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Abstract

The Mapper algorithm helps us identify patterns in a large dataset by generating1

a graph summary. However, Mapper may generate substantially different graphs2

for different datasets drawn from the same distribution. In order to use Mapper to3

make confident conclusions about a data-generating distribution, it is important to4

have a strong intuition about the algorithm’s stability under resampling.5

In this paper we perform a case study to explore the empirical convergence prop-6

erties of Mapper. We build bootstrap samples of different sizes from two real-7

world datasets, Fashion-MNIST and Wikipedia+Gigaword 5, and construct Mapper8

graphs from these samples. We then explore the relationship between the sample9

size and the distributions of structural invariants of these Mapper graphs.10

1 Introduction11

Suppose we have a manifold X equipped with a distance metric dX and a continuous function12

f : X→ R. Define the equivalence relation ∼f over the points in X such that x ∼f x′ if and only if13

there exists some y in the image of f such that x and x′ belong to the same connected component of14

f−1(y).15

Definition 1.1. The Reeb graph Rf (X) is the quotient space X/ ∼f endowed with the quotient16

topology [CMO18].17

Intuitively, the Reeb graph contracts connected components of level sets of f into single points.18

Now suppose we have a set of points X ⊂ X that we assume have been drawn according to some19

probability measure µX over X. Suppose also that we have a computable function fX : X → R20

that approximates f : X → R. The function fX may depend on the exact sample X from X. For21

example, if f(x) is the probability density at x, then fX could be a density estimator such as the22

distance from a point in X to its k-nearest neighbor in X . The Mapper algorithm [SMC] uses23

(X, dX) and fX to construct an approximation of the Reeb graph Rf (X):24

• Select a collection C of open intervals of length r that cover fX(X) such that the intersection25

of any three intervals in C is empty and the overlap between any two consecutive intervals is26

a fixed constant.27

• For each interval I ∈ C, apply a clustering algorithm (such as K-Means or Agglomerative28

Clustering) to form a partition of f−1X (I) ⊆ X . Note that the clusters across each f−1X (I)29

form an overlapping cover of X .30

• Create an n-simplex for each collection of n clusters in this overlapping cover that have31

non-empty intersection. This creates a simplicial complex. We refer to the 1-skeleton of this32

complex as the Mapper graph.33

Carriere et al [CMO18] focus on the case where X ⊆ Rm and µX : Rm → R is a Borel probability34

measure. Under these conditions they demonstrate that Mapper is a measurable function and they35
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bound the expected value of the bottleneck distance between the Reeb graph Rf (X) and the Mapper36

graph. They show that under certain assumptions about µX, Mapper is a minimax optimal estimator37

of the Reeb graph.38

Carriere et al’s argument relies on assumptions about µX which are difficult to verify when µX is a39

real-world data distribution. In particular, the authors’ bound on the expected value of the bottleneck40

distance between the Reeb graph Rf (X) and the Mapper output relies on the assumption that there41

exists a > 0, b > m such that for any Euclidean ball B(x, t) centered on x ∈ Rm with radius t:42

µX(B(x, t)) ≥ min(1, atb)

This assumption is less likely to hold for datasets with many outlier points that are far away from43

each other.44

In this paper we explore the empirical convergence properties of Mapper. Similarly to how Chazal45

et al [CFL+13] distinguish between “topological signal” and “topological noise” by computing46

persistence diagrams over bootstrapped samples of data, we use the bootstrap to assess the stability47

of structural invariants of Mapper graphs.48

2 Experiments49

Suppose Rn×m is the space of ordered n-element subsets of Rm, µX is a Borel probability measure50

over Rm and f : Rm → R is a Borel-measurable filter function. Suppose also that for each51

X ∈ Rn×m there exists a Borel-measurable filter function fX : X → R that approximates f . We52

can therefore define the Borel-measurable map Γf : Rn×m → Rn×m × Rn to be:53

Γf (X) = (X, fX(X))

Since the map M that sends a pair in Rn×m × Rn to the corresponding Mapper output represented54

as an undirected graph in G is Borel-measurable [CMO18], the full Mapper algorithm55

M ◦ Γf : Rn×m → G

is Borel-measurable as well. In these experiments we explore the Mapper graph in terms of the56

distribution of the random variable g ◦M ◦ Γf : X → R over µX, where g : G → R is a real-valued57

Borel measurable graph invariant. The invariants we explore are:58

• Number of Connected Components: If we view G ∈ G as a simplicial complex, its59

number of connected components is equivalent to the 0th Betti number of the complex.60

• Cardinality of Cycle Basis: The cardinality of the cycle basis of G ∈ G is the minimum61

size of a set of cycles that span the cycle space of G. If we view G as a simplicial complex,62

the cardinality of the cycle basis is equivalent to the 1st Betti number of the complex.63

• Graph Density: The density of an undirected graph G ∈ G with k nodes and h edges is64
2h

k(k−1) . As n increases, we would expect both k and h to increase as well, and the density65

will track the relative rates of increase.66

• Estrada Index: The Estrada index [ERV05] of an undirected graphG ∈ G whose adjacency67

matrix has eigenvalues λ1, λ2, ..., λn is
∑n
i=1 e

λi . The Estrada index measures the centrality68

of G, or the degree to which each node in G participates in the subgraphs of G.69

We explore how stable these graph invariants are when we run the KeplerMapper [SvV17] imple-70

mentation of Mapper with AgglomerativeClustering [PVG+11]. We use the k-nearest neighbor filter71

function, and we run this algorithm with a variety of k and resolution values over the following72

real-world datasets:73

• Fashion-MNIST [XRV17]: This dataset includes 70, 000 unique 28×28 images of clothing74

that fall into 9 classes. To simplify the dataset and reduce the distance between points in the75

same class we apply the supervised UMAP algorithm [MHM18] to reduce the dimensionality76

from 784 to 50.77

• Word Vectors from Wikipedia+Gigaword 5 [PSM14]: This dataset contains 400, 00078

unique 50 dimensional gloVe embeddings of words.79
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We compute the stability of these graph invariants via the bootstrap procedure. For each dataset, we80

choose an n-element sample (with replacement) from the dataset, run Mapper over this sample to81

build an undirected graph G ∈ G, and then compute each invariant. We repeat this process 100 times82

for each value of n and assess the relationship between n and the distribution of the random variable83

g ◦M ◦ Γf : Rn×m → R. We pay particular attention to the relationship between n and each graph84

invariant’s coefficient of variation, or the ratio of its empirical mean and standard deviation.85

2.1 Number of Connected Components (Figure 1)86

Each data point in Fashion-MNIST falls into one of 9 distinct classes, and the number of connected87

components seems to converge to around 9 as the number of points increases. This is especially true88

when the resolution (number of intervals) is larger. The coefficient of variation therefore drops very89

quickly as the sample size increases.90

In contrast, we don’t see any such effect in the Word Vector dataset, and the coefficient of variation91

of this graph invariant does not consistently decrease as the sample size increases. This is probably92

because the categories into which words fall tend to overlap, especially across language.93

2.2 Cardinality of Cycle Basis (Figure 2)94

Word embeddings constructed with gloVe approximately satisfy an analogy property [PSM14]. If95

word A is to word B as word C is to word D, then vB − vA and vD − vC will be close in space. For96

example, we expect ‖(vking−vqueen)− (vman−vwoman)‖ to be small. As a result of this property, there97

are long chains of related words in this dataset. This causes Mapper graphs formed from k-nearest98

neighbor projections over the Word Vector dataset to have many basis cycles. As we choose more99

samples from the Word Vector dataset the number of basis cycles tends to increase and stabilize,100

which causes this invariant’s coefficient of variation to decrease.101

In contrast, the UMAP embeddings of the Fashion-MNIST dataset simply minimize the distance102

between points in the same class. As a result, Mapper graphs formed from k-nearest neighbor103

projections over the Fashion-MNIST dataset will have fewer than one basis cycle on average. Any104

cycles that do appear are probably noise, since there is no discernible decrease in the coefficient of105

variation of this graph invariant as the sample size increases.106

2.3 Graph Density (Figure 3)107

When the number of intervals is smaller we would expect the graph density to increase due to a108

smaller number of distinct clusters (fewer nodes) and more overlap between clusters (more edges).109

This effect is particularly pronounced in the Word Vector dataset, but it is also present for larger110

samples sizes in the Fashion-MNIST dataset.111

In Fashion-MNIST the graph density tends to decrease as the number of samples increases, whereas112

it stays relatively constant in the Word Vector dataset. This is probably related to the separation of113

classes and the positive relationship between the sample size and the number of distinct connected114

components in Fashion-MNIST.115

In both datasets the coefficient of variation of the graph density consistently decreases as the number116

of samples increases from 10000 to 20000, which suggests that these effects are not solely noise.117

2.4 Estrada Index (Figure 4)118

When the number of intervals is smaller, we expect the smaller number of distinct clusters (fewer119

nodes) and more overlap between clusters (more edges) to cause each node to participate in a smaller120

proportion of subgraphs, which causes the Estrada index to decrease. This effect is particularly121

pronounced in the Word Vector dataset, but it is also present for larger samples sizes in the Fashion-122

MNIST dataset.123

Furthermore, as the sample size increases we expect the sampled points to eventually cover the space,124

which should cause the centrality of the Mapper graph to converge. We see this in both datasets: the125

Estrada index tends to increase as the number of samples increases from 0 to 10000, and then level126

off. Furthermore, the coefficient of variation of the Estrada index tends to decrease as the number of127

samples increases.128
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2.5 General Observations129

The mean values of all four metrics change very rapidly as the number of samples goes from 1000 to130

5000 for Fashion-MNIST. This effect is much weaker for the Word Vector dataset, so this is probably131

caused by the need to sample enough images to reach a critical mass of representation across each of132

the 9 classes in this dataset.133

3 Discussion and Future Work134

In this paper we explore the relationship between the sample size and the stability of Mapper on135

two real-world datasets. We choose to focus on the k-nearest neighbor filter function, which is a136

non-parametric density estimator. In future work we aim to explore the stability of Mapper graphs137

formed from a wider class of filter functions, including other density estimators like the Gaussian138

kernel density estimator and other kinds of filters like the eigenfunctions of the covariance matrix.139

Furthermore, both of the datasets that we use in these experiments consist of embeddings learned140

with either gloVe or UMAP. These embedding algorithms have many hyperparameters, such as the141

dimensionality of the embeddings that are learned. In future work we will explore how the choice of142

these hyperparameters affects the noise sensitivity and stability of the Mapper output.143
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4 Appendix167

Figure 1: The relationship between the number of samples and the number of connected components
in the Mapper graph.
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Figure 2: The relationship between the number of samples and the distribution of the cardinality of
the cycle basis of the Mapper graph.
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Figure 3: The relationship between the number of samples and the distribution of the density of the
Mapper graph.
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Figure 4: The relationship between the number of samples and the distribution of the Estrada Index
of the Mapper graph.

8


	Introduction
	Experiments
	Number of Connected Components (Figure 1)
	Cardinality of Cycle Basis (Figure 2)
	Graph Density (Figure 3)
	Estrada Index (Figure 4)
	General Observations

	Discussion and Future Work 
	Appendix 

