
Under review as a conference paper at ICLR 2024

ADAPTING LLM AGENTS THROUGH COMMUNICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in large language models (LLMs) have shown potential for ad-
vanced agents. To support online learning for these agents without extensive human
supervision, we propose the Learning through Communication (LTC) paradigm,
a novel training approach enabling LLM agents to enhance their skills through
interactions with their environments and other agents. Through iterative exploration
and updating, LTC empowers the agent to assimilate short-term experiences into
long-term memory. To optimize agent interactions for task-specific learning, we
introduce diverse communication patterns tailored for both single-agent and multi-
agent environments. We evaluated LTC on four datasets: ALFWorld (single-agent),
HotpotQA (multi-agent collaboration), Chameleon (multi-agent competition), and
GSM8k (multi-agent teacher-student). On ALFWorld, it exceeds the instruction tun-
ing baseline by 12% in success rate. On HotpotQA, LTC surpasses the instruction
tuned Llama-7B agent by 5% in EM score, and it outperforms the instruction tuned
9x larger PaLM-62B agent by 0.6%. On Chameleon, the winning rate of LTC agent
surpasses the baseline by 3.1%. On GSM8k, LTC outperforms the CoT-Tuning
baseline by 3.6% in accuracy. The results showcase the versatility and efficiency
of the LTC approach across diverse domains. We will open-source our code to
promote further development of the community.

1 INTRODUCTION

Recent advances in large language models (LLMs) have shed light on human-like LLM agents [33,
6, 65]. Previous works have explored how to employ the LLM as the engine of agents, which is
complemented by several key components such as planning, tool use, and memory. For planning,
Chain of Thought (CoT[66]) prompts the model to think step by step, decomposing complex tasks
into smaller and simpler steps. ReAct [72] integrates reasoning and action within LLM, extending
the action space to include both task-specific discrete actions (i.e., retrieval) and language generation.
In addition, recent research has shown that LLM agents can be further augmented by using external
tools to solve problems in interactive environments, which involve using retrieved knowledge [47, 72,
57, 18], math tools [45, 72, 27], and code interpreters [12, 59].

However, adapting LLM agents to specific tasks remains challenging. In order to adapt the general
pre-trained LLMs to task-specific environments, existing methods focus on In-context learning
(ICL [5, 72, 48]) and supervised fine-tuning (SFT [33]). For example, ICL utilizes few-shot prompts
as a form of short-term memory [35, 48] to adapt agents’ task-specific ability during inference, and
SFT typically requires high quality supervised training data for domain adaptation. However, both of
these two approaches don’t leverage the rich feedbacks (i.e., positive/negative rewards, error message,
hint etc) during the interaction with environment and external tools for online learning.

In this paper, we introduce a new training paradigm Learning through Communication (LTC), allowing
the LLM agent to do online learning in new environments and tasks with an iterative pipeline. Each
iteration of LTC consists of two distinct phases: (1) the exploration phase where the agent interact
with the environments and other agents to collect diverse trajectories and feedbacks, and (2) the
updating phase that updates the agent model based on these trajectories.

LTC method is a general learning paradigm that can be applied to diverse agent settings with single-
agent and multi-agent environments. To collect communication trajectories and reward signals, we
designed three structured communication patterns: (1) Single-agent Monologue allows a single
agent to generate trajectories in a soliloquy style and get interactive feedback from environments;
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Figure 1: The LTC framework is adept for both single-agent and multi-agent environments. Within
these environments, agents have the capability to persistently engage in exploration and interaction
to collect trajectories through various communication patterns. Concurrently, LTC facilitates the
training of these agents utilizing the data acquired from their exploratory activities. This process
enables the agents to autonomously adapt to their respective environments, negating the necessity for
human supervision.

(2) Multi-agent Dialogue enables the multiple agents interacts with each other and external tools,
and utilizes the reward signals provided by the environments; (3) Teacher-student Dialogue is a
variant of multi-agent dialog that the teacher agent can provide not only linguistic feedback but also
the non-linguistic reward signals.

In addition, the updating phase is based on reinforcement learning (RL), and our training loss
combines the language modeling loss and the PPO loss [33] to balance the language consistency
and reward signals. We also designed a unified replay buffer to store trajectories from diverse
environments, where each generated token is treated as an action in the RL formulation. We apply
distinct masks to tokens generated by the system, LTC agents, and other agents, respectively. These
masks are utilized to apply distinct loss functions to various token types. The replay buffer is updated
after each exploration phase and a subset of the buffer is sampled for the updating phase. Through
this iterative process, the agent continuously do online learning in new environments.

We evaluate LTC method on three representative datasets: ALFWorld for decision-making, Hot-
potQA for knowledge-intensive reasoning, and GSM8k for numerical reasoning. Throughout these
experiments, LTC consistently outperforms the baselines. In ALFWorld, LTC outperforms the strong
instruction tuning baseline by 12% on success rate, even in the challenging Pick 2 task. This shows
that our communication mechanism enables the agent to learn from its experiences for task solving.
On HotpotQA, LTC outperforms the instruction tuning baseline by 5% on EM score, and our Llama-
7B based agent even obtains slightly better (0.6%) performance than the ReAct-Tuning baseline
which uses 9× larger PaLM-62B model. On GSM8k, LTC also beats the CoT-Tuning baseline by
3.6% on accuracy. These results highlight the adaptability and effectiveness of LTC approach across
varied domains.

Our key contributions are summarized as follows:

1. Learning through Communication (LTC): We propose a new training paradigm named
Learning through Communication (LTC), allowing the LLM agent to automatically adapt to
new environments and tasks with an iterative pipeline.

2. Task-specific Communication Patterns: The LTC paradigm allows flexible design of
communication patterns for different tasks. Three specific patterns are introduced: Single-
agent Monologue, Multi-agent Dialogue, and Teacher-student Dialogue. These patterns are
composable to help generate diverse structured interaction and feedback signals for agent
training for different types of tasks.

3. Empirical Study and Findings: Through rigorous studies on public benchmark tasks, we
demonstrate the effectiveness of LTC, and it could be a superior approach compared with
instruction-tuning or prompting baselines.
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Figure 2: LTC has an iterative two-phase framework. During the exploration phase, the agent
proactively explores new environments and communicates with other agents, gathering the trajectories
to update the replay buffer. Then the agent is trained for updating the policy in the updating phase.

2 RELATED WORK

2.1 INSTRUCTION TUNING

Instruction tuning (IT) is an important technique for improving the capabilities and controllability of
LLMs [39, 5, 65, 38, 32, 8, 56]. Many studies have been dedicated to instruction data generation and
selection [9, 62, 19]. For instance, Unnatural Instructions [14] is created by using the Super-Natural
Instructions dataset [63] as a seed to prompt InstructGPT [33]. Self-Instruct [62] employs a recursive
pipeline that generates instruction data from hand-crafted seed tasks using ChatGPT [31]. Other
studies focus on fine-tuning pre-trained LLMs with instruction data. BLOOMZ [30] is initialized with
BLOOM [44] and then fine-tuned using the xP3 instruction dataset [30]. Flan-T5 is initialized with
T5 [41] and fine-tuned with the FLAN dataset [25]. Additionally, after the release of LLaMA [56],
many works have utilized it as the base model for instruction tuning, such as Alpaca [55], Vicuna [7],
and GPT-4-LLM [36]. Some papers explore alignment fine-tuning using RLHF [33, 3, 52, 20].
InstructGPT [33] employs GPT-3 for supervised fine-tuning on a human-filtered instruction dataset,
followed by training a reward model and using PPO [46] for RLHF. Claude investigates RLHF [3] and
constitutional approaches [4] for making LLMs both harmless and helpful. DPO [40] fine-tunes the
LLMs to align with human preferences by directly optimizing a classification problem on preference
data instead of RLHF. While these prominent research works focus on aligning LLMs for general
instruction-following, our objective is to adapt LLM agents for specific tasks or environments.

2.2 LLM AGENTS

LLMs have demonstrated the potential to act as advanced agents [33, 6, 65], and significant progress
has been made in developing versatile LLM agents [67, 53, 34, 23, 22, 70] and benchmarks [58,
11, 24]. For planning, Chain-of-Thought (CoT[66]) prompts the model to think step by step, by
decomposing complex tasks into smaller and simpler steps. Self Consistency [60, 61] extends CoT by
using ensembles of predictions to improve consistency of the LLM. Inner Monologue [17] leverages
environment feedback to enhance LLMs’ planning and processing capabilities in embodied robotics
tasks without extra training. ReAct [72] integrates reasoning and action taking, expanding the action
space to include both task-specific discrete actions and language. Reflexion [48] equips agents with
dynamic memory and self-reflection capabilities to improve reasoning by using continuous trials in
the same environment as feedback. Recent research has also shown that LLMs can be augmented
as an autonomous agent to use external tools to solve problems in interactive environments. These
techniques include retrieval augmentation [47, 72, 18], math tools [45, 72, 27], and code interpreters
[12, 59]. Prior works also have explored using multiple LLMs in a collaborative setting to solve
complex tasks [13, 37, 21, 64, 54, 1]. Open-source projects like AutoGPT [51], GPT-Engineer [2],
and BabyAGI [73] also showcase the potential of LLM not just in generating content but also as a
general problem solver. Most of the above methods are based on either human-designed few-shot
prompting examples, or finetuning with pre-collected instruction datasets. Our LTC is not a few-shot
prompting method and we focus on adapting the agent by collecting training data automatically by
exploration.
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Figure 3: The toy examples to demonstrate communication patterns: 1) the left figure is the Multi-
agent Dialogue pattern, where two agent play different roles to collaborate on the task. The thinker
agent is responsible for analyzing the situation and give suggestion to the actor agent who is responsi-
ble for making decisions. We can just assign the LTC agent to play the thinker agent when testing
without GPT-4 agent. 2) the right figure is the Teacher-student Dialogue pattern, where the student
agent starts with an initial answer to the current question, and then the teacher directly corrects the
answer with a reward. To help the student improve ability instead of just memorizing the solution,
the teacher will generate another analogous question to ask the student. Eventually, the student gives
a new answer for this analogous question and gets a new reward signal from the teacher.

3 LEARNING THROUGH COMMUNICATION

We design Learning Through Communication (LTC), an iterative training method for LLM agents to
continuously adapt to new environments. As shown in Figure 2, LTC iterates between two phases:
(1) An exploration phase where agents can interact with new environments and other agents to collect
trial data with feedback, and (2) a updating phrase to fine-tune the agent to update the policy.

3.1 EXPLORATION PHASE

At the start of each iteration, the agent explores the environments to get the trajectories and the
reward signal data. We denote these data as a tuple: S = (T ,M,R), where T = {t1, t2, . . . , tn}
represents the text data generated by the communication process during agent exploration, M =
{m1,m2, . . . ,mn} with mi ∈ {0, 1, 2} indicates the source of the text data (system or agents),
R = {r1, r2, . . . , rn} with ri ∈ {−1, 0, 1} represents the reward signals provided by either the
system or the agents. We demonstrate the the details of this data structure in Figure 4, M is the mask
list, and R is the reward list. In PPO training, both the value list and the log-prob list correspond
directly to the action list. For brevity, we denote these three lists together as T here. Please see
Appendix A.2 for more detaills.

To collect the trajectories data S = (T ,M,R) from different types of tasks, we design the commu-
nication patterns for these tasks. Here we provide three communication patterns:

• Single-agent Monologue: Single-agent Monologue is a single-agent soliloquy style commu-
nication pattern, designed for general instruction following tasks (Algorithm 1). It split the
tasks into step by step like ReAct and CoT, and their own trajectories with system rewards
are collected to train themselves at the same time with their exploration. Figure 1 left is a
toy example of ALFWorld to demonstrate the Monologue pattern with a single agent. This
agent soliloquizes to think the situation and take the actions to explore the environment and
finally get the reward provided by the environment. This pattern is based on the think and
act steps in the ReAct formulation [72], we design the training buffer collection process to
make it aligh with our reinforcement learning formulation.
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Figure 4: The buffer data is a serial of integer/float sequences. They are collected by the agent’s
exploration and used for the reinforcement learning phase.

• Multi-agent Dialogue: Multi-agent Dialogue is a multi-agent discussion style pattern
(Algorithm 2). It is designed for multi-agent collaborating and competing tasks, where
multiple agents will play their role by speaking or taking actions in a certain order and a final
reward will be given by the environment based on the performance of the agents. The left
figure of Figure 3 is a toy example of HotpotQA to illustrate this pattern for collaborating,
where the GPT-4 agent play as a thinker to analyze the situation and give suggestions to
the actor agent who is responsible for making decisions. The reward in HotpotQA is the
correctness of the answer obtained by two agents. And we can use their communication data
to train the LTC agents do both thinker and actor so that they can learn how to cooperate
with each other to solve the task. The right figure of Figure 1 is a toy example of Multi-agent
Dialogue for a competing game task Chameleon, where three agents play different roles.
The reward is the win or loss of the game, so they need do with deduction and bluffing in the
communication process to win the game. And their games trajectories will be use in LTC
iterations to boost the agents.

• Teacher-student Dialogue: Teacher-student Dialogue is a teacher-student style pattern
for powerful agents to teach the novice agents (Algorithm 3). We design this pattern for
complex analytical tasks such as numerical reasoning, which require extensive analytical
examples for agents to improve the specific reasoning ability lacking in the pretrained models.
Teacher-student Dialogue pattern has two roles (student and teacher) played by two agents,
however, in addition to the linguistic feedback, the teacher roles can directly provide the
non-linguistic reward signals, which are all provided by the system (environments) in the
previous pattern. The right figure of Figure 3 is a toy example with GSM8k to demonstrate
how the student agent communicates with the teacher agent in a homework-correcting style.
In the math question environment, the student agent starts with an initial answer to the
current question, then the teacher directly corrects the answer with a reward. To help the
student improve ability instead of just memorizing the solution, the teacher will generate
another individual question and provide a new reward to the student.

3.2 UPDATING PHASE

In the updating phase, the LLM agent model could be optimized through the conversation sessions
collected in the exploration stage. Given a example session S = (T ,M,R), we mainly utilize two
training objects for model training.

• Language model Objective: LLM encourages the model to learn from the trajectory T ,
serving as an unsupervised learning schema to help model for behavior cloning from other
agents’ response or predicting system feedbacks.

• Reinforcement Objective: Lreinforce optimizes the model by maximizing the expectation
reward provided by environment or a teacher agent (i.e., GPT-4 [32]). It is an goal-oriented
objective, and allows the model to learn through both positive and negative signals in the
communication session.

Thus, the overall training objective for LTC combines the above two terms:

LLTC(S) = βLLM(T ) + Lreinforce(S), (1)

where β is a balancing hyper-parameter. The off-policy PPO algorithm [46] is utilized for optimizing
Lreinforce(S), and it can be further breakdown into policy loss, value loss and policy entropy regular-
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ization terms in implementation. The vanilla PPO algorithm takes the triplet (state, action, rewards)
for training. In this case, we sample from the trajectories (T<i, ti) for simulating the state-action
pairs, specifically, we only keep the tokens generated by agent model itself as actions for policy
updating.

4 EXPERIMENTS

4.1 DATASETS

We conducted experiments on four datasets: ALFWorld [50], HotpotQA [71], Chameleon [69] and
GSM8k [10]. Each of these datasets represents a different environment type, namely single-agent,
multi-agent collaborating, multi-agent competing, and teacher-student, respectively. And different
communication patterns are used: Single-agent Monologue for ALFWorld, Multi-agent Dialogue for
HotpotQA and Chameleon [69], and Teacher-student Dialogue for GSM8k.

ALFWorld ALFWorld (Figure 1) is a text-based game that follows the ALFRED benchmark [49]. In
this game, agents are presented with six types of tasks that involve navigating a simulated household
environment using textual actions. With over 50 locations to explore, these tasks demand strategic
planning and thorough exploration. Following [50], we utilize the train set that consists of 3553
environments for training our model and the baselines; and we use the unseen test set that comprises
134 environments for evaluatation.

HotpotQA HotpotQA is a question-answering dataset that focuses on multi-hop reasoning based
supporting facts, with the goal of improving the explainability of QA systems. In this dataset, agents
are required to reason across two or more Wikipedia passages to derive answers. We initialize the
environments using only the text of the questions, meaning that agents are provided with the question
and task description but do not have access to supporting paragraphs. To support their reasoning,
agents must either rely on their internal knowledge or interact with an external Wikipedia tool to
retrieve the necessary information. For training, we sample the environments from the training set,
which consists of 90,447 QA-pairs. For evaluation, we run 500 random examples from the test set,
following [72].

Chameleon Chameleon is a multi-player social deduction game environment implemented by the
ChatArena [69]. There are two roles in the game, chameleon and non-chameleon. The topic of
the secret word will be first revealed to all the players. Then the secret word will be revealed to
non-chameleons. Non-chameleons try to identify the chameleon without giving away the secret word,
while the chameleon tries to blend in and guess the word. The game involves giving clues, voting on
who the chameleon might be, and a final guess from the accused chameleon. We use [3, 4, 5] players
setting to train and test the agents’ performance.

GSM8k The GSM8k dataset is a collection of 8.5K math problems for grade school students.
These problems have been crafted by human experts to ensure linguistic diversity. The dataset is
divided into two sets: 7.5K problems for training and 1K problems for testing. Each problem in the
dataset requires 2 to 8 steps of reasoning to arrive at the solution. The problems primarily focus on
fundamental arithmetic operations like addition, subtraction, multiplication, and division.

4.2 SETTINGS

Model Architecture We use a modified version of Llama [56] as the base model. To generate state
values corresponding to the action tokens, we introduce an additional linear layer to serve ast the
value head. This value head acts as an auxiliary output module, and the output values are processed
using the tanh() function to ensure they fall within the range of (-1, 1). This adaptation for RL has
also been discussed in prior studies [43].

Agent Pre-training We use the Llama-7B model [56] for our LLM agent. To enhance the agent’s
ability to follow task-specific instructions, we initialize it by instruction fine-tuning (IT). And this
initialized agent works as the baseline for a fair comparison. This step is crucial because the original
Llama-7B model, without prior instruction fine-tuning, struggled to follow task instructions and
generation sensible actions in the environments. To collect data for instruction fine-tuning, we employ
GPT3/4 as our agent to explore the environments created from the training set. We then filter out
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negative examples and retain positive examples to train the initial agent. For both the ALFWorld
and HotpotQA datasets, we leverage GPT3 (specifically, text-davinci-003). However, for the GSM8k
dataset, we use GPT4 due to GPT3’s inadequate performance in handling mathematical problems,
which resulted in a scarcity of positive examples.

Training details We utilize the AdamW optimizer [26] with a batch size of 32. The learning rate
is set to 2e-4. In each iteration, the sizes of new environments for agents to explore are: 256 for
ALFWorld, 512 for GSM8k, and 1024 for HotpotQA. For parameter-efficient fine-tuning, we employ
LoRA [15] with hyperparameters R = 16 and α = 16. For distributed training, we utilize 4 nodes
with 8×A100 GPUs on HotpotQA and GSM8k. For the experiments on ALFWorld, we use 1 node
with 2×A100 GPUs due to the dataset’s small scale.

Baselines We compare the agents trained by LTC with existing prompting and instruction tuning
methods, including ReAct [72], ReAct-IM [17], CoT [66], CoT-SC [60, 61], BUTLER [28]. The
detailed of these baselines are described in Appendix A.7. Most of these methods focus on few-shot
prompting, and different pre-trained models are used. To ensure a fair comparison, we include the
additional baselines named ReAct-Tuning and CoT-Tuning by fine-tuning the Llama-7B model using
the collected trajectories as fine-tuning data. In addition, GPT-4 are not used in the test time, and all
the results reported are obtained by the trained agent itself.

4.3 RESULTS

Method \ Task Pick Clean Heat Cool Look Pick 2 All

ReAct (avg) 65 39 83 76 55 24 57
ReAct (best of 6) 92 58 96 86 78 41 71

ReAct-IM (avg) 55 59 60 55 23 24 48
ReAct-IM (best of 6) 62 68 87 57 39 33 53

BUTLERg (best of 8) 33 26 70 76 17 12 22
BUTLER (best of 8) 46 39 74 100 22 24 37

ReAct-Tuning (avg) 83 91 91 90 72 8 77
ReAct-Tuning (best of 3) 92 97 96 95 78 24 78
LTC (avg) 89 91 93 97 96 67 90
LTC (best of 3) 92 97 96 100 100 76 91

Table 1: AlfWorld success rates (%) for 6 tasks. The results of the
bottom block are obtained by fine-tuning Llama-7B model.

ALFWorld As shown in Ta-
ble 1, LTC outperforms the
previous best methods* on all
of tasks of ALFWorld. We
can see that Instruction Fine-
tuning is already a strong
baseline outperforming oth-
ers, yet our LTC achieves a
success rate of 91%, remark-
ably outperforming the best
Instruction Tuning baseline
(78%). Notably, on both Cool
and Look tasks, LTC obtains
a 100% success rate. Even on
the hardest Pick Two & Place
task (e.g., “put two pencils in
the drawer”), it achieves a de-
cent 76% success rate. The Pick Two task requires the agent to perform two sequences of ”pick and
place” actions in one task, while keeping track of the desired type and the location. The combined
sequences and the need to remember the previous location make this task challenging. This may be
the reason why baselines achieve lower success rates on this task. In contrast, our LTC agent, which
further trains the agent with self-exploration significantly outperforms other agents. This underscores
the effectiveness of the communication mechanism in LTC.

HotpotQA As shown in Table 2, LTC outperforms the instruction tuning baseline† by 5% on Exact
Match (EM) score, and it even outperforms ReAct and CoT on their default settings. Note that
ReAct and CoT use PaLM-540B and GPT3-175B as the pre-trained LM model, which is 77x and 25x
larger than our the Llama-7B model we used. By sampling 21 CoT trajectories during inference and
adopting the majority answer, CoT-SC is slightly better (0.2%) than LTC, and their combined method
ReAct → CoT-SC surpasses LTC by 1.9%. Compared to other models with tuning, our Llama-7B
based agent even obtains slightly better (0.6%) performance than the ReAct-Tuning baseline with 9×
larger PaLM-62B model.

*For ALFWorld, ReAct and ReAct-IM results are from Table 3 of [72]. BUTLER and BUTLERg results are
from Table 4 of [50], and they are trained with DAgger [42].

†For HotPotQA, Prompting method results without fine-tuning are from Table 1&5 of [72]. PaLM-8B and
PaLM-62B scores are estimates from Figure 3 of [72].
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Model Method EM score

PaLM-540B
CoT [66] 29.4
CoT-SC [60] 33.4
ReAct [72] 27.4
ReAct → CoT-SC 35.1

GPT3-175B ReAct 30.8

PaLM-62B ReAct-Tuning 32.6
CoT-Tuning 25.2

PaLM-8B ReAct-Tuning 25.0
CoT-Tuning 14.0

Llama-7B ReAct-Tuning 28.2
LTC(single-agent monologue) 31.0
LTC(multi-agent dialogue) 33.2

Llama2-13B ReAct-Tuning 33.8
LTC(multi-agent dialogue) 35.8

Table 2: EM scores on Hot-
potQA with prompt and tuning meth-
ods. Methods that use fine-tuning are
marked by “-Tuning”.

Model Method Accuracy

PaLM-540B CoT [66] 56.5
CoT-SC [60] 74.4

GPT3-175B CoT [66] 60.1
CoT-SC [60] 78.0

Llama-7B CoT [56] 11.0
CoT-SC [56] 18.1

Llama-7B
CoT-Tuning 37.7
LTC(single-agent monologue) 39.6
LTC(teacher-student dialogue) 41.3

Table 3: Accuracy on GSM8k. The results
of the bottom block are obtained by fine-
tuning LLaMA-7B model, while the others
are prompting methods without fine-tuning.

Method \ #players n=3 n=4 n=5 overall

Llama-Tuning 20.8 20.3 23.8 21.9
Llama-LTC 22.9 23.4 27.5 25.0

Table 4: Chameleon game winning rates (%) of dif-
ferent number of players settings. At each game, one
player is played by target evaluated model, and the
others are played GPT-4.

Chameleon As shown in Table 4, LTC
outperforms the instruction tuning base-
lines by 3.1% on winning rate against GPT-
4 players. In the training, all the players
are played by the same Llama2-7B model
that we are training. While in the testing,
to get the winning rate of our trained agent
against GPT4, only 1 player is randomly
picked to use our trained agent as backend,
and other players are played by GPT4. We
could see that the LTC agents winning rate improves with the increasing of number of players, we
explain this by the more players, the higher chance that the GPT4 players carry the game.

GSM8k As shown in Table 3, LTC(teacher-student dialogue) outperforms the instruction fine-tuning baseline
by 3.6% on accuracy, and it surpasses the LTC(single-agent monologue) baseline, which does not use the
reward and feedback from GPT-4. However, LTC underperforms CoT and CoT-SC with the much
larger models (PaLM-540B and GPT3-175B). This phenomenon is because numerical reasoning
requires a larger model size and sufficient pretraining data, as observed in [32]. Unfortunately, due to
computational resource limitations, we can only train the relatively small Llama-7B model but were
unable to train larger-scale models. Nevertheless, we believe that exploring LTC with larger models
is promising for future research.

5 DISCUSSION

Method GSM8k Hotpot-QA Alfworld
(CoT) (ReAct) (ReAct)

ICL 836 1937 1744

LTC 107 167 189

Table 5: Average number of tokens of the input
prompts on test sets. LTC does not use any few
shot examples in the prompt, hence uses only a
fraction of tokens compared to ICL.

Efficiency As mentioned above, prompting-
based methods such as ReAct [72] and CoT [66]
use a subset of exemplary trajectories from the
given task as few-shot prompts during inference.
However, these few-shot prompts are often long,
which leads to increased inference cost and lim-
ited context length for user queries. As shown
in Table 5, we compare the number of input to-
kens for each task. We compute the CoT prompts
for GSM8k, and we use ReAct for the other two
tasks. All the few-shot prompts are sourced from
the original paper. As shown, our LTC agents used
only 12.8%, 8.6%, and 10.8% of the input tokens required by the ICL methods on the three tasks,
respectively.
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Figure 6: The loss curves of PPO training.

Shortcuts One interesting observation is that the GPT-4 agent sometimes employs ”shortcuts” to
solve problems when serving as a teacher to generate new training data. These shortcuts rely on
the internal knowledge acquired during its pretraining process. To illustrate this, we present a case
study from HotpotQA in Figure 7. In this case, the GPT-4 agent quickly retrieves the answer by
leveraging its memorized knowledge about the second entry after receiving the Wikipedia page of the
first entry. On the other hand, the bottom of Figure 7 demonstrates a comparison with LLaMA-7B,
which was trained using our LTC method with the GPT-4 agent in the loop. LLaMA-7B does not
employ shortcuts and instead performs a search for the second entry. This case study demonstrates
that communication mechanism in LTC provide additional benefits during learning, compared to
soley relying on data generated by GPT-4.

Ablation We conducted ablation studies on the loss design of LTC. Figure 5 illustrates the success
rate of agents on the ALFWorld dataset under different loss settings. Without using our communi-
cation pattern for interactions and merely sampling pre-collected instruction data for training, the
improvement was limited. However, when we incorporated our communication pattern to gather
data, the model’s performance quickly surpassed 80%. Furthermore, employing PPO loss to handle
positive and negative samples separately resulted in faster and more significant improvement (blue
line). In Figure 6, we present the separate curves of the three main losses during training. Initially,
the LM loss showed a decreasing trend. Interestingly, as training iterations progressed, both the value
loss and policy loss gradually decreased, which possibly causes the LM loss to increase temporarily.
After the value loss and policy loss reached a certain threshold, the LM loss continued to decrease till
convergence.

6 CONCLUSION

We introduced Learning-Through-Communication (LTC), a paradigm that adapts LLM agents to new
tasks and environments via communication-based iterative learning. Within this LTC framework, we
have designed three communication modes for common tasks including decision-making, knowledge-
intensive reasoning, and numeric reasoning. These communication modes facilitate interactions
between LLM agents and their environments, as well as other agents such as GPT-4 and humans.
The history of these interactions can be autonomously organized into training data for PPO training
so that the agent can adapt to the new task. Our approach represents a closed loop where the agent
self-interacts with the environment or other agents, and learning to improve itself with minimal human
intervention. Empirically, we have demonstrated that LTC performs strongly in success rate and
efficiency across four different tasks: AlfWorld, HotpotQA, Chameleon, and GSM8k. It consistently
outperforms existing LLM agent and instruction tuning baselines, showing the promise of the LTC
paradigm in adapting LLM agents to new tasks and environments with minimal human effort. As for
future work, we plan to explore more diverse communication patterns for different tasks, and involve
the communication with human during the iterative learning process. We will open source our code
to facilitate further research in this line.
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Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A
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Algorithm 1 The Python-style algorithm to demonstrate Monologue pattern

# agent: LLaMA agent
# input: Task description
# output: S = (T, M, R)

# initialization
T, M, R = [input], [0], [0]

i = 0
while i < max_steps:

T += ["think:"]
thought = agent.api(T)
T.append(thought)
M.append(1) # agent message mask
R.append(0)

T += ["act:"]
action = agent.api(T)
T.append(action)
M.append(1) # agent message mask
R.append(0)

response = env.excute(action)
reward = parse(response)
T.append(response)
M.append(0) # system message mask
R.append(reward)

i += 1
if reward != 0:

break
S = (T, M, R)
return S
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Rocktäschel. Chatarena: Multi-agent language game environments for large language models.
https://github.com/chatarena/chatarena, 2023.

[70] Binfeng Xu, Zhiyuan Peng, Bowen Lei, Subhabrata Mukherjee, Yuchen Liu, and Dongkuan
Xu. Rewoo: Decoupling reasoning from observations for efficient augmented language models.
arXiv preprint arXiv:2305.18323, 2023.

[71] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhut-
dinov, and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop
question answering. In Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2018.

[72] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and
Yuan Cao. React: Synergizing reasoning and acting in language models. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=WE_vluYUL-X.

[73] yoheinakajima. Babyagi. https://github.com/yoheinakajima/babyagi, 2023.
GitHub repository.

A APPENDIX

14

https://lilianweng.github.io/posts/2023-06-23-agent/
https://lilianweng.github.io/posts/2023-06-23-agent/
https://github.com/chatarena/chatarena
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://github.com/yoheinakajima/babyagi


Under review as a conference paper at ICLR 2024

A.1 COMMUNICATION PATTERNS

To collect the trajectories and the reward signal data from different types of tasks, we design the
communication patterns for these tasks and unified the data format as described in Figure 4. Here we
use three python-sytle algorithms (Algorithm 1 Algorithm 2 Algorithm 3) to demonstrate how three
types of communication patterns help the agent collect exploration data.

Algorithm 2 The Python-style algorithm to demonstrate Dialogue pattern

# agent1: LLaMA agent
# agent2: GPT-4 agent
# input: Task description
# output: S = (T, M, R)

# initialization
T, M, R = [input], [0], [0]

i = 0
while i < max_steps:

T += ["think:"]
thought = agent2.api(T)
T.append(thought)
M.append(2) # teacher agent message mask
R.append(0)

T += ["act:"]
action = agent1.api(T)
T.append(action)
M.append(1) # student agent message mask
R.append(0)

response = env.excute(action)
reward = parse(response)
T.append(response)
M.append(0) # system message mask
R.append(reward)

i += 1
if reward != 0:

break
S = (T, M, R)
return S

A.2 BUFFER STRUCTURE

The communication data will be saved as replay buffers for the updating phase, and the buffer data
format is a serial of tokens sequences demonstrated in Figure 4. We treat each token as the action unit
in our reinforcement learning formula, and each exploration trail is processed into 5 data sequences
[Sa,Sm,Sv,Sl,Sr]:

• Sa: A list of integers representing the generated token ids encoded by the tokenizer. All
the valid text trajectories are recorded as a queue, including system texts like environment
descriptions, feedback, and agent texts like parsed actions, thinking processes, and hints
from other agents. While the invalid generated text of the agent will be skipped, such as
nonsense string and action text can not be parsed. These tokens are treated equally as the
input for the LLM, but they have different masks to apply different losses.

• Sm: The system mask to mask different types of input tokens to control the training loss. We
set 0 as the default mask for system texts like environment descriptions, system feedback,
and system prompts, the actions encoded from these kinds of texts are not actions we want
the agent to learn, so they will be masked out both policy loss and value loss in the PPO
algorithm. We set 1 as the mask for agents-generated tokens like the keywords of decisions
and the thinking process, which are the main supervising objects of our reinforcement
learning pipeline, so they will be assigned full policy loss and value loss. We set 2 as the
mask for hints or feedback from other agents, which are the actions we also want our own
agent to learn but without instant state values since they are not generated by our agent. So
the tokens with mask 2 will be mask out only the value loss and supervised by the policy
loss.
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Algorithm 3 The Python-style algorithm to demonstrate Analogue pattern

# agent1: LLaMA agent
# agent2: GPT-4 agent
# input: Question description
# output: S = (T, M, R)

# initialization
T, M, R = [input], [0], [0]

i = 0
while i < max_steps:

T += ["answer the question step by step:"]
answer1 = agent1.api(T)
query = T + answer1 + ["the answer is correct, yes or no? also gives a better answer"]
response = agent2.api(query)
reward, answer2 = parse(response)
T.append(answer1)
T.append(answer2)
M.append(1) # student agent message mask
M.append(2) # teacher agent message mask
R.append(reward)
R.append(+1) # assume teacher is correct

query = query + response + ["please generate a similar qa pair to teach the student:"]
response = agent2.api(query)
new_question, teacher_answer = parse(response)
new_question += "answer the question step by step:"
student_answer = agent1.api(new_question)
reward = parse(student_answer, teacher_answer)
T.append(new_question + student_answer)
M.append(1) # student agent message mask
R.append(reward)

i += 1

S = (T, M, R)
return S

• Sv: The state values corresponding to the actions obtained by the value head our the
agent model. The value head is an addition layer inserted to the original pre-trained
LLM architecture, we implement it by inserting a linear layer after the second-to-last
LlamaDecoderLayer as the auxiliary output module and the output values are processed by
a tanh() function to keep it range inside (−1, 1).

• Sr: The rewards corresponding to the actions. The rewards are very sparse, most of the
actions are zero-reward, and only when the current task is finished or the token length of the
current buffer has just overflowed it will be non-zero value: +1 for positive, -1 for negative.

A.3 ALGORITHM OF LTC

The implementation of LTC can be summarized as Algorithm 4, we unveil the structural framework
that embodies the Learning Through Communication (LTC) paradigm, meticulously crafted to
facilitate autonomous and progressive learning through iterative cycles. At the outset, the pre-trained
Large Language Model (LLM) agent undergoes a fine-tuning phase to align its initial configuration
with the intended learning tasks. Following this, an exploration phase is initiated where a batch
of training environments is sampled and subsequently engaged by the agent to generate trial data
asynchronously, leveraging the power of parallel computing across multiple GPUs to enhance
efficiency. This newly generated data is synchronized across all GPUs to foster a cohesive learning
base, which is stored in a replay buffer for further utilization. As the agent iterates through this process,
it continually samples from this replay buffer during the updating phase, employing the Proximal
Policy Optimization (PPO) algorithm in a distributed data parallel (DDP) setting to refine its strategies
and adapt dynamically. This code snippet, therefore, encapsulates the innovative asynchronous and
distributed nature of the LTC paradigm, marking a significant stride in fostering intelligent, adaptive,
and collaborative artificial intelligence agents.

A.4 TRAINING LOSS
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Your task is to: solve a question answering task with interleaving Thought, Action, Observation steps … 
Question: The Atik Valide Mosque and Valens Aqueduct are found in what country?

I need to search Atik Valide Mosque and Valens Aqueduct, find the country they are found in.

Search[Atik Valide Mosque]

The Atik Valide Mosque is located in Istanbul, Turkey. I need to search Valens Aqueduct and find the 
country it is found in.

The Atik Valide Mosque (Turkish: Atik Valide Camii, Eski Valide Camii) is a 16th century Ottoman imperial 
mosque located on a hill above the large and densely populated district of Üsküdar, in Istanbul, Turkey …

Finish[Turkey]

The Aqueduct of Valens (Turkish: Valens Su Kemeri, Ancient Greek: Ἀγωγὸς τοῦ ὕδατος, romanized: 
Agōgós tou hýdatos, lit. 'aqueduct') was a Roman aqueduct system built in the late 4th century AD, to supply 
Constantinople – the capital of the eastern Roman empire. Construction of the aqueduct began during …

Search[Valens Aqueduct]

The Valens Aqueduct is located in Constantinople, Turkey. So the answer is Turkey.

Replace GPT-4 with our LLaMA-7B based agent.

Your task is to: solve a question answering task with interleaving Thought, Action, Observation steps … 
Question: The Atik Valide Mosque and Valens Aqueduct are found in what country?

The question refers to two specific landmarks: the Atik Valide Mosque and the Valens Aqueduct. To identify 
the country where these landmarks are found, I'll start by searching for information on the Atik Valide 
Mosque, which may be unique enough to easily pinpoint the country.

Search[Atik Valide Mosque]

The observation confirms that the Atik Valide Mosque is located in Istanbul, Turkey. Although I haven't 
checked the Valens Aqueduct specifically, it's safe to assume that the question is referring to the well-
known Valens Aqueduct in Istanbul. I can confidently answer that both landmarks are found in Turkey.

Finish[Turkey]

The Atik Valide Mosque (Turkish: Atik Valide Camii, Eski Valide Camii) is a 16th century Ottoman imperial 
mosque located on a hill above the large and densely populated district of Üsküdar, in Istanbul, Turkey …

GPT-4 uses some shortcuts based on its internal knowledge.

Your task is to: solve a question answering task with interleaving Thought, Action, Observation steps … 
Question: The Atik Valide Mosque and Valens Aqueduct are found in what country?

The question refers to two specific landmarks: the Atik Valide Mosque and the Valens Aqueduct. To identify 
the country where these landmarks are found, I'll start by searching for information on the Atik Valide 
Mosque, which may be unique enough to easily pinpoint the country.

Search[Atik Valide Mosque]

The observation confirms that the Atik Valide Mosque is located in Istanbul, Turkey. Although I haven't 
checked the Valens Aqueduct specifically, it's safe to assume that the question is referring to the well-
known Valens Aqueduct in Istanbul. I can confidently answer that both landmarks are found in Turkey.

Finish[Turkey]

The Atik Valide Mosque (Turkish: Atik Valide Camii, Eski Valide Camii) is a 16th century Ottoman imperial 
mosque located on a hill above the large and densely populated district of Üsküdar, in Istanbul, Turkey …

GPT-4 uses some shortcuts based on its internal knowledge.
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Figure 7: GPT-4 can use shortcuts to solve the problem, while the LLaMA-7B agent cannot mimic it.

After exploration in each iteration, we update the replay buffer by incorporating the newly collected
trajectories and then sample the most recent trajectories to train the parameters πθ of the LLM agent.
We design our training objective to combine: 1) the standard language modeling loss LLM, 2) the
policy loss Lpolicy, 3) the value loss Lvalue, and 4) the entropy loss Lentropy. The overall training
objective is formulated as:

Ltotal = LLM + β(Lpolicy + λLvalue + Lentropy)

where β and λ are weighting hyperparameters.

The different losses in the above are described as follows:

• The LM loss LLM is defined as the cross entropy between the agent and its generations
which have a positive reward, akin to self-improving model schemes [16, 40]. By training on
these generations, the agent is further encouraged to give generations which yield positive
rewards.

• The policy loss Lpolicy is introduced to supervise the agent’s actions. The policy loss Lpolicy is
calculated using a masked version of the surrogate objective defined in [46] with advantage
estimates Â,

Lpolicy(θ) = −E[mpolicy ∗ min(r(θ)Â, clip(r(θ), 1− ϵ, 1 + ϵ)Â],

where r(θ) is the output probability ratio r(θ) = πθ(a | s)
πold(a | s) of the agent with its previous

version πold. We define binary mask mpolicy to mask out the encoded system message in
PPO loss (marked by Sm = 0 in buffers A.2). For example, let {x1, y1, x2, y2, . . . xn, yn}
be a token buffer consisting of system messages xn ∈ X and agents’ messages (include the
target trained agent and the other teacher agents) πθ output yn ∈ Y , then the binary mask
mpolicy = {0, 1, 0, 1, . . . 0, 1}.
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• The value loss is defined in [46] as the mean squared error between calculated value and
estimated advantages masked by another binary mask mvalue (marked by Sm = 1 in buffers
A.2). For example, let {z1, y1, z2, y2, . . . zn, yn} be a token buffer consisting of all other
messages (except the agent-generated messages) zn ∈ X and trained agent-generated
messages πθ output yn ∈ Y , then the binary mask mpolicy = {0, 1, 0, 1, . . . 0, 1}.

• Lentropy is an entropy bonus to ensure sufficient exploration, as suggested in past work
[68, 29]. This entropy is computed as a small negative factor times the entropy of the policy
distribution : Lentropy = 0.01×

∑
a πθ(a|s) log πθ(a|s).

A.5 IMPLEMENTATION DETAIL

A.6 ASYNCHRONOUSLY DISTRIBUTED GENERATING

Algorithm 4 Python-style code of LTC

# agent: Pre-trained LLM agent
# n_gpu: total number of GPUs
# env_cls: the class of environments
# n_gen: the generation size for one iteration
# n_train: the train size for one iteration

# initialization
agent = instruction_finetune(agent)
replay_buffer = []
i = 0
while i < max_iteration:
i += 1
# Exploration Phase
envs = env_cls(sample(data, n_gen//n_gpu))
# asynchronously generate
new_buffer = generate_trials(agent, envs)
# dist.gather and dist.broadcast
new_buffer = sync_all_gpus(new_buffer)
replay_buffer.append(new_buffer)

# Training Phase
rollouts = sample(replay_buffer, n_train))
# distributed training with ppo
agent = ppo_ddp_train(agent, rollouts)

The exploration data is generated in an asyn-
chronous style, so that the agent can handle the
environments with open-end exploration space.
The training data are pre-processed into interac-
tive environments which are capable for agents
to observe the states, take actions, and get im-
mediate feedback. According to the number of
GPU threads, these environments are divided
into corresponding portions and then distributed
to each GPU. Subsequently, these GPUs begin
to explore these environments asynchronously
in parallel with the same agent trained by the
latest data. Since the lengths of the generated
contents are varied and the interactions inside
the environments are generally open-ended, the
time cost for the agent to explore each envi-
ronment is also varied, some GPU threads may
process the data faster than others. A barrier is
set for all the GPU threads so that the early fin-
ished GPU threads can wait for the others until
the total accumulated buffers generated by the
environments achieve a preset number Sg , which is the quantity of the new training buffers we want
to add to the replay buffers in one iteration. After all the GPU threads reach the barrier, we get enough
buffers then gather the buffers from each GPU thread and merge them together, and broadcast the
new buffers to each GPU thread to update their local replay buffers. The updated replay buffers will
be used in the updating phase for training the agents of the next iteration.

A.7 BASELINES

ReAct [72] uses a subset of training cases as prompts for different tasks, in the format of thought-
action-observation sequences. For knowledge-intensive reasoning tasks like HotpotQA, ReAct
designs an action space that includes search, lookup, and finish actions, enabling the agent to
interact with Wikipedia to retrieve necessary information. On the other hand, ReAct-IM adopts
Inner Monologue (IM) [17] style prompting. Chain-of-thought prompting (CoT) [66], enhances
the reasoning capabilities of Language and Vision models (LLMs) by generating a sequence of
intermediate reasoning steps. This can be considered as a reasoning-only baseline of ReAct, excluding
actions and observations. Additionally, CoT-SC [60, 61] is a follow-up work of CoT, serving as a
self-consistency baseline. It is worth noting that most of these methods employ greedy decoding,
except for BUTLER [28], which utilizes beam search. Most of these methods focus on few-shot
prompting, and different pre-trained models are used. To ensure a fair comparison, we include the
additional baselines named ReAct-Tuning and CoT-Tuning by fine-tuning the LLaMA-7B model
using the collected trajectories as fine-tuning data mentioned in 4.2. In addition, GPT-4 are not used
in the test time, and all the results reported are obtained by the trained agent itself.
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Figure 8: The text version of the toy example in Figure 1 for Monologue pattern of ALFWorld.

A.8 LOSSES

We conducted ablation studies on the loss design of LTC. Figure Figure 5 illustrates the success rate
of agents on the ALFWorld dataset under different loss settings. Without using our communication
pattern for interactions and merely sampling pre-collected instruction data for training, the improve-
ment was limited. However, when we incorporated our communication pattern to gather data, the
model’s performance quickly surpassed 80%. Furthermore, employing PPO loss to handle positive
and negative samples separately resulted in faster and more significant improvement (blue line). In
Figure Figure 6, we present the separate curves of the three main losses during training. Initially, the
LM loss showed a decreasing trend. Interestingly, as training iterations progressed, both the value
loss and policy loss gradually decreased, which possibly causes the LM loss to increase temporarily.
After the value loss and policy loss reached a certain threshold, the LM loss continued to decrease till
convergence.

A.9 CASES STUDY

One interesting observations is that the GPT-4 agent sometimes employs ”shortcuts” to solve problems
when serving as a teacher to generate new training data. These shortcuts rely on the internal knowledge
acquired during its pretraining process. To illustrate this, we present a case study from HotpotQA
in Figure Figure 7. In this case, the GPT-4 agent quickly retrieves the answer by leveraging its
memorized knowledge about the second entry after receiving the Wikipedia page of the first entry.
On the other hand, the bottom of Figure Figure 7 demonstrates a comparison with LLaMA-7B, which
was trained using our LTC method with the GPT-4 agent in the loop. LLaMA-7B does not employ
shortcuts and instead performs a search for the second entry. This case study demonstrates that
communication mechanism in LTC provide additional benefits during learning, compared to soley
relying on data generated by GPT-4.
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