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Abstract

Accurate taxonomic classification from DNA barcodes is a cornerstone of global
biodiversity monitoring, yet fungi present extreme challenges due to sparse la-
belling and long-tailed taxa distributions. Conventional supervised learning meth-
ods often falter in this domain, struggling to generalize to unseen species and to
capture the hierarchical nature of the data. To address these limitations, we in-
troduce BarcodeMamba+, a foundation model for fungal barcode classification
built on a powerful and efficient state-space model architecture. We employ a pre-
train and fine-tune paradigm, which utilizes partially labelled data and we demon-
strate this is substantially more effective than traditional fully-supervised meth-
ods in this data-sparse environment. During fine-tuning, we systematically inte-
grate and evaluate a suite of enhancements—including hierarchical label smooth-
ing, a weighted loss function, and a multi-head output layer from MycoAl—to
specifically tackle the challenges of fungal taxonomy. Our experiments show that
each of these components yields significant performance gains. On a challenging
fungal classification benchmark with distinct taxonomic distribution shifts from
the broad training set, our final model outperforms a range of existing meth-
ods across all taxonomic levels. Our work provides a powerful new tool for
genomics-based biodiversity research and establishes an effective and scalable
training paradigm for this challenging domain. Our code is publicly available
athttps://github.com/bioscan-ml/BarcodeMamba.

1 Introduction

DNA barcodes, short standardized DNA sequences used for specimen recognition and species iden-
tification, enable large-scale, automated biodiversity monitoring (Hebert et al., 2003). Fungal bio-
diversity presents an extreme challenge for barcode classification. Visual and morphological fea-
tures help identify other taxa, but fungal species identification is often confounded by minimalistic
features, necessitating an almost complete reliance on DNA sequences (Bickford et al., 2007). Cur-
rently, up to 93% of collected fungal samples remain unannotated at the species level (Romeijn et al.,
2024).

This annotation sparsity has exposed fundamental limitations in existing computational approaches.
Traditional algorithmic methods like BLAST (Altschul et al., 1990), RDP classifier (Wang et al.,
2007), and dnabarcoder (Vu et al., 2022) are standard tools for sequence identification but face pro-
hibitive inference times on large datasets and poor generalization to novel taxa. Learning-based
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methods using specialized convolutional neural networks (CNNs) and transformer architectures
show promise with fully supervised training (Badirli et al., 2021; Romeijn et al., 2024) but require
densely labelled data, making them vulnerable to the class imbalance and label sparsity that charac-
terize fungal datasets.

Foundation models tackle sparse training labels through a pretrain + fine-tune paradigm. The vast
amounts of unlabelled data can be harnessed during pretraining to learn rich, generalizable represen-
tations, before adapting to specific tasks with fine-tuning. This approach is effective for biodiversity
applications where unlabelled data vastly outnumbers annotated specimens, as demonstrated by the
transformer-based BarcodeBERT (Arias et al., 2023) and BarcodeMAE (Safari et al., 2025).

State-space models (SSMs) (Gu et al., 2022) and particularly the Mamba architecture (Gu & Dao,
2024; Dao & Gu, 2024), have emerged as compelling alternatives to Transformers for sequence
modelling. SSMs offer competitive performance with significantly lower computational overhead,
making them attractive for large-scale biodiversity applications where datasets contain millions of
sequences. Our previous work (Gao & Taylor, 2024) introduced BarcodeMamba, demonstrating
the effectiveness of SSMs for insect barcode (COI) classification. This suggests a strong potential
application of SSMs to fungal data, which faces similar challenges.

We introduce BarcodeMamba+, which adapts BarcodeMamba for hierarchical fungal ITS barcode
classification. Our experiments demonstrate BarcodeMamba+ outperforms established methods
across taxonomic ranks on standard fungal classification benchmarks. Our contributions are:

1. The development and comprehensive evaluation of BarcodeMamba+, an SSM-based foun-
dation model for fungal barcode classification.

2. Demonstration that pretrain + fine-tune approaches outperform fully-supervised methods
in this annotation-sparse, taxonomically diverse domain.

3. Systematic analysis of hierarchical smoothing, inverse square root weighted loss (hereafter
shortened to weighted loss), and multi-head outputs for adapting foundation models to
hierarchical taxonomic classification.

4. Analysis of model scaling effects on taxonomic classification performance.

2 Methods

2.1 Dataset

Our experiments use the MycoAl (Romeijn et al., 2024) splits of the UNITE+INSD data (Abarenkov
et al., 2020), a comprehensive fungal internal transcribed spacer (ITS) barcode repository.

Training and Validation Sets. The training set is comprised of 5.23 M sequences, representing
14.7k distinct species across a taxonomic hierarchy of 18 phyla, 70 classes, 231 orders, 791 fami-
lies, and 3,695 genera. Only 7% of the samples are annotated to species-level. This creates a com-
plex multi-label, hierarchical classification challenge. The validation set contains 10.5 k sequences,
randomly sampled from Abarenkov et al. (2020).

Test Sets. We use the three MycoAl test sets, representing distinct taxonomic distribution shifts
from the broad training set. Appendix D analyzes the species-level and identical-barcode overlap
between the training set and each test set. Test examples belonging to classes that were unobserved
during training were omitted from our evaluation.

* Test Set 1: Yeast (Vu et al., 2016). Contains 4.4k ITS sequences from yeast species,
evaluating the model’s generalization to a specific and taxonomically concentrated clade.

¢ Test Set 2: Filamentous Fungi (Vu et al., 2019). A set of 11.6 k sequences from filamen-
tous fungi, a broad but distinct collection of taxa not necessarily well-represented in the
training set.

* Test Set 3: MycoAI Benchmark (Romeijn et al., 2024). The largest test set with 367k
samples, serving as a comprehensive benchmark for overall performance and robustness.



Table 1: Performance of BarcodeMamba+ and baselines on the three test sets for taxonomic ranks
family, genus, and species. We report accuracy (micro) (%), model size (parameters), and inference
time per sample (ms). 1: higher is better; |: lower is better. Bold: best; underlined: second best.

Yeast Acc. (%)T Filamentous Acc. (%)  MycoAl Acc. (%)T

Model Fam. Gen. Sp. Fam. Gen. Sp. Fam. Gen. Sp. Size | Time |
BLAST 86.6 929 754 814 715 334 947 93.1 550 208.6 ms
MycoAI-CNN (Vu) 90.5 864 60.0 84.1 69.8 28.2 939 878 57.1 11.6M 11.8 ms
MycoAI-BERT (base) 889 757 335 851 60.8 16.6 932 803 393 184M 4.5ms
CNN Encoder 941 883 67.6 845 69.1 31.4 975 93,6 726 12.1M 5.8 ms
BarcodeBERT 954 88.6 59.1 878 702 27.7 97.8 920 589 446M 8.8 ms
BarcodeMamba+ 98.7 953 80.6 92.6 8l.1 46.5 99.0 96.5 81.7 12.1M 8.0ms

BarcodeMamba+ (large) 988 959 83.6 925 81.6 50.4 993 977 889 492M 14.7 ms

Data Preprocessing. We used the preprocessed MycoAl dataset (Romeijn, 2024), with four filtering
steps: (1) removal of duplicate sequence-label pairs, (2) exclusion of sequences with length more
than four standard deviations from the mean (558.0 bp £ 126.2 bp), (3) removal of sequences with
over 5% ambiguous bases, and (4) elimination of taxonomic classes with fewer than three represen-
tative samples. The remaining sequences in the training split are annotated to varying depths within
the seven-level taxonomic hierarchy (kingdom, phylum, class, order, family, genus, and species).
The dataset was partitioned into training, validation, and test splits after all the above preprocessing
steps.

2.2 Model Architectures
2.2.1 Baselines

We compare BarcodeMamba+ against baselines from three categories. BLAST (Altschul et al.,
1990) serves as a representative non-learning algorithmic method. For fully-supervised deep learn-
ing models, we compare against a CNN Encoder (Badirli et al., 2021), and both MycoAI-CNN
and MycoAI-BERT (Romeijn et al., 2024). BarcodeBERT (Arias et al., 2023) provides a competi-
tive foundation model baseline, pretrained on COI barcodes. The two MycoAl models incorporate
the same enhancements for hierarchical modelling which we evaluate in Section 3.2.2. Complete
architectural details and experimental configurations for all baselines are provided in Appendix A.1.

2.2.2 BarcodeMamba+

Our BarcodeMamba+ model adapts the BarcodeMamba SSM architecture for hierarchical fungal
ITS barcode classification. We use a BPE tokenizer following Romeijn et al. (2024)’s recommenda-
tion for fungal data. Complete implementation details are provided in Appendix A.4.

Training Paradigm. We employ a two-stage approach:

* Pretraining: The tokenizer and model learn fungal ITS sequence patterns from unlabelled
UNITE+INSD data through next-token prediction, without taxonomic labels.

* Fine-tuning: We add a classification head and fine-tune on labelled data, incorporating the en-
hancements from Appendix A.2 to address hierarchical labels and class imbalance.

3 Experiments

3.1 Comparison study

We trained the models (as described in Appendix B), then evaluated the performance on the three
test datasets. The results (Table 1) demonstrate BarcodeMamba+ outperforms all baseline models
across all taxonomic levels and metrics, while maintaining inference efficiency. On the largest
MycoAl test set (Benchmark), our model achieves a species-level accuracy of 81.7%, surpassing the
next-best performing baseline, CNN Encoder, by 9.1 percentage points (72.6%). This gap is even
more pronounced on the challenging Filamentous Fungi test set, where our model’s species-level



Table 2: Ablation comparing three tokenizers and two training paradigms: supervised from scratch
(X) and fine-tuned following pretraining (v'). Results show accuracy (micro), precision (macro), and
recall (macro) on three test sets at family, genus, and species level. Bold: best result for a given
taxonomic rank and test set; underlined: second best.

Accuracy (%)1 Precision (%)71 Recall (%)71
Test set Tokenizer Pretrain Fam. Gen. Sp. Fam. Gen. Sp. Fam. Gen. Sp.
Yeast Char 4 984 946 774 905 887 729 870 795 397
X 979 942 767 869 871 720 878 779 39.6
k-mer v 98.6 948 778 932 905 726 90.5 79.8 409
X 978 939 73.0 843 831 649 837 734 323
BPE v 98.7 953 80.6 931 923 77.0 902 822 46.0
X 979 937 786 794 846 720 870 79.0 42.6
Filamentous  Char 4 917 795 422 805 682 442 753 562 26.1
X 914 79.7 420 79.8 672 435 745 554 259
k-mer 4 914 789 423 809 658 422 746 538 259
X 8903 746 364 734 582 343 673 459 208
BPE v 92.6 81.1 465 818 712 489 773 60.7 313
X 903 786 432 759 667 43.6 735 570 273
Myco Char v 98.8 962 790 956 91.1 848 958 899 545
X 98.7 959 782 942 906 852 956 89.5 55.0
k-mer v 99.0 969 81.1 964 932 864 977 932 565
X 99.0 965 770 96.1 926 822 96.6 89.1 45.6
BPE v 99.0 9.5 817 952 913 883 97.0 930 65.8
X

98.8 958 788 935 89.0 857 961 899 575

accuracy (46.5%) is over 15 points higher than that of CNN Encoder (31.4%). This highlights our
architecture’s enhanced robustness to the distributional shifts present between the training domain
and the Filamentous Fungi test set.

Our model achieves this performance with a compact model size of 12.1 M parameters, comparable
to MycoAI-CNN (Vu) (11.6 M) and MycoAI-BERT (base) (18.4 M) and significantly smaller than
BarcodeBERT (44.6 M). Compared to the non-learning-based baseline BLAST, our model achieves
vastly higher accuracy on fine-grained classification (e.g., 81.7% vs. 55.0% on MycoAl species) and
demonstrates over 25x faster inference (8.0 ms vs. 208.6 ms), rendering it far more suitable for large-
scale biodiversity applications. After scaling up to 49.2 M parameters, BarcodeMamba+ improves
performance on every task. It boosts the species-level accuracy on MycoAl by another 7.2 points,
from an already high 81.7% to an exceptional 88.9%. Similarly, on Filamentous Fungi, Species
accuracy increases from 46.5% to 50.4%. This result confirms that our model architecture scales
effectively, and its capacity to leverage increased parametrization translates directly into improved
accuracy, especially for classifying the long tail of rare species.

3.2 Ablation Studies

We conduct two ablation studies, with the first study focusing on the effectiveness of pretraining and
different tokenizers, and the second on the impact of the three enhancements for hierarchical data.

3.2.1 Ablation A: Pretrain + Finetune vs. Supervised Learning on UNITE Dataset

We compare pretrain + fine-tune against fully supervised training while evaluating three tokeniza-
tion methods. All models use hierarchical label smoothing, multi-head outputs, and weighted loss.
Results, shown in Table 2, demonstrate the benefits of pretraining and find BPE is the best tokenizer.

3.2.2 Ablation B: Label smoothing, Multi-head, and Weighted loss

Various methods for handling hierarchical labels present opportunities to improve model training,
which we incorporated into our model training paradigm. To investigate the impact of each of these
on the performance of our model, we ablated these configurations, with results shown in Table 3
and statistical tests shown in Appendix C. We find that hierarchical label smoothing consistently



Table 3: Ablation of supervised learning enhancements: label smoothing (None, Standard, Hier-
archical), weighted loss (WL), and multi-head outputs (MH). «: enabled, X: ablated (standard
alternative). Results show accuracy, precision, and recall at the species level across test sets. Bold:
best result; underlined: second best.

Components Accuracy (%)T Precision (%) Recall (%)71
Smoothing WL MH Yeast Filam. Myco Yeast Filam. Myco Yeast Filam. Myco

None X X 67.4 37.8 72.6 63.3 41.7 75.7 27.3 22.0 38.3
X v 68.1 37.2 73.3 57.9 38.5 78.4 26.6 20.7 34.8
v X 72.0 413 75.9 63.4 414 77.8 31.9 25.1 46.9
v v 73.1 40.0 76.0 60.3 40.1 81.4 32.4 23.9 45.0

Standard X X 64.6 35.2 69.3 58.7 40.3 70.2 22.1 19.8 29.9
X v 61.8 35.4 69.8 54.7 36.7 72.9 21.6 18.6 27.2
4 X 70.5 40.7 75.2 63.3 41.2 76.7 31.1 24.6 443
v v 72.1 39.8 75.6 61.7 40.6 80.0 31.1 23.2 423

Hierarchical X X 71.8 41.3 71.5 66.6 43.0 82.7 33.0 25.4 51.8
X v 733 40.3 76.5 68.9 42.5 83.9 33.8 24.3 48.6
v X 76.3 42.6 78.0 71.5 43.9 83.1 39.9 26.8 55.5
v v 76.8 42.0 78.2 72.0 43.8 85.3 39.2 26.1 55.1

Yeast Filamentous Myco
815 1 97.5

R 95.5 A

%’ 81.0 97.0

S 950 1 80.5 - 96.5 -

= 94,5 4 —#— Genus 80.0 A 96.0 -

10 2IO 5I0 l(I)O 10 ZIO 5IO l(I)O 10 2I0 SIO 1(I)0
50.0 1 88.0 1

S

- 86.0 -

820

5 48.0 84.0 1

§ 82.0
—&— Species

80.0 : ; : 46.0 1 : : : 80.0 4 : : :
10 20 50 100 10 20 50 100 10 20 50 100
Model size (millions of params) Model size (millions of params) Model size (millions of params)

Figure 1: Scaling of BarcodeMamba+ to different model sizes. For each test set, we report the
accuracy for classifying at genus (upper panels) and species (lower panels) ranks.

improves performance across all metrics (avg. +3.3% acc.), whereas standard smoothing does not
provide a significant benefit. Using a weighted loss also provides a consistent improvement for the
imbalanced data (avg. +4.1% acc.). However, multi-head outputs provided inconsistent gains over
using a single, species-level, head (avg. —0.04% acc.) when fine-tuning on data labelled to species.

3.3 Scaling study

Using our default configuration (pretrain+fine-tune with BPE tokenizer, hierarchical label smooth-
ing, weighted loss, and multi-head output), we conduct a scaling study (Figure 1). Accuracy on
fine-grained ranks (genus and species) is highly sensitive to model capacity. Performance peaks at
~50 M parameters, consistent with MycoAl findings (Romeijn et al., 2024, Fig. 8), then degrades at
140 M parameters for species-level tasks, suggesting overfitting on fine-grained classification.

4 Conclusion

We addressed fungal DNA barcode classification, a domain with extreme label sparsity and long-
tailed distributions. BarcodeMamba+ demonstrates that SSM-based foundation models using



pretrain+fine-tune paradigms substantially outperform fully-supervised approaches. Our systematic
evaluation shows BPE tokenization, hierarchical label smoothing, and weighted loss are effective,
especially enhancing recall for rare classes. Our scaling study shows benefits of SSM-based architec-
tures over Transformer-based alternatives while revealing inherent limits on useful model capacity
for this task.

This work enables broader biodiversity research. The enhanced model structure can extend to other
genetic markers like COI for insects (Elbrecht et al., 2019; Steinke et al., 2024), and rbcL for plants
(CBOL Plant Working Group, 2009; Hollingsworth et al., 2011). We also see opportunities to
integrate genomic data with imaging and environmental modalities (c.f. Gong et al., 2025; Gu et al.,
2025), aligning with growing recognition that comprehensive biodiversity understanding requires
diverse data types. By developing scalable Al tools for under-resourced domains like mycology, we
can accelerate the pace of species discovery and taxonomic annotation in Earth’s most biodiverse
yet least understood kingdoms.
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Appendices
A Model Architecture Details

A.1 Baseline Models

Non-learning-based Baseline. We use BLASTN (Altschul et al., 1990) as a representative non-
learning-based method. First, a searchable nucleotide database was constructed from the training
set sequences (trainset.fasta) using the makeblastdb command. Sequences from each test set
were then aligned against this database using the blastn algorithm. The search was parallelized
across 16 CPU threads (-num_threads=16) for computational efficiency. Results were generated
in tabular format (~outfmt=6), providing a list of all significant alignments for each query. In line
with exploratory sequence similarity searches, we did not set explicit thresholds for e-value, query
coverage, or sequence identity, allowing for the capture of a broad range of potential matches for
downstream analysis.

Fully Supervised Baselines. We compare against deep learning architectures trained end-to-end
without a self-supervised pre-training phase.

* CNN Encoder: This model, introduced by Badirli et al. (2021), is known for its computational
efficiency and accuracy. The architecture consists of three 2D-convolutional layers with kernel
sizes of 3 x 3, channel dimensions of 64, 32, and 16, respectively, each followed by batch nor-
malization and a ReL U activation function, and interleaved with max-pooling layers of size 3 x 1.
The final feature maps are flattened and passed through a fully-connected layer.

* MycoAI-CNN and MycoAI-BERT: These are the state-of-the-art fully supervised models from
Romeijn et al. (2024). The MycoAI-BERT model is a Transformer-based architecture with 8
encoder layers, 8 attention heads, a hidden dimension of 512, and a feed-forward dimension
of 1024. The MycoAI-CNN model is a simple CNN with two convolutional layers (5 and 10
channels, respectively) using a kernel size of 5, followed by max-pooling with pool size 2 and a
fully-connected layer of size 256. Both are enhanced by the techniques discussed in Appendix A.2.
For tokenization, the strongest performing variants were used: BPE for BERT and k-mer-spectral
for CNN.

A.2 Supervised Learning Enhancements for Fine-tuning

Following Romeijn et al. (2024), we conduct ablations evaluating three techniques during the fine-
tuning stage for both our model and the supervised baselines.

* Hierarchical Label Smoothing (HLS): Standard label smoothing penalizes confident predic-
tions (Szegedy et al., 2016). HLS, introduced by Romeijn et al. (2024), adapts this concept to
taxonomy by reducing the penalty for misclassifications that are taxonomically close to the true
label (e.g., predicting the correct genus but wrong species). This encourages the model to learn
the taxonomic hierarchy.

¢ Classification Head: We compare two output strategies by Romeijn et al. (2024). The first is a
multi-head architecture where separate linear layers predict each of the seven taxonomic ranks
simultaneously, allowing the model to learn shared representations. The second is a single-head
baseline that predicts only at the species level, with higher-rank probabilities inferred from the
species predictions using a pre-defined taxonomic matrix.

* Weighted Loss: To counteract the severe class imbalance in the dataset, we adopt the weighted
cross-entropy loss from Romeijn et al. (2024). The loss for each sample is weighted by the inverse
square root of its class frequency, encouraging the model to pay more attention to rare taxa.

A.3 Foundation Model Baseline

To benchmark our SSM-based approach against the current state-of-the-art in biodiversity foun-
dation models, we include BarcodeBERT (Arias et al., 2023) as our primary comparison point.
This transformer-based model was pre-trained on a large-scale invertebrate COI barcode dataset (de-
Waard et al., 2019) using a masked language modeling objective. It has established strong perfor-
mance on benchmarks such as the BIOSCAN-5M dataset (Gharaee et al., 2024) and is considered



Table 4: Optimal settings after hyperparameter search for the comparison study. The reported learn-
ing rate is during supervised learning/fine-tuning.
Label Smoothing Multi-head Loss weighting Learning Rate  Training Strategy

BLAST Index&Query
MycoAI-CNN (Vu) Hierarchical v v le-4 Fully Supervised
MycoAI-BERT (base) Hierarchical 4 v le-4 Fully Supervised
CNN Encoder None v v 8e-4 Fully Supervised
BarcodeBERT None v v le-4 Fine-tuned
BarcodeMamba+ Hierarchical v v 8e-5 Pretrained, Fine-tuned
BarcodeMamba+ (large) Hierarchical v v 8e-5 Pretrained, Fine-tuned

an effective architecture for insect biodiversity studies. For our experiments, we use the officially
released pre-trained weights and fine-tune the model on our fungal ITS dataset.

A.4 BarcodeMamba+

BarcodeMamba+ is a foundation model adapted for the challenges of fungal ITS barcode classifica-
tion. The model utilizes the BarcodeMamba architecture as its backbone (Gao & Taylor, 2024), a
powerful SSM previously developed for general DNA sequence analysis.

Backbone Architecture. The BarcodeMamba backbone consists of a stack of n identical blocks.
Each block processes the input sequence through three main components: a layer normalization step,
a multi-layer perceptron, and a Mamba-2 mixing layer. The Mamba-2 layer is the core of the SSM,
efficiently capturing long-range dependencies in the DNA sequence by mapping a d-dimensional
input representation through a p-dimensional head. The final hidden states from the backbone serve
as rich sequence representations.

Tokenizer. To convert raw DNA sequences into input embeddings for the backbone, we evaluated
several tokenization strategies. While character-level (Nguyen et al., 2023) and k-mer-based tok-
enizers (Arias et al., 2023) have shown success on insect barcode datasets (Gao & Taylor, 2024), we
integrated a Byte-Pair Encoding (BPE) tokenizer as recommended by Romeijn et al. (2024). BPE
balances between the single-nucleotide resolution of character-level tokens and the pattern-capturing
ability of k-mers, while also being vocabulary-efficient and robust to k-mer frameshift issues.

B Implementation Details

For the BLAST baseline, indexing the training set required 4.6 hours, and classification was per-
formed using a best-hit approach. For the MycoAI-CNN and MycoAI-BERT models, we fol-
lowed their official implementation’, using the Adam optimizer with le-4 weight decay and train-
ing for 24 and 16 epochs respectively. All other models, including the CNN Encoder, Barcode-
BERT, and our BarcodeMamba+, were trained using a cross-entropy loss and the AdamW optimizer
(weight decay = 0.1, 51 = 0.9, B2 = 0.999). We used a universal training strategy with an
early stopping patience of 3 epochs on the validation loss and a 12-hour time limit. For our Bar-
codeMamba+, the fully supervised version was trained for 7 epochs with a learning rate (LR) of
8e-4. In the pre-train/fine-tune paradigm, the model was pre-trained for 15 epochs (LR=8e-4) and
subsequently fine-tuned for 12 epochs with a decayed learning rate of 8e-5. The BarcodeBERT
pretrained model was obtained from HuggingFace®. The model was fine-tuned with a learning rate
of le-4 (both as recommended value as reported and the hyperparameter search). Fine-tuning was
conducted for 1 epoch. The fully-supervised training process for the CNN Encoder was conducted
over 3 epochs. Table 4 summarizes the enhancement settings used for all models.

*https://github.com/MycoAIl/MycoAl
*https://huggingface.co/bioscan-ml/BarcodeBERT
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Table 5: Statistical significance (p-values) of different model components on species-level metrics
across three test sets. Both label smoothing types are compared against a baseline of no label smooth-
ing. Significant results (p < 0.05) on a paired ¢-test are highlighted in bold.

Component Test Set Accuracy Precision  Recall
Weighted loss Yeast 0.002 0.013 < 0.001
Filamentous 0.004 0.052 0.003
MycoAl 0.014 0.030 0.003
Multi-head Yeast 0.550 0.173 0.762
Filamentous 0.018 0.053 <0.001
MycoAl 0.626 < 0.001 0.004
Hierarchical label smoothing  Yeast <0.001 0.021 <0.001
Filamentous 0.017 0.020 0.010
MycoAl 0.019 0.004 0.003
Standard label smoothing Yeast 0.093 0.315 0.081
Filamentous 0.091 0.266 0.056
MycoAl 0.095 0.070 0.042

C Statistical Tests

To establish whether ablated model components had a significant effect on the model performance,
we conducted a series of paired ¢-tests for each component. We assumed each component would
have an independent effect on the performance, and compared the accuracy, precision, or recall with
one component present versus ablated, across all other component configurations. The results are
shown in Table 5.

D Dataset Analysis

In Table 6, both Test Set 1 (Yeast) and Test Set 3 (MycoAI Benchmark) have high identical barcode
overlap with the training data, at 86.73% and 100.00% respectively. This shows that they primar-
ily measure model performance on in-distribution sequences. Conversely, Test Set 2 (Filamentous
Fungi) shows minimal overlap at only 6.48%, establishing it as the most rigorous and reliable bench-
mark in this study for evaluating generalization capabilities on unseen species and barcodes.

Table 6: Analysis of dataset overlap between the training set and the three test sets. Overlap percent-
ages are calculated relative to the unique species or barcodes in each test set, respectively.

Species Overlap Identical Barcode Overlap
Test Set Total (Test) Overlap (n) Overlap (%) Total (Test) Overlap (n) Overlap (%)
Test Set 1: Yeast 1,157 616 53.24% 4,235 3,673 86.73%
Test Set 2: F. Fungi 5,537 2,650 47.86% 10,721 695 6.48%
Test Set 3: MycoAl 14,742 14,742 100.00% 363,420 363,420 100.00%
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