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ABSTRACT

We study the gradient descent (GD) dynamics of a depth-2 linear neural network
with a single input and output. We show that GD converges at an explicit lin-
ear rate to a global minimum of the training loss, even with a large stepsize—about
2 /sharpness. It still converges for even larger stepsizes, but may do so very slowly.
We also characterize the solution to which GD converges, which has lower norm
and sharpness than the gradient flow solution. Our analysis reveals a trade off be-
tween the speed of convergence and the magnitude of implicit regularization. This
sheds light on the benefits of training at the “Edge of Stability”, which induces
additional regularization by delaying convergence and may have implications for
training more complex models.

1 INTRODUCTION

Training modern machine learning (ML) models like deep neural networks via empirical risk min-
imization (ERM) requires solving difficult high-dimensional, non-convex, under-determined opti-
mization problems. Although such optimization problems are generally intractable to solve in the-
ory, we train models effectively in practice using algorithms like stochastic gradient descent (SGD).
This highlights a disconnect between the worst-case convergence rate of SGD and its convergence
on specific ERM problems that arise from training, e.g., neural networks. Even we can solve the
ERM problem, typical minimizers of the under-determined objective will overfit the training data
and generalize poorly. That said, the specific solutions found by SGD and its variants usually do
successfully generalize. Understanding how and why we are able to successfully optimize and gen-
eralize with these models is of great interest to the ML community and could help fuel continued
progress in applied ML.

A key feature of popular ML models, including neural networks, is that the model output is related
to the product of model parameters in successive layers. For instance, the output of a 2 layer feed-
forward network with ReLU activations has output Wo ReLU(W 1z + by ), which is closely related
to the product of the weight matrices WoW ;. Ultimately, this “self-multiplication” of different
model parameters gives rise to the non-convex and under-determined ERM problems that cause
such (theoretical) difficulties.

In this work, we distill this parameter self-multiplication property down to its simplest form and
comprehensively explain how it affects the training optimization dynamics, the “implicit regulariza-
tion” of the model parameters, and the “edge-of-stability” dynamics that arise in certain regimes. In
particular, we consider the extremely simple problem of learning a univariate linear model §§ = ma
to minimize the squared error, except we parameterize the slope as m = m(a,b) = a'b in terms
of self-multiplying parameters a,b € R?. This can also be thought of as a depth-2 linear neural
network with d hidden units. For training data {(z;,y;) € R x R}?_,, this results in the loss
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This objective is equivalent—by rescaling and subtracting a constant—to the even simpler lossﬂ

min L(a,b) := (aTb— <I>)2. 2)

a,bcRd

[N

In what follows, we focus on this formulation and assume ® > 0 w.l.o.g. for simplicity and clarity.

Despite its simplicity, the objective (2)), which has also been studied by prior work (Lewkowycz
et al. [2020; |Wang et al. [2022; |Chen & Brunal 2023} |Ahn et al.| |2024), is a useful object of
study because it has a number of qualitative similarities to more complex and realistic prob-
lems like deep learning training objectives. First, it has similar high-level properties—the prob-
lem (@) is non-convex and highly under-determined because the set of minimizers constitutes the
(2d — 1)-dimensional hyperboloid in R?? that solves a'b = ®. It also exhibits some of the
same symmetries as realistic neural networks; for example, a'b is invariant to swapping “neu-
rons” (a;, b;) <> (a;, b;) or to rescaling (a;, b;) — (ca;, ¢~ 'b;). More importantly, the dynamics
when optimizing (2)) with gradient descent are qualitatively similar to the dynamics of training more
complex models. Simultaneously, the problem (2) is simple enough that we can provide a detailed
and nearly comprehensive characterization of several different aspects of training. Specifically, we
will present the following results:

Convergence of gradient descent Despite the non-convexity of the optimization problem (2,
prior work has shown that GD converges to a global minimum from a.e. initialization (Wang et al.|
2022). We show that, in fact, it converges at a linear rate. In addition, we identify several phases that
depend on the relationship between the stepsize, 7; the scale of the parameters, X := ||a]|? + ||b||%;
and the residuals, € := a'b — ®. Several of these phases are closely related to the so-called Edge
of Stability (EoS) phenomenon (Cohen et al.|[2021), where gradient descent decreases the objective
(although non-monotonically) despite the largest eigenvalue of the objective’s Hessian matrix being
larger than the critical threshold 2/7.

Location of convergence In addition to showing how fast gradient descent converges to some
global minimizer, we can also describe which of the many possible solutions, a'b = ®, gradient
descent will converge to. To do so, we show that gradient descent implicitly regularizes the “imbal-

ance” of the parameter vectors, quantified by @) := Zle |a12 —b? ‘, with a larger stepsize generally
leading to stronger regularization. This is notably different from the behavior of Gradient Flow
(GF) (the 7 — 0 limit of gradient descent), which conserves . Since GF is often employed in the
literature as an easier-to-analyze approximation of gradient descent (e.g. |Du et al., 2018} [Tarmoun
et al.| [2021), our results highlight a potential danger of over-reliance on this approximation. The
balance of the parameters is also closely related to the “sharpness” of the solution, i.e. the maximum
eigenvalue of the Hessian, which is equal to A := ||a]|? + ||b]|? at solutions a'b = ®. For the
problem (2) specifically, the actual prediction function defined by any solution a'b = & is the
same—after all at any minimizer, § = ®x regardless of the parameters—so the sharpness is not
relevant to generalization. Nevertheless, there is a large body of work in other contexts showing that
less sharp minima of the loss tend to generalize better (Hochreiter & Schmidhuber], (1997} [Keskar
et al.l 2016; |Smith & Lel 2017} [Park et al.l 2019), and our analysis shows how the self-multiplying
structure of (2) tends to regularize the sharpness.

The key to our analysis is the following pair of observations. On the one hand, gradient descent
iterations change the imbalance like Q(t + 1) = (1 — n?e(t)?)Q(t), so the imbalance decreases
throughout optimization for 0 < 1 < V2/|e(1)|. At the same time, the objective L does not globally
satisfy the Polyak-Lojasiewicz (PL) condition (Polyak, |1963) because the origin is a saddle point,
but it does satisfy a version of the PL condition along the GD trajectory (see Definition [2)), which
is sufficient to prove linear convergence of GD to a global minimizer. Interestingly, the PL constant
along the GD trajectory, which controls the speed of convergence, is equal to the smallest value
of A(t) encountered along the way, which is itself approximately equal to the value of Q(t) at the
first time that a(¢) "b(t) > 0. Thus, the stronger the implicit regularization of @, the slower the
convergence of GD, and vice versa, which puts these goals directly at odds with each other.

'See Lemmain Appendix@fer a simple proof.
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RELATED WORK

A large body of research has shown empirically that training neural networks with larger learning
rates tends to lead to better generalization (LeCun et al., [2002; |Bjorck et al., 2018; L1 et al., [2019;
Jastrzebski et al., [2020). However, in classical settings, convergence can only be guaranteed when
the stepsize is small enough that .y (V2L) < 2/5 throughout optimization (Bottou et al., 2018).
Nevertheless, a recent line of work starting with |Cohen et al.| (2021) observed that when training
neural networks, the maximum eigenvalue of the Hessian, or “sharpness”, tends to grow throughout
training until it reaches, or even surpasses the critical 2/ threshold. But rather that diverging, the
loss continues to decrease (non-monotonically) while the sharpness continues to hover around 2/,
which is referred to as the Edge of Stability (EoS) phenomenon. Understanding more deeply the
training of neural networks with large stepsizes is of great interest.

Problems closely resembling have been studied previously. |Ahn et al| (2024) study losses of
the form ¢(ab) with a,b € R and ¢ any convex, Lipschitz, and even function. The assumption
that ¢ is even means it is minimized at zero (this is analogous to ® = 0 in our case), and they
prove convergence to zero from any initialization with any stepsize, but without a rate. However,
this result relies crucially on both the loss being Lipschitz and minimized at zero—and this is not
surprising, we know that GD diverges on realistic objectives when the stepsize is too large. They
also show that the limit point of gradient descent satisfies |2, — b% | ~ min{2/n, |a2 — b3|}, i.e. the
imbalance between the weights is implicitly regularized down to the level of 2/n. |Chen & Bruna
(2023) study (2)) with scalar a, b € R and prove that the limit point of GD satisfies a — b — 0 when
the stepsize is chosen slightly too large for convergence to any minimizer ab = ® to be possible.
This is qualitatively similar to our work, but they intentionally choose a too-large stepsize in order
to highlight the implicit regularization of the imbalance, while we provide conditions on 7 under
which convergence to a minimizer and some amount of regularization happen simultaneously.

In the most closely related work, [Wang et al] (2022)) study the exact objective (2) and show that
gradient descent using any stepsize up to ) < 4/sharpness—approximately twice as large as the classi-
cal threshold of 2/sharpness—eventually converges to a minimizer, but without a rate. They also show
some level of implicit regularization of A, e.g. at convergence A < % In comparison, we provide
an explicit convergence rate for GD and give a more detailed connection between this rate and the
implicit regularization.

Finally, many papers have studied other models such as matrix factorization or linear neural net-
works (Saxe et al., 2013 |Arora et al.,[2018;|Gidel et al., 2019} [Tarmoun et al.,[2021; Xu et al., 2023}
Nguegnang et al.l [2024), which are more faithful representations of realistic neural networks, but
they are also much more difficult to analyze. Due to this difficulty, these results often only apply
to gradient flow, or to GD with a very small learning rate, or to GD under additional, hard to inter-
pret assumptions. In this work, we focus on the problem (2)) in order to obtain a simpler, easier to
interpret set of results.

2 NOTATIONS AND SETTING

The gradient descent dynamics of the parameters are described by
2D =[] - vz =[50 a0 -0 0] @

However, tracking the dynamics of a and b is somewhat unwieldy due to the overparametrization
of the model a”b. Therefore, it will be convenient to reparametrize the dynamics in terms of the
following three quantities, rather than the parameters themselves.

Residuals. We define the residuals, € := a'b — ® = +,/2L(a, b), which measure the distance
to the manifold of minima. We will control the magnitude of € in order to prove convergence.

Norm of the parameters. We denote by A := ||al|? + ||b||? the squared Euclidean norm of the
parameter vectors. This is interesting because the Hessian of the loss at a solutiona'b = ® is
T T
b| |b 0 I b| |b
2 _ _
vrren = [ [ eelr o) B[ @
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so it is rank-1 and has top eigenvalue, or “sharpness”, equal to A. Also, by the Cauchy-Schwarz and
Young inequalities, at any solution ® = a’b < [lal|[[b[| < 5 (/[al]* + [[b][*) = 3, with equality
occurring when a = b. Therefore, the minimum sharpness of any solution is 2®.

The scale A is also useful in our analysis because the evolution of the residuals due to (3) is closely
related to A:

et+1) = e@®)(1—nA®) +n’e(t)(e(t) + @)). (5)

Thus, the term —nA is the main cause of the decrease in the magnitude of . Finally, the GD
dynamics of € and X are completely determined by each other

At+1) = (L+9%e(®)?)A(t) — dne(t) (e(t) + @). (6)

The imbalance. To complement the above, we also define ; := a2 — b2 and Q := 3%, |Q,].
The gradient descent dynamics on the @Q;’s due to (3) is described by

Qit+1) = (1-n*e(t)®)-Qi(t) = Qt+1) = |[1—n’e(t)’| Q). (7)

From the lack of a term linear in 77, we can see that the );’s are conserved by gradient flow, but not
by gradient descent, which decreases their magnitude for any 7 < v2/|¢|. This is the essential cause
of GD’s implicit regularization effect. In our analysis, we use () in two ways: (i) the lower bound
A > @ is key our the proof of GD’s convergence speed, and (ii) we use () to help characterize the
location of convergence.

3 LOCATION OF CONVERGENCE

Our first result concerns which solution is reached by gradient descent:

Theorem 1. For n < min { } at the limit point of gradient descent

1 2
21e(0)]” \/x(0)2+4@2

0 < exp (_Vﬁz;(())) < ‘%l((o.(;))’ < exp (—n2§e(t)2> < exp (—n’e(0)?)

A full proof is located in Appendix [H} The main idea of Theorem[T]follows from the @ updates (7).
In particular, (/) implies that at the limit point of GD:

Qo) = QO - ey "V RO exp<—n225<t>2> ®)

t=0 t=0

Hence, the amount that () is regularized is essentially determined by how quickly the loss converges
to zero. If the loss decreases quickly, then Y~ ; &(¢)? will be small and the amount of regularization
will be small. Conversely, if the loss decreases slowly, then Y, €(t)? would be large and Q(c0)
would be made very small. In the next section, we will show that for the stepsize described in
Theorem |1} the loss actually converges to zero at a linear rate, so >, €(t)? ~ &(0)?/nu for an
certain value of p. In conclusion, we have the following takeaway:

Takeaway 1: Gradient descent converges to a solution with lower imbalance than gradient flow,
but the imbalance always remains non-zero.

For a geometric perspective on why reduces the imbalance compared with gradient flow, see Figure
[I] Gradient flow conserves Q:

Qi = 2(a;a; — bjb;) = 2(a;(—eb;) — bi(—€a;)) =0 = Q = 0. )

On the other hand, because gradient flow curves away from the origin in such a way that () is constant
throughout the trajectory, the discretization error introduced by a gradient descent step results in GD
moving “inward” towards the line a = b, resulting in less imbalance.
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Figure 1: The GF trajectory curves away from Figure 2: The qualitative behavior of GD steps
the origin, so the discretization error of each GD differs in each of the three regions.
step brings it closer to the line a = b.

4 SPEED OF CONVERGENCE

Our second result is a characterization of the convergence speed of gradient descent.

Theorem 2. Let n < min{ } denote 7 1= min{n, ——Z } Then

1 2 _
2[e(0)1” | /X (0)2+4@2 /A (0)2 432 77
if Q(0) # 0, for any § > 0, gradient descent reaches a point L(a(T),b(T)) < & with
max{log |€(0)|,0} n log 5 )
7Q(0) exp(min{—a(0)"b(0),0}) = 7Q(0) exp(min{—a(0)"b(0),0}) + 7P
If min {‘/5 2} < 7 < min {%, % + @} we have convergence but it could be

€7 /A(0)2+492

logarithmically slow.

r<o(

A full proof can be found in Appendix [F} The key idea of the proof is to show from the update
equation of the residuals, (3)), that roughly speaking

e(t+1) = (1 =nA))e(t) (10)

Since we also show that 0 < nA(t) < 2 for all ¢, this means that GD will converge at a linear rate
(1 — nming A(t)). However, care must be taken to lower bound the smallest parameter norm A(t)
visited by GD because if the iterates stray too close to the origin, where A = 0, then this linear
convergence could be arbitrarily slow. Therefore, the main technical challenge is to bound the GD
iterates away from the origin. The key observation is that A > (), and we can easily track the
evolution of () using (the updates on A, @, are more difficult to control).

To lower bound A along the trajectory, we break the parameter space into three regions, as depicted in
Figure 2| In region A, by the Cauchy-Schwarz and Young inequalities, 2& < 2a’b < 2||a||||b| <
lla]|® +]|b||* = A. So, within region A we have linear convergence with rate (1 — 2n®). Region B
contains points where A is arbitrarily small, but since € < 0 buta’b > 0 here, by (6)

At+1) = (L+n%et)®)A(®) —4ne(t) a(t) 'b(t) > (1+n%e(t)®)A(t) (11)
T

Thus, within region B, GD increases the value of A, so we can lower bound A(¢) > A(7), where 7
is the time that the GD iterates entered region B. Furthermore, we always have A(7) > Q(7), so all
that is needed is to control Q(7) at the time that GD enters region B. Finally, to address region C, the
Q updates (7)) show Q(t+1) = (1 —n?e(t)?)Q(t) while we prove that e(t + 1) ~ (1 —nQ(t))e(t).
We use this to argue that the time it takes to substantially decrease () scales with =2 while the time
to exit region C by making e(¢ + 1) > —® scales with only 7. So at the time that GD exits region
C, Q(7) remains only slightly smaller than Q(0).
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Putting this all together, if GD is initialized in region C, it takes O(1~!) steps to leave, at which point
it enters region B with Q(7) ~ Q(0), which serves as a lower bound on A(t) until convergence,
assuming that the remaining iterates stay in region B. If GD is initialized and remains in region A,
then A(t) > 2® throughout optimization. To complete the argument, we account for the case where
the GD trajectory leaves and/or re-enters a region more than once.

The structure of the proof—which relies on lower bounding the imbalance, Q(7), of the GD iterate
closest to the origin—is essentially a mirror image of the proof of Theorem I} and leads to another
key takeaway:

Takeaway 2: The stronger the implicit regularization of the imbalance, Q,
the slower the convergence and vice versa.

The trade-off between the convergence speed and implicit regularization of @) is illustrated by Figure
Bl This experiment also indicates that in the EoS regime where the stepsize is larger than what is
allowed by Theorem 2| but smaller than approximately 4/A(0), GD still converges to a solution,
but both the rate of convergence and the amount of regularization of () have a intricate and chaotic
dependence on the initialization and stepsize. Nonetheless, also in this EoS regime we see that that
the convergence rate and amount of regularization have a generally negative relationship.

TR QMIQ(0) G- #steps to convergence
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Figure 3: We used GD to minimize the problem (2) with ® = 1 using different stepsizes from
various initializations with €(0) = —2 held constant. The x-axis corresponds to the initial scale
A(0) of the initialization, while the y-axis corresponds to the n(0). For stepsizes n < 2/X(0),
the amount of regularization Q(7")/Q(0) is limited, but convergence is quick, and quickest around
1 & 1/x(0). On the other hand, for very large stepsizes > 2/x(0), convergence is more chaotic;

the convergence rate and regularization have a negative relationship but depend sensitively on 7 and
A(0).

5 ON THE STEP SIZE AND THE EDGE OF STABILITY

We characterize here the regime of the dynamics of € given the size of the learning rate and we
sketch a proof for that.

5.1 THE STABLE REGIME.

We know from Theorem that 1 < 2/X along the all trajectory implies linear convergence and we
manage to bound X along the whole trajectory thanks to the following lemma and a characterization
of the effect of discretization.

Lemma 1. The maximum of X along the trajectory taken by gradient flow on L starting ata,b € R™
is
max (A) < A(0)? + 492,

trajectory

Instrumental to prove this theorem is the observation that:
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Lemma 2. The quantity \*> — 8¢(e + ®) + 4 is conserved by the gradient flow on L.

6 THE CASE OF EDGE OF STABILITY

Recent findings by (Cohen et al.| (2021) demonstrate that during the training of neural networks
with full batch gradient descent at a step size of 7, the largest eigenvalue of the Hessian stabilizes
right above 2/7. This is somewhat surprising as when the gradients are a linear function of the
parameters, if n > %, gradient descent diverges. A very good exemplification of this fact is the
case of one dimensional parabola, see Cohen et al.|(2021). However, neural networks, surprisingly,
convergence even if n > % Our results here show that the reason my be the product structure
and its interaction with discrete dynamics. Indeed, our results show how convergence happen also
for n > 2/ but slower. This implies that training happens even though at the edge of stability.
Moreover, we prove that the slower the training and the bigger the learning rate, the lower the
parameter norm of the solution gradient descent will eventually converge to. This suggests that
training at the edge of stability may induce increased implicit regularization.

In the case in which the learning rate is slightly bigger than threshold above 1 > 7#(0)22%@2 we
show that convergence still happen but at a lower speed. This can be noticed in the case of Fig
Precisely, define 77 as

Definition 1. Let a,b € R, denote by 7j(a, b) the value

. 2 . 5 . e(e+ @
n(a,b) = Y (14 a+4a® +20a° + 112a* + O(a)) with  a:= %
Then we have that
Proposition 1. Let \/ﬁ < n < 1 gradient descent on L converges. However, convergence

may happen at only logarithmic speed.

In the case in which 7 is even bigger and approaches 4/X (Wang et al., 2022, Theorem 1) suggests

that there exists a time in which n < \/ﬁ Just applying our result then we ensure linear

convergence, although from that time on. As we showed above, this initial oscillatory phase may,
however, last for arbitrarily long time.

7 CONVERGENCE ANALYSIS
In this section we connect the speed of convergence with a lower bound on A along the trajectory.

7.1 PL CONDITION ALONG THE TRAJECTORIES

To assess convergence rates, we introduce a convergence criterion we call the Polyak-Lojasiewicz
Condition Along the Trajectories (PLAT Condition). This criterion serves as a generalization of the
traditional PL condition. Specifically adapted to non-convex settings where empirical data indicate
quick convergence although the problem itself is not necessarily PL.

Definition 2 (PL Condition Along the Trajectories (PLAT)). Consider the optimization problem
minimize, f(x) for f: S C R? — R, paired with an optimization algorithm A. This problem-
algorithm pair satisfies the PLAT at 2y € R? if there exists a constant y(x¢) > 0 and a stationary
point f* such that for all points x visited by A starting from ¢

SV @I > ) - (F@) - 7).

While a function f satisfying the traditional PL condition implies it meets the PLAT criteria when
equipped with gradient descent (GD) and gradient flow (GF) for every initialization. Notably, how-
ever, if a function is PLAT with GD and GF almost everywhere, it may admits saddle points. Almost
everywhere linear convergence to global minima is anyway ensured.
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7.2 DYNAMICS AND IMPLICATIONS

The introduction of the PLAT criterion facilitates a nuanced understanding of optimization trajec-
tories. In the context of gradient descent with step size 7, satisfying PLAT at x( means that the
function, when restricted to the trajectory of the algorithm,

{zst. 3n € Ns.t. = X,, where Xo = zo and Xj41 := Xj, — nV f(Xy)}

adheres to the PL condition:

V@I > o) - (@)~ £ (0))-

This, thus, primarily concerns the speed of linear convergence which we lower bound by u, not
whether convergence happen.

Note also that the proof of the fact that PL-condition implies exponential convergence for gradient
flow and linear convergence for gradient descent is actually subtly using the weaker assumption of
PL-condition along trajectories.

7.3 WARM UP: GRADIENT FLOW ON OUR PROBLEM

We illustrate that the loss function L(a, b) we take into consideration when equipped with gradient
flow (GF), satisfies PLAT almost everywhere. As a first step, note that for any initialization oy, By €
R™ we have

Lemma 3 (L is locally PL). L admits local PL constant p(a,b) = |la||* + ||b]|* = A.

1

1
IVL(a,b)|* = ([al* + [[bl*) - 5

(a"b—®)* = A-L(a,b).

However, L does not meet the PL condition globally as A = 0 at the saddle point o, 3 = 0.

Next note that gradient flow conserves the quantity Q(a,b) := "' | |a? — b?| which is always
smaller than A, and the equality is reached only if for all i € {1,2,...,n} at least one between a;
and b, is equal to zero, more formally @) = A if and only if ) . min{|a;|, |b;|} = 0. This implies
that if at initialization a, b satisfy

* Q(a,b) > 0, then L and gradient flow are PLAT with constant Q.

* Q(a,b) =0, then we are on the one dimensional manifold a = +b.

- If a = —b then the problem becomes L = (||a||?> + ®)? and it converges to the
minimum a = b = 0 with u(a,a) = (||a]|? + ®)? > &2 > 0.

— If a ## —b and there exists a component ¢ such that a; = b; instead the components
n; < n components satisfying a; = —b; will converge to a;, = b; = 0, the the
n —nj > 1 other components will converge to the global minimum of L with PL
constant given by their norm at initialization 2 ) . ., a1£—b; aZ.

This proves that
Proposition 2. The loss L(a, b) equipped with gradient flow is PLAT almost everywhere.

This proposition demonstrates that L equipped with GF, reliably conforms to the PLAT, showcasing
linear convergence, although with a clear differentiation of behavior based on initial conditions and
trajectory dynamics.

7.4 GRADIENT DESCENT CONVERGES LINEARLY

We are now ready to demonstrate the formal and clean version of Theorem [2] which is about the
robust PL structure of L(a, b) equipped with gradient descent.

Proposition 3. L(a,b) satisfies the PL-condition along the trajectories of gradient descent with

almost every step size in mind Y2 2\ for almost every initialization
ry step siz 0<n<n< {s,\/mf ry initializ

a,b e R".
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Unexpectedly however, we can prove that no matter the step size and the initialization we have
linear convergence on our loss. However, the dynamics exhibit particular sensitivity to this hyper
parameters. Note, indeed, that for a fixed initialization where () # 0, if 7 is such that there exists a
step k a long the trajectory where 77 - (a’b — ®) = 1 exactly, convergence happentoa = b = 0
instead of the global minimum. Indeed, in this case, on the next step we have a(k + 1) = —b(k +
1) = a(k) — b(k). This implies that when @ # 0, for almost every 7 in the allowed range we have
linear convergence to a global minimum, in the remaining set of measure zero, linear convergence
to the saddlea = b = 0.

8 CONCLUSION

In this paper, we analyzed the gradient descent dynamics of a depth-2 linear neural network, offering
a simplified model to explore training behaviors observed in more complex neural networks. Our
key contributions are:

1. Linear convergence with large step sizes: We demonstrated that gradient descent con-
verges at a linear rate to a global minimum, even with larger-than-expected step sizes—up
to approximately 2/sharpness. For even larger step sizes, convergence still occurs but slows
down significantly.

2. Implicit Regularization: We characterized the solution reached by gradient descent,
showing that it implicitly regularizes the parameter imbalance and sharpness, leading to
a lower norm solution compared to gradient flow. Notably, as the step size increases, the
implicit regularization effect strengthens, flattening the solution.

3. Trade-off Between Speed and Regularization: Our analysis uncovered a trade-off be-
tween the convergence rate and the degree of implicit regularization. Training at the edge
of stability, while slower, induces additional regularization, which may be beneficial for
generalization.

These findings provide insight into how larger step sizes affect neural network training dynamics,
shedding light on the phenomenon of training near the ”"Edge of Stability” and its potential benefits
for regularization in more complex models.
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A ON THE OBJECTIVE

Lemma 4. For any a, b, {(z;,y;)} 4,

7 Znﬂ 7 T 2 1 2
L(a,b) = ==—"(a' b— Const = |— “| L(a,b) + Const.
(a,b) o (a ¢)* + Cons - zi:xz (a,b) + Cons

i=1 %5 i=1T5

2
A ?': TiYi
where ¢ = Zﬁ% and Const = ﬁ (E?_l yf — w> does not depend on a, b.
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Proof. Let x denote the vector whose ith entry is x;, and let y denote the vector whose ith entry is
y;. Then we can write

1 2 1
L(a,b) = %Ha—rbx — yH = %((aj—b)zﬂxn2 —2a'b(x,y)+ ||y||2)

_ IxE <(aTb)2 oY) ||y||2>

2n 23| B
x| (T <x,y>)2 Iyl* ¢ ¥)°
= a b- + — (12)
2n 12 1[I [
Rewriting this in terms of the x;’s and y;’s completes the proof. O

Note, thus, that all our proofs work on L, we thus have to rescale €, X, Q, n accordingly. Precisely,

i;mzﬂ)\, inizi:xf]@ sn[i;mfle, and nnli;xf]n

(13)

AN

Analogously, note that if ® < 0 nothing changes in the analysis of the dynamics. When a # —b
just change a to —a and apply the same analysis as before.

B FROM THE RESIDUALS TO THE LOSS

First note that if € converges exponentially to zero, then loss L converges exponentially to its mini-
mum.

Lemma 5. Assume |e(k)| converges linearly fast with rate (1 —nu) < 1. Then L converges linearly
fast with rate (1 — nu)?. In particular, let § > 0, the loss L is smaller than § in a number of steps t
that satisfies

; log Loy — log(9)
e '

Indeed note that for how we defined & we have that L = €2, thus L(k + 1) = |e(k + 1)| <
(1 — nu)|e(k)|?. Note that this lemma allows us to deal with the convergence of € instead of the
convergence of L and infer the convergence of L. Indeed, if the residuals € converge linearly with

rate (1 — nu) < 1, then the time it takes to converge is such that v/§ > (1 — nu)*v/Lg which is
log Lo — log(9) < log Lo — log(9)

< . (14)
—log(1 — np) n
From now on we will deal with convergence of residuals only.
C BOUNDING THE FINAL SHARPNESS
C.1 SIZE OF A FOR GRADIENT FLOW
Note that we can characterize the norm A, found by gradient flow by noticing that
Lemma 6. Along the gradient flow trajectory, the following quantity is conserved
A% — 8e(e + ®) + 4e?.
Proof. The gradient flow dynamics are described by
a b
4] = vrtan =<} 05

11
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First, we compute

. d
A= —[lal® +|bl|? 16
g Lall® + 11b]?] (16)
—2(a, &) +2<b, b> 17)
= —2e(a, b) — 2e (b, a) (18)
= —de(e + D) 19)
and
s = i[(a b) — @] (20)
T at®
- <a, b> +(a, b) @1
= —¢lla]* —&|/b|* (22)
=—Xe (23)
Finally, straightforward calculation confirms:
%[AQ — 8e(e + @) + 4€%] = 2AX — 8eé — 8&(e + @) + 8ee (24)
=22\ — 8é(e + @) (25)
=2X(—4e(e + D)) — 8(—Ae)(e + D) (26)
=0 27)
which completes the proof. O

These two lemmas imply that the norm of the solution found by gradient descent will always be
smaller than A, and since €5, = 0 we can compute it using the formula above, precisely.

Lemma?7. Letn < ? along the whole trajectory. Then the norm X every point along the trajectory

of gradient descent is

A < V02 —8e(0)(e(0) + @) +4e(0)2 < X(0)2 + 492,

Note indeed that

VA(0)2 — 8¢(0)(e(0) + @) + 4¢(0)2

\/(Ilall2 +[bl[?)? +8PaTb —4(a"b)?

IN

max V(all2 + [b]2)2 + 82aTh — 4(aTh)2 28)

= V/([lall? +[b][?)? + 492
attained whena' b = ®.
Definition 3 (Maximal Sharpness A). We denote by A and we call maximal sharpness the value

V(l[af]? +[bl[2)? + 492.

C.2 SIZE OF X FOR GRADIENT DESCENT

Equation@tells us that A decreases if < %. Note thatif €,a’b > 0 this is implied by < 2/e.

Ifa'b > 0bute < 0, and n < g, lambda grows but it has a maximum for lambda is X. And if
€,a' b < 0 this is again implied by < 2/e.

This implies that if we have n < ? for all € along the trajectory, at every step, either A decreases
or is smaller than 29.

Note that for every a, b, if n < 2 and < %, then we have that

2 4
e(l) = (1 - }\)\> €+ ?62(5 + @) (29)

12
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note that the min of €2(e + ®) is fore = ®/2.
2 1
[ (1 — )‘)\) e+ ?eqﬂn < el (30)

This shows that
Lemma 8. Ifn < min {g, %} along the whole gradient descent trajectory, then the norm X is

smaller than .

D SPEED OF CONVERGENCE

D.1 CONTINUOUS DYNAMICS

In the case of gradient flow the pairs (a, b) along the trajectory satisfy a PL condition with p(a,b) =
llal|? + ||b]|?, indeed note that L(a, b) satisfies
2
(@' —@)" (laf® + [Ib]*) = IVL(a,0)|*> = u(t) - L(a,b).

Note that for all i the quantity Q; = a? — b? is conserved along the trajectory, indeed

d
% (ai(t)Q — bz(t)g) = 2s(aibi — aibi) = 0.
Thus we have that Q(0) # 0 is a lower bound to x along the whole trajectory.
Proposition 4 (Convergence of gradient flow). Let a,b € R such that QQ # 0. The gradient flow

starting from a, b converges exponentially fast with rate at least () to the point a, bwhich satisfies that
(i)a"b = ® and (ii) for all i that a;(0)? —b;(0)? = a? —b? and sign(di —b,') = sign (ai(O) —bi(O)).

D.2 LOWER BOUND TO 4(t) IN THE DISCRETE CASE.

Note that the derivative in time of p(a(t), b(t)) is

. 152] (ar T
L= —4[1123%} (a™b—®) a'b. (31)

It thus decreases whena'b > ® and whena'b < 0 anda'b < @, it grows when a'b > 0 and
a'b < ®. This means that

* When a(0) "b(0) > @, in Area A of Figure we can bound
1
t)> inf |=) af 2+ |b|]?) = 29.
) > int |52 (lalP + bl
Thus in this area we have that 20 < X < .
* When a(0) "b(0) > 0 and a(0) "b(0) < ®, in Area B of Figure we can bound

) > u0) = | 1 3222 (P + IO)?)

Thus in this area we have that A(0) < XA < 2® < A, where A(0) > Qg > 0 is the norm of
the first step in this area, when @ # 0.
* When a(0) "b(0) < 0, in Area C of Figure the residuals decreases until a' b = 0. Thus

the lowest point for () will be at the step 7 that is the first step in which a’b > 0. This
implies that the quantity a? + b2 will be at its minimum either at time 7 or 7 — 1

w(t) > min{pu(r — 1), u(7)} where 7 = rtréiéi{a(t)—rb(t) > 0}.
In particular p(t) > min{u(r — 1), u(7)} > Q(71), we need to show that when @ # 0

then Q(71) # 0. Thus in this area we will prove in the next section that we have that
Q(r) S A<20 < A

This concludes the argument for all the cases except for a(0) "b(0) < 0,. We will now bound
|Qi(71)| in terms of |Q(0)|, the learning rate n > 0, and a(0) " b(0).

13
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E LOWER BOUND ON u IN AREA C

E.1 OPTIMAL STEP SIZE
2
Note that if > At EET:iz)-g@)z\s\

Note in Area C, whenever ne(0) > 1 we are always in this setting above. In these cases gradient
descent makes one step in Area C and leaves, so the convergence analysis continues with the ones
in Areas B and A.

then in the next step we are landing directly in Area B or A.

E.2 OTHER STEP SIZES

The difficult phase to deal with analytically is the one where the dynamics stays in Area C for long.

We compute here a lower bound on |@Q;(71)|. The idea here is that the residuals a'b — & will
converge as exp(—nt) and the quantity Q;(t) at most as exp(—n?>t), thus a(t) T b(t) crosses 0 before
|Q:(t)] gets too small.

Note that at every step of gradient descent we have the following updates on the following quantities

at+ )70t +1) =@ = (1=n(la@®)]*+ [Ib®)]?)) (a(t) "b(t) — ®)
+ 12 (a(t)Th(t) — ®) a(t) Th(1) (32)
and
ai(t+1)? —bi(t+1)? = (1 — % (a(t)Th(t) — @)2) (@) —bi()?). (33
Thus we have that
at+ )bt +1)—@ > (1—n(a®@t)+b%(1))) (a(t) "b(t) — @) (34)

when a(t) Th(t) < 0.

Assumption 1. Assume that 7 < min {—, %}

. Define the sequence {z, wy }7°, such that zp =

N
i~
——

Definition 4. Define o = 1 < min{—7 3
€(0) < =P, wg = Qo > 0, and for all k£ € N we have

Zk+1 = (1 — amax {wk, *221@' — 2@}) Zk

Wht1 = (1 — aQZ,%)wk.

(33)

Define 71 := mingen{zr > —®}.

Note that we have

Lemma 9 (Bounding with the sequences). Under Assumption|[l] for all k < 1y such that z, < 0 we
have
2k < Eg and wg < Qk

Moreover, wy,, —z;, > 0 are strongly monotone decreasing for k < 11 and a(Tl)Tb(Tl) > 0, thus
forall k <1 we have o < 2/ max{—2z, wy }.

Proof. Note that this is the case for & = 0. As for the inductive step, Eq. Cauchy-Schwartz
inequality, and Eq. [35] estblish the first point. Note that z,,_1 + ® < a(my — 1)b(rn — 1) < 0,
then the first point and the definition of 7 imply that 0 < z,, + ® < a(71) "b(71). Note that after
the first step w; < wp and z; > zp since Cauchy-Schwartz implies that o < 2/ max{—2zg, wp}.
Inductively, for all ¢ we have a@ < 2/ max{—2z;, w; }, thus fact that z; < 0 for all k < 71 implies
that w;+1 < w; is strongly monotonically decreasing, that z;;; > z; is strongly monotonically
increasing, and that o < 2/ max{—22z;11, w;11}. O
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As explained before, for all ¢ we have p(t) > max{u(mi), u(r1 — 1)} and p(t) > 3, la?(t) —
b2(t)| > wy > wyt1. Thus for all ¢ we have u(t) > w,,. This and the lemma above show that
Lemma 10. Under Assumption || we have that a(t1)"b(11) > —® and for all t € N we have
p(t) = wr,.

Lemma 11 (Rate of convergence 1 - Sequence.). Under Assumption[l] if wg > —2zg — 29, define

wo _ Vwolwo—dazg) > 0, then

1= — 2

» (a(0)Th(0))”

a < ow, < w—a®(P) (36)
wo
" (0)Tb(0)
1 a(0) "'b(0 —1
—_— < < —— (P 1. 37
a(wp)?/2 " Ozc?/2 N Gn
Proof. Note that for all £ < 7y we have
Crn 2 _ Qtwis (38)
Wg4+1 — Wi —QTZpWE
Note that z,, 1 — 29 < |a(0) "b(0)| < 2,, — 2. We thus obtain that
T1—1 T1—1 T1—1
a(O)Tb(O) ~ 20— 2y = Z 2k — Zprl = Z VW — W1 - Wk = @ Z zk(wk)3/2
k=0 k=0 k=0
(39)
This implies that
a(r — 1)‘I>(w7_2)3/2 < a(O)Tb(O) < arlzo(w0)3/2. (40)

Next we proceed bounding w,, so that we can bound 7;. Note that the fact that z;, < —® < 0 for
all £ < 71 and Sedrakyan’s lemma imply that

Ef Sf@HVwQQ (zr, = 20)°
wo — Wry = Wi — W41 = > TIT,
' i=0 k=0 Wk Zi;OI W
2 2
(OTBO)" 2. (a@)Tb0)" (41
SN = 0222w " Wo
T
 al0)b(0)
T1Wo

And this implies that

2
Wy, = wo + (wy, — wp) < wo — a” (D) " (42)
0
Moreover, we have
7'1—1 Tl—l 7'1—1
2 2 2 2 2.2 \k
wy — Wy, = Zwkfwm_l =q szwk <« Z 2 (1 — ™22 ) wo
k=0 i=0 i=0
T1—1 1
< 22wy Z (1 — aw,,)F(1 - azzfl)k < aziwg 5 5 5 (43)
e Wry + Q27 — @ Wr 27
z%wo
Wry
This implies with 0 < w,, < wp that w,, (wg — w,, ) < azdwy, thus
wil — WoWs, + ozzgwo > 0. (44)
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Note that wy > —22¢ and o < —2/z( implies that wy > ozzg then, solving, we obtain

—daz? 0)Tb(0))”
0<ecr:= Wo _ wo(wo %) < Wy < wo — a? (CI))2 7@( ) b( )) (45)
2 2 Wo
wg v/ wo (wo—4az2) . .
Wy, > P — “———5—— Thus, opportunely bounding w, > we obtain
a(m — 1D)dE? < a(0)Tb(0). (46)
That we can reorganize as
0)"b(0 -
n < 20 bO) )3/2( ) @)t 1. (47)
ocy
Thus (© )T )
1 a b —-1
3/2 — 1 S 3/2 ((I)) + 1. (48)
a(wo)3/ acl/
O

Lemma 12 (Rate of convergence 1.). Under Assumption if >, la?(0) — b#(0)] >
—2a(0) "b(0) > 0, define ¢; 1= 42 — Vwolwo—dozg) 2y/a® as above, then

2

(a(@)Tb(O))Q
a < laf(r) = b3 (n)] < a7 (0 (0)] = a® (&) , (49)
2 2 5=, [a2(0) = b2(0)
a(0)"'b(0) > 0, (50)
and .
1 0) 'b(0 -
- ——— 5 < n < a(0) b(0) )3/2( ) (@) 4 1. 51)
a (3, 1ai(0) = b7 (0)[) acy
Proof. One bound comes from Lemma|[TT|and Lemma[9] The other one comes by just following the
proof of Lemma|[TT] O
Lemma 13 (Rate of convergence 2 - Sequence.). Let ¢z := |wo/a(0)"b(0)|. Under Assumption

[1] if wo < —2z9 — 2® then by time T as below we are under the assumptions of Lemmal[Il] so we
have w;, > —2z,, — 2® and we have

|2 [
— 0 +1 52
2ar| | 2 log (1 + 2a®) +h (52)
2
ofea| 26 377 ales| [30 ziyi]
wo(1 — a2, 2)exp( < wp, < wyexp|-———-"——""51|, (53)
2 Ymiy : 2 322’
20| 3 7 -1
(20 + @) (1 - 2afz)) exp { —[e2] ==~ (1 —a®) " | =@ < =z, (54)
2Ty
and 5
LilYi
Zr, < (204 ®)exp (—|02| > o. (55)
20| 3 a7
Proof. Note that the quantity 2z + @ is shrinking exponentially as Xt = —2alz;| X and wy, is
shrinking exponentially as X; = fazz,%Xt We have that o < ‘ o < |, thus the rate at which

2z, + @ is decreasing is faster than wy, this implies that at a certain p01nt we will have wy, >
—2z, — 2®. Let us study this time 7o. Note that the fact that |z9] > |zx| > & implies that

20z > 2a® and a?|z;| > o2 (®)°

Z TiYi
Tl 2o (0

2alz0] > 20z >
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and )
D

Al > Aal) > (22) (57)
0

By the time 72 = ming {wy > —2z¢ — 2P, z > —P} we have the thesis. Note that definition of
7o and the iterative formulas

2
wo H(l —a?z}), and

Wy =
2 (58)
2 +® = (20 + @) H(l —2azy,)
k=1
imply that
To—1 o1
+ o
1—a?2f) | —2 Dre_| 5 gfme — 2 TT (1 = 2az). 59
1«1;[0( ) 1O ot D o+ D kE[o( k) (59
This implies
7'2—1 T2
wWo 1—2az, 1—2az -
>2 | —= > 2 —5 ] > 2(1-2a%)". 60
Zo+‘b‘ kE[o 1—a?2} (1—a2 (@)2> ( az) (60)

Analogously we have

w [ P [Eiy TP 1 2
0 — k — k -1
< 2 —_— 2 < 2 1+ 2ad . (61
zo+‘1>’ Hl—a22 H 1 — a2z 14 2alz kl;[o( +200) 61)
Thus defining ¢, := log (% e D < 0 we obtain
—c < 20|z
2 \ 0|T2 (62)
—ca > log(1+2a®) (s —1).
Thus we conclude that
|2 7,2
2
2 - o ©9
C2 -1 C2
1—a® 1 — 0 +1
gt L > T T
This implies that
> Tiyi
P —lel===]-? > - 64
(z0 + )exp( |CQ||Z0|ExZ2 Zr (64)
and
2 x; _
(20 + @) (1 — 2a|20]) exp (—c ||gz (1—ad) 1> - < oz, (65)
Analogously
lea]
lea] alz
wo(l — a22)menimm ™l < w. < w (1 —a? (<I>)2) sl (66)

This means approximately that
2 2 ]2
'UJO(]. _ a223) exp ( O[|02| ZOin) < W, < wWo eXp _MM . (67)
2 Ywy 2z [X a7
O

Lemma 14 (Rate of convergence 2.). Lef co := ’Z |a2(0) — b?(0)|/a(0) "b(0)|. Under Assump-
tlonl if 0 < >, 1a2(0) — b?(0)| < —2a(0) "b(0), then by time T2 as below we are under the
assumptions ofLemma so we have >, |a2(12) — b2(12)| > —2a(72) Tb(72) > 0 and we have
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. lea]
Zaa() b= <~ T2

|eo]
¢ T2 < log(1+2a®) +1

© T1a30) - BEO0)I(1 - 022y exp (~ 2 EE) < a3 m) — b))
. a?(m2) — b3 (1 |a2(0) — b7(0)] ex a|62| B2y
S i) - B < Tilak0) - biO)exp (-2t Bzl ),

* (20 +®) (1 - 20]z0) exp (~|eol L (1-0@) ") < a(r) Tb(ra), and

s a(m)Th(m) < (z0+ )exp (—leal 25 ).

Proof. One bound comes from Lemma|[T3]and Lemma[9] The other one comes by just following the
proof of Lemma U

This shows that

Proposition 5. Under Assumption I if a(0)"b(0) < 0 and ® > 0, there exists T such that
a(t) () > 0 and

2Va® < Q(r) = Of(exp(-a)) - Q0).
« If>";1a2(0) — b2(0)| > 2[a(0) "b(0)| then 7 < O (a‘l) and
. IfS". [a2(0) — b2(0)] < 2]a(0) Tb(0)| then T < O (m)

Analogously if a(0) "b(0) > 0 and ® < 0, after the same 7, we have a(7) b(t) < 0 and
>-i1aZ(7) — b?(7)| is the same as above.

F CONVERGENCE SPEED CASE BY CASE

This section serves as merger for all the theory made before. Precisely, here we use the analysis
developed to prove Theorem 2] and Proposition [T}

We prove below and in Appendix that in the three different regions of the landscape we have
different PL constants u for -and then for L. Precisely, if € > 0 then p > 29, if € < —®/2 then
w = Q(7), and if —®/2 < e < 0 then p = ®. This implies that we have convergence with the
minimum of Q(7) and 2® as PL constant until |e| > ®/2, then we have convergence with ® as PL
constant from then on.

F.1 POSITIVE RESIDUALS

First note that nAe > n?e?(e + @), indeed A > 2(e + ®) by Cauchy Schwartz and n < g <2
This implies that when 7 is infinitesimal, the gain is at least

e(k+1)=(1- nA)E(k) +ie(e + @)
—nxe(k) (1= Je(h))

Ss
< 2= ?7>\> (k).

18
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2 2
Next note that \/;Ty? VI-#hr <1 %lgyiﬂﬁ When 7 ~ %(1 —4), 6 > 0 we have that

le(k + 1) = [(1 = n\)e(k) + n*e*(k)(e(k) + @)

2A(1 — 6) 4(1 - )2
4@2(1 —9) 4(1—9) 9
< '(—1 +26)e(k) + N+ 192 e(k) + N 4¢2€(k) (e(k) + @)’

< (1—28)e(k).

This implies that within our learning rate boundaries we have exponential convergence with rate
either controlled by 7 or ¢ at power 1.

In case % <n< %(1 — §) then convergence happens exponentially but in time 0(1772). For

instance 7 ~ £ we have that

le(k + 1) = [(1 = n\)e(k) + n°e* (k) (e(k) + D)

22 4 2
S| e W gt R ) (70)
< |—e(k)+ A2?z¢2€(1€) 32 f4¢2€(k)2(5(7€) + @)‘

< (1 —=n*0%)e(k).
In case n > % but convergence happen, then convergence happens only at most logarithmically fast
at least for a first phase, precisely
le(k+ D] = |(1 = nN)e(k) + n*e*(k)(e(k) + D)

<

—e(k) + %e(k:)z(s(kz) + @)’

< (1 - ;@dk)) e(k).

(71)

F.2 NEGATIVE RESIDUALS —®/2 <& < 0

When the residuals are small negative we have exponential convergence, precisely, for very small
7 < 1 we have rate at least (1 — n®):

le(k+1)] = |(1 —nA)e(k) + 7)252(k)(€(k) + <I>)’
2
< (1= nX) + 02 |e () (72)
< (1 =n®) [e(k)].

we have convergence with rate about ~ 2. The maximum over A(0), (k) in the

For biggern = £,
(k) = —c2 with ¢ € (0, 1]

2
X
region in which e

max |e(k + 1)] = max (1 = nX)e(k) + n’e*(k)(e(k) + P)|

2 4 (73)

2
< max Ws(k) + W&(k) (e(k) + D).

(k) =

Note that the minimum in A(0) of this last equation is for \/A(0) + 492 = § + 2P for some 6 > 0
which satisfies § < 1. This is independent of the size of €. Along this trajectory, a’ b = (1—c/2)®
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and A < (2 — ¢)® + 6 This implies

(oG + D] < max (k) = 22200 e(0) 4 e e + 9)
< x| <O+ o)
< ‘—1 + Cdiq;fb +c¢(2-2¢) @ +<I>;I))2 le(k)] < je—1- % + g le(k)]
(74)

The maximum of |¢?/4 — 3¢/2 + 1| over ¢ € (0,1] is ¢ = 1.

In the case of ¢ = 1, on the next step, in this case, we are in the positive residuals setting with A as
follows2-a'b = %@ + ¢. Here, then

' 5 1

N

le(k +2)| ——+ ——elk+1)(e(k+1)+®)|e(k+1)

4 492

1 1
< —(5-—=)e(k).
< 15 (5= 15 ) e

So after 2 steps, we had a linear shrink of 5/16 and the linear convergence with constant y = ®
restarts, this is the plus 2 of the theorem.

(75)

F.3 NEGATIVE RESIDUALS € < ®/2

This case is taken care of in Appendix [E.2until € = 0. With the same 1 > 0 we have exponential
convergence until /2. As we said in Appendix as € crosses @, the norm \ restarts increasing.
This implies that a good lower bound remains () of the time of crossing. The evolution of €

e(k+1) = (1 —nX)e(k) +n’ek)*(e(k) + @) > (1 -nQ)e(k). (76)
The time ¢ taken to € to go from ® to ®/2 is thus
/2 > (1-1Q)'® (77

so we have
< log(®) — log(®/2) < log(®) — log(®/2)
—log(1-nQ) ~ nQ-

. (78)

F.4 CLOSING UP: TIGHT RATE

The previous sections and Lemma|[5]allow us to conclude that we have loss convergence, i.e., L < 6,
in a number of steps which is

log(®) —log(®/2)  , . log(®/2) —log(d)
nmin{Q,,2®} nmin{Q,, ®} ’
where 7 is the 71 defined in Definition [4] and evaluated in Proposition [5] This establishes Theorem

2

t < (79)

G CURIOSITY: JUMPS BETWEEN REGIONS

Note that if the dynamics does not jump from one side to the other of the landscape, then we have
a clean exponential convergence and we can control the implicit regularization. We will see under
which hypothesis on the learning rate this happens.

Note that Equation [5tells us that after one step & does not change sign (thus you remain in the same
region in which you started) if and only if we have the following bound on the learning rate.
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Definition 5. Forall a,b € R", let & = <55, define
1
mo o= X(l+a+2a2+5a3+14a8+...), (80)

2
ne = X1+2a+8a2+40a3+2240z4+~~)- (81)

The way we obtain 7 is by seeing for what 1 we have that e(t + 1) = 0. Precisely,
Lemma 15. If n = n1, we have that the residuals at the next steps are 0. If n = ns, then the
residuals at the next steps are the same but changed of sign. Moreover,

o Ifn € (0,m1) then sign(e(1)) = sign(e) and |e(1)| < |e|.

* Ifn € (m,n2) then sign(e(1)) # sign(e) and [e(1)| < [e|.

Proof of Lemma(I3] Note that the residuals after one step are the same sign as the previous residuals
if and only if
IL—npA+n’e(e+®) > 0. (82)

Solving this one as a second degree equation gives

A— /A% —de(e + D) A+ /A% —de(e + D)
n < > (83)

2e(e + D) o= 2e(e + D)
Now expanding in Taylor the square root, we obtain that
1 4e(e + @) 16e%(e + )2 1 e(e+®)
e = —+——+... (84
n 2e(e + D) ( 22 + 83 - A * A3 * (&9
This implies that the residuals are the same sign as the starting ones if
A

n < m or n > — M. (85)

ele+P)

Analogously, for > we have that the absolute value of the residuals is smaller than the absolute
value of the residuals one step before, if and only if

2-nA+n’e(e+®) > 0. (86)
This implies that

A —1/A? —8e(e + @) A+ 1/A? —8e(e + @)
< > &7

2e(e + D) o= 2e(e + D)

Ui

and analogously to before

A

no< M oor o = et ™ (88)
Also note that for € > 0 we have that €(1) < € or for € < 0 we have that (1) > ¢ if and only if
L—nA+n’ele+®) < 1. (89)
This solves when A\
n < m (90)
O

Note that what we did here implies that if n < 72 and n < ? for all the As along the trajectory we
thus always have exponential convergence if such PL condition holds. We know from the previous
section that in this setting A is always smaller than A. So if such a p exists and n < 19 with A and
we converge and we can properly bound the implicit regularization.
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H LoOCATION OF CONVERGENCE

We will bound here the final sharpness for two reasons:

* Understanding the location of convergence.

* Picking the right learning rate.
Note that assuming 1 < g along the whole trajectory we have that |Q| strictly monotonically
shrinks along the trajectory. This means that the dynamics may seem to oscillate around in an
uncontrollable way, but every time it oscillates is landing on a trajectory that takes to a global
minimum with lower sharpness.

Note that this is true almost everywhere, indeed if the trajectory is such that at a certain point in time
t satisfies 7 = e(¢) ™! exactly, then the trajectory would land on the trajectory taking to the saddle,
indeed

a(t+1)=-b(t+1)=a(t) — b(t). 91)
Luckily, fixing a learning rate size, the set of starting points for which this is the case has measure
zero. Observe also that n = —e~! is instead optimal and results in a(t + 1) = b(¢ + 1), implying
convergence to the lowest norm solution.

This means that assuming 1 < g implies that the dynamics may diverge or converge, but for sure
at every step is getting closer and closer to the line a = b.

Note that picking any learning rate 1 such that |e(¢t + 1)| < |e(¢)| and n < ‘Ef is thus sufficient for
the convergence. It is not necessary though, it may be that the absolute value of the residuals grows
and then descents.

Regarding the proof of the upperbound of Theorem[I]note that for all &

Qo = Qo - H(l —n%el) = Qoexp (Zlog(l - nzsﬁ)> < Qoexp <n2 Z»sﬁ) . (92)
k=1

k=1 k=1

Regarding the proof of the lower bound of Theorem [I] notice that we have from Appendix [D.2]that
the rate of convergence of ¢ is at least Q(71) in Area B and at least 2® in Area A. This implies that
if the initialization is in Area B or C, then

Qe = QO)- [J(1—7¢}) > Q(0) eXp< Znsk 77€k>
k=0
ZQ(O)~6XP( 221—7762 ) —n'eg Y (1-nQ(r) )
1

W
O
e

. exp < 776(0) B n3e(0)4 > (93)
Q(r)(2-nQ(1))  Q(T)(8 —nQ(1))

oo ()

2 Q(0) - exp <\/ﬁ€(0)2> :

)
By plugging in the lower bound in Lemma|[I2]
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