v∈Nϵ

hvhvϵ, ∀ϵ ∈ H, (5)

hv ← ϕH(hv,mean({hϵhvϵ}ϵ∈Nv )) + hv, ∀v ∈ V, (6)
Formally, hϵ and hv denote the embeddings for hyperedge ϵ and variable vertex v, respectively;
hvϵ is the embedding obtained from the raw features ωvϵ (see Section 4.1) through a two-layer
multi-layer perceptron (MLP). Nv is the set of hyperedges containing the variable v; Nϵ is the set
of variable vertices contained in the hyperedge ϵ. The function ϕH is parameterized by another
two-layer MLP activated by LeakyReLU. The hyperedge-based convolution is repeated for L itera-
tions. The input embeddings to the first iteration are initialized by applying two-layer MLPs to raw
features, while those to the latter iterations are from the previous iteration.

4.2.2 VARIABLE-CONSTRAINT-BASED CONVOLUTION

After the hyperedge-based convolution embeds higher-order relationships into variable vertices,
the model still needs to account for variable-constraint interdependencies. To this end, we apply
a variable-constraint-based convolution that explicitly processes message passing along the edges
connecting variable and constraint vertices.

This convolution operates through bidirectional message passing: variable embeddings (that already
aggregate higher-order information from the hyperedge-based convolution) are first propagated to
constraint vertices (Eq. 7), and the updated constraint representations are then passed back to the
variable vertices (Eq. 8). Through the two-step convolutions, variable embeddings are further in-
formed by the constraints in which the variables connect.

hc ← fC(hc,
∑
v∈Nc

ϕC(hc, hv, hvc)) + hc, ∀c ∈ C, (7)

hv ← fV(hv,
∑
c∈Nv

ϕV(hc, hv, hvc)) + hv, ∀v ∈ V, (8)
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Formally, hc denotes the embedding for constraint vertex c; hv denotes the embedding for vari-
able vertex v; and hvc denotes the embedding of the edge ev,c connecting v and c. The set Nc

contains all variable vertices connected to constraint c, while Nv contains all constraint vertices
connected to variable v. Finally, ϕC , ϕV , fC , and fV are implemented as two-layer MLPs activated
by LeakyReLU. The variable-constraint-based convolution is executed once. The input embeddings
hv are passed from the hyperedge-based convolution while the inputs hc and hvc are initialized from
raw features of constraint vertices and edges via 2-layer MLPs, separately.

4.2.3 SOLUTION PREDICTION AND REFINEMENT

After hyperedge-based and variable-constraint-based convolutions, the variable embeddings involve
both high-order interactions from high-degree terms and the interdependencies between variables
and constraints. To generate solution predictions, we feed these embeddings into a two-layer MLP,
which outputs a scalar value for each variable representing its prediction.

The entire HNN is trained in a supervised manner using the binary cross-entropy loss: LBCE =

− 1
N

∑N
i=1[yi log(σ(ŷi)) + (1− yi) log(1− σ(ŷi))], where N is the number of logits, y ∈ {0, 1}N

and ŷ ∈ RN represent the ground truth and the predicted logits, σ(·) is the sigmoid function.

The predictions produced by our model can provide initial solution values for downstream algo-
rithms and solvers. To make use of them, we adopt a parallel neighborhood optimization framework
in (Ye et al., 2023; Xiong et al., 2024) that embeds an off-the-shelf solver to refine the predicted
solution during inference, as illustrated in Figure 1(d). Specifically, the framework employs adap-
tive large neighborhood search: it first repairs the raw predictions into feasible solutions by fixing
promising variables to their predicted values while allowing the remaining variables to be reopti-
mized by a solver such as Gurobi and SCIP, and then further refines these feasible solutions through
additional neighborhood search to achieve better objective values.

5 EXPERIMENTAL RESULTS

In this section, we conduct comprehensive experiments to demonstrate the effectiveness of our pro-
posed method in solving IPHD instances. We present and discuss the comparative results in Sec-
tion 5.2, and an ablation study on model architecture in Section 5.3.

5.1 SETUP

Benchmarks Our experiments were conducted on four IPHD benchmarks. The first two are syn-
thetic quadratic integer programming (QIP) benchmarks introduced by Xiong et al. (2024), derived
from two NP-hard problems: the Quadratic Multiple Knapsack Problem (QMKP) and the Random
Quadratically Constrained Quadratic Program (RandQCP). Each benchmark contains instances at
five scales (Mini, 1000, 2000, 5000, 10000), where the first three scales are used for training and all
but Mini are included in testing. The third benchmark is a subset of a public quadratic programming
benchmark QPLIB (Furini et al., 2019) selected by Xiong et al. (2024). Finally, we introduce a new
synthetic quintic integer programming benchmark based on the Capacitated Facility Location Prob-
lem with Traffic Congestion (CFLPTC). This dataset includes five instance scales (50×10, 50×20,
150×30, 200×30, 500×100), with the first four scales used for training and the last three for testing.
Detailed formulations and dataset descriptions are provided in Appendix B.

Baselines We compare our method against a learning-based method tailored for quadratic pro-
gramming (QP): NeuralQP (Xiong et al., 2024) which introduces a hypergraph neural network to
predict solutions for quadratically constrained QPs. Similar to our HNN model, the model of Neu-
ralQP serves as solution predictors and can be combined with exact solvers for repair and refine-
ment (see Section 4.2.3). We adopt SCIP and Gurobi as the exact solvers in this experiment, and we
also included them as standalone baselines to provide a comprehensive comparison. Hereafter, we
use “ModelName-G” and “ModelName-S” to represent a learning-based method that integrates the
“ModelName” model with Gurobi and SCIP, separately.

We also considered a very recent learning-based baseline, GNN QP (Chen et al., 2025), which pri-
marily investigates the theoretical expressive power of graph neural networks for quadratic terms.
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Table 1: Comparison on QMKP datasets in terms of mean and standard deviation of gap%. The best
results are highlighted in bold and ∗ indicates statistically significant difference to the best results.

Method Train QMKP Overall
1000 2000 5000 10000

Gurobi – 14.03∗ 5.36∗ 29.12∗ 17.42∗ 16.41∗
±9.06

Neural
QP-G

Mini 3.75 0.14∗ 0.04 0.03
0.76±0.211000 4.00 0.14∗ 0.04 0.04

2000 – 0.12 0.04 0.04

Ours-G
Mini 4.06 0.14∗ 0.05 0.03

0.75±1.941000 3.59 0.15∗ 0.04 0.04
2000 – 0.09 0.04 0.03

SCIP – 5.13 31.74∗ 35.72∗ 6.92∗ 19.88∗
±13.15

Neural
QP-S

Mini 19.56∗ 0.18∗ 2.64∗ 6.21∗

5.92±6.741000 19.11∗ 0.15 2.60 5.95∗

2000 – 0.12 2.60 6.03∗

Ours-S
Mini 18.10∗ 0.20∗ 2.60 6.07∗

5.41±6.351000 16.59∗ 0.22∗ 2.60 6.18∗

2000 – 0.12 2.61 3.13

While this line of work provides valuable theoretical insights, we observed the empirical perfor-
mance of their suggested model is markedly worse than ours on the two synthetic quadratic bench-
marks. For completeness, we report and discuss these results in the Appendix D.

Metrics We evaluate performance using the relative primal gap (in percentage), defined as gap% =
|OBJ− BKS|/|BKS + 10−10| × 100, where OBJ is the objective value obtained by a method and
BKS is the best-known solution of the instance. For QPLIB instances, BKS values are publicly
available, while for synthetic datasets we set BKS to the best objective value found across our
experiments. Under the same time limit, a lower gap% indicates solutions closer to BKS and thus
stronger performance. To assess statistical significance, we apply the Mann–Whitney U test for
unpaired data and the Wilcoxon signed-rank test for paired data, both at the 95% confidence level.

Implementations During evaluation, all three learning-based methods followed the same proce-
dure: a trained model first generated a solution prediction, which was then improved using the
repair-and-refinement strategy (Section 4.2.3) under a fixed time limit. The exact-solver baselines
(SCIP and Gurobi) were instead given the same time to solve each instance from scratch. Time
budgets varied by benchmark and instance scale: 100, 600, 1800, and 3600 seconds for QMKP and
RandQCP instances at scales 1000, 2000, 5000, and 10000, respectively; 100 seconds for QPLIB
instances; and 60, 60, and 1000 seconds for CFLPTC instances at scales 150×30, 200×30, and
500×100. Each method was run five times per instance to account for randomness.

For inference, we matched training and testing benchmarks where possible. On the three synthetic
benchmarks, models trained on the same benchmark with identical or smaller instance scales were
used. For QPLIB, our model was trained on QMKP-1000 instances, which we found structurally
closest to QPLIB. To ensure fairness, we compared against two NeuralQP variants: one trained on
QMKP-1000 (as with our model) and one trained on the combined QMKP-1000 and RandQCP-1000
datasets, following the original setup in Xiong et al. (2024). For CFLPTC, our model can directly
work on this quintic dataset, whereas the QIP-tailored NeuralQP cannot. To enable comparison,
we trained NeuralQP on a quadratic reformulation of CFLPTC obtained by introducing auxiliary
variables and constraints. The details of this reformulation are provided in Appendix B. Further
details on training and repair-and-refinement settings are provided in Appendix C.

5.2 COMPARATIVE EXPERIMENTS

The solving performance of our method and baselines on the four benchmarks is presented in Ta-
ble 1, Table 2, Table 3, and Table 4. Overall, NeuralQP consistently outperforms Gurobi and SCIP
across almost all test datasets, particularly on large-scale instances, which highlights the promise of
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Table 2: Comparison on RandQCP datasets by mean and standard deviation of gap%. The best
results are highlighted in bold and ∗ indicates statistically significant difference.

Method Train RandQCP Overall
1000 2000 5000 10000

Gurobi – 2.67 4.65∗ 4.58∗ 5.36∗ 4.32∗
±1.09

Neural
QP-G

Mini 3.44∗ 2.14∗ 3.13∗ 3.14
2.92∗

±0.671000 3.42∗ 2.13 3.10∗ 3.14∗

2000 – 2.15∗ 3.13∗ 3.15∗

Ours-G
Mini 3.25 2.04 3.06 3.10

2.85±0.661000 3.32∗ 2.09 3.10 3.10
2000 – 2.08 3.06 3.11

SCIP – 38.11∗ 41.41∗ 37.85∗ 53.11∗ 42.62∗
±6.39

Neural
QP-S

Mini 0.50∗ 0.37∗ 0.25∗ 0.16
0.29∗

±0.151000 0.44 0.34 0.24∗ 0.18
2000 – 0.32 0.24∗ 0.19

Ours-S
Mini 0.36 0.27 0.19 0.10

0.24±0.141000 0.44∗ 0.29 0.17 0.12
2000 – 0.32 0.19 0.09

Table 3: Comparison on QPLIB instances by mean value and standard deviation of gap%. “# ID”
denotes the index of the test instance in QPLIB. “Mix” denotes NeuralQP trained on QMKP-1000
+ RandQCP-1000, and “QMKP” denotes NeuralQP trained only on QMKP-1000. The best results
are highlighted in bold and ∗ indicates statistically significant difference.

# ID Gurobi NeuralQP-G Ours-G # ID Gurobi NeuralQP-G Ours-GMix QMKP Mix QMKP

2067 7.67 21.46 28.10 9.37 3860 48.95 3.30 15.92 14.69
2085 18.85 13.17 9.96 9.60 3841 26.69 7.85 9.90 6.13
3752 14.09 0.63 1.70 1.30 3883 8.25 1.04 0.36 0.63
2036 1.89 0.57 1.57 1.10 2957 2.11 1.41 2.07 0.71
2022 2.37 1.20 1.80 1.58 3402 2.80 6.95 7.10 6.64
2017 4.87 3.16 2.49 2.27 3347 0.52 0.33 0.20 0.34
2315 59.75 11.25 15.92 13.49 2733 1.38 0.37 0.28 0.38
3584 66.75 13.58 15.04 15.03 5962 16.89 10.76 15.04 7.06

Overall Gurobi NeuralQP-G
Mix

NeuralQP-G
QMKP Ours-G

17.74∗
±21.08 6.06±6.99 7.96±7.90 5.65±6.02

learning-based approaches for integer programming. On the QIP benchmarks, our method achieves
performance that is at least comparable to, and in several cases better than NeuralQP, and it also
achieves superior overall results across each QIP dataset. This observation is noteworthy given that
NeuralQP is specifically designed for QIP, whereas our approach is developed for the more general
class of IPHD problems with higher-order terms. On the quintic CFLPTC benchmark, our method
produces significantly better solutions than both Gurobi and NeuralQP (on quadratic reformulated
instances). In addition, the results indicate that our model can generalize to instances of consider-
ably larger scale than seen during training. These results collectively demonstrate the effectiveness
and generality of our approach across diverse benchmarks and instance scales.

5.3 ABLATION STUDY

To evaluate the impact of the two convolution modules, hyperedge-based convolution (see Sec-
tion 4.2.1) and variable-constraint-based convolution (see Section 4.2.2), on the learning ability of
our model, we conducted an ablation study. Specifically, we introduced two variants for comparison:
w/o-HyConv, which retains only the variable-constraint-based convolution, and w/o-VCConv, which
retains only the hyperedge-based convolution. A straightforward removal of one convolution would
leave the model unable to capture certain relationships; for example, w/o-VCConv cannot represent
dependencies between variables and constraints. To address this and ensure fairness, we designed
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Table 4: Comparison on CFLPTC datasets by mean and standard deviation of gap%. The best results
are highlighted in bold and ∗ indicates statistically significant difference.

Method Train CFLPTC Overall
150×30 200×30 500×100

Gurobi – 51.42∗ 52.76∗ 38.66∗ 48.89∗
±11.11

Neural
QP-G

Small 28.03∗ 35.77∗ 23.82∗
37.04∗

±13.95Medium 42.20∗ 57.24∗ 26.47∗

Ours-G Small 9.95∗ 8.96 2.78 6.59±6.39Medium 5.23 7.08 2.65

alternative representations that allow w/o-HyConv and w/o-VCConv to access all relationships in
IPHDs while differing as little as possible from our original hypergraph representation, which are
provided in Appendix C. Apart from the absence of one convolution and the modified representation,
all other architectural and implementation settings remain identical to our full method.

We trained w/o-HyConv and w/o-VCConv on the 1000-scaled training datasets from the QMKP
and RandQCP benchmarks, and subsequently evaluated their performance on the corresponding
1000-scaled and 2000-scaled test datasets. During inference, Gurobi was employed for repair-and-
refinement. For evaluation, we used the validation F1-score to measure predictive performance and
gap% to measure solving performance. The results, summarized in Table 5, indicate that both the
hyperedge-based and variable-constraint-based convolutions are essential to the HNN architecture,
as removing either convolution mechanism leads to a noticeable drop in performance.

Table 5: Comparison of our model and ablation baselines in terms of validation F1-score (left) and
gap% (right). The best results are highlighted in bold.

Validation F1-score Mean gap%

Method QMKP RandQCP QMKP RandQCP

1000 2000 1000 2000

w/o-VCConv 0.73 0.74 4.62 0.15 3.39 2.15
w/o-HyConv 0.74 0.77 4.82 0.13 3.37 2.15
Ours 0.78 0.79 3.59 0.15 3.32 2.09

6 CONCLUSION

This paper introduces a novel hypergraph neural network (HNN) framework for solving integer
programming problems with high-degree terms (IPHD). Our approach contributes two key innova-
tions: a high-degree-aware hypergraph representation that effectively captures variable interactions
in high-degree terms and variable-constraint interdependencies inherent in IPHD problems, and a
hypergraph neural network architecture that integrates hypergraph-based and bipartite-graph-based
convolutions to enable accurate solution prediction. Comprehensive experimental evaluation across
quadratic and quintic programming problems demonstrates that our method significantly outper-
forms both state-of-the-art exact solvers and specialized learning-based approaches, establishing its
remarkable effectiveness and practical value for challenging IPHD applications.

While promising, our work represents just one step toward addressing the broader challenges of
nonlinear integer programming. Future research directions include: 1) designing more comprehen-
sive representations for general nonlinear instances such as those with trigonometric and logarithmic
functions; 2) exploring end-to-end frameworks that directly output feasible solutions without requir-
ing repair mechanisms; and 3) integrating advanced large language models to automate problem
solving and reduce reliance on domain-specific knowledge or manual intervention.
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REPRODUCIBILITY STATEMENT

We provide detailed information to ensure the reproducibility of our results. A complete description
of our method is given in Section 4.2. Components that are only briefly introduced in the main
text, including raw feature selection and the repair-and-refinement procedure, are further detailed in
Appendix A.1 and Appendix A.2, respectively. Implementation details for model training are pro-
vided in Appendix C, while the evaluation setup is described in Section 5.1. A detailed description
of the synthetic benchmarks is included in Appendix B. To further support reproducibility, we will
release our code and data on GitHub upon acceptance, enabling researchers to fully replicate our
experiments and results.
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A DETAILS OF HNN-BASED FRAMEWORK

We present two key details of the HNN-based framework that were not covered in Section 4, allow-
ing interested readers to reproduce our work.
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A.1 RAW FEATURES OF HYPERGRAPH REPRESENTATION

We present the raw features of our hypergraph representation in Table 6. The table organizes four key
components of our hypergraph representation that participate in convolutions. Each row corresponds
to one component, with the first column identifying the component name, the second column listing
its raw features, and the third column providing detailed descriptions of these features. Specifi-
cally, the variable vertices V are assigned nine-dimensional raw features that encode variable types,
bound information, and their roles in the objective function. Constraint vertices C are assigned four-
dimensional raw features based on their constraint sense and right-hand-side values. HyperedgesH
are assigned raw features whose length varies according to the number of variables they contain, as
introduced in Section 4.1. For a variable v contained in a hyperedge ϵ, a ωvϵ containing the term
coefficient and the variable’s exponent is added to ϵ’s raw features. Finally, standard edges E are as-
signed two-dimensional features that reflect coefficients and degrees of the corresponding variables
within their associated constraints.

Table 6: Raw Features of High-Degree Term-Aware Hypergraph Representation

Tensor Feature Description

V

type (continuous, binary, integer) as a one-hot encoding
lb Lower bound value of the variable
up Upper bound value of the variable
inf lb Binary indicator (1 if the lower bound is negative infinity,

0 otherwise)
inf ub Binary indicator (1 if the upper bound is positive infinity,

0 otherwise)
avg obj coe Average value of coefficients associated with this variable

in the objective function
avg obj deg Average degree of this variable across all terms in the ob-

jective function

C sense (<, >, =) as a one-hot encoding
rhs Numerical value on the right-hand side of the constraint

ωvϵ
deg Degree of each variable in the high-degree term
coe Coefficient value associated with the high-degree term

E avg coe Average value of coefficients across all terms containing
the variable in the associated constraint

avg deg Average degree of this variable across all terms contain-
ing it in the associated constraint

A.2 NEIGHBORHOOD SEARCH FOR REPAIR-AND-REFINEMENT

We implement parallel neighborhood optimization as described in (Ye et al., 2023; Xiong et al.,
2024), which incorporates two key components: a Q-repair-based repair strategy that efficiently
repairs model predictions into feasible solutions, and an iterated multi-neighborhood search that
refines these solutions to achieve higher quality. In the following, we provide detailed descriptions
of both components.

A.2.1 Q-REPAIR-BASED REPAIR STRATEGY

The Q-repair begins by selecting the αn variables with the largest predicted loss values to optimize,
while fixing the remaining (1 − α)n variables to their predicted values. Here, α ∈ [0, 1] is a pro-
portion that determines the neighborhood search size and n represents the total number of variables.
Then Q-repair traverses constraints to identify those that cannot be satisfied. This identification fol-
lows a greedy approach: calculating the upper and lower bounds of each term in the left-hand side,
summing these bounds, and comparing the result with the right-hand side. When an unsatisfied
constraint is detected, the variables involved in this constraint are incrementally added to the neigh-
borhood until either all variables from that constraint have been incorporated or the neighborhood
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reaches a size limit of αubn variables. Q-repair terminates after evaluating all constraints and returns
the neighborhood (i.e., variables to be optimized) for repair.

Subsequently, the repair strategy employs exact solvers (such as Gurobi and SCIP) to optimize
the subproblem defined by the Q-repair neighborhood. If no feasible solution is identified within
the allocated time, Q-repair is repeated with an enlarged initial α = αstep + len(neighborhood)/n,
followed by another neighborhood search on the new expanded neighborhood. This iterative process
continues until a feasible solution is found, or α exceeds 1, or the maximum time to repair-and-refine
has been reached.

A.2.2 ITERATED MULTI-NEIGHBORHOOD SEARCH

The iterated multi-neighborhood search begins by generating a set of initial neighborhoods using a
sequential filling approach. Specifically, this process first randomly shuffles all constraints. Then,
it iteratively processes each constraint by sequentially adding its variables to the current neighbor-
hood. When the predefined neighborhood size limit is reached, a new neighborhood is created and
the process continues, until all constraints and their associated variables have been assigned to neigh-
borhoods. This process creates multiple neighborhoods where variables from the same constraint
tend to appear together in the same neighborhoods, thereby reducing the likelihood of constraint
violations. Next, using the solution obtained by the repair strategy as a starting point, subproblems
are formulated based on each neighborhood and optimized using exact solvers.

After that, the algorithm generates crossover neighborhoods to explore combinations of different
subproblem solutions. It groups all neighborhoods into pairs. For two neighborhoods N1 and N2 in
a pair with their respective subproblem solutions x1, x2, assuming x1 has equal or better objective
value than x2, a crossover neighborhood is created through two steps: 1) constructing a crossover
solution x′ by taking x′

i = x1
i for variables in N1 and x′

i = x2
i for other variables, and 2) applying

Q-repair on x′. Then, subproblems based on these crossover neighborhoods are optimized. The al-
gorithm selects the best solution among all the candidates, both initial neighborhoods and crossover
neighborhoods, to serve as the starting point for the next iteration. These two processes repeat until
the predetermined time limit is reached, with the best solution found across all iterations returned as
the final result.

B DETAILS OF BENCHMARKS

This section introduces the details of the synthetic datasets used in our experiments.

B.1 DETAILS OF SYNTHETIC QUADRATIC INSTANCES

In Section 5.3, we evaluate the efficiency of our HNN-based framework using two synthetic
quadratic datasets: QMKP and RandQCP, which are generated and provided by (Xiong et al., 2024).
The formulations of these problems are presented below.

The Quadratic Multiple Knapsack Problem (QMKP) extends the classic knapsack problem by in-
corporating multiple weight constraints and quadratic profit terms. It involves selecting items to
place in a knapsack with limited capacity across multiple weight dimensions. Each item yields an
individual profit, while specific pairs of items generate additional interactive profits when selected
together. The objective is to maximize the total profit while adhering to capacity constraints. QMKP
can be formulated as a quadratic programming problem as shown in Eq. 9-11:

max
∑
i

cixi +
∑

(i,j)∈E

qijxixj , (9)

s.t. aki xi ≤ bk, ∀k ∈M, (10)
xi ∈ {0, 1}, ∀i ∈ N, (11)

where xi is a binary variable indicating whether item i is selected, ci represents the individual profit
for item i, and qij denotes the interactive profit obtained by selecting both items i and j. The set E
contains item pairs with interactive profits, aki represents the k-th weight of item i, and bk denotes
the knapsack’s capacity on the k-th weight dimension. M and N represent the total number of
weight dimensions and items, respectively.
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The Random Quadratically Constrained Quadratic Program (RandQCP) is an extension of the in-
dependent set problem. It aims to select vertices from a hypergraph to maximize total weights
while satisfying specified constraints on each hyperedge. The quadratic programming formulation
of RandQCP is given in Eq. 12-14.

max
∑
i∈V

cixi, (12)

s.t.
∑
i∈e

aixi +
∑

i,j∈e,i̸=j

qijxixj − |e| ≤ 0, ∀e ∈ E , (13)

xi ∈ {0, 1}, ∀i ∈ V, (14)

where V represents the set of vertices, E denotes the hyperedge set, ci is the weight associated with
vertex i, and ai and qij are the limitation coefficients for selecting vertex i and vertex pair (i, j),
respectively. The term e refers to a specific hyperedge, and |e| indicates the number of vertices
contained within hyperedge e.

For details of generation and access to the generated datasets, please refer to the original paper by
(Xiong et al., 2024).

B.2 DETAILS OF SYNTHETIC QUINTIC INSTANCES

To evaluate the effectiveness of our HNN-based method on more complex integer programming
problems, we generated synthetic quintic datasets based on the Capacitated Facility Location Prob-
lem under Traffic Congestion (CFLPTC) inspired by Bai et al. (2011) and Holmberg et al. (1999).
The formulation and generation procedures are detailed below.

B.2.1 FORMULATION OF CFLPTC

CFLPTC extends the standard capacitated facility location problem by incorporating traffic con-
gestion effects. Consider a scenario with m customers J = {1, · · · ,m} and n potential facility
locations I = {1, · · · , n}. Each customer j has a demand Dj , while each facility at location i in-
curs an opening cost oi and has a capacity Ci. Once opened, a facility can serve customers provided
that the total demand it satisfies does not exceed its capacity. Each customer must be served by ex-
actly one opened facility. The transportation cost for serving customer j from facility i depends on
the distance between them dij and the traffic congestion level. The objective is to determine which
facilities to open and how to assign customers to these facilities, so that the total cost comprising
facility opening costs and transportation expenses is minimized. The mathematical formulation is
presented in Eq. 15-20.

min
∑
i∈I

oiyi +
∑
i∈I

∑
j∈J

α(1 + 0.15eβi )dijxij (15)

s.t.
∑
i

xij = 1,∀j ∈ J, (16)

xij ≤ yi, ∀i ∈ I, j ∈ J, (17)∑
j

Djxij ≤ Ciyi, ∀i ∈ I, (18)

ei =

∑
j Djxij + bi

Ti
, ∀i ∈ I, (19)

xij , yi ∈ {0, 1}, ∀i ∈ I, j ∈ J. (20)

where yi and xij are binary variables to determine whether to open the facility at location i and
whether to assign customer j to the facility at location i, separately.

In the objective function Eq. 15, the transportation cost from facility i to customer j is expressed as
α(1+ 0.15eβi )dijxij , where the term α(1+ 0.15eβi ) quantifies the additional cost induced by traffic
congestion. This formulation, together with Eq. 19 which determines ei, is derived from the Bureau
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of Public Roads (BPR) function, an empirical formula for estimating increased transportation time
corresponding to congestion level (United States Bureau of Public Roads, 1964). In this context,
Ti represents the total traffic capacity surrounding facility location i and bi denotes the background
traffic flow in the vicinity. The parameters α and β are typically set to 1 and 4 respectively, which
make CFLPTC a quintic programming problem.

While CFLPTC technically falls under the category of mixed-integer programming due to its com-
bination of binary variables (xij , yi) and continuous variables (ei), it remains essentially an inte-
ger programming problem. This is because the continuous variables ei are merely auxiliary and
completely determined by the binary assignment variables xij . Therefore, it is methodologically
reasonable to include CFLPTC as a dataset in this work, which focuses on integer programming
problems.

B.2.2 QUADRATIC REFORMULATION OF CFLPTC

In Section 5.1, we compared our method against NeuralQP on the quintic CFLPTC instances. How-
ever, NeuralQP is designed exclusively for quadratic optimization problems and cannot directly
handle the quintic terms present in the original CFLPTC formulation. To enable this comparison,
we reformulated the quintic CFLPTC instances into equivalent quadratic problems by introducing
auxiliary variables that decompose higher-order terms. The reformulation strategy systematically
replaces quintic terms with chains of quadratic relationships. Specifically, for each i ∈ I , we define
e1i = e2i and e2i = e21i, which transform the quintic terms e4ixij into quadratic terms e2ixij . The
complete quadratic reformulation is presented in Eq. 21-24.

min
∑
i∈I

oiyi +
∑
i∈I

∑
j∈J

α(1 + 0.15e2i)dijxij (21)

s.t. Eq. 16 - 20, (22)

e1i = e2i , ∀i ∈ I, (23)

e2i = e21i, ∀i ∈ I, (24)

It is important to note that while lower-degree objective functions and constraints are generally
more tractable for optimization algorithms than their higher-degree counterparts, the reformulation
process inevitably introduces additional variables and constraints that can impose significant com-
putational overhead. For CFLPTC instances, the quadratic reformulation requires 2n additional
variables (e1i, e2i) and 2n additional quadratic constraints (Eq. 23 and 24), substantially increasing
the complexity. The increase of complexity may offset or even outweigh the computational ben-
efits gained from degree reduction, as solvers must now handle a larger search space and a more
complicated constraint set. Consequently, reformulating high-degree problems into lower-degree
equivalents does not guarantee improved optimization efficiency; the net effect depends on the trade-
off between reduced degree and increased problem complexity, which varies with specific problem
characteristics and solver capabilities. This trade-off underscores the importance of developing op-
timization methods that can directly handle high-degree integer programming problems rather than
relying solely on quadratic reformulations.

B.2.3 INSTANCE GENERATION

Following the approach in (Holmberg et al., 1999), we generated datasets at four distinct scales for
training, as detailed in Table 7. The notation U(a, b) indicates that the corresponding parameters are
randomly sampled from a uniform distribution ranging from a to b (inclusive). Both customer and
facility locations were generated within a two-dimensional Euclidean space according to the ”Coor-
dinate” specifications in Table 7, with distances calculated using the Euclidean metric. Consistently
across all datasets, the total traffic capacity Ti was generated as U(1, 4) · Ci, while the background
traffic flow bi was set to U(0.1, 1) · Ti.

For testing purposes, we generated 16 instances each at the 150×30 scale and the 200×30 scale, ad-
hering to the same parameter settings used for training datasets 3 and 4, respectively. Additionally,
we created 10 larger instances at the 500 × 100 scale, following the parameter settings of train-
ing dataset 1 but with adjusted values for m and n. These testing datasets enable comprehensive
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Table 7: Setting for CFLPTC Training Dataset Generation

Dataset Number m n Coordinate Dj oi Ci

1 1605 50 10 U(10, 200) U(10, 50) U(300, 700) U(100, 500)
2 1119 50 20 U(10, 200) U(30, 80) U(300, 700) U(100, 500)
3 984 150 30 U(10, 300) U(10, 50) U(300, 700) U(200, 600)
4 200 200 30 U(10, 200) U(10, 50) U(500, 1500) U(500, 800)

evaluation of our model’s capability to effectively tackle complex, large-scale integer programming
problems with high-degree terms.

C IMPLEMENTATION DETAILS

Model Details First, all raw features of the input hypergraph were transformed into initial embed-
dings through 2-layer MLPs activated by LeakyReLU, where the dimensions of hidden spaces and
output features are 64 and 16, respectively. The number of iterations for executing hyperedge-based
convolution is L = 6. The negative slopes of all LeakyReLU activations are set to 0.1.

Training Details We utilized AdamW with a learning rate of 1e-4 and weight decay of 1e-4 as the
optimizer to train our model. We set the batch size to 64 and training epochs to 100. On each training
dataset, our HNN models were trained on a supercomputer node with an NVIDIA A100 GPU and
an 18-core Intel Xeon Platinum 8360Y CPU. For fair comparison, we used the same device to train
the models of NeuralQP and GNN QP, with the same hyper-parameter settings as in their original
papers.

Inference Details Inference testing was conducted on a personal computer equipped with an 8-
core AMD Ryzen 7 7840HS CPU without GPU acceleration. We used Gurobi 12.0.0 and SCIP
9.2.0, the latest versions of both solvers at the time of evaluation.

We implemented the repair-and-refinement algorithm (see Appendix A.2) following the parameter
settings proposed by Xiong et al. (2024). Specifically, for the Q-repair-based repair strategy, we ini-
tialized the parameter α at 0.1, with αub = 1 and αstep = 0.05. For the iterated multi-neighborhood
search, the neighborhood size is defined as half the number of problem variables. For each sub-
problem occurring in both the Q-repair-based repair strategy and the iterated multi-neighborhood
search, we set a maximum wall-clock time of 60 seconds when addressing largest-scale instances:
10,000-scale QMKP and RandQCP problems, and 500×100-scale CFLPTC datasets. All other test-
ing datasets were limited to 30 seconds per subproblem. The repair-and-refinement stops when the
total wall-clock time reaches the preset limit (see Section 5.1).

Details of the Ablation Baselines In the ablation studies (Section 5.3), we construct baselines
that remain as comparable as possible to our HNN model while omitting the targeted convolu-
tion modules. Since simply removing a component would disable the model from capturing one
key relationship in IPHD, we make slight but necessary adjustments to their input representations.
For w/o-HyConv, the only change is the removal of hyperedges from the representation. For w/o-
VCConv, its hypergraph representation contains the same variable and constraint vertices as in our
representation but differs in that it has no edges and uses alternative hyperedges. These hyperedges
encode both variable interactions in high-degree terms and variable-constraint interdependencies:
each term is represented by a hyperedge connecting its variables and the constraint it belongs to.
The hyperedge features follow the same design as our representation.

D ADDITIONAL EXPERIMENTS TO COMPARE WITH GNN QP

As stated in Section 5.1, we compared our method with a very recent learning-based baseline,
GNN QP (Chen et al., 2025), which primarily investigates the theoretical expressive power of graph
neural networks for quadratic terms. We trained GNN QP on the two synthetic quadratic bench-
marks, QMKP and RandQCP, and evaluated it with Gurobi as repair-and-refinement on the same
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Table 8: Comparison on QMKP datasets in terms of mean and standard deviation of gap%. The best
results are highlighted in bold and ∗ indicates statistically significant difference to the best results.

Method Train QMKP Overall
1000 2000 5000 10000

Gurobi – 14.03∗ 5.36∗ 29.12∗ 17.42∗ 16.41∗
±9.06

Neural
QP-G

Mini 3.75 0.14∗ 0.04 0.03
0.76±0.211000 4.00 0.14∗ 0.04 0.04

2000 – 0.12 0.04 0.04

GNN
QP-G

Mini 12.46∗ 0.13 0.05 0.04
2.52∗

±5.331000 5.65 0.12 0.05 0.04
2000 – 0.18∗ 0.05 0.03

Ours-G
Mini 4.06 0.14∗ 0.05 0.03

0.75±1.941000 3.59 0.15∗ 0.04 0.04
2000 – 0.09 0.04 0.03

Table 9: Comparison on RandQCP datasets by mean and standard deviation of gap%. The best
results are highlighted in bold and ∗ indicates statistically significant difference.

Method Train RandQCP Overall
1000 2000 5000 10000

Gurobi – 2.67 4.65∗ 4.58∗ 5.36∗ 4.32∗
±1.09

Neural
QP-G

Mini 3.44∗ 2.14∗ 3.13∗ 3.14
2.92∗

±0.671000 3.42∗ 2.13 3.10∗ 3.14∗

2000 – 2.15∗ 3.13∗ 3.15∗

GNN
QP-G

Mini 3.47∗ 2.22∗ 3.23∗ 3.20∗

2.87∗
±0.801000 3.49∗ 2.19∗ 3.19∗ 3.21∗

2000 – 2.18∗ 3.13∗ 3.22∗

Ours-G
Mini 3.25 2.04 3.06 3.10

2.85±0.661000 3.32∗ 2.09 3.10 3.10
2000 – 2.08 3.06 3.11

benchmarks. Both training and evaluation used the same implementation settings as in our main ex-
periments. The results, presented in Table 8 and Table 9, demonstrate that our method consistently
outperforms GNN QP on most testing datasets.

E ADDITIONAL EXPERIMENTS TO EVALUATE MODEL PREDICTION

In Section 5 we have demonstrated the effectiveness of the complete HNN-based framework com-
posed of both HNN prediction and repair-and-refinement. To assess the quality of our HNN model’s
predictions as initial solution values without refinement, in this section we conducted additional ex-
periments that isolate the model’s predictive performance from the overall framework. We applied
our HNN models trained on RandQCP’s training data to the RandQCP test sets with 10,000-scaled
instances, and models trained on QMKP’s training data to the QMKP test sets with 10,000-scaled in-
stances. These largest-scale testing datasets are selected to rigorously assess prediction performance
for challenging instances. Since our HNN model generates initial solution values rather than directly
producing feasible solutions, we applied the Q-Repair-Based Repair Strategy based on Gurobi (de-
tailed in Appendix A.2) to convert model predictions into feasible solutions, with no further refine-
ment performed. We compared against NeuralQP with identical settings and Gurobi configured to
prioritize finding feasible solutions by setting “Params.MIPFocus = 1”, “Params.NonConvex = 2”,
and “Params.SolutionLimit = 1”.

We evaluated performance using three comprehensive metrics listed below, and present the compar-
ative results in Table 10.

• Feasible ratio: The percentage of model predictions that yield feasible solutions before
repair. A higher feasible ratio indicates stronger constraint satisfaction capability.
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• gap%: introduced in Section 5.1.

• Wall-clock time: For our method and NeuralQP, it is the time required to obtain a feasible
solution through the repair process, while for Gurobi it is the time required to obtain the
first feasible solution. Shorter times indicate that the model’s predictions can be more
efficiently converted into feasible solutions.

The results in Table 10 demonstrate that our HNN model achieves superior solution quality, as
evidenced by consistently lower mean gap% values compared to both baselines. This indicates that
our model’s predictions, after repair, are closer to the best-known solutions and provide higher-
quality initial solution values for optimization.

Table 10 also exhibits that our method shows a lower feasible ratio before repair and longer repair
times compared to the baseline methods. While these metrics might initially suggest limitations, a
closer examination reveals that they do not represent true disadvantages. In terms of feasible ratio,
although NeuralQP achieved a higher feasible ratio, both NeuralQP and Gurobi frequently generated
trivial solutions with all variables set to zero. Such trivial solutions, while technically feasible,
provide less guidance for subsequent refinement processes. Regarding computational time, although
our method requires longer repair times than NeuralQP and Gurobi, the actual repair time remains
very short (less than 1 second), which is highly acceptable given that 10,000-variable instances
typically require extensive search times. In summary, the comparative results demonstrate that our
HNN model is a practical choice for generating high-quality initial solution values.

Table 10: Comparison of our HNN model, NeuralQP and Gurobi in terms of prediction performance.

Method QMKP RandQCP

feasible
ratio (%) gap% time (ms) feasible

ratio (%) gap% time (ms)

Gurobi – 100 5.30 – 100 2.49
NeuralQP 100 99.10 163 0 53.30 392

Ours 66.67 77.40 946 0 51.74 835

F COMPLEXITY ANALYSIS

This section analyzes the memory requirements of the proposed hypergraph representation and the
arithmetic time complexity of the proposed HNN’s inference. We consider an IPHD instance with
n variables, m constraints, and nh high-degree terms. Let s denote the total number of variable
occurrences across all high-degree terms, and let ne denote the total number of variable-constraint
incidences, i.e., the number of times any variable appears with a nonzero coefficient in any con-
straint. These parameters allow us to demonstrate the efficiency of our method in terms of both
memory usage and computational complexity, as shown in the following subsections.

F.1 MEMORY REQUIREMENT FOR THE HYPERGRAPH REPRESENTATION

According to Section 4.1 and Appendix A.1, hypergraph representation of the IPHD instance com-
prises four components:

• n variable vertices, each with 9 raw features;

• m constraint vertices, each with 4 features;

• nh hyperedges, with s vertex-hyperedge coefficients, where each coefficient contains 2
floats;

• ne edges, each with 2 features;

Variable vertices and constraint vertices can be stored using their indices, while hyperedges and
edges can be stored using tuples of vertex indices they contain. In total, hypergraph structure requires
(n+m+ s+2ne) indices to represent. Additionally, there are (9n+4m+2ne +2s) raw features.
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Assuming all indices are stored as 4-byte integers and raw features are stored as 8-byte floats (double
precision), the total memory requirement for the hypergraph representation is:

bytes = 76n+ 36m+ 20s+ 24ne. (25)

To illustrate this with a concrete example, consider the largest CFLPTC instances we tested, which
involve 500 customers and 100 facilities. As detailed in Section B.2.1, these instances have
n = 50, 200,m = 50, 700, ne = 200, 300, s = 100, 000. Applying Eq. 25, the total memory
requirement is 12,447,600 bytes, or approximately 11.87 megabytes (MB). This represents a very
manageable memory overhead for modern hardware, demonstrating that our hypergraph representa-
tion remains practical even for large-scale instances.

F.2 ARITHMETIC TIME COMPLEXITY FOR THE HNN

In this subsection, we analyze the arithmetic complexity of our HNN model during inference. Let
nhid denote the largest dimension among raw features, hidden embeddings, and outputs, and assume
we perform Lhyper hypergraph-based convolutions and Lbi bipartite-graph-based convolutions. The
complexity analysis for each component is as follows:

• Initial embedding: it is a 2-layer MLP applied on all raw features, with arithmetic com-
plexity O((n+m+ s+ ne)n

2
hid);

• Hypergraph-based convolution:
– Eq. 5 performs weighted summation with complexity O(snhid);
– Eq. 6 combines weighted means, a 2-layer MLP, and a residual connection, with

complexity O(snhid), O(nn2
hid), and O(nnhid), separately. The total complexity is

O(snhid + nn2
hid);

– Overall complexity: O(Lhyper(snhid + nn2
hid));

• Bipartite-graph-based convolution:
– Eq. 7 combines summations, a 2-layer MLP, and residual connection, with complexity
O(nenhid, O(mn2

hid), and O(mnhid), separately. The total complexity is O(nenhid +
mn2

hid);
– Eq. 8 has similar structure to Eq. 7, with complexity O(nenhid + nn2

hid);
– Overall complexity: O(Lbi(nenhid +mn2

hid + nn2
hid));

• Output layer: A 2-layer MLP applied to variable embeddings, with complexity O(nn2
hid).

Therefore, the overall arithmetic complexity of HNN inference is O(nhid(Lhypers + Lbine) +
n2

hid(Lhypern + Lbin + Lbim)). Since nhid, Lhyper, and Lbi are fixed constants in our experiments
(see Section 5.2), the arithmetic complexity simplifies to O(n+m+ s+ ne), which scales linearly
with the number of variables, constraints, hyperedge density, and edge density.

Hypergraph representations for integer programming problems are typically sparse in both hyper-
edges and edges, making our HNN model highly efficient. To demonstrate robustness, we consider
the extreme case of a fully dense hypergraph representation where every pair of variable and con-
straint vertices is connected by edges, and all variable vertices are connected within each hyperedge.
In this scenario, s = nhn and ne = nm, yielding a quadratic complexity O(n(m + ne)). This
analysis shows that even in such extreme cases, which rarely occur in practice, our HNN model
maintains good computational efficiency for inference.

G LICENSE DESCRIPTION

The licenses and resources of the code, software, and datasets used in this paper are listed in Ta-
ble 11.

H STATEMENT OF THE USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were used solely for writing assistance and language polishing,
including grammar correction, sentence restructuring, and clarity improvements. LLMs were not
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Table 11: List of licenses for the codes, software and datasets used in this work.

Resource Type Link License

Gurobi Software https://www.gurobi.com/ Academic Li-
cense

SCIP Software https://scipopt.org/
#scipoptsuite

Apache 2.0 Li-
cense

AMPL Software https://ampl.com/ Academic Li-
cense

NeuralQP (Xiong
et al., 2024)

Code,
Dataset

https://anonymous.
4open.science/r/
NeuralQP-Anonymous-7243/

MIT License

QPLIB (Furini
et al., 2019)

Dataset https://qplib.zib.de/ CC-BY 4.0

involved in research ideation, experimental design, data analysis, or generation of technical content.
All scientific contributions, methodology, and results are entirely the work of the authors.
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