

000 HYPERGRAPH NEURAL NETWORK FOR INTEGER PRO- 001 002 GRAMMING WITH HIGH-DEGREE TERMS 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 Complex real-world optimization problems often involve not only discrete decisions,
011 but also nonlinear relationships between variables represented in constraints
012 or objectives. A class of such problems can be modeled as integer programming
013 with high-degree terms, such as quadratic integer programming. The nonlinearity
014 makes integer programming problems far more challenging than their linear
015 counterparts. In this paper, we propose a hypergraph neural network (HNN) based
016 method to solve integer programming with high-degree terms. First, we present
017 a high-degree term-aware hypergraph representation to effectively capture both
018 high-degree information and variable-constraint interdependencies. Then, a hy-
019 pergraph neural network, that integrates convolution between variables and high-
020 degree terms with convolution between variables and constraints, is proposed to
021 predict solution values. Finally, a search process initialized from the predicted
022 solutions is performed to further refine the results. Comprehensive experimental
023 evaluations across a range of benchmarks demonstrate that our method consis-
024 tently outperforms both learning-based approaches and state-of-the-art solvers,
025 ultimately delivering superior solution quality with favorable efficiency.

026 027 1 INTRODUCTION

028 Integer programming has been widely applied to real-world applications involving discrete decisions,
029 such as photolithography scheduling (Deenen et al., 2023), supply chain optimization (Bai
030 et al., 2011), and routing optimization (Wu et al., 2022). Many integer programming problems are
031 NP-hard, requiring computational time and memory that grow exponentially with problem size to
032 be solved to optimality. In particular, nonlinear integer programming (NLIP) frequently arises in
033 practice due to physical laws (Ahmadi & Majumdar, 2016), statistical measures (Lejeune & Margot,
034 2016), nonlinear regression (Seydan & Mafakheri, 2020), and other complex relationships. The
035 presence of nonlinearity makes these problems even more challenging to solve, highlighting the
036 need for efficient solution methods that go beyond traditional techniques.

037 Over the past few decades, many algorithms have been proposed to address the challenges of NLIP,
038 typically following two main approaches. Local approaches rely on gradient information to find
039 locally optimal solutions (Bazaraa et al., 2006), but often struggle with complex problem struc-
040 tures containing multiple local optima. Global approaches follow a divide-and-conquer strategy,
041 partitioning the solution space and searching within each partition to identify the optimal solution.
042 Examples include spatial branch-and-bound (Smith & Pantelides, 1999), which recursively parti-
043 tions the solution space and solves convex relaxations to establish bounds on the original problem,
044 and outer approximation (Kesavan et al., 2004), which iteratively constructs linear approximations
045 of the nonlinear feasible region. Despite their theoretical guarantees in reaching global optimality,
046 global approaches often incur prohibitive computational time for instances with highly nonlinear
047 terms or intricate constraint structures. Furthermore, algorithms for these approaches are typically
048 closed-source or tailored to specific NLIP, which restricts their broader application and potential for
049 improvement. These limitations motivate the exploration of alternative paradigms.

050 A promising alternative paradigm is machine learning, which has driven major advances in integer
051 linear programming (ILP) recently. The advances include learning better policies within specific
052 solvers, such as branching (Gasse et al., 2019; Nair et al., 2021; Maudet & Danoy, 2025) and pre-
053 solving (Liu et al., 2024), as well as learning general guidance for ILP solvers, such as solution

054 prediction (Ding et al., 2020; Geng et al., 2025) and neighborhood selection (Han et al., 2023; Ye
 055 et al., 2023). However, due to the fundamental differences between linear and nonlinear
 056 formulations, they are not directly applicable to NLIP. This gap underscores the substantial opportunity to
 057 develop advanced learning techniques capable of addressing more complex problem classes.

058 Despite this promise, research on learning-based methods for NLIP remains relatively limited with
 059 only a handful of works (Bonami et al., 2022; Ghaddar et al., 2023; Ferber et al., 2023). These
 060 methods are mainly built on specific problem structures or algorithms, thus restricting their broader
 061 applicability. It highlights the need for more general learning-based methods that can effectively
 062 address a wide range of NLIP problems and operate across different solvers.

063 To address these limitations, this paper aims to push the frontier of learning-for-NLIP towards solving
 064 general integer programming with high-degree terms (IPHD), a natural and important subclass
 065 of NLIP, such as quadratic and quintic integer programming. By Taylor’s formula (Rudin, 1987),
 066 IPHD captures many practical nonlinearities and is representative of NLIP challenges that cannot be
 067 efficiently solved by current solvers. Instead, we target learning-based NLIP and propose a hyper-
 068 graph neural network (HNN)-based model that predicts variable values in optimal solutions based
 069 on a hypergraph representation of problem instances. The predicted solution serves as an effective
 070 initial solution, which can be further refined by any solver or complementary search algorithm. Our
 071 major contributions are summarized as follows.

- 072 • We develop a hypergraph representation for general integer programming problems with
 073 high-degree terms, which encodes interactions among variables within high-degree terms
 074 and relations between variables and constraints in the overall problem structure.
- 075 • We propose a hypergraph neural network that learns the mapping between problem
 076 instances and their corresponding optimal solutions. It applies a convolution across variables
 077 and high-degree terms to capture variable representations, together with a convolution be-
 078 tween variables and constraints to further involve variable-constraint interdependencies.
- 079 • We conduct experiments on diverse benchmark datasets. They demonstrate the superior
 080 performance of our method in enhancing Gurobi and SCIP for solving quadratic and quintic
 081 integer programming problems with much higher efficiency.

084 2 RELATED WORK

086 2.1 LEARNING-BASED METHODS FOR ILP

088 This line of research can be broadly categorized into two classes (Bengio et al., 2021; Zhang et al.,
 089 2023). The first class concerns learning key policies within solvers. Among these, the most studied
 090 include variable selection (Gasse et al., 2019; Gupta et al., 2020; Sun et al., 2021; Nair et al., 2021;
 091 Zarpellon et al., 2021; Feng & Yang, 2025; Li et al., 2025) and node selection (Labassi et al., 2022;
 092 Maudet & Danoy, 2025). Other policies include cutting plane selection (Deza & Khalil, 2023; Tang
 093 et al., 2020; Huang et al., 2022; Wang et al., 2024), primal heuristic selection (Chmiela et al., 2021),
 094 parameter tuning (Xu et al., 2011), and presolving settings (Liu et al., 2024; Kuang et al., 2025).

095 The second class focuses on learning general policies that are applicable across different solvers.
 096 One approach involves predicting solutions, either as initial solution values for further refinement
 097 (Song et al., 2020; Ding et al., 2020; Huang et al., 2024) or as direct feasible solutions (Geng et al.,
 098 2025; Liu et al., 2025; Heydariben et al., 2024; Tang & Khalil, 2024). Another direction involves
 099 learning strategies in general heuristics, including neighborhood selection strategy for large neigh-
 100 borhood search (Liu et al., 2022; Ye et al., 2023; Han et al., 2023; Huang et al., 2023; Ye et al., 2025;
 101 Zhang et al., 2025) and search strategy for diving heuristics (Nair et al., 2021).

102 2.2 LEARNING-BASED METHODS FOR NLIP

104 The learning-based methods for NLIP remain underexplored in the literature. A few noteworthy
 105 contributions have developed learning-for-NLIP methods in specific problems. Bonami et al. (2022)
 106 trained a classifier to decide whether linearizing quadratic integer programs leads to better solver
 107 performance. Ferber et al. (2023) proposed to learn surrogate linear objective functions for nonlinear
 programs with linear constraints. Tang et al. (2024) introduced differentiable correction layers for

108 end-to-end learning on parametric nonlinear programming with fixed problem structure. Chen et al.
 109 (2025) studied the theoretical expressive power of graph neural networks for quadratic terms. While
 110 these works represent valuable progress, they are all tailored to specific problem settings and do not
 111 generalize to integer programming with high-degree terms (IPHD).

112 Two recent studies are more directly related to our work. Xiong et al. (2024) developed a hypergraph
 113 neural network to predict solutions for quadratic programming. However, both their hypergraph rep-
 114 resentation and neural network are restricted to quadratic terms, whereas our framework is designed
 115 to handle IPHD with arbitrary degrees. Ghaddar et al. (2023) applied quantile regression to learn
 116 instance-specific branching rules inside a closed-source solver. This approach requires access to in-
 117 ternal solver modifications and is limited to a specific solver, while our approach predicts solutions
 118 that can be applied as external initial solution values for any solver without internal changes.

119 Together, these studies highlight the promise and the gap of learning-based methods. Our work fills
 120 this gap by proposing a hypergraph neural network framework that addresses integer programming
 121 with arbitrary high-degree terms and integrates seamlessly with existing solvers.

123 3 PRELIMINARIES

124 3.1 DEFINITION OF INTEGER PROGRAMMING WITH HIGH-DEGREE TERMS

125 Integer programming with high-degree terms (IPHD) refers to a class of optimization problems to
 126 maximize or minimize an objective function defined over a set of integer variables, while satisfying a
 127 set of constraints. In IPHD, either the objective function or the constraints are expressions of linear,
 128 quadratic, or higher-order monomial terms. Formally, the mathematical formulation of IPHD with
 129 n variables and m constraints is presented as follows for clarity:

$$133 \min_x / \max_x \sum_{|\alpha| \leq d_0} c_{0,\alpha} \prod_{i=1}^n x_i^{\alpha_i}, \quad (1)$$

$$136 \text{s.t. } \sum_{|\alpha| \leq d_j} c_{j,\alpha} \prod_{i=1}^n x_i^{\alpha_i} \leq b_j, \quad j = 1, 2, \dots, m, \quad (2)$$

$$139 l_i \leq x_i \leq u_i, \quad i = 1, 2, \dots, n, \quad (3)$$

$$140 x_i \in \mathbb{Z}, \quad i = 1, 2, \dots, n, \quad (4)$$

141 where $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in (\mathbb{Z}_+ \cup \{0\})^n$ represents the vector of variable degrees; $|\alpha|$ represents
 142 the sum of all elements in α ; $c_{0,\alpha}$ and $c_{j,\alpha}$ denote the coefficients of the term indexed by degree α
 143 in the objective function and in the j -th constraint, respectively; d_0 and d_j are maximum degrees for
 144 the objective function and the j -th constraint; b_j is the right-hand-side scalar of the j -th constraint;
 145 l_i and u_i are lower and upper bounds for integer variable x_i , respectively.

147 3.2 GRAPH REPRESENTATIONS FOR INTEGER PROGRAMMING

149 Graph-based representations are commonly used to transform integer programming (IP) instances
 150 into structures suitable for graph neural network processing. The seminal work of Gasse et al. (2019)
 151 introduced a bipartite graph in which one set of nodes represents variables and the other represents
 152 constraints, with edges encoding variable-constraint incidences, i.e., a variable appearing in a con-
 153 straint. Building on this idea, Ding et al. (2020) extended the representation to a tripartite graph by
 154 adding nodes for representing the objective function, thereby enriching the structural information.
 155 Subsequent GNN-based representations of IP are often built on bipartite graphs, owing to their ef-
 156 fectiveness and simplicity (Gupta et al., 2020; Sun et al., 2021; Nair et al., 2021; Wu et al., 2021;
 157 Liu et al., 2022; Labassi et al., 2022; Han et al., 2023; Ye et al., 2023; Huang et al., 2023; Liu et al.,
 158 2024; Huang et al., 2024; Liu et al., 2025; Zhang et al., 2025).

159 While effectively capturing variable-constraint relationships, the current graph-based representa-
 160 tions are restricted to pairwise interactions and thus struggle to model the nonlinear or higher-order
 161 structures that frequently arise in practical IP problems. To overcome this limitation, Heydaribeni
 et al. (2024) used hyperedges to connect variables appearing in the same constraint, and Xiong

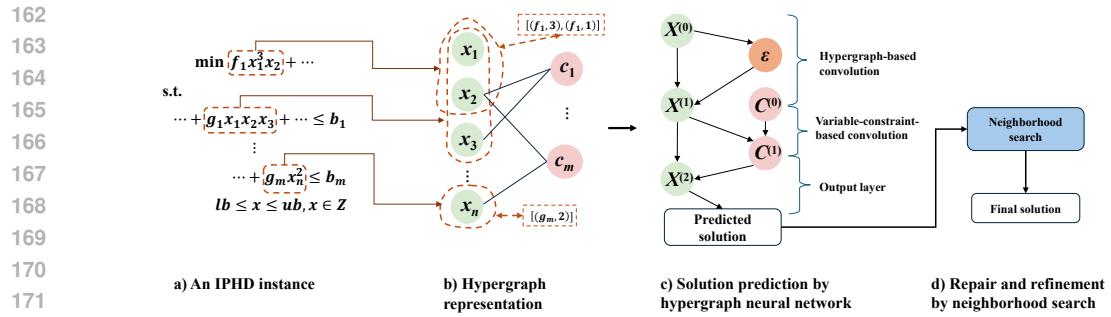


Figure 1: **The framework of the proposed method.** For an IPHD problem instance shown in a), our method first transforms it into a hypergraph shown in b), where orange circles denote hyperedges representing high-degree terms. Their raw features (term coefficients and variable degrees) are illustrated in the orange dashed boxes. This hypergraph is then processed by a hypergraph neural network shown in c) for representation learning and solution prediction, where ϵ , $X^{(i)}$, and $C^{(i)}$ represent the embeddings for hyperedges, variables after the i -th update, and constraints after the i -th update, respectively. Finally, a neighborhood-search based repair-and-refinement process shown in d) turns the predicted results into a high-quality feasible solution.

et al. (2024) employed hyperedges to represent quadratic terms involving both variables and constraints. Nonetheless, both hyperedge-based representations remain limited to specific problems (e.g., IP with linear or quadratic terms) and cannot generalize to IP instances with arbitrary high-degree terms. In this paper, we address this gap by proposing a hypergraph neural network tailored for learning representations of IP with high-degree terms (IPHD).

4 METHODOLOGY

This section presents our hypergraph neural network framework for tackling IPHD problems, including hypergraph representation, solution prediction via hypergraph neural network, and solution repair and refinement. The overview of our framework is illustrated in Figure 1 and detailed below.

4.1 HIGH-DEGREE TERM-AWARE HYPERGRAPH REPRESENTATION

Representing general IPHDs poses two unique challenges: (i) high-degree terms induce multi-variable interactions that cannot be captured by standard pairwise connections, and (ii) the satisfaction of constraints depends intricately on variable assignments, forming another essential relationship. To address these challenges, we encode an IPHD instance as a hypergraph.

Formally, our hypergraph is defined as $\mathcal{G} = (\mathcal{V}, \mathcal{C}, \mathcal{H}, \mathcal{E})$, where \mathcal{V} denotes variable vertices, \mathcal{C} denotes constraint vertices, \mathcal{H} denotes hyperedges, and \mathcal{E} denotes standard edges. In specific, each variable x_j in an IPHD instance is represented by a vertex $v \in \mathcal{V}$, and each constraint is represented by a vertex $c \in \mathcal{C}$. For every high-degree term $c_\alpha \prod_{i' \in \{1, \dots, |\mathcal{V}|\}} x_i^{\alpha_{i'}}$ (with $\sum_{i' \in \{1, \dots, |\mathcal{V}|\}} \alpha_{i'} \geq 2$) appearing in either the objective function or a constraint, we create a hyperedge $\epsilon \in \mathcal{H}$ that connects all variables contained in the term. The raw features of the hyperedge ϵ are defined as $\{\omega_{v_i, \epsilon} = (c_\alpha, \alpha_{i'})\}_{v_i \in \mathcal{N}_\epsilon}$, where \mathcal{N}_ϵ represents variables contained by ϵ . To model variable-constraint relationships, we add an edge $e_{vc} \in \mathcal{E}$ between variable vertex v and constraint vertex c whenever the corresponding variable appears with a nonzero coefficient in the corresponding constraint. The associated coefficient and variable degree are assigned as features of this edge, ensuring that the numerical dependency between variable and constraint is preserved.

The hypergraph-based representation integrates both structural and parametric information of an IPHD instance, and provides a foundation for the hypergraph neural network introduced in the next subsection. A complete specification of the raw features is provided in Appendix A.1.

For example, Figure 1(b) illustrates the hypergraph representation for the IPHD instance in Figure 1(a). Variable vertices (left) and constraint vertices (right) represent variables and constraints separately; edges (straight lines) represent variable-constraint relationships, connecting a variable to

each constraint in which it appears with a nonzero coefficient (e.g., x_3 is connected to c_1); hyperedges (circles) capture the complex relationships of variables in high-degree terms such as $f_1 x_1^3 x_2$ and $g_m x_n^2$. The term $f_1 x_1^3 x_2$ has coefficient f_1 and two variables with exponents 3 and 1, so the raw features of its hyperedge are $\{(f_1, 3), (f_1, 1)\}$. Similarly, the raw features of the term $g_m x_n^2$ are $\{(g_m, 2)\}$. Both raw features are illustrated in dashed boxes.

4.2 SOLUTION PREDICTION VIA HYPERGRAPH NEURAL NETWORK

According to the hypergraph representation of IPHD instances, the graph neural networks should be able to capture two complementary relationships: (i) high-order interactions among variables induced by high-degree terms, and (ii) interdependencies between variables and constraints. To this end, we first build on concepts from Hypergraph Neural Networks (HNNs), which enable message passing between vertices and hyperedges to model higher-order structures (Kim et al., 2024). With an HNN, we introduce a hyperedge-based convolution that aggregates information from hyperedges and integrates them into variable embeddings. Second, we design a variable-constraint-based convolution that propagates information along standard edges that represent variable-constraint interdependencies. In Section 5.3, an ablation study demonstrates the effectiveness of the above modules. Finally, the variable embeddings are passed through an output layer to generate the predictions of variable values in high-quality solutions. The architecture of our model is illustrated in Figure 1(c).

4.2.1 HYPEREDGE-BASED CONVOLUTION

Our HNN begins with a hyperedge-based convolution, applied to hyperedges and variable vertices contained by them, in order to effectively extract higher-order information arising from the high-degree terms. Inspired by Huang & Yang (2021), we formulate the convolution as presented in Eq. 5 and Eq. 6. This convolution proceeds in two steps: first, hyperedges aggregate embeddings from all variable vertices they directly connect (Eq. 5); then, the updated hyperedge embeddings are propagated back to the associated variable vertices (Eq. 6). In this way, information from high-degree terms is jointly integrated into the embeddings of the variables they contain.

$$h_\epsilon \leftarrow \sum_{v \in \mathcal{N}_\epsilon} h_v h_{v\epsilon}, \forall \epsilon \in \mathcal{H}, \quad (5)$$

$$h_v \leftarrow \phi_{\mathcal{H}}(h_v, \text{mean}(\{h_\epsilon h_{v\epsilon}\}_{\epsilon \in \mathcal{N}_v})) + h_v, \forall v \in \mathcal{V}, \quad (6)$$

Formally, h_ϵ and h_v denote the embeddings for hyperedge ϵ and variable vertex v , respectively; $h_{v\epsilon}$ is the embedding obtained from the raw features $\omega_{v\epsilon}$ (see Section 4.1) through a two-layer multi-layer perceptron (MLP). \mathcal{N}_v is the set of hyperedges containing the variable v ; \mathcal{N}_ϵ is the set of variable vertices contained in the hyperedge ϵ . The function $\phi_{\mathcal{H}}$ is parameterized by another two-layer MLP activated by LeakyReLU. The hyperedge-based convolution is repeated for L iterations. The input embeddings to the first iteration are initialized by applying two-layer MLPs to raw features, while those to the latter iterations are from the previous iteration.

4.2.2 VARIABLE-CONSTRAINT-BASED CONVOLUTION

After the hyperedge-based convolution embeds higher-order relationships into variable vertices, the model still needs to account for variable-constraint interdependencies. To this end, we apply a variable-constraint-based convolution that explicitly processes message passing along the edges connecting variable and constraint vertices.

This convolution operates through bidirectional message passing: variable embeddings (that already aggregate higher-order information from the hyperedge-based convolution) are first propagated to constraint vertices (Eq. 7), and the updated constraint representations are then passed back to the variable vertices (Eq. 8). Through the two-step convolutions, variable embeddings are further informed by the constraints in which the variables connect.

$$h_c \leftarrow f_c(h_c, \sum_{v \in \mathcal{N}_c} \phi_c(h_c, h_v, h_{vc})) + h_c, \forall c \in \mathcal{C}, \quad (7)$$

$$h_v \leftarrow f_v(h_v, \sum_{c \in \mathcal{N}_v} \phi_v(h_c, h_v, h_{vc})) + h_v, \forall v \in \mathcal{V}, \quad (8)$$

270 Formally, h_c denotes the embedding for constraint vertex c ; h_v denotes the embedding for variable vertex v ; and h_{vc} denotes the embedding of the edge $e_{v,c}$ connecting v and c . The set \mathcal{N}_c contains all variable vertices connected to constraint c , while \mathcal{N}_v contains all constraint vertices connected to variable v . Finally, ϕ_c , ϕ_v , f_c , and f_v are implemented as two-layer MLPs activated by LeakyReLU. The variable-constraint-based convolution is executed once. The input embeddings h_v are passed from the hyperedge-based convolution while the inputs h_c and h_{vc} are initialized from raw features of constraint vertices and edges via 2-layer MLPs, separately.

277 278 4.2.3 SOLUTION PREDICTION AND REFINEMENT

279 After hyperedge-based and variable-constraint-based convolutions, the variable embeddings involve
280 both high-order interactions from high-degree terms and the interdependencies between variables
281 and constraints. To generate solution predictions, we feed these embeddings into a two-layer MLP,
282 which outputs a scalar value for each variable representing its prediction.

283 The entire HNN is trained in a supervised manner using the binary cross-entropy loss: $\mathcal{L}_{\text{BCE}} =$
284 $-\frac{1}{N} \sum_{i=1}^N [y_i \log(\sigma(\hat{y}_i)) + (1 - y_i) \log(1 - \sigma(\hat{y}_i))]$, where N is the number of logits, $y \in \{0, 1\}^N$
285 and $\hat{y} \in \mathbb{R}^N$ represent the ground truth and the predicted logits, $\sigma(\cdot)$ is the sigmoid function.

286 The predictions produced by our model can provide initial solution values for downstream
287 algorithms and solvers. To make use of them, we adopt a parallel neighborhood optimization framework
288 in (Ye et al., 2023; Xiong et al., 2024) that embeds an off-the-shelf solver to refine the predicted
289 solution during inference, as illustrated in Figure 1(d). Specifically, the framework employs adaptive
290 large neighborhood search: it first repairs the raw predictions into feasible solutions by fixing
291 promising variables to their predicted values while allowing the remaining variables to be reoptimized
292 by a solver such as Gurobi and SCIP, and then further refines these feasible solutions through
293 additional neighborhood search to achieve better objective values.

295 296 5 EXPERIMENTAL RESULTS

297 In this section, we conduct comprehensive experiments to demonstrate the effectiveness of our pro-
298 posed method in solving IPHD instances. We present and discuss the comparative results in Sec-
299 tion 5.2, and an ablation study on model architecture in Section 5.3.

302 303 5.1 SETUP

304 **Benchmarks** Our experiments were conducted on four IPHD benchmarks. The first two are syn-
305 thetic quadratic integer programming (QIP) benchmarks introduced by Xiong et al. (2024), derived
306 from two NP-hard problems: the Quadratic Multiple Knapsack Problem (QMKP) and the Random
307 Quadratically Constrained Quadratic Program (RandQCP). Each benchmark contains instances at
308 five scales (Mini, 1000, 2000, 5000, 10000), where the first three scales are used for training and all
309 but Mini are included in testing. The third benchmark is a subset of a public quadratic programming
310 benchmark QPLIB (Furini et al., 2019) selected by Xiong et al. (2024). Finally, we introduce a new
311 synthetic quintic integer programming benchmark based on the Capacitated Facility Location Prob-
312 lem with Traffic Congestion (CFLPTC). This dataset includes five instance scales (50×10 , 50×20 ,
313 150×30 , 200×30 , 500×100), with the first four scales used for training and the last three for testing.
314 Detailed formulations and dataset descriptions are provided in Appendix B.

315 **Baselines** We compare our method against a learning-based method tailored for quadratic pro-
316 gramming (QP): NeuralQP (Xiong et al., 2024) which introduces a hypergraph neural network to
317 predict solutions for quadratically constrained QPs. Similar to our HNN model, the model of Neu-
318 ralQP serves as solution predictors and can be combined with exact solvers for repair and refine-
319 ment (see Section 4.2.3). We adopt SCIP and Gurobi as the exact solvers in this experiment, and we
320 also included them as standalone baselines to provide a comprehensive comparison. Hereafter, we
321 use “ModelName-G” and “ModelName-S” to represent a learning-based method that integrates the
322 “ModelName” model with Gurobi and SCIP, separately.

323 We also considered a very recent learning-based baseline, GNN_QP (Chen et al., 2025), which pri-
324 marily investigates the theoretical expressive power of graph neural networks for quadratic terms.

324
325 Table 1: Comparison on QMKP datasets in terms of mean and standard deviation of gap%. The best
326 results are highlighted in bold and * indicates statistically significant difference to the best results.
327

Method	Train	QMKP				Overall
		1000	2000	5000	10000	
Gurobi	–	14.03*	5.36*	29.12*	17.42*	$16.41^{* \pm 9.06}$
Neural QP-G	Mini	3.75	0.14*	0.04	0.03	
	1000	4.00	0.14*	0.04	0.04	0.76 ± 0.21
	2000	–	0.12	0.04	0.04	
Ours-G	Mini	4.06	0.14*	0.05	0.03	
	1000	3.59	0.15*	0.04	0.04	0.75 ± 1.94
	2000	–	0.09	0.04	0.03	
SCIP	–	5.13	31.74*	35.72*	6.92*	$19.88^{* \pm 13.15}$
Neural QP-S	Mini	19.56*	0.18*	2.64*	6.21*	
	1000	19.11*	0.15	2.60	5.95*	5.92 ± 6.74
	2000	–	0.12	2.60	6.03*	
Ours-S	Mini	18.10*	0.20*	2.60	6.07*	
	1000	16.59*	0.22*	2.60	6.18*	5.41 ± 6.35
	2000	–	0.12	2.61	3.13	

344 While this line of work provides valuable theoretical insights, we observed the empirical perfor-
345 mance of their suggested model is markedly worse than ours on the two synthetic quadratic bench-
346 marks. For completeness, we report and discuss these results in the Appendix D.
347

348 **Metrics** We evaluate performance using the relative primal gap (in percentage), defined as $\text{gap\%} =$
349 $|\text{OBJ} - \text{BKS}|/|\text{BKS} + 10^{-10}| \times 100$, where OBJ is the objective value obtained by a method and
350 BKS is the best-known solution of the instance. For QPLIB instances, BKS values are publicly
351 available, while for synthetic datasets we set BKS to the best objective value found across our
352 experiments. Under the same time limit, a lower gap\% indicates solutions closer to BKS and thus
353 stronger performance. To assess statistical significance, we apply the Mann–Whitney U test for
354 unpaired data and the Wilcoxon signed-rank test for paired data, both at the 95% confidence level.
355

356 **Implementations** During evaluation, all three learning-based methods followed the same pro-
357 cedure: a trained model first generated a solution prediction, which was then improved using the
358 repair-and-refinement strategy (Section 4.2.3) under a fixed time limit. The exact-solver baselines
359 (SCIP and Gurobi) were instead given the same time to solve each instance from scratch. Time
360 budgets varied by benchmark and instance scale: 100, 600, 1800, and 3600 seconds for QMKP and
361 RandQCP instances at scales 1000, 2000, 5000, and 10000, respectively; 100 seconds for QPLIB
362 instances; and 60, 60, and 1000 seconds for CFLPTC instances at scales 150×30 , 200×30 , and
363 500×100 . Each method was run five times per instance to account for randomness.
364

365 For inference, we matched training and testing benchmarks where possible. On the three synthetic
366 benchmarks, models trained on the same benchmark with identical or smaller instance scales were
367 used. For QPLIB, our model was trained on QMKP-1000 instances, which we found structurally
368 closest to QPLIB. To ensure fairness, we compared against two NeuralQP variants: one trained on
369 QMKP-1000 (as with our model) and one trained on the combined QMKP-1000 and RandQCP-1000
370 datasets, following the original setup in Xiong et al. (2024). For CFLPTC, our model can directly
371 work on this quintic dataset, whereas the QIP-tailored NeuralQP cannot. To enable comparison,
372 we trained NeuralQP on a quadratic reformulation of CFLPTC obtained by introducing auxiliary
373 variables and constraints. The details of this reformulation are provided in Appendix B. Further
374 details on training and repair-and-refinement settings are provided in Appendix C.
375

376 5.2 COMPARATIVE EXPERIMENTS 377

378 The solving performance of our method and baselines on the four benchmarks is presented in Ta-
379 ble 1, Table 2, Table 3, and Table 4. Overall, NeuralQP consistently outperforms Gurobi and SCIP
380 across almost all test datasets, particularly on large-scale instances, which highlights the promise of
381

378 Table 2: Comparison on RandQCP datasets by mean and standard deviation of gap%. The best
 379 results are highlighted in bold and * indicates statistically significant difference.
 380

381	Method	Train	RandQCP				Overall
			1000	2000	5000	10000	
382	Gurobi	–	2.67	4.65*	4.58*	5.36*	$4.32_{\pm 1.09}$
383	Neural QP-G	Mini	3.44*	2.14*	3.13*	3.14	
		1000	3.42*	2.13	3.10*	3.14*	$2.92_{\pm 0.67}$
		2000	–	2.15*	3.13*	3.15*	
387	Ours-G	Mini	3.25	2.04	3.06	3.10	
		1000	3.32*	2.09	3.10	3.10	$2.85_{\pm 0.66}$
		2000	–	2.08	3.06	3.11	
390	SCIP	–	38.11*	41.41*	37.85*	53.11*	$42.62_{\pm 6.39}$
391	Neural QP-S	Mini	0.50*	0.37*	0.25*	0.16	
		1000	0.44	0.34	0.24*	0.18	$0.29_{\pm 0.15}$
		2000	–	0.32	0.24*	0.19	
394	Ours-S	Mini	0.36	0.27	0.19	0.10	
		1000	0.44*	0.29	0.17	0.12	$0.24_{\pm 0.14}$
		2000	–	0.32	0.19	0.09	

397 Table 3: Comparison on QPLIB instances by mean value and standard deviation of gap%. “# ID”
 398 denotes the index of the test instance in QPLIB. “Mix” denotes NeuralQP trained on QMKP-1000
 399 + RandQCP-1000, and “QMKP” denotes NeuralQP trained only on QMKP-1000. The best results
 400 are highlighted in bold and * indicates statistically significant difference.
 401

402	# ID	Gurobi	NeuralQP-G		Ours-G	# ID	Gurobi	NeuralQP-G		Ours-G
			Mix	QMKP				Mix	QMKP	
404	2067	7.67	21.46	28.10	9.37	3860	48.95	3.30	15.92	14.69
405	2085	18.85	13.17	9.96	9.60	3841	26.69	7.85	9.90	6.13
406	3752	14.09	0.63	1.70	1.30	3883	8.25	1.04	0.36	0.63
407	2036	1.89	0.57	1.57	1.10	2957	2.11	1.41	2.07	0.71
408	2022	2.37	1.20	1.80	1.58	3402	2.80	6.95	7.10	6.64
409	2017	4.87	3.16	2.49	2.27	3347	0.52	0.33	0.20	0.34
410	2315	59.75	11.25	15.92	13.49	2733	1.38	0.37	0.28	0.38
411	3584	66.75	13.58	15.04	15.03	5962	16.89	10.76	15.04	7.06
412	Overall	Gurobi		NeuralQP-G		NeuralQP-G		Ours-G		
413										
414										
415	learning-based approaches for integer programming. On the QIP benchmarks, our method achieves 416 performance that is at least comparable to, and in several cases better than NeuralQP, and it also 417 achieves superior overall results across each QIP dataset. This observation is noteworthy given that 418 NeuralQP is specifically designed for QIP, whereas our approach is developed for the more general 419 class of IPHD problems with higher-order terms. On the quintic CFLPTC benchmark, our method 420 produces significantly better solutions than both Gurobi and NeuralQP (on quadratic reformulated 421 instances). In addition, the results indicate that our model can generalize to instances of consider- 422 ably larger scale than seen during training. These results collectively demonstrate the effectiveness 423 and generality of our approach across diverse benchmarks and instance scales.									

424 5.3 ABLATION STUDY

426 To evaluate the impact of the two convolution modules, hyperedge-based convolution (see Sec-
 427 tion 4.2.1) and variable-constraint-based convolution (see Section 4.2.2), on the learning ability of
 428 our model, we conducted an ablation study. Specifically, we introduced two variants for comparison:
 429 w/o-HyConv, which retains only the variable-constraint-based convolution, and w/o-VCCConv, which
 430 retains only the hyperedge-based convolution. A straightforward removal of one convolution would
 431 leave the model unable to capture certain relationships; for example, w/o-VCCConv cannot represent
 dependencies between variables and constraints. To address this and ensure fairness, we designed

432 Table 4: Comparison on CFLPTC datasets by mean and standard deviation of gap%. The best results
 433 are highlighted in bold and * indicates statistically significant difference.

435	436	Method	Train	CFLPTC			Overall
				150x30	200x30	500x100	
437	438	Gurobi	–	51.42*	52.76*	38.66*	48.89 \pm 11.11
439	440	Neural QP-G	Small	28.03*	35.77*	23.82*	
441			Medium	42.20*	57.24*	26.47*	37.04 \pm 13.95
442	443	Ours-G	Small	9.95*	8.96	2.78	
444			Medium	5.23	7.08	2.65	6.59 \pm 6.39

445 alternative representations that allow w/o-HyConv and w/o-VCCConv to access all relationships in
 446 IPHDs while differing as little as possible from our original hypergraph representation, which are
 447 provided in Appendix C. Apart from the absence of one convolution and the modified representation,
 448 all other architectural and implementation settings remain identical to our full method.

449 We trained w/o-HyConv and w/o-VCCConv on the 1000-scaled training datasets from the QMKP
 450 and RandQCP benchmarks, and subsequently evaluated their performance on the corresponding
 451 1000-scaled and 2000-scaled test datasets. During inference, Gurobi was employed for repair-and-
 452 refinement. For evaluation, we used the validation F1-score to measure predictive performance and
 453 gap% to measure solving performance. The results, summarized in Table 5, indicate that both the
 454 hyperedge-based and variable-constraint-based convolutions are essential to the HNN architecture,
 455 as removing either convolution mechanism leads to a noticeable drop in performance.

456
 457 Table 5: Comparison of our model and ablation baselines in terms of validation F1-score (left) and
 458 gap% (right). The best results are highlighted in bold.

460	461	Method	Validation F1-score		Mean gap%			
			462	463	QMKP	RandQCP	QMKP	
					1000	2000	1000	2000
466	467	w/o-VCCConv	0.73	0.74	4.62	0.15	3.39	2.15
468	469	w/o-HyConv	0.74	0.77	4.82	0.13	3.37	2.15
470	471	Ours	0.78	0.79	3.59	0.15	3.32	2.09

6 CONCLUSION

472 This paper introduces a novel hypergraph neural network (HNN) framework for solving integer
 473 programming problems with high-degree terms (IPHD). Our approach contributes two key innovations:
 474 a high-degree-aware hypergraph representation that effectively captures variable interactions
 475 in high-degree terms and variable-constraint interdependencies inherent in IPHD problems, and a
 476 hypergraph neural network architecture that integrates hypergraph-based and bipartite-graph-based
 477 convolutions to enable accurate solution prediction. Comprehensive experimental evaluation across
 478 quadratic and quintic programming problems demonstrates that our method significantly outper-
 479 forms both state-of-the-art exact solvers and specialized learning-based approaches, establishing its
 480 remarkable effectiveness and practical value for challenging IPHD applications.

481 While promising, our work represents just one step toward addressing the broader challenges of
 482 nonlinear integer programming. Future research directions include: 1) designing more comprehen-
 483 sive representations for general nonlinear instances such as those with trigonometric and logarithmic
 484 functions; 2) exploring end-to-end frameworks that directly output feasible solutions without requir-
 485 ing repair mechanisms; and 3) integrating advanced large language models to automate problem
 solving and reduce reliance on domain-specific knowledge or manual intervention.

486 REPRODUCIBILITY STATEMENT
487

488 We provide detailed information to ensure the reproducibility of our results. A complete description
489 of our method is given in Section 4.2. Components that are only briefly introduced in the main
490 text, including raw feature selection and the repair-and-refinement procedure, are further detailed in
491 Appendix A.1 and Appendix A.2, respectively. Implementation details for model training are pro-
492 vided in Appendix C, while the evaluation setup is described in Section 5.1. A detailed description
493 of the synthetic benchmarks is included in Appendix B. To further support reproducibility, we will
494 release our code and data on GitHub upon acceptance, enabling researchers to fully replicate our
495 experiments and results.

496
497 REFERENCES
498

499 Amir Ali Ahmadi and Anirudha Majumdar. Some applications of polynomial optimization in oper-
500 ations research and real-time decision making. *Optimization Letters*, 10:709–729, 2016.

501 Yun Bai, Taesung Hwang, Seungmo Kang, and Yanfeng Ouyang. Biofuel refinery location and
502 supply chain planning under traffic congestion. *Transportation Research Part B: Methodological*,
503 45(1):162–175, 2011.

504 Mokhtar S Bazaraa, Hanif D Sherali, and Chitharanjan M Shetty. *Nonlinear programming: theory*
505 *and algorithms*. John Wiley & Sons, 2006.

506 Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
507 mization: a methodological tour d’horizon. *European Journal of Operational Research*, 290(2):
509 405–421, 2021.

510 Pierre Bonami, Andrea Lodi, and Giulia Zarpellon. A classifier to decide on the linearization of
511 mixed-integer quadratic problems in cplex. *Operations Research*, 70(6):3303–3320, 2022.

512 Ziang Chen, Xiaohan Chen, Jialin Liu, Xinshang Wang, and Wotao Yin. Expressive power of
513 graph neural networks for (mixed-integer) quadratic programs. In *Forty-second International*
514 *Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=rcMeab1QVn>.

515 Antonia Chmiela, Elias Khalil, Ambros Gleixner, Andrea Lodi, and Sebastian Pokutta. Learning to
516 schedule heuristics in branch and bound. *Advances in Neural Information Processing Systems*,
517 34:24235–24246, 2021.

518 Patrick Deenen, Wim Nuijten, and Alp Akcay. Scheduling a real-world photolithography area with
519 constraint programming. *IEEE Transactions on Semiconductor Manufacturing*, 36(4):590–598,
520 2023.

521 Arnaud Deza and Elias B Khalil. Machine learning for cutting planes in integer programming: a sur-
522 vey. In *Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence*,
523 pp. 6592–6600, 2023.

524 Jian-Ya Ding, Chao Zhang, Lei Shen, Shengyin Li, Bing Wang, Yinghui Xu, and Le Song. Acceler-
525 ating primal solution findings for mixed integer programs based on solution prediction. *Proceed-
526 ings of the AAAI Conference on Artificial Intelligence*, 34(02):1452–1459, 2020.

527 Shengyu Feng and Yiming Yang. Sorrel: Suboptimal-demonstration-guided reinforcement learning
528 for learning to branch. In *The 39th Annual AAAI Conference on Artificial Intelligence*, 2025.

529 Aaron M Ferber, Taoan Huang, Daochen Zha, Martin Schubert, Benoit Steiner, Bistra Dilkina,
530 and Yuandong Tian. Surco: Learning linear surrogates for combinatorial nonlinear optimization
531 problems. In *International Conference on Machine Learning*, pp. 10034–10052. PMLR, 2023.

532 Fabio Furini, Emiliano Traversi, Pietro Belotti, Antonio Frangioni, Ambros Gleixner, Nick Gould,
533 Leo Liberti, Andrea Lodi, Ruth Misener, Hans Mittelmann, et al. QPLIB: a library of quadratic
534 programming instances. *Mathematical Programming Computation*, 11:237–265, 2019.

540 Maxime Gasse, Didier Ch  telat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combi-
 541 natorial optimization with graph convolutional neural networks. *Advances in neural information*
 542 *processing systems*, 32, 2019.

543 Zijie Geng, Jie Wang, Xijun Li, Fangzhou Zhu, Jianye HAO, Bin Li, and Feng Wu. Differentiable
 544 integer linear programming. In *The Thirteenth International Conference on Learning Representa-
 545 tions*, 2025. URL <https://openreview.net/forum?id=FPfCUJTsCn>.

546 Bissan Ghaddar, Ignacio G  mez-Casares, Julio Gonz  lez-D  az, Brais Gonz  lez-Rodr  guez, Beatriz
 547 Pateiro-L  pez, and Sof  a Rodr  guez-Ballesteros. Learning for spatial branching: An algorithm
 548 selection approach. *INFORMS Journal on Computing*, 35(5):1024–1043, 2023.

549 Prateek Gupta, Maxime Gasse, Elias B. Khalil, M. Pawan Kumar, Andrea Lodi, and Yoshua Bengio.
 550 Hybrid models for learning to branch. In *Proceedings of the 34th International Conference on*
 551 *Neural Information Processing Systems*, NIPS ’20, Red Hook, NY, USA, 2020. Curran Associates
 552 Inc. ISBN 9781713829546.

553 Qingyu Han, Linxin Yang, Qian Chen, Xiang Zhou, Dong Zhang, Akang Wang, Ruoyu Sun, and
 554 Xiaodong Luo. A gnn-guided predict-and-search framework for mixed-integer linear program-
 555 ming. In *The Eleventh International Conference on Learning Representations, ICLR 2023, Ki-
 556 gali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL [https://openreview.net/](https://openreview.net/forum?id=pHMpgT5xWaE)
 557 [forum?id=pHMpgT5xWaE](https://openreview.net/forum?id=pHMpgT5xWaE).

558 Nasimeh Heydariben, Xinrui Zhan, Ruisi Zhang, Tina Eliassi-Rad, and Farinaz Koushanfar. Dis-
 559 tributed constrained combinatorial optimization leveraging hypergraph neural networks. *Nature*
 560 *Machine Intelligence*, 6(6):664–672, 2024.

561 Kaj Holmberg, Mikael R  nnqvist, and Di Yuan. An exact algorithm for the capacitated facility
 562 location problems with single sourcing. *European Journal of Operational Research*, 113(3):544–
 563 559, 1999.

564 Jing Huang and Jie Yang. UniGNN: a unified framework for graph and hypergraph neural networks.
 565 In *Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21*,
 566 2021.

567 Taoan Huang, Aaron M Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. Searching large
 568 neighborhoods for integer linear programs with contrastive learning. In *International conference*
 569 *on machine learning*, pp. 13869–13890. PMLR, 2023.

570 Taoan Huang, Aaron M Ferber, Arman Zharmagambetov, Yuandong Tian, and Bistra Dilkina. Con-
 571 trastive predict-and-search for mixed integer linear programs. In Ruslan Salakhutdinov, Zico
 572 Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
 573 (eds.), *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of
 574 *Proceedings of Machine Learning Research*, pp. 19757–19771. PMLR, 21–27 Jul 2024. URL
 575 <https://proceedings.mlr.press/v235/huang24f.html>.

576 Zeren Huang, Kerong Wang, Furui Liu, Hui-Ling Zhen, Weinan Zhang, Mingxuan Yuan, Jianye
 577 Hao, Yong Yu, and Jun Wang. Learning to select cuts for efficient mixed-integer programming.
 578 *Pattern Recognition*, 123:108353, 2022. ISSN 0031-3203. doi: <https://doi.org/10.1016/j.patcog.2021.108353>. URL <https://www.sciencedirect.com/science/article/pii/S0031320321005331>.

579 Padmanaban Kesavan, Russell J Allgor, Edward P Gatzke, and Paul I Barton. Outer approximation
 580 algorithms for separable nonconvex mixed-integer nonlinear programs. *Mathematical Program-
 581 ming*, 100:517–535, 2004.

582 Sunwoo Kim, Soo Yong Lee, Yue Gao, Alessia Antelmi, Mirko Polato, and Kijung Shin. A survey
 583 on hypergraph neural networks: An in-depth and step-by-step guide. In *Proceedings of the 30th*
 584 *ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 6534–6544, 2024.

585 Yufei Kuang, Xijun Li, Jie Wang, Fangzhou Zhu, Meng Lu, Zhihai Wang, Jia Zeng, Houqiang
 586 Li, Yongdong Zhang, and Feng Wu. Accelerate presolve in large-scale linear programming via
 587 reinforcement learning. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 47(8):
 588 6660–6672, 2025. doi: 10.1109/TPAMI.2025.3562286.

594 Abdel Ghani Labassi, Didier Chételat, and Andrea Lodi. Learning to compare nodes in branch and
 595 bound with graph neural networks. In *Proceedings of the 36th International Conference on Neural
 596 Information Processing Systems*, NIPS '22, Red Hook, NY, USA, 2022. Curran Associates Inc.
 597 ISBN 9781713871088.

598 Miguel A Lejeune and François Margot. Solving chance-constrained optimization problems with
 599 stochastic quadratic inequalities. *Operations Research*, 64(4):939–957, 2016.

600 Sirui Li, Janardhan Kulkarni, Ishai Menache, Cathy Wu, and Beibin Li. Towards foundation models
 601 for mixed integer linear programming. In *The Thirteenth International Conference on Learning
 602 Representations*, 2025. URL <https://openreview.net/forum?id=6yENDA7J4G>.

603 Chang Liu, Zhichen Dong, Haobo Ma, Weilin Luo, Xijun Li, Bowen Pang, Jia Zeng,
 604 and Junchi Yan. L2P-MIP: Learning to presolve for mixed integer programming.
 605 In B. Kim, Y. Yue, S. Chaudhuri, K. Fragkiadaki, M. Khan, and Y. Sun (eds.),
 606 *International Conference on Representation Learning*, volume 2024, pp. 7518–7539,
 607 2024. URL https://proceedings.iclr.cc/paper_files/paper/2024/file/1e6e0c2edb159b2ad2f9419b898f56d3-Paper-Conference.pdf.

608 Defeng Liu, Matteo Fischetti, and Andrea Lodi. Learning to search in local branching. In *Proceed-
 609 ings of the aaai conference on artificial intelligence*, volume 36, pp. 3796–3803, 2022.

610 Haoyang Liu, Jie Wang, Zijie Geng, Xijun Li, Yuxuan Zong, Fangzhou Zhu, Jianye HAO, and Feng
 611 Wu. Apollo-MILP: An alternating prediction-correction neural solving framework for mixed-
 612 integer linear programming. In *The Thirteenth International Conference on Learning Represen-
 613 tations*, 2025. URL <https://openreview.net/forum?id=mFY0tPDWK8>.

614 Gwen Maudet and Grégoire Danoy. Search strategy generation for branch and bound using ge-
 615 netic programming. *Proceedings of the AAAI Conference on Artificial Intelligence*, 39(11):
 616 11299–11308, Apr. 2025. doi: 10.1609/aaai.v39i11.33229. URL <https://ojs.aaai.org/index.php/AAAI/article/view/33229>.

617 Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Paweł Lichocki, Ivan Lobov, Bren-
 618 dan O'Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, Ravichandra
 619 Addanki, Tharindu Hapuarachchi, Thomas Keck, James Keeling, Pushmeet Kohli, Ira Ktena, Yu-
 620 jia Li, Oriol Vinyals, and Yori Zwols. Solving mixed integer programs using neural networks,
 621 2021. URL <https://arxiv.org/abs/2012.13349>.

622 Walter Rudin. *Real and complex analysis*. McGraw-Hill, Inc., 1987.

623 Mahya Seyedian and Fereshteh Mafakheri. Predictive big data analytics for supply chain demand
 624 forecasting: methods, applications, and research opportunities. *Journal of Big Data*, 7(1):53,
 625 2020.

626 Edward MB Smith and Constantinos C Pantelides. A symbolic reformulation/spatial branch-and-
 627 bound algorithm for the global optimisation of nonconvex MINLPs. *Computers & chemical
 628 engineering*, 23(4-5):457–478, 1999.

629 Jialin Song, Ravi Lanka, Yisong Yue, and Bistra Dilkina. A general large neigh-
 630 borhood search framework for solving integer linear programs. In H. Larochelle,
 631 M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural In-
 632 formation Processing Systems*, volume 33, pp. 20012–20023. Curran Associates, Inc.,
 633 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/e769e03a9d329b2e864b4bf4ff54ff39-Paper.pdf.

634 Haoran Sun, Wenbo Chen, Hui Li, and Le Song. Improving learning to branch via reinforcement
 635 learning, 2021. URL https://openreview.net/forum?id=M_KwRsbhi5e.

636 Bo Tang and Elias B Khalil. Cave: A cone-aligned approach for fast predict-then-optimize with bi-
 637 nary linear programs. In *International Conference on the Integration of Constraint Programming,
 638 Artificial Intelligence, and Operations Research*, pp. 193–210. Springer, 2024.

639 Bo Tang, Elias B Khalil, and Ján Drgoňa. Learning to optimize for mixed-integer non-linear pro-
 640 gramming. *arXiv preprint arXiv:2410.11061*, 2024.

648 Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer programming:
 649 learning to cut. In *Proceedings of the 37th International Conference on Machine Learning*,
 650 ICML’20. JMLR.org, 2020.

651

652 United States Bureau of Public Roads. *Traffic Assignment Manual for Application with a Large*,
 653 *High Speed Computer*, volume 37. U.S. Department of Commerce, Bureau of Public Roads,
 654 Office of Planning, Urban Planning Division, 1964.

655

656 Jie Wang, Zhihai Wang, Xijun Li, Yufei Kuang, Zhihao Shi, Fangzhou Zhu, Mingxuan Yuan, Jia
 657 Zeng, Yongdong Zhang, and Feng Wu. Learning to cut via hierarchical sequence/set model
 658 for efficient mixed-integer programming. *IEEE Trans. Pattern Anal. Mach. Intell.*, 46(12):
 659 9697–9713, December 2024. ISSN 0162-8828. doi: 10.1109/TPAMI.2024.3432716. URL
 660 <https://doi.org/10.1109/TPAMI.2024.3432716>.

661

662 Yaxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Learning large neighborhood search policy
 663 for integer programming. *Advances in Neural Information Processing Systems*, 34:30075–30087,
 664 2021.

665

666 Yaxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuris-
 667 tics for solving routing problems. *IEEE Transactions on Neural Networks and Learning Systems*,
 668 33(9):5057–5069, 2022. doi: 10.1109/TNNLS.2021.3068828.

669

670 Zhixiao Xiong, Fangyu Zong, Huigen Ye, and Hua Xu. NeuralQP: A general hypergraph-based
 671 optimization framework for large-scale QCQPs. *arXiv preprint arXiv:2410.03720*, 2024.

672

673 Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Hydra-MIP: Automated algorithm
 674 configuration and selection for mixed integer programming. In *RCRA workshop on experimental*
 675 *evaluation of algorithms for solving problems with combinatorial explosion at the international*
 676 *joint conference on artificial intelligence (IJCAI)*, pp. 16–30, 2011.

677

678 Huigen Ye, Hua Xu, Hongyan Wang, Chengming Wang, and Yu Jiang. GNN&GBDT-guided fast
 679 optimizing framework for large-scale integer programming. In *International conference on ma-*
 680 *chine learning*, pp. 39864–39878. PMLR, 2023.

681

682 Huigen Ye, Hua Xu, An Yan, and Yaoyang Cheng. Large language model-driven large neighborhood
 683 search for large-scale MILP problems. In *Forty-second International Conference on Machine*
 684 *Learning*, 2025. URL <https://openreview.net/forum?id=teUg2pMrF0>.

685

686 Giulia Zarpellon, Jason Jo, Andrea Lodi, and Yoshua Bengio. Parameterizing branch-and-bound
 687 search trees to learn branching policies. *Proceedings of the AAAI Conference on Artificial*
 688 *Intelligence*, 35(5):3931–3939, May 2021. doi: 10.1609/aaai.v35i5.16512. URL <https://ojs.aaai.org/index.php/AAAI/article/view/16512>.

689

690 Jiayi Zhang, Chang Liu, Xijun Li, Hui-Ling Zhen, Mingxuan Yuan, Yawen Li, and Junchi Yan.
 691 A survey for solving mixed integer programming via machine learning. *Neurocomputing*, 519:
 692 205–217, 2023.

693

694 Sijia Zhang, Shuli Zeng, Shaoang Li, Feng Wu, Shaojie Tang, and Xiangyang Li. Don’t restart,
 695 just reuse: Reoptimizing MILPs with dynamic parameters. In *Forty-second International*
 696 *Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=ZRGZ4OcfXV>.

697

698

699 A DETAILS OF HNN-BASED FRAMEWORK

700 We present two key details of the HNN-based framework that were not covered in Section 4, allowing
 701 interested readers to reproduce our work.

702 A.1 RAW FEATURES OF HYPERGRAPH REPRESENTATION
703

704 We present the raw features of our hypergraph representation in Table 6. The table organizes four key
705 components of our hypergraph representation that participate in convolutions. Each row corresponds
706 to one component, with the first column identifying the component name, the second column listing
707 its raw features, and the third column providing detailed descriptions of these features. Specifi-
708 cally, the variable vertices \mathcal{V} are assigned nine-dimensional raw features that encode variable types,
709 bound information, and their roles in the objective function. Constraint vertices \mathcal{C} are assigned four-
710 dimensional raw features based on their constraint sense and right-hand-side values. Hyperedges \mathcal{H}
711 are assigned raw features whose length varies according to the number of variables they contain, as
712 introduced in Section 4.1. For a variable v contained in a hyperedge ϵ , a $\omega_{v\epsilon}$ containing the term
713 coefficient and the variable’s exponent is added to ϵ ’s raw features. Finally, standard edges \mathcal{E} are as-
714 signed two-dimensional features that reflect coefficients and degrees of the corresponding variables
715 within their associated constraints.

716 Table 6: Raw Features of High-Degree Term-Aware Hypergraph Representation
717

718 Tensor	719 Feature	720 Description
\mathcal{V}	type	(continuous, binary, integer) as a one-hot encoding
	lb	Lower bound value of the variable
	up	Upper bound value of the variable
	inf_lb	Binary indicator (1 if the lower bound is negative infinity, 0 otherwise)
	inf_ub	Binary indicator (1 if the upper bound is positive infinity, 0 otherwise)
	avg_obj_coe	Average value of coefficients associated with this variable in the objective function
\mathcal{C}	avg_obj_deg	Average degree of this variable across all terms in the objective function
	sense	$(<, >, =)$ as a one-hot encoding
$\omega_{v\epsilon}$	rhs	Numerical value on the right-hand side of the constraint
	deg	Degree of each variable in the high-degree term
\mathcal{E}	coe	Coefficient value associated with the high-degree term
	avg_coe	Average value of coefficients across all terms containing the variable in the associated constraint
	avg_deg	Average degree of this variable across all terms containing it in the associated constraint

740 A.2 NEIGHBORHOOD SEARCH FOR REPAIR-AND-REFINEMENT
741

742 We implement parallel neighborhood optimization as described in (Ye et al., 2023; Xiong et al.,
743 2024), which incorporates two key components: a Q-repair-based repair strategy that efficiently
744 repairs model predictions into feasible solutions, and an iterated multi-neighborhood search that
745 refines these solutions to achieve higher quality. In the following, we provide detailed descriptions
746 of both components.

747 A.2.1 Q-REPAIR-BASED REPAIR STRATEGY
748

749 The Q-repair begins by selecting the αn variables with the largest predicted loss values to optimize,
750 while fixing the remaining $(1 - \alpha)n$ variables to their predicted values. Here, $\alpha \in [0, 1]$ is a pro-
751 portion that determines the neighborhood search size and n represents the total number of variables.
752 Then Q-repair traverses constraints to identify those that cannot be satisfied. This identification fol-
753 lows a greedy approach: calculating the upper and lower bounds of each term in the left-hand side,
754 summing these bounds, and comparing the result with the right-hand side. When an unsatisfied
755 constraint is detected, the variables involved in this constraint are incrementally added to the neigh-
borhood until either all variables from that constraint have been incorporated or the neighborhood

756 reaches a size limit of $\alpha_{ub}n$ variables. Q-repair terminates after evaluating all constraints and returns
 757 the neighborhood (i.e., variables to be optimized) for repair.
 758

759 Subsequently, the repair strategy employs exact solvers (such as Gurobi and SCIP) to optimize
 760 the subproblem defined by the Q-repair neighborhood. If no feasible solution is identified within
 761 the allocated time, Q-repair is repeated with an enlarged initial $\alpha = \alpha_{step} + \text{len}(\text{neighborhood})/n$,
 762 followed by another neighborhood search on the new expanded neighborhood. This iterative process
 763 continues until a feasible solution is found, or α exceeds 1, or the maximum time to repair-and-refine
 764 has been reached.
 765

A.2.2 ITERATED MULTI-NEIGHBORHOOD SEARCH

766 The iterated multi-neighborhood search begins by generating a set of initial neighborhoods using a
 767 sequential filling approach. Specifically, this process first randomly shuffles all constraints. Then,
 768 it iteratively processes each constraint by sequentially adding its variables to the current neighbor-
 769 hood. When the predefined neighborhood size limit is reached, a new neighborhood is created and
 770 the process continues, until all constraints and their associated variables have been assigned to neigh-
 771 borhoods. This process creates multiple neighborhoods where variables from the same constraint
 772 tend to appear together in the same neighborhoods, thereby reducing the likelihood of constraint
 773 violations. Next, using the solution obtained by the repair strategy as a starting point, subproblems
 774 are formulated based on each neighborhood and optimized using exact solvers.
 775

776 After that, the algorithm generates crossover neighborhoods to explore combinations of different
 777 subproblem solutions. It groups all neighborhoods into pairs. For two neighborhoods N_1 and N_2 in
 778 a pair with their respective subproblem solutions x^1, x^2 , assuming x^1 has equal or better objective
 779 value than x^2 , a crossover neighborhood is created through two steps: 1) constructing a crossover
 780 solution x' by taking $x'_i = x^1_i$ for variables in N_1 and $x'_i = x^2_i$ for other variables, and 2) applying
 781 Q-repair on x' . Then, subproblems based on these crossover neighborhoods are optimized. The al-
 782 gorithm selects the best solution among all the candidates, both initial neighborhoods and crossover
 783 neighborhoods, to serve as the starting point for the next iteration. These two processes repeat until
 784 the predetermined time limit is reached, with the best solution found across all iterations returned as
 785 the final result.
 786

B DETAILS OF BENCHMARKS

787 This section introduces the details of the synthetic datasets used in our experiments.
 788

B.1 DETAILS OF SYNTHETIC QUADRATIC INSTANCES

790 In Section 5.3, we evaluate the efficiency of our HNN-based framework using two synthetic
 791 quadratic datasets: QMKP and RandQCP, which are generated and provided by (Xiong et al., 2024).
 792 The formulations of these problems are presented below.
 793

794 The Quadratic Multiple Knapsack Problem (QMKP) extends the classic knapsack problem by in-
 795 corporating multiple weight constraints and quadratic profit terms. It involves selecting items to
 796 place in a knapsack with limited capacity across multiple weight dimensions. Each item yields an
 797 individual profit, while specific pairs of items generate additional interactive profits when selected
 798 together. The objective is to maximize the total profit while adhering to capacity constraints. QMKP
 799 can be formulated as a quadratic programming problem as shown in Eq. 9-11:
 800

$$\max \sum_i c_i x_i + \sum_{(i,j) \in E} q_{ij} x_i x_j, \quad (9)$$

$$\text{s.t. } a_i^k x_i \leq b^k, \quad \forall k \in M, \quad (10)$$

$$x_i \in \{0, 1\}, \quad \forall i \in N, \quad (11)$$

801 where x_i is a binary variable indicating whether item i is selected, c_i represents the individual profit
 802 for item i , and q_{ij} denotes the interactive profit obtained by selecting both items i and j . The set E
 803 contains item pairs with interactive profits, a_i^k represents the k -th weight of item i , and b^k denotes
 804 the knapsack's capacity on the k -th weight dimension. M and N represent the total number of
 805 weight dimensions and items, respectively.
 806

The Random Quadratically Constrained Quadratic Program (RandQCP) is an extension of the independent set problem. It aims to select vertices from a hypergraph to maximize total weights while satisfying specified constraints on each hyperedge. The quadratic programming formulation of RandQCP is given in Eq. 12-14.

$$\max \sum_{i \in V} c_i x_i, \quad (12)$$

$$\text{s.t. } \sum_{i \in e} a_i x_i + \sum_{i, j \in e, i \neq j} q_{ij} x_i x_j - |e| \leq 0, \quad \forall e \in \mathcal{E}, \quad (13)$$

$$x_i \in \{0, 1\}, \quad \forall i \in V, \quad (14)$$

where V represents the set of vertices, \mathcal{E} denotes the hyperedge set, c_i is the weight associated with vertex i , and a_i and q_{ij} are the limitation coefficients for selecting vertex i and vertex pair (i, j) , respectively. The term e refers to a specific hyperedge, and $|e|$ indicates the number of vertices contained within hyperedge e .

For details of generation and access to the generated datasets, please refer to the original paper by (Xiong et al., 2024).

B.2 DETAILS OF SYNTHETIC QUINTIC INSTANCES

To evaluate the effectiveness of our HNN-based method on more complex integer programming problems, we generated synthetic quintic datasets based on the Capacitated Facility Location Problem under Traffic Congestion (CFLPTC) inspired by Bai et al. (2011) and Holmberg et al. (1999). The formulation and generation procedures are detailed below.

B.2.1 FORMULATION OF CFLPTC

CFLPTC extends the standard capacitated facility location problem by incorporating traffic congestion effects. Consider a scenario with m customers $J = \{1, \dots, m\}$ and n potential facility locations $I = \{1, \dots, n\}$. Each customer j has a demand D_j , while each facility at location i incurs an opening cost o_i and has a capacity C_i . Once opened, a facility can serve customers provided that the total demand it satisfies does not exceed its capacity. Each customer must be served by exactly one opened facility. The transportation cost for serving customer j from facility i depends on the distance between them d_{ij} and the traffic congestion level. The objective is to determine which facilities to open and how to assign customers to these facilities, so that the total cost comprising facility opening costs and transportation expenses is minimized. The mathematical formulation is presented in Eq. 15-20.

$$\min \sum_{i \in I} o_i y_i + \sum_{i \in I} \sum_{j \in J} \alpha(1 + 0.15e_i^\beta) d_{ij} x_{ij} \quad (15)$$

$$\text{s.t. } \sum_i x_{ij} = 1, \forall j \in J, \quad (16)$$

$$x_{ij} \leq y_i, \forall i \in I, j \in J, \quad (17)$$

$$\sum_j D_j x_{ij} \leq C_i y_i, \forall i \in I, \quad (18)$$

$$e_i = \frac{\sum_j D_j x_{ij} + b_i}{T_i}, \forall i \in I, \quad (19)$$

$$x_{ij}, y_i \in \{0, 1\}, \forall i \in I, j \in J. \quad (20)$$

where y_i and x_{ij} are binary variables to determine whether to open the facility at location i and whether to assign customer j to the facility at location i , separately.

In the objective function Eq. 15, the transportation cost from facility i to customer j is expressed as $\alpha(1 + 0.15e_i^\beta) d_{ij} x_{ij}$, where the term $\alpha(1 + 0.15e_i^\beta)$ quantifies the additional cost induced by traffic congestion. This formulation, together with Eq. 19 which determines e_i , is derived from the Bureau

864 of Public Roads (BPR) function, an empirical formula for estimating increased transportation time
 865 corresponding to congestion level (United States Bureau of Public Roads, 1964). In this context,
 866 T_i represents the total traffic capacity surrounding facility location i and b_i denotes the background
 867 traffic flow in the vicinity. The parameters α and β are typically set to 1 and 4 respectively, which
 868 make CFLPTC a quintic programming problem.

869 While CFLPTC technically falls under the category of mixed-integer programming due to its com-
 870 bination of binary variables (x_{ij}, y_i) and continuous variables (e_i) , it remains essentially an inte-
 871 ger programming problem. This is because the continuous variables e_i are merely auxiliary and
 872 completely determined by the binary assignment variables x_{ij} . Therefore, it is methodologically
 873 reasonable to include CFLPTC as a dataset in this work, which focuses on integer programming
 874 problems.

876 B.2.2 QUADRATIC REFORMULATION OF CFLPTC

877 In Section 5.1, we compared our method against NeuralQP on the quintic CFLPTC instances. How-
 878 ever, NeuralQP is designed exclusively for quadratic optimization problems and cannot directly
 879 handle the quintic terms present in the original CFLPTC formulation. To enable this comparison,
 880 we reformulated the quintic CFLPTC instances into equivalent quadratic problems by introducing
 881 auxiliary variables that decompose higher-order terms. The reformulation strategy systematically
 882 replaces quintic terms with chains of quadratic relationships. Specifically, for each $i \in I$, we define
 883 $e_{1i} = e_i^2$ and $e_{2i} = e_{1i}^2$, which transform the quintic terms $e_i^4 x_{ij}$ into quadratic terms $e_{2i} x_{ij}$. The
 884 complete quadratic reformulation is presented in Eq. 21-24.

$$\min \sum_{i \in I} o_i y_i + \sum_{i \in I} \sum_{j \in J} \alpha(1 + 0.15e_{2i}) d_{ij} x_{ij} \quad (21)$$

$$\text{s.t. Eq. 16 - 20,} \quad (22)$$

$$e_{1i} = e_i^2, \forall i \in I, \quad (23)$$

$$e_{2i} = e_{1i}^2, \forall i \in I, \quad (24)$$

893 It is important to note that while lower-degree objective functions and constraints are generally
 894 more tractable for optimization algorithms than their higher-degree counterparts, the reformulation
 895 process inevitably introduces additional variables and constraints that can impose significant
 896 computational overhead. For CFLPTC instances, the quadratic reformulation requires $2n$ additional
 897 variables (e_{1i}, e_{2i}) and $2n$ additional quadratic constraints (Eq. 23 and 24), substantially increasing
 898 the complexity. The increase of complexity may offset or even outweigh the computational
 899 benefits gained from degree reduction, as solvers must now handle a larger search space and a more
 900 complicated constraint set. Consequently, reformulating high-degree problems into lower-degree
 901 equivalents does not guarantee improved optimization efficiency; the net effect depends on the trade-
 902 off between reduced degree and increased problem complexity, which varies with specific problem
 903 characteristics and solver capabilities. This trade-off underscores the importance of developing opti-
 904 mization methods that can directly handle high-degree integer programming problems rather than
 905 relying solely on quadratic reformulations.

906 B.2.3 INSTANCE GENERATION

907 Following the approach in (Holmberg et al., 1999), we generated datasets at four distinct scales for
 908 training, as detailed in Table 7. The notation $U(a, b)$ indicates that the corresponding parameters are
 909 randomly sampled from a uniform distribution ranging from a to b (inclusive). Both customer and
 910 facility locations were generated within a two-dimensional Euclidean space according to the "Coor-
 911 dinate" specifications in Table 7, with distances calculated using the Euclidean metric. Consistently
 912 across all datasets, the total traffic capacity T_i was generated as $U(1, 4) \cdot C_i$, while the background
 913 traffic flow b_i was set to $U(0.1, 1) \cdot T_i$.

914 For testing purposes, we generated 16 instances each at the 150×30 scale and the 200×30 scale, ad-
 915 hhering to the same parameter settings used for training datasets 3 and 4, respectively. Additionally,
 916 we created 10 larger instances at the 500×100 scale, following the parameter settings of train-
 917 ing dataset 1 but with adjusted values for m and n . These testing datasets enable comprehensive

918
919
920 Table 7: Setting for CFLPTC Training Dataset Generation
921
922
923
924
925
926

Dataset	Number	m	n	Coordinate	D_j	o_i	C_i
1	1605	50	10	$U(10, 200)$	$U(10, 50)$	$U(300, 700)$	$U(100, 500)$
2	1119	50	20	$U(10, 200)$	$U(30, 80)$	$U(300, 700)$	$U(100, 500)$
3	984	150	30	$U(10, 300)$	$U(10, 50)$	$U(300, 700)$	$U(200, 600)$
4	200	200	30	$U(10, 200)$	$U(10, 50)$	$U(500, 1500)$	$U(500, 800)$

927 evaluation of our model’s capability to effectively tackle complex, large-scale integer programming
928 problems with high-degree terms.
929

930 C IMPLEMENTATION DETAILS 931

932 **Model Details** First, all raw features of the input hypergraph were transformed into initial embeddings
933 through 2-layer MLPs activated by LeakyReLU, where the dimensions of hidden spaces and
934 output features are 64 and 16, respectively. The number of iterations for executing hyperedge-based
935 convolution is $L = 6$. The negative slopes of all LeakyReLU activations are set to 0.1.
936

937 **Training Details** We utilized AdamW with a learning rate of 1e-4 and weight decay of 1e-4 as the
938 optimizer to train our model. We set the batch size to 64 and training epochs to 100. On each training
939 dataset, our HNN models were trained on a supercomputer node with an NVIDIA A100 GPU and
940 an 18-core Intel Xeon Platinum 8360Y CPU. For fair comparison, we used the same device to train
941 the models of NeuralQP and GNN_QP, with the same hyper-parameter settings as in their original
942 papers.
943

944 **Inference Details** Inference testing was conducted on a personal computer equipped with an 8-
945 core AMD Ryzen 7 7840HS CPU without GPU acceleration. We used Gurobi 12.0.0 and SCIP
946 9.2.0, the latest versions of both solvers at the time of evaluation.
947

948 We implemented the repair-and-refinement algorithm (see Appendix A.2) following the parameter
949 settings proposed by Xiong et al. (2024). Specifically, for the Q-repair-based repair strategy, we ini-
950 tialized the parameter α at 0.1, with $\alpha_{ub} = 1$ and $\alpha_{step} = 0.05$. For the iterated multi-neighborhood
951 search, the neighborhood size is defined as half the number of problem variables. For each sub-
952 problem occurring in both the Q-repair-based repair strategy and the iterated multi-neighborhood
953 search, we set a maximum wall-clock time of 60 seconds when addressing largest-scale instances:
954 10,000-scale QMKP and RandQCP problems, and 500×100-scale CFLPTC datasets. All other test-
955 ing datasets were limited to 30 seconds per subproblem. The repair-and-refinement stops when the
956 total wall-clock time reaches the preset limit (see Section 5.1).
957

958 **Details of the Ablation Baselines** In the ablation studies (Section 5.3), we construct baselines
959 that remain as comparable as possible to our HNN model while omitting the targeted convolu-
960 tion modules. Since simply removing a component would disable the model from capturing one
961 key relationship in IPHD, we make slight but necessary adjustments to their input representations.
962 For w/o-HyConv, the only change is the removal of hyperedges from the representation. For w/o-
963 VCCConv, its hypergraph representation contains the same variable and constraint vertices as in our
964 representation but differs in that it has no edges and uses alternative hyperedges. These hyperedges
965 encode both variable interactions in high-degree terms and variable-constraint interdependencies:
966 each term is represented by a hyperedge connecting its variables and the constraint it belongs to.
967 The hyperedge features follow the same design as our representation.
968

969 D ADDITIONAL EXPERIMENTS TO COMPARE WITH GNN_QP 970

971 As stated in Section 5.1, we compared our method with a very recent learning-based baseline,
972 GNN_QP (Chen et al., 2025), which primarily investigates the theoretical expressive power of graph
973 neural networks for quadratic terms. We trained GNN_QP on the two synthetic quadratic bench-
974 marks, QMKP and RandQCP, and evaluated it with Gurobi as repair-and-refinement on the same
975

972 Table 8: Comparison on QMKP datasets in terms of mean and standard deviation of gap%. The best
 973 results are highlighted in bold and * indicates statistically significant difference to the best results.
 974

975 Method	976 Train	977 QMKP				978 Overall
		979 1000	980 2000	981 5000	982 10000	
Gurobi	—	14.03*	5.36*	0.04	0.03	16.41 \pm 9.06
983 Neural 984 QP-G	985 Mini	3.75	0.14*	0.04	0.04	0.76 \pm 0.21
	986 1000	4.00	0.14*	0.04	0.04	
	987 2000	—	0.12	0.04	0.04	
988 GNN 989 QP-G	990 Mini	12.46*	0.13	0.05	0.04	2.52 \pm 5.33
	991 1000	5.65	0.12	0.05	0.04	
	992 2000	—	0.18*	0.05	0.03	
993 Ours-G	994 Mini	4.06	0.14*	0.05	0.03	0.75 \pm 1.94
	995 1000	3.59	0.15*	0.04	0.04	
	996 2000	—	0.09	0.04	0.03	

987 Table 9: Comparison on RandQCP datasets by mean and standard deviation of gap%. The best
 988 results are highlighted in bold and * indicates statistically significant difference.
 989

990 Method	991 Train	992 RandQCP				993 Overall
		994 1000	995 2000	996 5000	997 10000	
Gurobi	—	2.67	4.65*	4.58*	5.36*	4.32 \pm 1.09
998 Neural 999 QP-G	999 Mini	3.44*	2.14*	3.13*	3.14	2.92 \pm 0.67
	1000 1000	3.42*	2.13	3.10*	3.14*	
	1001 2000	—	2.15*	3.13*	3.15*	
1002 GNN 1003 QP-G	1003 Mini	3.47*	2.22*	3.23*	3.20*	2.87 \pm 0.80
	1004 1000	3.49*	2.19*	3.19*	3.21*	
	1005 2000	—	2.18*	3.13*	3.22*	
1006 Ours-G	1007 Mini	3.25	2.04	3.06	3.10	2.85 \pm 0.66
	1008 1000	3.32*	2.09	3.10	3.10	
	1009 2000	—	2.08	3.06	3.11	

1003 benchmarks. Both training and evaluation used the same implementation settings as in our main
 1004 experiments. The results, presented in Table 8 and Table 9, demonstrate that our method consistently
 1005 outperforms GNN_QP on most testing datasets.
 1006

1008 E ADDITIONAL EXPERIMENTS TO EVALUATE MODEL PREDICTION

1010 In Section 5 we have demonstrated the effectiveness of the complete HNN-based framework com-
 1011 posed of both HNN prediction and repair-and-refinement. To assess the quality of our HNN model’s
 1012 predictions as initial solution values without refinement, in this section we conducted additional ex-
 1013 periments that isolate the model’s predictive performance from the overall framework. We applied
 1014 our HNN models trained on RandQCP’s training data to the RandQCP test sets with 10,000-scaled
 1015 instances, and models trained on QMKP’s training data to the QMKP test sets with 10,000-scaled in-
 1016 stances. These largest-scale testing datasets are selected to rigorously assess prediction performance
 1017 for challenging instances. Since our HNN model generates initial solution values rather than directly
 1018 producing feasible solutions, we applied the Q-Repair-Based Repair Strategy based on Gurobi (de-
 1019 tailied in Appendix A.2) to convert model predictions into feasible solutions, with no further refine-
 1020 ment performed. We compared against NeuralQP with identical settings and Gurobi configured to
 1021 prioritize finding feasible solutions by setting “Params.MIPFocus = 1”, “Params.NonConvex = 2”,
 1022 and “Params.SolutionLimit = 1”.

1023 We evaluated performance using three comprehensive metrics listed below, and present the compar-
 1024 ative results in Table 10.

1025 • Feasible ratio: The percentage of model predictions that yield feasible solutions before
 1026 repair. A higher feasible ratio indicates stronger constraint satisfaction capability.

- 1026 • gap%: introduced in Section 5.1.
- 1027 • Wall-clock time: For our method and NeuralQP, it is the time required to obtain a feasible
- 1028 solution through the repair process, while for Gurobi it is the time required to obtain the
- 1029 first feasible solution. Shorter times indicate that the model’s predictions can be more
- 1030 efficiently converted into feasible solutions.
- 1031

1032 The results in Table 10 demonstrate that our HNN model achieves superior solution quality, as
 1033 evidenced by consistently lower mean gap% values compared to both baselines. This indicates that
 1034 our model’s predictions, after repair, are closer to the best-known solutions and provide higher-
 1035 quality initial solution values for optimization.

1036 Table 10 also exhibits that our method shows a lower feasible ratio before repair and longer repair
 1037 times compared to the baseline methods. While these metrics might initially suggest limitations, a
 1038 closer examination reveals that they do not represent true disadvantages. In terms of feasible ratio,
 1039 although NeuralQP achieved a higher feasible ratio, both NeuralQP and Gurobi frequently generated
 1040 trivial solutions with all variables set to zero. Such trivial solutions, while technically feasible,
 1041 provide less guidance for subsequent refinement processes. Regarding computational time, although
 1042 our method requires longer repair times than NeuralQP and Gurobi, the actual repair time remains
 1043 very short (less than 1 second), which is highly acceptable given that 10,000-variable instances
 1044 typically require extensive search times. In summary, the comparative results demonstrate that our
 1045 HNN model is a practical choice for generating high-quality initial solution values.

1046 Table 10: Comparison of our HNN model, NeuralQP and Gurobi in terms of prediction performance.

1048 1049 1050 1051	Method	QMKP			RandQCP		
		1052 1053 1054	1052 1053 1054	1052 1053 1054	1052 1053 1054	1052 1053 1054	1052 1053 1054
Gurobi	–	100	5.30	–	100	2.49	
NeuralQP	100	99.10	163	0	53.30	392	
Ours	66.67	77.40	946	0	51.74	835	

1055 1056 1057 F COMPLEXITY ANALYSIS

1058 This section analyzes the memory requirements of the proposed hypergraph representation and the
 1059 arithmetic time complexity of the proposed HNN’s inference. We consider an IPHD instance with
 1060 n variables, m constraints, and n_h high-degree terms. Let s denote the total number of variable
 1061 occurrences across all high-degree terms, and let n_e denote the total number of variable-constraint
 1062 incidences, i.e., the number of times any variable appears with a nonzero coefficient in any con-
 1063 straint. These parameters allow us to demonstrate the efficiency of our method in terms of both
 1064 memory usage and computational complexity, as shown in the following subsections.

1066 1067 F.1 MEMORY REQUIREMENT FOR THE HYPERGRAPH REPRESENTATION

1068 According to Section 4.1 and Appendix A.1, hypergraph representation of the IPHD instance com-
 1069 prises four components:

- 1070 • n variable vertices, each with 9 raw features;
- 1071 • m constraint vertices, each with 4 features;
- 1072 • n_h hyperedges, with s vertex-hyperedge coefficients, where each coefficient contains 2
 1073 floats;
- 1074 • n_e edges, each with 2 features;
- 1075

1076 Variable vertices and constraint vertices can be stored using their indices, while hyperedges and
 1077 edges can be stored using tuples of vertex indices they contain. In total, hypergraph structure requires
 1078 $(n + m + s + 2n_e)$ indices to represent. Additionally, there are $(9n + 4m + 2n_e + 2s)$ raw features.

1080 Assuming all indices are stored as 4-byte integers and raw features are stored as 8-byte floats (double
 1081 precision), the total memory requirement for the hypergraph representation is:
 1082

$$\text{bytes} = 76n + 36m + 20s + 24n_e. \quad (25)$$

1084 To illustrate this with a concrete example, consider the largest CFLPTC instances we tested, which
 1085 involve 500 customers and 100 facilities. As detailed in Section B.2.1, these instances have
 1086 $n = 50,200, m = 50,700, n_e = 200,300, s = 100,000$. Applying Eq. 25, the total memory
 1087 requirement is 12,447,600 bytes, or approximately 11.87 megabytes (MB). This represents a very
 1088 manageable memory overhead for modern hardware, demonstrating that our hypergraph representa-
 1089 tion remains practical even for large-scale instances.
 1090

1091 F.2 ARITHMETIC TIME COMPLEXITY FOR THE HNN

1092 In this subsection, we analyze the arithmetic complexity of our HNN model during inference. Let
 1093 n_{hid} denote the largest dimension among raw features, hidden embeddings, and outputs, and assume
 1094 we perform L_{hyper} hypergraph-based convolutions and L_{bi} bipartite-graph-based convolutions. The
 1095 complexity analysis for each component is as follows:
 1096

- 1097 • Initial embedding: it is a 2-layer MLP applied on all raw features, with arithmetic com-
 1098 plexity $O((n + m + s + n_e)n_{\text{hid}}^2)$;
- 1099 • Hypergraph-based convolution:
 - 1100 – Eq. 5 performs weighted summation with complexity $O(sn_{\text{hid}})$;
 - 1101 – Eq. 6 combines weighted means, a 2-layer MLP, and a residual connection, with
 1102 complexity $O(sn_{\text{hid}})$, $O(nn_{\text{hid}}^2)$, and $O(nn_{\text{hid}})$, separately. The total complexity is
 1103 $O(sn_{\text{hid}} + nn_{\text{hid}}^2)$;
 - 1104 – Overall complexity: $O(L_{\text{hyper}}(sn_{\text{hid}} + nn_{\text{hid}}^2))$;
- 1105 • Bipartite-graph-based convolution:
 - 1106 – Eq. 7 combines summations, a 2-layer MLP, and residual connection, with complexity
 1107 $O(n_e n_{\text{hid}})$, $O(mn_{\text{hid}}^2)$, and $O(mn_{\text{hid}})$, separately. The total complexity is $O(n_e n_{\text{hid}} +$
 1108 $mn_{\text{hid}}^2)$;
 - 1109 – Eq. 8 has similar structure to Eq. 7, with complexity $O(n_e n_{\text{hid}} + nn_{\text{hid}}^2)$;
 - 1110 – Overall complexity: $O(L_{\text{bi}}(n_e n_{\text{hid}} + mn_{\text{hid}}^2 + nn_{\text{hid}}^2))$;
- 1111 • Output layer: A 2-layer MLP applied to variable embeddings, with complexity $O(nn_{\text{hid}}^2)$.

1112 Therefore, the overall arithmetic complexity of HNN inference is $O(n_{\text{hid}}(L_{\text{hyper}}s + L_{\text{bi}}n_e) +$
 1113 $n_{\text{hid}}^2(L_{\text{hyper}}n + L_{\text{bi}}n + L_{\text{bi}}m))$. Since n_{hid} , L_{hyper} , and L_{bi} are fixed constants in our experiments
 1114 (see Section 5.2), the arithmetic complexity simplifies to $O(n + m + s + n_e)$, which scales linearly
 1115 with the number of variables, constraints, hyperedge density, and edge density.
 1116

1117 Hypergraph representations for integer programming problems are typically sparse in both hyper-
 1118 edges and edges, making our HNN model highly efficient. To demonstrate robustness, we consider
 1119 the extreme case of a fully dense hypergraph representation where every pair of variable and
 1120 constraint vertices is connected by edges, and all variable vertices are connected within each hyperedge.
 1121 In this scenario, $s = n_h n$ and $n_e = nm$, yielding a quadratic complexity $O(n(m + n_e))$. This
 1122 analysis shows that even in such extreme cases, which rarely occur in practice, our HNN model
 1123 maintains good computational efficiency for inference.
 1124

1125 G LICENSE DESCRIPTION

1126 The licenses and resources of the code, software, and datasets used in this paper are listed in Ta-
 1127 ble 11.
 1128

1130 H STATEMENT OF THE USE OF LARGE LANGUAGE MODELS

1131 Large language models (LLMs) were used solely for writing assistance and language polishing,
 1132 including grammar correction, sentence restructuring, and clarity improvements. LLMs were not
 1133

1134
1135
1136 Table 11: List of licenses for the codes, software and datasets used in this work.
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147

Resource	Type	Link	License
Gurobi	Software	https://www.gurobi.com/	Academic License
SCIP	Software	https://scipopt.org/#scipoptsuite	Apache 2.0 License
AMPL	Software	https://ampl.com/	Academic License
NeuralQP (Xiong Code, et al., 2024)	Dataset	https://anonymous.4open.science/r/NeuralQP-Anonymous-7243/	MIT License
QPLIB (Furini et al., 2019)	Dataset	https://qplib.zib.de/	CC-BY 4.0

1148
1149 involved in research ideation, experimental design, data analysis, or generation of technical content.
1150 All scientific contributions, methodology, and results are entirely the work of the authors.
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187