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Abstract

Applying off-the-shelf models (e.g., ResNet) to satellite imagery has become1

standard practice. While convolutional neural networks (CNNs) have been shown2

to outperform baseline methods in remote sensing prediction tasks, differences3

in satellite and natural images (i.e., images that comprise common datasets like4

ImageNet and CIFAR-10) may make ResNet-type models overkill for many satellite5

imagery tasks. In this paper, we present a comparison of off-the-shelf CNNs to6

a much smaller CNN over a range of satellite imagery tasks and show that a7

CNN with significantly fewer parameters performs on par with standard CNN8

architectures for five out of six tasks. Our findings are especially pertinent to those9

working with satellite imagery who face computational constraints.10

1 Introduction11

Machine learning has continually proven successful in informing sustainability-related tasks from12

satellite imagery. Example tasks include crop type mapping (1; 2), poverty prediction (3), and water13

quality monitoring (4; 5). It has become standard practice to apply off-the-shelf models (e.g., ResNet)14

to satellite imagery. While CNNs have been shown to outperform baseline methods in remote sensing15

tasks, there are substantial enough differences between natural images (i.e., images that comprise16

common datasets like ImageNet and CIFAR-10) and satellite images, that off-the-shelf CNNs may be17

unnecessarily large for many satellite imagery analyses.18

Prior to deep learning, handcrafted features were common in satellite imagery analysis. Features19

generally consisted of low-level color and texture descriptors, such as color histograms (6). Recently,20

basic color descriptors have been shown to be highly effective in discriminating coffee/non-coffee21

scenes (6) and simple statistics over images have been shown to be informative in predicting bird22

distributions from satellite imagery (7). As filters in earlier layers of CNNs generally pick up on color23

and texture and the later layers are more representative of concepts (8), many satellite imagery tasks24

may not require significantly deep networks.25

Parameter reduction in neural networks is a popular area of research (9; 10; 11; 12; 13). Not only are26

smaller models beneficial from a training perspective (e.g., time and carbon footprint), but in many27

cases smaller models are necessary when deployed on devices with limited computational resources.28

Methods for designing smaller neural networks generally involve compressing pretrained networks29

or designing smaller networks (10). MobileNet (10; 14) and SqueezeNet (9) are two common30

architectures optimized for fewer parameters but capable of achieving ResNet-level accuracy. While31

both of these networks are indeed smaller than ResNet18, they still contain roughly a million32

parameters. We hypothesize that common CNN architectures, even those optimized to have fewer33

parameters than ResNet, are overkill for many satellite imagery tasks.34
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Figure 1: Natural versus satellite images. Left: three school buses captured at different viewing
angles and proximities (15). There is no occlusion in the school bus images and the orientation of all
school buses is the same (wheels on the ground, below the body of the buses). Right: three satellite
images with the same camera angle, proximity, and orientation as images from the same satellite are
captured at a fixed, bird’s-eye view.

We performed an analysis on CNN architectures to determine if larger models, such as ResNet and35

ResNet alternatives, are necessary for satellite imagery tasks. Specifically, we compared several36

off-the-shelf models to a simple, shallow CNN on multiple regression and classification tasks. Our37

main contributions are: 1) an analysis of modern CNN architectures across several satellite imagery38

tasks, and 2) results showing that a shallow CNN, with millions of fewer parameters than ResNet18,39

is comparable to standard ResNet-type models for five out of six satellite imagery tasks.40

2 Natural versus satellite images41

Satellite images differ from natural images in several key ways. Most notably, satellite images are42

captured in a significantly more structured manner compared to natural images. There are several43

degrees of freedom when capturing natural images: 1) camera proximity from the subject, 2) camera44

angle and 3) camera orientation relative to the subject, and 4) items occluding the subject (Figure 1a).45

Satellite images within publicly available datasets, such as Landsat and Sentinel, are captured at a46

relatively fixed distance and orientation to Earth and rarely suffer from occlusion (Figure 1b). This47

fixed nature in which satellite images are captured enforces that images taken from the same satellite48

have essentially the same scale. It is possible for atmospheric conditions (e.g., clouds) to obscure49

satellite images; however, a common preprocessing step is to filter out days/images that contain heavy50

atmospheric conditions. The fewer degrees of freedom in which satellite images are captured likely51

simplifies the complexity of many prediction tasks.52

CNNs for natural images must have incredibly large capacities (i.e., millions of parameters) to53

represent classes well. Accounting for different camera viewing angles and distances, and the54

potential of object occlusion makes object classification a difficult task. CNNs must learn many55

representations of the same class (e.g., a school bus is a school bus no matter what angle or position56

the image is captured from and whether or not the bus is partially occluded - Figure 1a). Apart from57

the differences in how natural and satellite images are captured, there is evidence that color and58

texture descriptors are effective features in satellite imagery analysis (6). Such features are detected59

in early CNN layers, meaning relatively deep CNNs are potentially unnecessary. Below, we test if60

these differences between domains does indeed simplify satellite imagery analysis and determine if61

shallower CNN architectures are capable of performing as well as larger, off-the-shelf models.62
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Table 1: Summary of architectures. The number of parameters and parameter reductions compared
to ResNet18 and memory required to train each architecture.

Architecture # parameters Reduction
from ResNet18 Memory

ResNet18 11.2M - 42.80MB
MobileNetV3 1.7M 7x 6.34MB
SqueezeNet 0.7M 16x 2.76 MB
ShallowCNN 0.1M 87x 0.49MB

3 Experiments63

We compared four CNN architectures on three regression and three classification tasks. We compared64

a basic, shallow CNN, hereafter ShallowCNN, to three pretrained off-the-shelf CNNs: ResNet18,65

MobileNetV3-small, and SqueezeNet. Our ShallowCNN has a straightforward (conv2d-batch norm-66

relu-pooling) architecture (Table A1). For each of the tasks and models, with the exception of67

Brazilian Coffee Scenes, we used 10-fold cross-validation to train 10 models in order to quantify68

variation in model performance. We used 5-fold cross-validation on Brazilian Coffee Scenes as the69

dataset came with 5 predefined folds. We fine-tuned all layers of the pretrained models and trained70

ShallowCNN from scratch, for each task respectively. We evaluated the regression tasks with R2,71

mean squared error (MSE), and mean absolute error (MAE) and evaluated the classification tasks72

with overall accuracy, precision, and recall. All three classification tasks have roughly equal class73

balance, therefore, we report the average overall accuracy, precision, and recall across classes. In74

addition to comparing the CNN architectures across tasks, we evaluated the impact of dataset size on75

model performance. Details on data preprocessing and model training are in the appendix.76

We compared the four CNN architectures by modeling six satellite imagery tasks. In order to77

generalize across tasks, we selected a set of problems that range in difficulty and dataset size. We78

modeled three regression tasks from Rolf et al. (2021): percent forest cover, nighttime light intensity,79

and elevation (Table A2, Figure A1) Additionally, we modeled three classification tasks: crop type,80

Brazilian Coffee Scenes (6), and UCMerced Land-use (17) (Table A2, Figure A1). We selected81

the Brazilian Coffee Scenes and UCMerced Land-use datasets as they have been commonly used82

in previous remote sensing studies (18; 19; 20) and created our own crop type dataset. A detailed83

description of the tasks can be found in the appendix.84

4 Results and Discussion85

ShallowCNN, with 87 times fewer parameters than ResNet18 (Table 1), was within two standard86

deviations of ResNet18 in three of the six tasks and exceeded ResNet18 by over four standard87

deviations in crop type mapping (Table 2). In addition to crop type mapping, ShallowCNN also88

achieved the highest accuracy for coffee scene identification (Table 2b). The only case in which89

ShallowCNN had significantly degraded performance is in the land use problem (Table 2b). In90

comparing the images from all tasks (Figure A1), the land use images are visually the most similar91

to ImageNet, while the other tasks are likely more reliant on color and texture descriptors. The92

land use task may require higher-level features to distinguish classes. As the deeper layers of93

CNNs are generally more representative of concepts (8), satellite imagery tasks which are visually94

similar to ImageNet may benefit from larger CNNs. Further work is needed to understand which95

satelliteimagery tasks are better suited for ShallowCNN versus ResNet18-type models.96

There are computational benefits to ShallowCNN. While ShallowCNN takes almost as long to train97

as it does to fine-tune the larger pretrained models, ShallowCNN requires significantly less memory98

to train (Table 1). If computational resources are limited, training multiple larger models at the same99

time may not be feasible, however, it may be possible to train several ShallowCNNs concurrently. In100

addition to benefits in training, ShallowCNN’s smaller model size is beneficial if models are being101

deployed externally and space is limited by hardware (e.g., analyzing images real time on a drone102

or satellite). Further work should investigate the potential of a pretrained ShallowCNN for satellite103

imagery.104
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Table 2: Summary of model performances across tasks. Regression tasks are evaluated on MSE
and classification tasks on accuracy (other metrics showed similar trends). The reported accuracy is
averaged across all classes since all classification tasks have good class balance. Reported results are
averaged across cross-validation folds (10 folds for all but Coffee, which had 5), plus or minus their
standard deviation. Models are ordered from greatest number of parameters (top) to fewest (bottom).

a. Regression tasks - MSE (x10−3)

Model Percent forest cover Nighttime light intensity Elevation

ResNet18 6.06 ± 0.31 3.40 ± 0.14 7.55 ± 2.52
MobileNetV3 7.20 ± 1.12 3.22 ± 0.26 7.00 ± 2.32
SqueezeNet 7.92 ± 1.36 3.54 ± 0.23 8.40 ± 2.63

ShallowCNN 6.85 ± 2.33 3.60 ± 0.26 10.80 ± 2.65

b. Classification tasks - overall accuracy (%)

Model Crop type Land use Coffee

ResNet18 93.35 ± 0.38 98.89 ± 0.47 91.28 ± 2.19
MobileNetV3 93.75 ± 0.45 96.53 ± 2.86 88.33 ± 1.48
SqueezeNet 92.80 ± 0.34 91.00 ± 1.90 90.23 ± 0.93

ShallowCNN 95.04 ± 0.33 89.00 ± 1.87 92.13 ± 1.02

Figure 2: MSE for nighttime light intensity as
dataset size is reduced. Note that the x-axis is
decreasing.

A significant benefit to ShallowCNN is its perfor-105

mance on small datasets, an issue common among106

sustainability-related tasks. Although a common107

principle in machine learning says that smaller mod-108

els should be favored for simpler prediction prob-109

lems, it is still common practice to apply ResNet-110

type models to satellite imagery tasks. Until the111

training size is reduced to 8k images, there is a112

small, roughly linear increase in MSE across all113

models (Figure 2). Once the training set size114

falls below 8k, there is an exponential increase115

in MSE for ResNet and SqueezeNet and a much116

smaller increase in MSE for ShallowCNN and Mo-117

bileNet (Figure 2). While MobileNet outperforms118

ShallowCNN on smaller datasets, ShallowCNN’s119

smaller memory requirements may outweigh the120

difference in performance for some applications.121

Further work should investigate why MobileNetV3,122

which has significantly more parameters than Shal-123

lowCNN and SqueezeNet, outperforms both methods in the small data regime.124

5 Conclusion125

Evaluating the performance of smaller, non-standard deep architectures is generally underexplored126

(21). This is especially of interest when applying CNNs to new domains where there are fundamental127

differences between the domain images and images that comprise common computer vision datasets128

(i.e., natural images). We compared a small three layer CNN, ShallowCNN, to much larger off-129

the-shelf architectures and showed that in most cases ShallowCNN has comparable performance130

to ResNet-type models. Our results align with other studies which have shown that simple CNN131

architectures perform well on satellite imagery tasks (22; 23). Our study differs from the previous132

studies in that it is the first to baseline the performance of modern pretrained architectures with133

a smaller CNN across several remote sensing tasks, whereas the previous studies investigated the134

viability of CNNs compared to other deep learning methods. Our results are of special concern to135

those who have computational constraints, whether in model training or in model deployment.136
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Appendix228

A1 ShallowCNN229

Our shallowCNN is comprised of three convolutional layers. The weights in conv1 are taken from230

the first layer of ResNet18 pretrained on ImageNet as using pretrained weights in the initial layer can231

lead to faster convergence (21). To match ResNet18, the first convolutional layer has 7x7 filters. The232

remaining two layers have 3x3 filters. See Table A1 for the full architecture.

Table A1: ShallowCNN architecture. For the last layer we used a multiclass softmax activation for
the classification tasks and a linear activation for the regression tasks.

Layer name
conv1 7x7, 64 conv; batch norm; ReLU; max pooling
conv2 3x3, 64 conv; batch norm; ReLU; max pooling
conv3 3x3, 128 conv; batch norm; ReLU; max pooling
avg_pool average pooling
fc 128x64, ReLU, 64xnum_classes
activation classification: softmax; regression: linear

233

A2 Tasks234

Figure A1: Sample images from ImageNet (15), UC Merced Land-use (17), crop type, Brazilian
Coffee Scenes (6) and percent forest/nighttime light intensity/elevation tasks (16). Color and textural
information appear more indicative of class in the satellite images as opposed to those of ImageNet.
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A2.1 Percent forest cover, nighttime light intensity, and elevation235

We purposefully selected a set of satellite imagery tasks that range in difficulty and dataset size.236

Table A2 outlines the tasks and dataset sizes. We selected three regression tasks from Rolf et al.237

(2021) with increasing complexity: percent forest cover, nighttime light intensity, and elevation. Forest238

cover is directly observable from satellite imagery and, therefore, should be the most straightforward239

to predict. Nighttime light intensity itself is not observable from daytime satellite images, however,240

proxies for nighttime light intensity (e.g., dense urban areas) are observable. Elevation on the other241

hand, is much more difficult to estimate solely from a satellite image. Many images may have similar242

appearances but dramatically different elevations. Images for all three regression tasks were collected243

from the contiguous United States based on the sampling schemes of Rolf et. al (2021). See Figure244

A1 for sample images.245

A2.2 Crop type246

We developed our own crop type dataset from images collected from three regions within the Central247

Valley of California. We collected National Agricultural Imagery Program (NAIP) imagery (24) from248

2012 and derived labels from the National Land Cover Database (NLCD) (25) for the same year.249

We subset the data to only include the three most commonly occurring crops: tomatoes, almonds,250

and alfalfa. When assigning labels, we only included images which contained more than 60% of the251

majority label in the image. In total the dataset consists of 36,000 images with a roughly even split252

across the three classes.253

A2.3 Brazilian Coffee Scenes254

SPOT satellite images were collected in 2005 over four counties in Brazil. Images were labeled by255

agricultural experts and labeled coffee if more than 85% of the pixels contained coffee and non-coffee256

if less than 10% of the pixels contained coffee. The dataset consists of 2876 images with an equal257

split of coffee and non-coffee (6).258

A2.4 UC Merced Land-use259

The UC Merced Land-use dataset consists of aerial images from 21 different land use classes. The260

classes span categories such as beach, parking lot, buildings, forest, and overpass. The images were261

collected from 20 cities across the United States. The images were manually annotated and each262

class contains 100 images (17).263

Table A2: Description of tasks.

Prediction task Type Classes Dataset size Image size Spatial res.
Percent forest cover (16) regression 1 100k 256x256 ∼ 4 m
Nighttime light intensity
(16)

regression 1 100k 256x256 ∼ 4 m

Elevation (16) regression 1 100k 256x256 ∼ 4 m
Crop type classification 3 36k 48x48 1 m
Brazilian Coffee Scenes (6) classification 2 2876 64x64 -
UCMerced Land-use (17) classification 21 2100 256x256 0.3 m

A3 Data pre-processing264

Spatial autocorrelation is a common issue in spatial data and can be problematic as it can artificially265

overestimate the predictive power of models by having highly correlated datapoints (i.e., datapoints266

close in geographical space) in both the training and testing sets. To help address spatial autocorrela-267

tion, we used the blockCV R package (26) to split datasets with geographic location information into268

spatial blocks. We then used the spatial blocks to assign data points into 10 folds for cross validation.269

For the tasks without location information, we randomly split the data into 10 cross validation folds.270

All three regression tasks and the crop type task have location information (i.e., they were split271
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spatially). We randomly assigned splits for the land use task and used the predefined splits for the272

coffee dataset.273

For image preprocessing we scaled pixel values to be in the range of [0, 1] and subtracted the channel274

means. During training, we augmented images by performing random horizontal and vertical flips275

and random rotations in increments of 90◦.276

A4 Training277

We fine-tuned the three off-the-shelf models (ResNet18, MobileNetV3-small, and SqueezeNet) and278

trained ShallowCNN from scratch. For the three off-the-shelf architectures, we used pretrained279

weights and updated the fully-connected layer to match the number of outputs for the given task. For280

all models and all tasks, we performed hyperparameter tuning on the learning rate, weight decay, and281

batch size. Prior to comparing ShallowCNN to the other models, we experimented with different282

numbers of convolutional layers and different numbers of convolutions per layer. Across tasks, we283

found a three layer model with 64, 64, and 128 convolutions to perform the best. We transferred284

pretrained weights from the first convolutional layer of ResNet18 for the first layer of ShallowCNN as285

using pretrained weights in the initial layer can lead to faster convergence (21). To match ResNet18,286

the first convolutional layer has 7x7 filters. The remaining two layers have 3x3 filters and the weights287

were randomly initialized. See Table A1 for the full architecture.288
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