
BarcodeMamba+: Supervised Advances for
State-Space Models in Fungal Biodiversity Research

Anonymous Author(s)
Affiliation
Address
email

Abstract

Accurate taxonomic classification from DNA barcodes is a cornerstone of global1

biodiversity monitoring, yet fungi present extreme challenges due to sparse la-2

belling and long-tailed taxa distributions. Conventional supervised learning meth-3

ods often falter in this domain, struggling to generalize to unseen species and to4

capture the hierarchical nature of the data. To address these limitations, we in-5

troduce BarcodeMamba+, a foundation model for fungal barcode classification6

built on a powerful and efficient state-space model architecture. We employ a pre-7

train and fine-tune paradigm, which utilizes partially labelled data and we demon-8

strate this is substantially more effective than traditional fully-supervised methods9

in this data-sparse environment. During fine-tuning, we systematically integrate10

and evaluate a suite of enhancements—including hierarchical label smoothing, a11

weighted loss function, and a multi-head output layer from MycoAI—to specifi-12

cally tackle the challenges of fungal taxonomy. Our experiments show that each13

of these components yields significant performance gains. On a challenging fun-14

gal classification benchmark with distinct taxonomic distribution shifts from the15

broad training set, our final model outperforms a range of existing methods across16

all taxonomic levels. Our work provides a powerful new tool for genomics-based17

biodiversity research and establishes an effective and scalable training paradigm18

for this challenging domain. Our code is publicly available at [URL].19

1 Introduction20

DNA barcodes, short standardized DNA sequences used for specimen recognition and species iden-21

tification, enable large-scale, automated biodiversity monitoring (Hebert et al., 2003). Fungal bio-22

diversity presents an extreme challenge for barcode classification. Visual and morphological fea-23

tures help identify other taxa, but fungal species identification is often confounded by minimalistic24

features, necessitating an almost complete reliance on DNA sequences (Bickford et al., 2007). Cur-25

rently, up to 93% of collected fungal samples remain unannotated at the species level (Romeijn et al.,26

2024).27

This annotation sparsity has exposed fundamental limitations in existing computational approaches.28

Traditional algorithmic methods like BLAST (Altschul et al., 1990), RDP classifier (Wang et al.,29

2007), and dnabarcoder (Vu et al., 2022) are standard tools for sequence identification but face pro-30

hibitive inference times on large datasets and poor generalization to novel taxa. Learning-based31

methods using specialized convolutional neural networks (CNNs) and transformer architectures32

show promise with fully supervised training (Badirli et al., 2021; Romeijn et al., 2024) but require33

densely labelled data, making them vulnerable to the class imbalance and label sparsity that charac-34

terize fungal datasets.35
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Foundation models tackle sparse training labels through a pretrain + fine-tune paradigm. The vast36

amounts of unlabelled data can be harnessed during pretraining to learn rich, generalizable represen-37

tations, before adapting to specific tasks with fine-tuning. This approach is effective for biodiversity38

applications where unlabelled data vastly outnumbers annotated specimens, as demonstrated by the39

transformer-based BarcodeBERT (Arias et al., 2023) and BarcodeMAE (Safari et al., 2025).40

State-space models (SSMs) (Gu et al., 2022) and particularly the Mamba architecture (Gu & Dao,41

2024; Dao & Gu, 2024), have emerged as compelling alternatives to Transformers for sequence42

modelling. SSMs offer competitive performance with significantly lower computational overhead,43

making them attractive for large-scale biodiversity applications where datasets contain millions of44

sequences. Recent work by Gao & Taylor (2024) introduced BarcodeMamba, demonstrating the45

effectiveness of SSMs for insect barcode (COI) classification. This suggests a strong potential appli-46

cation of SSMs to fungal data which faces similar challenges.47

We introduce BarcodeMamba+, which adapts BarcodeMamba for hierarchical fungal ITS barcode48

classification. Our experiments demonstrate BarcodeMamba+ outperforms established methods49

across taxonomic ranks on standard fungal classification benchmarks. Our contributions are:50

1. The development and comprehensive evaluation of BarcodeMamba+, an SSM-based foun-51

dation model for fungal barcode classification.52

2. Demonstration that pretrain + fine-tune approaches outperform fully-supervised methods53

in this annotation-sparse, taxonomically diverse domain.54

3. Systematic analysis of hierarchical smoothing, inverse square root weighted loss (hereafter55

shortened to weighted loss), and multi-head outputs for adapting foundation models to56

hierarchical taxonomic classification.57

4. Analysis of model scaling effects on taxonomic classification performance.58

2 Methods59

2.1 Dataset60

Our experiments use the MycoAI (Romeijn et al., 2024) splits of the UNITE+INSD data (Abarenkov61

et al., 2020), a comprehensive fungal internal transcribed spacer (ITS) barcode repository.62

Training and Validation Sets. The training set is comprised of 5.23 M sequences, representing63

14.7 k distinct species across a taxonomic hierarchy of 18 phyla, 70 classes, 231 orders, 791 fami-64

lies, and 3,695 genera. Only 7% of the samples are annotated to species-level. This creates a com-65

plex multi-label, hierarchical classification challenge. The validation set contains 10.5 k sequences,66

randomly sampled from Abarenkov et al. (2020).67

Test Sets. There are three test sets, representing distinct taxonomic distribution shifts from the broad68

training set:69

• Test Set 1: Yeast (Vu et al., 2016). Contains 4.4 k ITS sequences from yeast species,70

evaluating the model’s generalization to a specific and taxonomically concentrated clade.71

• Test Set 2: Filamentous Fungi (Vu et al., 2019). A set of 11.6 k sequences from filamen-72

tous fungi, a broad but distinct collection of taxa not necessarily well-represented in the73

training set.74

• Test Set 3: MycoAI Benchmark (Romeijn et al., 2024). The largest test set with 367 k75

samples, serving as a comprehensive benchmark for overall performance and robustness.76

Data Preprocessing. We used the preprocessed MycoAI dataset (Romeijn, 2024), with four filtering77

steps: (1) removal of duplicate sequence-label pairs, (2) exclusion of sequences with length more78

than four standard deviations from the mean (558.0 bp ± 126.2 bp), (3) removal of sequences with79

over 5% ambiguous bases, and (4) elimination of taxonomic classes with fewer than three represen-80

tative samples. The remaining sequences in the training split are annotated to varying depths within81

the seven-level taxonomic hierarchy (kingdom, phylum, class, order, family, genus, and species).82
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Table 1: Performance of BarcodeMamba+ and baselines on the three test sets for taxonomic ranks
family, genus, and species. We report accuracy (micro) (%), model size (parameters), and inference
time per sample (ms). ↑: higher is better; ↓: lower is better. Bold: best; underlined: second best.

Yeast Acc. (%)↑ Filamentous Acc. (%)↑ MycoAI Acc. (%)↑
Model Fam. Gen. Sp. Fam. Gen. Sp. Fam. Gen. Sp. Size ↓ Time ↓
BLAST 86.6 92.9 75.4 81.4 71.5 33.4 94.7 93.1 55.0 N/A 208.6 ms

MycoAI-CNN (Vu) 90.5 86.4 60.0 84.1 69.8 28.2 93.9 87.8 57.1 11.6 M 11.8 ms
MycoAI-BERT (base) 88.9 75.7 33.5 85.1 60.8 16.6 93.2 80.3 39.3 18.4 M 4.5 ms
CNN Encoder 94.1 88.3 67.6 84.5 69.1 31.4 97.5 93.6 72.6 12.1 M 5.8 ms

BarcodeBERT 95.4 88.6 59.1 87.8 70.2 27.7 97.8 92.0 58.9 44.6 M 8.8 ms
BarcodeMamba+ 98.7 95.3 80.6 92.6 81.1 46.5 99.0 96.5 81.7 12.1 M 8.0 ms
BarcodeMamba+ (large) 98.8 95.9 83.6 92.5 81.6 50.4 99.3 97.7 88.9 49.2 M 14.7 ms

2.2 Model Architectures83

2.2.1 Baselines84

We compare BarcodeMamba+ against baselines from three categories. BLAST (Altschul et al.,85

1990) serves as a representative non-learning algorithmic method. For fully-supervised deep learn-86

ing models, we compare against a CNN Encoder (Badirli et al., 2021), and both MycoAI-CNN87

and MycoAI-BERT (Romeijn et al., 2024). BarcodeBERT (Arias et al., 2023) provides a competi-88

tive foundation model baseline, pretrained on COI barcodes. The two MycoAI models incorporate89

the same enhancements for hierarchical modelling which we evaluate in Section 3.2.2. Complete90

architectural details and experimental configurations for all baselines are provided in Appendix A.1.91

2.2.2 BarcodeMamba+92

Our BarcodeMamba+ model adapts the BarcodeMamba SSM architecture for hierarchical fungal93

ITS barcode classification. We use a BPE tokenizer following Romeijn et al. (2024)’s recommenda-94

tion for fungal data. Complete implementation details are provided in Appendix A.4.95

Training Paradigm. We employ a two-stage approach:96

• Pretraining: The tokenizer and model learn fungal ITS sequence patterns from unlabelled97

UNITE+INSD data through next-token masked language modelling, without taxonomic labels.98

• Fine-tuning: We add a classification head and fine-tune on labelled data, incorporating the en-99

hancements from Appendix A.2 to address hierarchical labels and class imbalance.100

3 Experiments101

3.1 Comparison study102

We trained the models (as described in Appendix B), then evaluated the performance on the three103

test datasets. The results (Table 1) demonstrate BarcodeMamba+ outperforms all baseline models104

across all taxonomic levels and metrics, while maintaining inference efficiency. On the largest105

MycoAI test set (Benchmark), our model achieves a species-level accuracy of 81.7%, surpassing the106

next-best performing baseline, CNN Encoder, by 9.1 percentage points (72.6%). This gap is even107

more pronounced on the challenging Filamentous Fungi test set, where our model’s species-level108

accuracy (46.5%) is over 15 points higher than that of CNN Encoder (31.4%). This highlights our109

architecture’s enhanced robustness to the distributional shifts present between the training domain110

and the Filamentous Fungi test set.111

Our model achieves this performance with a compact model size of 12.1 M parameters, comparable112

to MycoAI-CNN (Vu) (11.6 M) and MycoAI-BERT (base) (18.4 M) and significantly smaller than113

BarcodeBERT (44.6 M). Compared to the non–learning-based baseline BLAST, our model achieves114

vastly higher accuracy on fine-grained classification (e.g., 81.7% vs. 55.0% on MycoAI species) and115

demonstrates over 25× faster inference (8.0 ms vs. 208.6 ms), rendering it far more suitable for large-116

scale biodiversity applications. After scaling up to 49.2 M parameters, BarcodeMamba+ improves117
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Table 2: Ablation comparing three tokenizers and two training paradigms: supervised from scratch
(7) and fine-tuned following pretraining (3). Results show accuracy (micro), precision (macro), and
recall (macro) on three test sets at family, genus, and species level. Bold: best result for a given
taxonomic rank and test set; underlined: second best.

Accuracy (%)↑ Precision (%)↑ Recall (%)↑
Test set Tokenizer Pretrain Fam. Gen. Sp. Fam. Gen. Sp. Fam. Gen. Sp.

Yeast Char 3 98.4 94.6 77.4 90.5 88.7 72.9 87.0 79.5 39.7
7 97.9 94.2 76.7 86.9 87.1 72.0 87.8 77.9 39.6

k-mer 3 98.6 94.8 77.8 93.2 90.5 72.6 90.5 79.8 40.9
7 97.8 93.9 73.0 84.3 83.1 64.9 83.7 73.4 32.3

BPE 3 98.7 95.3 80.6 93.1 92.3 77.0 90.2 82.2 46.0
7 97.9 93.7 78.6 79.4 84.6 72.0 87.0 79.0 42.6

Filamentous Char 3 91.7 79.5 42.2 80.5 68.2 44.2 75.3 56.2 26.1
7 91.4 79.7 42.0 79.8 67.2 43.5 74.5 55.4 25.9

k-mer 3 91.4 78.9 42.3 80.9 65.8 42.2 74.6 53.8 25.9
7 89.3 74.6 36.4 73.4 58.2 34.3 67.3 45.9 20.8

BPE 3 92.6 81.1 46.5 81.8 71.2 48.9 77.3 60.7 31.3
7 90.3 78.6 43.2 75.9 66.7 43.6 73.5 57.0 27.3

Myco Char 3 98.8 96.2 79.0 95.6 91.1 84.8 95.8 89.9 54.5
7 98.7 95.9 78.2 94.2 90.6 85.2 95.6 89.5 55.0

k-mer 3 99.0 96.9 81.1 96.4 93.2 86.4 97.7 93.2 56.5
7 99.0 96.5 77.0 96.1 92.6 82.2 96.6 89.1 45.6

BPE 3 99.0 96.5 81.7 95.2 91.3 88.3 97.0 93.0 65.8
7 98.8 95.8 78.8 93.5 89.0 85.7 96.1 89.9 57.5

performance on every task. It boosts the species-level accuracy on MycoAI by another 7.2 points,118

from an already high 81.7% to an exceptional 88.9%. Similarly, on Filamentous Fungi, Species119

accuracy increases from 46.5% to 50.4%. This result confirms that our model architecture scales120

effectively, and its capacity to leverage increased parametrization translates directly into improved121

accuracy, especially for classifying the long tail of rare species.122

3.2 Ablation Studies123

We conduct two ablation studies, with the first study focusing on the effectiveness of pretraining and124

different tokenizers, and the second on the impact of the three enhancements for hierarchical data.125

3.2.1 Ablation A: Pretrain + Finetune vs. Supervised Learning on UNITE Dataset126

We compare pretrain + fine-tune against fully supervised training while evaluating three tokeniza-127

tion methods. All models use hierarchical label smoothing, multi-head outputs, and weighted loss.128

Results, shown in Table 2, demonstrate the benefits of pretraining and find BPE is the best tokenizer.129

3.2.2 Ablation B: Label smoothing, Multi-head, and Weighted loss130

Various methods for handling hierarchical labels present opportunities to improve model training,131

which we incorporated into our model training paradigm. To investigate the impact of each of these132

on the performance of our model, we ablated these configurations, with results shown in Table 3133

and statistical tests shown in Appendix C. We find that hierarchical label smoothing consistently134

improves performance across all metrics (avg. +3.3% acc.), whereas standard smoothing does not135

provide a significant benefit. Using a weighted loss also provides a consistent improvement for the136

imbalanced data (avg. +4.1% acc.). However, multi-head outputs provided inconsistent gains over137

using a single, species-level, head (avg. −0.04% acc.).138

3.3 Scaling study139

Using our default configuration (pretrain+fine-tune with BPE tokenizer, hierarchical label smooth-140

ing, weighted loss, and multi-head output), we conduct a scaling study (Figure 1). Accuracy on141

fine-grained ranks (genus and species) is highly sensitive to model capacity. Performance peaks at142

~50 M parameters, consistent with MycoAI findings (Romeijn et al., 2024, Fig. 8), then degrades at143

140 M parameters for species-level tasks, suggesting overfitting on fine-grained classification.144
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Table 3: Ablation of supervised learning enhancements: label smoothing (None, Standard, Hier-
archical), weighted loss (WL), and multi-head outputs (MH). 3: enabled, 7: ablated (standard
alternative). Results show accuracy, precision, and recall at the species level across test sets. Bold:
best result; underlined: second best.

Components Accuracy (%)↑ Precision (%)↑ Recall (%)↑
Smoothing WL MH Yeast Filam. Myco Yeast Filam. Myco Yeast Filam. Myco

None 7 7 67.4 37.8 72.6 63.3 41.7 75.7 27.3 22.0 38.3
7 3 68.1 37.2 73.3 57.9 38.5 78.4 26.6 20.7 34.8
3 7 72.0 41.3 75.9 63.4 41.4 77.8 31.9 25.1 46.9
3 3 73.1 40.0 76.0 60.3 40.1 81.4 32.4 23.9 45.0

Standard 7 7 64.6 35.2 69.3 58.7 40.3 70.2 22.1 19.8 29.9
7 3 61.8 35.4 69.8 54.7 36.7 72.9 21.6 18.6 27.2
3 7 70.5 40.7 75.2 63.3 41.2 76.7 31.1 24.6 44.3
3 3 72.1 39.8 75.6 61.7 40.6 80.0 31.1 23.2 42.3

Hierarchical 7 7 71.8 41.3 77.5 66.6 43.0 82.7 33.0 25.4 51.8
7 3 73.3 40.3 76.5 68.9 42.5 83.9 33.8 24.3 48.6
3 7 76.3 42.6 78.0 71.5 43.9 83.1 39.9 26.8 55.5
3 3 76.8 42.0 78.2 72.0 43.8 85.3 39.2 26.1 55.1
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Figure 1: Scaling of BarcodeMamba+ to different model sizes. For each test set, we report the
accuracy for classifying genus (upper panels) and species (lower panels) ranks.

4 Conclusion145

We addressed fungal DNA barcode classification, a domain with extreme label sparsity and long-146

tailed distributions. BarcodeMamba+ demonstrates that SSM-based foundation models using147

pretrain+fine-tune paradigms substantially outperform fully-supervised approaches. Our systematic148

evaluation shows BPE tokenization, hierarchical label smoothing, and weighted loss are effective,149

especially enhancing recall for rare classes. Our scaling study shows benefits of SSM-based architec-150

tures over Transformer-based alternatives while revealing inherent limits on useful model capacity151

for this task.152

This work enables broader biodiversity research. The enhanced model structure can extend to other153

genetic markers like COI for insects (Elbrecht et al., 2019; Steinke et al., 2024), and rbcL for plants154

(CBOL Plant Working Group, 2009; Hollingsworth et al., 2011). We also see opportunities to155

integrate genomic data with imaging and environmental modalities (c.f. Gong et al., 2025; Gu et al.,156

2025), aligning with growing recognition that comprehensive biodiversity understanding requires157

diverse data types. By developing scalable AI tools for under-resourced domains like mycology, we158

can accelerate the pace of species discovery and taxonomic annotation in Earth’s most biodiverse159

yet least understood kingdoms.160
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A Model Architecture Details261

A.1 Baseline Models262

Non-learning-based Baseline. We use BLASTN (Altschul et al., 1990) as a representative non-263

learning-based method. First, a searchable nucleotide database was constructed from the training264

set sequences (trainset.fasta) using the makeblastdb command. Sequences from each test set265

were then aligned against this database using the blastn algorithm. The search was parallelized266

across 16 CPU threads (-num_threads=16) for computational efficiency. Results were generated267

in tabular format (-outfmt=6), providing a list of all significant alignments for each query. In line268

with exploratory sequence similarity searches, we did not set explicit thresholds for e-value, query269

coverage, or sequence identity, allowing for the capture of a broad range of potential matches for270

downstream analysis.271

Fully Supervised Baselines. We compare against deep learning architectures trained end-to-end272

without a self-supervised pre-training phase.273

• CNN Encoder: This model, introduced by Badirli et al. (2021), is known for its computational274

efficiency and accuracy. The architecture consists of three 2D-convolutional layers with kernel275

sizes of 3 × 3, channel dimensions of 64, 32, and 16, respectively, each followed by batch nor-276

malization and a ReLU activation function, and interleaved with max-pooling layers of size 3× 1.277

The final feature maps are flattened and passed through a fully-connected layer.278

• MycoAI-CNN and MycoAI-BERT: These are the state-of-the-art fully supervised models from279

Romeijn et al. (2024). The MycoAI-BERT model is a Transformer-based architecture with 8280

encoder layers, 8 attention heads, a hidden dimension of 512, and a feed-forward dimension281

of 1024. The MycoAI-CNN model is a simple CNN with two convolutional layers (5 and 10282

channels, respectively) using a kernel size of 5, followed by max-pooling with pool size 2 and a283

fully-connected layer of size 256. Both are enhanced by the techniques discussed in Appendix A.2.284

For tokenization, the strongest performing variants were used: BPE for BERT and k-mer-spectral285

for CNN.286

A.2 Supervised Learning Enhancements for Fine-tuning287

Following Romeijn et al. (2024), we conduct ablations evaluating three techniques during the fine-288

tuning stage for both our model and the supervised baselines.289

• Hierarchical Label Smoothing (HLS): Standard label smoothing penalizes confident predic-290

tions (Szegedy et al., 2016). HLS, introduced by Romeijn et al. (2024), adapts this concept to291

taxonomy by reducing the penalty for misclassifications that are taxonomically close to the true292

label (e.g., predicting the correct genus but wrong species). This encourages the model to learn293

the taxonomic hierarchy.294

• Classification Head: We compare two output strategies by Romeijn et al. (2024). The first is a295

multi-head architecture where separate linear layers predict each of the seven taxonomic ranks296

simultaneously, allowing the model to learn shared representations. The second is a single-head297

baseline that predicts only at the species level, with higher-rank probabilities inferred from the298

species predictions using a pre-defined taxonomic matrix.299

• Weighted Loss: To counteract the severe class imbalance in the dataset, we adopt the weighted300

cross-entropy loss from Romeijn et al. (2024). The loss for each sample is weighted by the inverse301

square root of its class frequency, encouraging the model to pay more attention to rare taxa.302

A.3 Foundation Model Baseline303

To benchmark our SSM-based approach against the current state-of-the-art in biodiversity foun-304

dation models, we include BarcodeBERT (Arias et al., 2023) as our primary comparison point.305

This transformer-based model was pre-trained on a large-scale invertebrate COI barcode dataset (de-306

Waard et al., 2019) using a masked language modeling objective. It has established strong perfor-307

mance on benchmarks such as the BIOSCAN-5M dataset (Gharaee et al., 2024) and is considered308

an effective architecture for insect biodiversity studies. For our experiments, we use the officially309

released pre-trained weights and fine-tune the model on our fungal ITS dataset.310
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Table 4: Optimal settings after hyperparameter search for the comparison study. The reported learn-
ing rate is during supervised learning/fine-tuning.

Label Smoothing Multi-head Loss weighting Learning Rate Training Strategy

BLAST N/A N/A N/A N/A Index&Query
MycoAI-CNN (Vu) Hierarchical 3 3 1e-4 Fully Supervised
MycoAI-BERT (base) Hierarchical 3 3 1e-4 Fully Supervised
CNN Encoder None 3 3 8e-4 Fully Supervised
BarcodeBERT None 3 3 1e-4 Fine-tuned
BarcodeMamba+ Hierarchical 3 3 8e-5 Pretrained, Fine-tuned
BarcodeMamba+ (large) Hierarchical 3 3 8e-5 Pretrained, Fine-tuned

A.4 BarcodeMamba+311

BarcodeMamba+ is a foundation model adapted for the challenges of fungal ITS barcode classifica-312

tion. The model utilizes the BarcodeMamba architecture as its backbone (Gao & Taylor, 2024), a313

powerful SSM previously developed for general DNA sequence analysis.314

Backbone Architecture. The BarcodeMamba backbone consists of a stack of n identical blocks.315

Each block processes the input sequence through three main components: a layer normalization step,316

a multi-layer perceptron, and a Mamba-2 mixing layer. The Mamba-2 layer is the core of the SSM,317

efficiently capturing long-range dependencies in the DNA sequence by mapping a d-dimensional318

input representation through a p-dimensional head. The final hidden states from the backbone serve319

as rich sequence representations.320

Tokenizer. To convert raw DNA sequences into input embeddings for the backbone, we evaluated321

several tokenization strategies. While character-level (Nguyen et al., 2024) and k-mer-based tok-322

enizers (Arias et al., 2023) have shown success on insect barcode datasets (Gao & Taylor, 2024), we323

integrated a Byte-Pair Encoding (BPE) tokenizer as recommended by Romeijn et al. (2024). BPE324

balances between the single-nucleotide resolution of character-level tokens and the pattern-capturing325

ability of k-mers, while also being vocabulary-efficient and robust to k-mer frameshift issues.326

B Implementation Details327

For the BLAST baseline, indexing the training set required 4.6 hours, and classification was per-328

formed using a best-hit approach. For the MycoAI-CNN and MycoAI-BERT models, we fol-329

lowed their official implementation1, using the Adam optimizer with 1e-4 weight decay and train-330

ing for 24 and 16 epochs respectively. All other models, including the CNN Encoder, Barcode-331

BERT, and our BarcodeMamba+, were trained using a cross-entropy loss and the AdamW optimizer332

(weight decay = 0.1, β1 = 0.9, β2 = 0.999). We used a universal training strategy with an333

early stopping patience of 3 epochs on the validation loss and a 12-hour time limit. For our Bar-334

codeMamba+, the fully supervised version was trained for 7 epochs with a learning rate (LR) of335

8e-4. In the pre-train/fine-tune paradigm, the model was pre-trained for 15 epochs (LR=8e-4) and336

subsequently fine-tuned for 12 epochs with a decayed learning rate of 8e-5. The BarcodeBERT337

pretrained model was obtained from HuggingFace2. The model was fine-tuned with a learning rate338

of 1e-4 (both as recommended value as reported and the hyperparameter search). Fine-tuning was339

conducted for 1 epoch. The fully-supervised training process for the CNN Encoder was conducted340

over 3 epochs. Table 4 summarizes the enhancement settings used for all models.341

C Statistical Tests342

To establish whether ablated model components had a significant effect on the model performance,343

we conducted a series of paired t-tests for each component. We assumed each component would344

have an independent effect on the performance, and compared the accuracy, precision, or recall with345

1https://github.com/MycoAI/MycoAI
2https://huggingface.co/bioscan-ml/BarcodeBERT

9

https://github.com/MycoAI/MycoAI
https://huggingface.co/bioscan-ml/BarcodeBERT


Table 5: Statistical significance (p-values) of different model components on species-level metrics
across three test sets. Both label smoothing types are compared against a baseline of no label smooth-
ing. Significant results (p < 0.05) on a paired t-test are highlighted in bold.

Component Test Set Accuracy Precision Recall

Weighted loss Yeast < 0.005 0.013 < 0.001
Filamentous < 0.005 0.052 < 0.005
MycoAI 0.014 0.030 < 0.005

Multi-head Yeast 0.550 0.173 0.762
Filamentous 0.018 0.053 < 0.001
MycoAI 0.626 < 0.001 < 0.005

Hierarchical label smoothing Yeast < 0.001 0.021 < 0.001
Filamentous 0.017 0.020 0.010
MycoAI 0.019 < 0.005 < 0.005

Standard label smoothing Yeast 0.093 0.315 0.081
Filamentous 0.091 0.266 0.056
MycoAI 0.095 0.070 0.042

one component present versus ablated, across all other component configurations. The results are346

shown in Table 5.347
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