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Abstract

Predictions and generations from large language models are increasingly being
explored as an aid in limited data regimes, such as in computational social science
and human subjects research. While prior technical work has mainly explored the
potential to use model-predicted labels for unlabeled data in a principled manner,
there is increasing interest in using large language models to generate entirely new
synthetic samples (e.g., synthetic simulations), such as in responses to surveys.
However, it remains unclear by what means practitioners can use synthetic data
alongside real data without invalidating downstream statistical conclusions. In this
paper, we introduce a new estimator based on generalized method of moments,
providing a hyperparameter-free solution with strong theoretical guarantees to
address this challenge. We find that interactions between the moment residuals
of synthetic data and those of real data (i.e., when they are predictive of each
other) can substantially improve estimates of the target parameter. To the best of
our knowledge, our framework provides the first theoretically-sound approach for
incorporating fully synthetic samples in downstream statistical analyses.

1 Introduction

Practitioners increasingly leverage large language models (LLMs) as cheap but noisy labelers for
automating tasks traditionally reliant on manual human annotations [Ziems et al.| [2024]. Beyond
annotation, recently, practitioners have started to explore the possibility of leveraging LLMs for
more diverse and open-ended forms of model-generated data. For instance, practitioners have
started to leverage LLMs to output entirely new synthetic samples, e.g., simulating human responses
to surveys or human participants in early pilot studies [Argyle et al., 2023, Brand et al.l 2023,
Dominguez-Olmedo et al.| 2024} |Anthis et al., [2025, [Hwang et al., [ 2025b|]. Determining the extent to
which researchers should integrate LLM simulations—whether by simulating all samples, combining
simulated and real samples, or relying entirely on human participants—remains an open and task-
dependent question. While such pipelines leveraging fully synthetic simulations have yet to be fully
realized, developing reliable mechanisms for aggregating these data sources is indeed what will
inform both the feasibility of such design choices and how such pipelines should be implemented in
practice.

A persistent challenge, however, is that naively aggregating synthetic samples with real data for
downstream inference often lead to greatly biased estimates, compromising statistical validity of
downstream conclusions. Ideally, we would like to realize the benefits of incorporating information
from these additional data sources, while retaining favorable statistical properties—consistency and
proper asymptotic coverage. We consider the setting where practitioners have access to a corpus of
unlabeled text and a small set of human annotated samples with labeled covariates and outcomes.
Here, practitioners can leverage LLMs to (1) predict covariates and outcomes for the unlabeled text
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samples; and (2) generate new text samples conditioned on available samples and label the covariates
and outcomes for them similarly to (1).

First of all, it is not immediately obvious how to even produce synthetic samples such that they can
be used in a principled manner. Naively drawing samples from a generative model and treating them
as additional samples alongside real data makes it impossible to provide statistical guarantees for
the resulting estimate if the generative model does not perfectly match the real distribution—which
is expected in practice. We propose a specific sampling strategy in which each synthetic sample is
generated conditional on an individual real text as an example (see Section [3|for details). What makes
this formulation statistically powerful is that it introduces a correlation structure between each real
text and synthetic sample. This correlation structure will prove critical for principled methods for
integrating synthetic data, as it enables us to more effectively share information across them.

We introduce a new estimation framework based on generalized method of moments (GMM) that
naturally incorporates this synthetic data. The construction of our GMM estimator defines separate
parameters and corresponding moments for each data source to avoid distributional assumptions (i.e.,
assuming that the generative model’s distribution will match the real distribution). Prospectively,
it is not intuitive that the incorporation of moments based exclusively on synthetic data (defined in
terms of a separate parameter, independent of the target parameter) should yield any benefits (or even
affect) the estimation of the target parameter. Intriguingly, we find that the interactions between the
moment residuals of synthetic data and that of real data in the weighting matrix can substantially
improve estimates of the target parameter (see Sections [4.5|and [6]). The key intuition is that synthetic
data will lead to more precise estimation and tighter confidence intervals when the synthetic data
residuals are predictive of the real data residuals. When the synthetic residuals are independent of the
observed data residuals, the variance reduces to the optimal variance based only on the fully observed
data. That is, in the worst case where synthetic data is completely uninformative, including it does
not hurt (at least asymptotically).

At a fundamental level, this work takes a first step towards understanding how imperfect synthetic
data from foundation models can systematically be leveraged to support valid inference. As the usage
and future promise of foundation models continue to grow, so too will the complexity of pipelines
that incorporate their outputs. Our framework provides a foundation for easily extensible estimation
methods that can safely incorporate the growing variety and quality of synthetic data sources from
such models. More broadly, this GMM-based estimation framework for incorporating auxiliary
data may be of broader interest as an alternative to the predominant debiasing-based methods in the
surrogacy literature [|[Angelopoulos et al.,[2023a], as it can more flexibly accommodate multiple proxy
covariates and proxy outcomes compared to existing approaches.

2 Related Work

LLMs for Data Annotation and Synthetic Simulation Tasks. Our work is motivated by the
increasingly growing use and future promise of LLMs for annotations and simulation studies,
particularly as a means to reduce human labeling costs [Hwang et al.| |2025a]. Recently, LLMs
have been tested in fully synthetic simulation studies [Dillion et al., [2023] |Anthis et al., [2025],
with primary applications in exploratory research or early pilot studies. For instance, recent work
has studied simulating individuals in society and their interactions [Park et al.l 2022, (Chen et al.[,
analyzing whether the resulting LLLM agents produced accurate responses on surveys and accurately
predicted behavioral outcomes [Park et al., 2023]]. Other works have applied LLMs to simulate survey
responses [[Geng et al., 2024} [Rothschild et al.,|2024]], while others have cautioned about specific
flaws in LLM responses [Dominguez-Olmedo et al. 2024], such as not accurately reflecting the
influence of demographic groups [Dominguez-Olmedo et al., 2024, Wang et al.,|2025]]. In summary,
this line of work shows the potential of fully synthetic experiments powered through strong generative
models but also exhibits clear failure modes and imperfect conclusions from such studies. While
most of these studies focus on qualitative takeaways and early signals for future experiments, we
focus on the challenging and forward-looking setting of making statistically valid inference given
such synthetic samples.

Statistical Inference and Debiasing Methods. Our work is broadly related to performing statistical
inference with missing data, where past works have explored approaches to yielding valid and efficient
parameter estimates [Robins et al.l|[1994]. Other work has notably explored the usage of ML models
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to estimate nuisance parameters [[Chernozhukov et al.|[2018]]. The most related line of research are
debiasing methods [[Egami et al., 2023} Gligori€ et al.,2024] that focus on combining ground truth
data with surrogate predictions (often produced by a machine learning model) to perform statistical
inference. These frameworks are often referred to as prediction-powered inference [[Angelopoulos
et al.l [2023albf] in the machine learning literature. A key difference between these works and our
setting is that the primary focus of our work is how to incorporate fully synthetic samples, which
remains unaddressed by previous work.

3 Preliminaries

Notation and Setup. We consider a parameter estimation task where the goal is to estimate a
target parameter §* € R?. Let (T, X,Y) ~ D denote a random triple drawn from an unknown
data-generating distribution D over text inputs 7' € T, covariates about the text (e.g., structured
metadata) X € X C R?, and labels Y € ). For example, T' can be texts from online requests,
where X are linguistic markers of hedging (i.e., notions of uncertainty) and Y is perceived politeness.
Due to labeling budget constraints, we assume we only observe a small fraction of human-annotated
data (i.e., ground-truth covariates and labels about the text). Specifically, we have access to labeled
dataset Digpetea = {(T3, X5, Y;) 7, that is sampled i.i.d. from D and an unlabeled corpus of text
Duntaveted = {(T}) ?L’le sampled i.i.d. from Dr (i.e., the marginal distribution over T'), where
m > n. To supplement this limited supervision, we leverage machine learning models in the
following two ways.

Proxy Covariates and Labels. We use a machine learning model f to produce predictions
{fx(T3), fv(T;)} for the available set of input texts 7" € T. Here, fx and fy denote the same
machine learning model, using separate prompts for the target outcome (either a covariate X or out-
come Y) (see Appendix for details). This yields the following Dproxy = {(T5, fx (T3), fv (T3)}ieq U
{(T;, fx(T}), fv(Ty) ?i,ﬁ_l For simplicity, we will refer to this as proxy samples and denote

them as (7, X , Y). We will refer to the distribution over proxy samples as D. Note that this is the
setting previous works have considered (mainly restricted to predicted outcomes) when addressing
this problem.

Synthetic Covariates and Labels. We propose a new data augmentation process which generates
new samples using a text-based foundation model (employing it as a generative model, instead of a
classifier as in previous works studying the proxy setup). Specifically, our method conditions the
generation process on each individual text T as an example and asks the model to generate a new
synthetic sample given that context. Formally, for each ¢, we sample a new text 7}, conditioned on
(Ti, X;) if the sample is labeled and (T}, X ;) if the sample is unlabeled. For example, “Consider
text taken from user requests on Stack Exchange, either containing a hedging device
or not containing one. {Insert example T; and covariate Xi}. Now, generate a new
example of a request that matches the style of the provided example.’|’| Based on the
generated sample, which we denote as T;, we then extract its corresponding covariates and outcomes
similarly as in proxy samples. More concretely,

Ty ~ P(- | Ty, X;) if labeled, X ~P(- | Th),
T ~ P(- | Tj, X;) if unlabeled Yy ~ P(- | T})

resulting in the following Dgynihetc = {(Tk, Xy, f/k)}Zi{” . We will refer to the distribution over
synthetic samples (7', X, Y") as D.

This specific sampling process has two motivations. First, from a machine learning perspective it can
be seen as a form of in-context prompting, where the model is given an example from the dataset
in order to align it more closely with the task. Iteratively prompting with different samples T is
also likely to produce more diverse samples than asking for many samples with the same prompt.
Second, from a statistical perspective, it introduces a correlation structure between each real text
T; and synthetic sample T;. This correlation structure will prove critical for principled methods for
integrating synthetic data because it allows us to more effectively share information across them.

'See Appendix for further prompt details.
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Indeed, naively drawing a set of synthetic samples from the generative model and pooling them with
the real data would render it impossible to provide statistical guarantees for the resulting estimate if
generative model fails to perfectly match the real distribution.

Finally, we introduce some notation that combines all of these data sources into draws from a single
joint distribution. Specifically, we introduce a new random variable s € {0, 1} which is an indicator
for whether T is labeled (1) or unlabeled (0). Then, we view the complete generative process as
draws (T, s,s- X,s-Y, Xl, Yl ...XM, ?M) for M different kinds of auxiliary data. So far, we have
discussed two kinds, proxy and synthetic, that we employ empirically (M = 2), but our methods
are fully extensible to additional kinds of auxiliary data. For example, we could include samples
from multiple different generative models. The real (X, Y") are observed only for labeled points with
s = 1 while the auxiliary data is available for all samples. The joint distribution over this full tuple is
induced by the composition of the generative processes for the components described above.

4 Combining Synthetic Information via Generalized Method of Moments

To estimate the target parameter 8*, we adopt a generalized method of moments (GMM) approach
[Hansen, [1982] that combines information from the different types of data in the following manner.

4.1 Moment Conditions

Our framework is applicable whenever the target parameter can be identified by a set of moment
conditions, functions whose expectation should be zero at the true value of the parameter. Moment-
based estimation is a broad and flexible framework that includes almost all commonly used statistical
frameworks (e.g., maximum likelihood, generalized linear models, instrumental variables, etc). We
begin by defining the moment conditions that identify 6* under the distribution of interest (i.e.,
the real-data distribution D). In the following section, we introduce how this can be adapted to
incorporate surrogate data (i.e., proxy and synthetic data).

Formally, we consider the problem of estimating a parameter § € R?. The true value #* is identified
as the solution to a set of p > d moment conditions

E[p©0*) =0, ¢=1..p

where the 1(*) are continuously differentiable functions R? — R. For example, in a maximum
likelihood model, we would have one v for the derivative of the log-likelihood with respect to
each parameter, and the moment conditions enforce that 6* satisfies the first-order conditions for
maximizing the likelihood. Let 1(8) = [1)()(8)...1)(")(8)] T denote a column vector stacking the p
moments.

4.2 Constructing Our GMM Estimator

To leverage the auxiliary data (i.e., proxy data and synthetic data) in making our GMM estimator
more efficient, we can construct a set of auxiliary moments for each additional source of data. We
estimate an additional set of auxiliary parameters 71, ...,nas € RP, one parameter vector for each
set of new auxiliary data. In the specific instantiation of the model that we use here, we always
have M = 2 (proxy and synthetic data), but in principle our method is extensible to many sources
of auxiliary data, for example synthetic samples generated from several different models. Roughly,
each new parameter vector 7; can be understood as the parameter that we would estimate using
each auxiliary data source, and our augmented model will automatically determine how to use these
auxiliary estimates to inform the estimate of the parameter of interest 6.

For each new parameter vector 7;, we introduce a corresponding set of new moments to estimate
this parameter and allow its estimate to inform the estimate of 8. Specifically, we introduce for each
7; two new blocks of moments that are copies of the original moments for 6. Intuitively, one block
of moments will be evaluated only on the real (labeled) data, while the other will be taken on the
pooled set of labeled data and auxiliary dataset ¢. The pooled-data moment will allow us to improve
the estimation of 7); using the larger sample. The version evaluated only on the real data will allow
the GMM to evaluate how well the moments for the auxiliary parameter correlate with those of the
true parameter on the same data, and share information across them if the auxiliary moments are
informative (as we would expect if the generated data is high quality).
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Formally, let S; € R? stack p copies of the indicator variable s, for whether a data point ¢ is labeled.
In block matrix notation, the combined model takes the form of the augmented moments

[ S: T [ w(O) T
St »(n)
a@m =S |o| v | erer2dr )
1 Y(n1)
L] L )

We will then jointly estimate (6,7) as the solution to the moment condition E[g;(¢,7)] = 0. For
clarity, we refer to our estimator that uses real and proxy data (M = 1) as GMM-Proxy and our
estimator that uses real, proxy, and synthetic data (M = 2) as GMM-Synth throughout the paper.
We remark that since the parameter of interest 6 appears only in its original set of moments, which
are evaluated only on the labeled data, this new moment condition still identifies the target parameter
0*. However, as we discuss below, when we apply standard methods for efficiently estimating the
augmented GMM, the new moment conditions will be leveraged to reduce the variance of the estimate
without compromising consistency or asymptotic normality.

4.3 GMM Estimation

Given our augmented moment conditions g, we estimate the parameters (,7) by minimizing the
GMM objective:

Op, Hy = i Or(0,7), 2
T, 7 argeeeglé%WpQT( n) )

where
-

Qr(

[

L T
Wr [T th(e,n)] : 3
=1

Here, W € RM*M g a (possibly data-dependent) positive semidefinite weighting matrix that
determines the importance of each moment condition in the estimation objective. While GMM
estimators are consistent and normal under any choice of positive definite W, the selection of W
influences their efficiency.

Two-step GMM estimator. We adopt the two-step GMM procedure as described in Newey and;

~(0s)

McFadden| [[1994]]. First, we compute the one-step estimator 9(03), Al ~ using an identity weight

matrix WT = L. Then, we estimate the optimal weight matrix as:

QT(é’_(Z?b) A(OS Z gt 05 ) 77’_(1?8 (9(05)5 nT )) ‘| 9 (4)
and set .
Wr = [ (0,8)] 5)

This optimal weighting has the interpretation as the inverse empirical covariance of the moment
conditions on the one-step estimate. We then compute the ﬁnal two-step estimator by minimizing

QT( ) with this updated weighting matrix. This choice of WT yields an asymptotically efficient
estimator under standard GMM regularity conditions.

The adoption of two-step GMM is a critical component of our proposed estimation framework.
Indeed, in the first-step estimates, the synthetic and proxy data will have no impact on the estimate
of 6 because they never appear in the moment conditions concerning 6. In the second stage though,

the weight matrix W accounts for the covariance between moment conditions, where off-diagonal
terms in the matrix allow moments for the auxiliary data sources to influence the estimation of 6.
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4.4 Consistency and Asymptotic Inference

We now present results on the consistency and asymptotic behavior of our GMM estimators.

Proposition 1. Our estimate Or (as defined in Equation is consistent and asymptotically normal.
It converges in distribution as

YA d
VT (0, i7) = (6',7)) = N(0,V)
where the covariance V is given by

v = (GO.0)TWEO.) GO0 WEWGO.n) (GO0 Wao.n)

and where G(0, 1) is the Jacobian of the population moments at the ground truth parameter values
0,n.

For optimal weight matrix [3] this simplifies to V = (G(0,7)" F~'G(6,7))~'. These are standard
results on GMM estimators, which follow by straightforwardly applying the results in|Hansen| [[1982].
We remark that these asymptotic results require a set of conditions on the sample moments, which
are slightly nuanced in this setting with multiple sources of information. We discuss these conditions
and prove that they are satisfied in Appendix [A]for the setting of proxy and synthetic samples. Given
this asymptotic behavior, we can derive valid confidence intervals for our parameter estimates.

4.5 Why does synthetic data improve performance?

To understand where the benefits arise from incorporating the proxy and synthetic data into our GMM
estimator, we analyze the interaction between our moment conditions. Note that the functions v
are often referred to as “residuals” in the GMM literature; since 1(#) should be zero in-expectation,
deviations from zero are interpretable as a kind of residual. The key intuition is that synthetic data
will improve performance when the synthetic-data residuals are predictive of the real-data residuals.

First, we note that if the synthetic data were perfectly simulated, X and Y would be perfectly
recovered from the unlabeled text 7'. With ground truth X, Y’, we can perfectly recover the residual

terms. In settings where we have good but imperfect simulations, XY and X,Y are highly correlated
with the errors in the true data, and we can approximately estimate the real-data residuals with the
synthetic data. Within our GMM-based approach, this is all handled implicitly in our two-step
estimation procedure. During the first estimation step, each set of parameters (e.g., defined on the
observed, proxy, and synthetic data) is independently identified since the initial weighting is an

identity matrix. The key insight is that, during the second estimation step, the weighting matrix W,
which is the inverse of the moment covariance matrix, captures the interactions between the observed
residual terms and the residuals from the synthetic data in our GMM objective.

Partitioning the moments into observed data residuals m, () and synthetic data residuals h.(7), we

derive an explicit formula for the asymptotic variance of v/T' (éT —0)in Appendix We find two
important conclusions. First, when these residuals are independent of the observed data, the formula
reduces to the optimal variance based only on the fully observed data. That is, in the worst case
where synthetic data is completely uninformative, including it does not hurt (at least asymptotically).
Second, when the real and synthetic residuals are correlated (as we would hope), we derive a lower
bound on the variance which is proportional to the residual variance in a regression of the observed
data residuals on the span of the synthetic data residuals. This bound is minimized by choosing
moments that span the conditional expectation of the observed data residuals given 7}, a sufficient

condition for which is that the conditional distribution of X, Y or X, Y given T equals the conditional
distribution of X, Y.

5 How to Apply a Debiasing-based Approach

In addition to proposing our GMM-based estimator, we consider how existing debiasing-based
methods, such as PPI++ [Angelopoulos et al.,|2023b], might be adapted to our setting. These methods
have been well-studied in the context of predicted outcomes and, more recently, predicted covariates.
However, it is not immediately clear how to aggregate multiple sources of information (i.e., proxy
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Figure 1: Grid search of the proposed debiasing-based approach (PPI++Synth) across different o
values (on 1PP, Hedging, and Stance estimation tasks (from left to right)). We can observe that
the optimal o value amongst the ones searched is defaulted to 1 in all cases, which is equivalent to
collapsing to fully using the proxy data. Results are averaged over 200 trials.

data and synthetic data) in this setup. Perhaps the most general approach is given by RePPI [Ji et al.|
2025|], which predicts the optimal loss through fitting an arbitrary model that maps the proxy and
synthetic loss to the real loss. In order to limit the number of parameters, we examine a natural
instantiation of this, where the model is a convex combination.

Proposition 2. The adapted, debiasing-based loss objective with multiple predicted covariates and
outcomes is given by

N

LPP(0) = 310~ ) - 1o(Ke, V) + - 1o (X, V) ©
z:l
1 — - L
+E;l9 X0, Vi) = (1= a) - 14(X:, V) + o - 1g(X3, V))). 7

where the estimate retains asymptotic normality conditions (see Appendix for the proof and algorithm
details).

Importantly, note that the addition of this hyperparameter « adds increased complexity, and techniques
such as cross-fitting must be used to select it in a statistically valid fashion. We refer to the estimator
with a = 1 as PPI++Proxy, as the synthetic terms vanish, yielding an estimator that combines real
and proxy data. We refer to the estimator with tunable « € [0, 1] as PPI++Synth, which combines
real, proxy, and synthetic data. We note that our implementation builds on PPI++, retaining all
additional benefits, such as power tuning, over the standard PPI estimator.

6 Experimental Results

We evaluate the finite-sample performance of our proposed estimators (GMM-Synth and GMM-
Proxy) as well as the adapted debiasing-based estimators (PPI++Synth and PPI++Proxy) in the
following setup.

Datasets and Experimental Setup. We focus on the small-data regime, where the need for
additional data sources is especially well-motivated. In particular, we consider settings where the
practitioner has a corpus of unlabeled text and only a small set of human-annotated samples (e.g.,
ground-truth covariates and labels derived from the text). We evaluate our framework in four different
computational social science tasks, each involving a regression coefficient as the target quantity.
In the first two tasks, we use texts from online requests posted on Stack Exchange and Wikipedia
[Danescu-Niculescu-Mizil et al.| 2013]] to estimate how certain linguistic features affect perceived
politeness; specifically, the use of first-person plural pronouns and the presence of hedging markers
(i.e., expressions of uncertainty). The third task examines the effect of affirming linguistic devices
on media stance toward global warming (i.e., whether the news headline supports or rejects climate
change) using a corpus of climate-related news headlines [Hmielowski et al.,[2014]. Finally, in the
fourth task, we analyze congressional bills texts [|Adler and Wilkerson, 201 1]] to estimate the effect of
a legislator’s DW-Nominate measure [Lewis et al.| 2024] of ideology on the type of bill (whether
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Figure 2: Main Results. We observe large reductions in MSE, especially in very low-label regimes.
Each row corresponds to a task (i.e., 1pp, Hedging, Stance (from top to bottom)); each column
corresponds to a metric (i.e., MSE, coverage, confidence interval width (from left to right)). Note
that when the best performing PPI++Synth is equivalent to PPI++Proxy, we report the second-best
performing PPI++Synth method (oo = 0.8 for these tasks). Results are averaged over 200 trials.

the bill pertains to macroeconomy). In all the tasks, the target quantity is the regression coefficient
corresponding to the explanatory variable of interest.

To evaluate our framework, we use GPT-4o [Hurst et al., [2024] to generate proxy and synthetic
data, without any task-specific fine-tuning, i.e., using the LLM out of the box. We report the
empirical mean-squared error (MSE), coverage at level o = 0.05, confidence interval width, and
effective sample size across all tasks. The effective sample Size Negfective denotes the number of
human-labeled samples needed for the classical estimator gMman o match the MSE of the method’s
estimate §™"°4_ Tn other words, it quantifies how many human annotations the method effectively
saves while maintaining equivalent accuracy. We defer the results and discussion for effective sample
size results to the Appendix.
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Key Observations. We begin by presenting our main results. In Figure |2| we evaluate the per-
formance of our GMM-based estimators: GMM-Proxy and GMM-Synth. Across all studied tasks,
we observe both methods consistently outperform only leveraging ground-truth human-annotated
samples (Human-only), yielding improvements in both point estimation (MSE) and inference (tighter
intervals while retaining proper coverage). As expected, we observe that benefits are especially
pronounced in low-label regimes, which aligns with the motivating use case of our framework. On
several tasks in low-label regimes, we observe large reductions in MSE (more than 50% reductions)
compared to only using the human-labeled samples. We note that across all settings, the proxy data
and synthetic data alone yield greatly biased estimates (see Appendix). However, the specific structure
in how we combine these data sources with human-labeled data enables better estimation of the target
parameter. See Section [4.5|for a deeper analysis of how this interaction improves performance.

Next, we turn to analyzing the results of our adapted debiasing-based estimators, which we refer to
as PPI++Proxy and PPI++Synth for convenience. Note that in the implementation of our debiasing-
based estimators, we leverage PPI++ [Angelopoulos et al.,|2023b]], which further includes benefits
of power tuning. We empirically find that PPI++Synth often underperforms in regimes, where the
sample size of labeled data is small, due to cross-fitting restricting the sample size even further. As
an upper bound, we conduct a grid search over different possible « values without cross-fitting. Note,
this is not a valid solution in the setup, since this requires cheating in hyperparameter selection. In
Figure[I] we empirically find that although this oracle incorporates proxy data effectively, introducing
the synthetic data does not yield further performance improvement. We can clearly observe that the
optimal « is 1 in all cases, which is equivalent to only utilizing information from the proxy data
terms (i.e., ignoring the synthetic data terms completely). In Figure [2] we observe that although
both methods retain reasonable coverage, we see that they underperform the GMM-based estimators,
resulting in larger MSE and mostly wider intervals.

7 Discussion

In this work, we introduce a principled framework for incorporating fully synthetic samples into
downstream statistical analyses. We provide practical guidance for constructing synthetic samples
in ways that support valid inference, and propose a new estimator based on generalized method of
moments (GMM) estimation, where the key intuition is that synthetic data will improve performance
when the synthetic-data residuals are predictive of the real-data residuals. Across the studied
regression tasks, we indeed observe a large degree of improvements in estimation, especially in very
low-label regimes. More broadly, this work takes a first step toward understanding how imperfect
synthetic data can systematically be leveraged to support valid inference. As the usage and future
promise of LLMs continue to grow, so too will the complexity of pipelines that incorporate their
outputs. Our framework provides one route towards easily-extensible estimation methods that can
flexibly incorporate growing variety and quality in synthetic data sources.

Limitations. A potential limitation of our framework is its reliance on the quality of the generative
model (e.g., an LLM). As with other debiasing approaches, very poor-quality synthetic data would
yield little-to-no benefits in statistical efficiency. Moreover, our theoretical guarantees, like those of
debiasing methods, hold asymptotically and thus may fail to hold in extremely low-data regimes,
potentially leading to undercoverage of the target parameter. Furthermore, we note that our framework
assumes a specific sampling procedure in which each synthetic sample is conditioned on a real sample.
In cases where synthetic data is generated differently—such as via zero-shot prompting without
conditioning—our framework may not apply.

References

E Scott Adler and John Wilkerson. Congressional bills project. NSF 00880066 and, 880061, 2011.

Anastasios N Angelopoulos, Stephen Bates, Clara Fannjiang, Michael I Jordan, and Tijana Zrnic.
Prediction-powered inference. Science, 382(6671):669-674, 2023a.

Anastasios N Angelopoulos, John C Duchi, and Tijana Zrnic. Ppi++: Efficient prediction-powered
inference. arXiv preprint arXiv:2311.01453, 2023b.



354
355
356

357
358
359

360
361

362
363
364

365
366
367

368
369
370

371
372

373
374
375

376
377
378

379
380

381
382

383
384

385
386
387

388
389
390

391
392
393
394
395
396
397
398

399
400
401
402
403

Jacy Reese Anthis, Ryan Liu, Sean M Richardson, Austin C Kozlowski, Bernard Koch, James Evans,
Erik Brynjolfsson, and Michael Bernstein. LIm social simulations are a promising research method.
arXiv preprint arXiv:2504.02234, 2025.

Lisa P Argyle, Ethan C Busby, Nancy Fulda, Joshua R Gubler, Christopher Rytting, and David
Wingate. Out of one, many: Using language models to simulate human samples. Political Analysis,
31(3):337-351, 2023.

James Brand, Ayelet Israeli, and Donald Ngwe. Using llms for market research. Harvard Business
School Marketing Unit Working Paper, (23-062), 2023.

Jiangjie Chen, Xintao Wang, Rui Xu, Siyu Yuan, Yikai Zhang, Wei Shi, Jian Xie, Shuang Li, Ruihan
Yang, Tinghui Zhu, et al. From persona to personalization: A survey on role-playing language
agents. Transactions on Machine Learning Research.

Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whit-
ney Newey, and James Robins. Double/debiased machine learning for treatment and structural
parameters: Double/debiased machine learning. The Econometrics Journal, 21(1), 2018.

Cristian Danescu-Niculescu-Mizil, Moritz Sudhof, Dan Jurafsky, Jure Leskovec, and Christopher
Potts. A computational approach to politeness with application to social factors. arXiv preprint
arXiv:1306.6078, 2013.

Danica Dillion, Niket Tandon, Yuling Gu, and Kurt Gray. Can ai language models replace human
participants? Trends in Cognitive Sciences, 27(7):597-600, 2023.

Ricardo Dominguez-Olmedo, Moritz Hardt, and Celestine Mendler-Diinner. Questioning the survey
responses of large language models. Advances in Neural Information Processing Systems, 37:
4585045878, 2024.

Naoki Egami, Musashi Hinck, Brandon Stewart, and Hanying Wei. Using imperfect surrogates for
downstream inference: Design-based supervised learning for social science applications of large
language models. Advances in Neural Information Processing Systems, 36:68589—68601, 2023.

Mingmeng Geng, Sihong He, and Roberto Trotta. Are large language models chameleons? an attempt
to simulate social surveys. arXiv preprint arXiv:2405.19323, 2024.

Kristina Gligorié, Tijana Zrnic, Cinoo Lee, Emmanuel J Candes, and Dan Jurafsky. Can unconfident
1Im annotations be used for confident conclusions? arXiv preprint arXiv:2408.15204, 2024.

Lars Peter Hansen. Large sample properties of generalized method of moments estimators. Econo-
metrica: Journal of the econometric society, pages 1029-1054, 1982.

Jay D Hmielowski, Lauren Feldman, Teresa A Myers, Anthony Leiserowitz, and Edward Maibach.
An attack on science? media use, trust in scientists, and perceptions of global warming. Public
Understanding of Science, 23(7):866-883, 2014.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Angel Hsing-Chi Hwang, Michael S. Bernstein, S. Shyam Sundar, Renwen Zhang, Manoel
Horta Ribeiro, Yingdan Lu, Serina Chang, Tongshuang Wu, Aimei Yang, Dmitri Williams,
Joon Sung Park, Katherine Ognyanova, Ziang Xiao, Aaron Shaw, and David A. Shamma. Hu-
man subjects research in the age of generative ai: Opportunities and challenges of applying
IIm-simulated data to hci studies. In Proceedings of the Extended Abstracts of the CHI Conference
on Human Factors in Computing Systems, CHI EA 25, New York, NY, USA, 2025a. Associa-
tion for Computing Machinery. ISBN 9798400713958. doi: 10.1145/3706599.3716299. URL
https://doi.org/10.1145/3706599.3716299.

Angel Hsing-Chi Hwang, Michael S Bernstein, S Shyam Sundar, Renwen Zhang, Manoel
Horta Ribeiro, Yingdan Lu, Serina Chang, Tongshuang Wu, Aimei Yang, Dmitri Williams, et al.
Human subjects research in the age of generative ai: Opportunities and challenges of applying
IIm-simulated data to hci studies. In Proceedings of the Extended Abstracts of the CHI Conference
on Human Factors in Computing Systems, pages 1-7, 2025b.

10


https://doi.org/10.1145/3706599.3716299

404
405

406
407

408
409

410
411
412
413

414
415
416

417
418
419

420
421

422
423
424

425
426
427

Wenlong Ji, Lihua Lei, and Tijana Zrnic. Predictions as surrogates: Revisiting surrogate outcomes in
the age of ai. arXiv preprint arXiv:2501.09731, 2025.

Jeffrey B Lewis, Keith Poole, Howard Rosenthal, Adam Boche, Aaron Rudkin, and Luke Sonnet.
Congressional roll-call votes database. Published Online, 2024.

Whitney K Newey and Daniel McFadden. Large sample estimation and hypothesis testing. Handbook
of econometrics, 4:2111-2245, 1994.

Joon Sung Park, Lindsay Popowski, Carrie Cai, Meredith Ringel Morris, Percy Liang, and Michael S
Bernstein. Social simulacra: Creating populated prototypes for social computing systems. In
Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology,
pages 1-18, 2022.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S
Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings of the 36th
annual acm symposium on user interface software and technology, pages 1-22, 2023.

James M Robins, Andrea Rotnitzky, and Lue Ping Zhao. Estimation of regression coefficients when
some regressors are not always observed. Journal of the American statistical Association, 89(427):
846-866, 1994.

David M Rothschild, James Brand, Hope Schroeder, and Jenny Wang. Opportunities and risks of
llms in survey research. Available at SSRN, 2024.

Angelina Wang, Jamie Morgenstern, and John P Dickerson. Large language models that replace hu-
man participants can harmfully misportray and flatten identity groups. Nature Machine Intelligence,
pages 1-12, 2025.

Caleb Ziems, William Held, Omar Shaikh, Jiaao Chen, Zhehao Zhang, and Diyi Yang. Can large
language models transform computational social science? Computational Linguistics, 50(1):
237-291, 2024.

11



428

429

431
432

434

436
437

439
440
441

442
443

444

445
446
447
448
449

450
451

452
453
454

455

456
457

A Conditions for Consistency and Asymptotic Normality

We provide a discussion about the necessary conditions for a GMM estimator to be consistent and
asymptotically normal, showing that these conditions are indeed met for our augmented GMM.

As mentioned in the construction of our estimator, we define one moment condition for each parameter
on the observed data D. We also define two moments for each parameter on the proxy and synthetic
data. This leads to an overidentified system, with more moments than parameters, ensuring that the
target parameter is identifiable.

Next, we establish a few conditions for valid asymptotic properties of our GMM estimator, specifically
about the convergence and distributions of the sample moments. First, we require that all of our
moments converge to their expectation, or that

% S @ S R[],
=1

Next, they must also obey the central limit theorem, or that

n

N <iz¢(j)> % N0, F),

i=1
where F’ is some finite covariance matrix of all the moments.

Under these standard regularity conditions on the moment functions ¢ [Newey and McFadden,
1994], these conditions are immediately satisfied for the moments defined on observed data, as each
observation of the moments are independent. The same holds for the moments defined on proxy

data, since X, Y are functions of independent inputs 7', and are therefore also independent across
observations. The case of synthetic data is slightly more nuanced, but we show that the required
conditions still hold, through the following lemma.

Lemma 1. Let {¢};”=1 represent our moments defined on synthetic observations. Then, they are i.i.d.,

and consequently

m

LS 0 = Eloy] and Vi | =36 | b N(O.00)),
j=1

Jj=1

where o (@) is the variance matrix of ¢.

Proof. We begin by noting that the unlabeled texts {7 }}”:1 are drawn i.i.d. from the marginal
distribution Dr. For each T}, a synthetic text Tj is generated by a generative model (i.e., an LLM),
which uses independent randomness for each call. The model is conditioned only on an individual
sample (7}, X;) if j is labeled or (T}, X ;) otherwise. Since the generative process for each 7} is
independent and the mapping Tj — (f( s f@) is applied identically to each sample, the resulting pairs

(X ;, Y;) are also i.i.d. As these pairs are drawn i.i.d., then these conditions are met via the central
limit theorem. O

This result shows that the required conditions on the sample moments hold in our setting of proxy
and synthetic samples; under the regularity conditions of Newey and McFadden| [[1994] Theorem 3.2,
one immediately obtains Proposition [[]on the asymptotic behavior of our GMM estimator.

B Moment Conditions

We provide a concrete example of our moment construction for the case of generalized linear models
(GLMs) in two-dimensions.
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B.1 Example 1. Generalized Linear Models
Recall that the standard GLM formulation optimizes the objective function,

lo(z,y) = —y2x" 0 + f(z79),

where f is a function that is convex and infinitely differentiable. We remark that this recovers the
setting of logistic regression when f(z) = log(1 + exp(z)). Let us assume a two-dimensional setting
for illustration. This translates to the population moment conditions of

E [Xl (Y - ;{(XTQ*))] =0, E {XQ (Y - gg;(XT&*)ﬂ =0

We have similar moments for proxy and synthetic data, where we use parameters 1 = (1(1), 77(2)),
which are also two-dimensional. Within our GMM framework, we construct the following set of
moment conditions across the observed, proxy, and synthetic data.

St [ Xt,l(Yt - %(X;TG))

5 Xo (Y, — SL(X76))

s || Kealhi - )

St Xt,2(fft - 825“ (XtTn“)))

St Xt,l( ~t - 82{2) (XtTU(Q)))
9:(0,m) = St © Xt,2( ~t - 0?{2) (XtTn(2)))

1 X, 1( V; — 8:?” (XtTn(l)))

1 Xt,Q( At - 8251) (XtTU(l)))

V|| S ey

I 1 | | Xt,2(~t - 825@ (an@))) |

C Partitioned GMM Asymptotic Variance

We now derive the asymptotic variance of our GMM estimator for specifically the target parameter
Or.

*

Proof. With the optimal choice of weight matrix for the full GMM estimation problem, the asymptotic

variance of the vector (6, 7)) converges to (GT F~'G)~". To obtain the variance for 6 specifically,
partition the moments into g (6, 1) = (m(0)’, he(n)")’, where m:(0) = S; ® (), and

5] [ o)
: @1)
; () |

Given this partitioning, we can express

Eme]
G(0,n) = ‘69 dE[h(n)]
dn
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Fe { E[my(0)m:(0)']  E[m:(0)h(n)'] ]
E[he(n)m¢(0)']  E[he(0)h(0)']

By the partitioned inverse formula, we can express F'~! as

A B
BT D
where the upper left block A is

(E[m¢(0)me(6)'] — E[mq(0)he (1) TE[R (0) e ()]~ E[he (0)my (6)'])

This term can be interpreted as the inverse of the asymptotic residual variance of a regression of
m¢(6) on the span of the vector h;(n).

The lower right block D is, symmetrically, the asymptotic residual variance of a regression of h;(6)
on the span of the vector m;(n):

(E[he(0)he(0)'] = Elhy (0)me (1) TE[my (0)m (6)' ) E[m (1) ke (6)])
Finally, the off-diagonal term multiplies A by the coefficient in a regression of m on h:
B = —AE[mt(9)ht(n)’]E[ht(9)ht(9)'}_1

For the full variance,

m(0)] 4 dElm(©)]  dElm(0)] p dE{n(r)

GTF 1G d9/ do’ 7(]
dE[r()] BT d]E[m(9)] dE[h( ] p dE[R(n)]

dn’ do dn’ dn

Applying the partitioned inverse formula again, the upper left block of (G'T F~'G)~!, which gives
exactly the asymptotic variance of /T (61 — 0), is equal to
(dE[m(9)] L LE[mO)] _ dE[h(n)] 1 dE[m(0)] (dE[h(n)] pE[h(n)] )t dE[m(0)] ;, dE[h(n)] )!
de’ db dn’ do dn’ dn de’ dn
This can be interpreted similarly as the asymptotic variance of the residual prediction error from a
regression of A~1/2 d’gée) onto the span of a weighted linear combination of terms in dhg;') O

We remark that a lower bound on the total variance is given by (dE[;;,(e)] AL 7”(9)]) , which is

minimized when A is maximized. Among choices of moment functions A, (7)) that depend solely on
T;, A is maximized in the positive semi-definite order when the span of h;(7) contains E[m(0)|T3]. A
sufficient but not necessary condition for this is that for some j € 1... M, the conditional moments
of the simulation are identical to those of the real data:

E[y(n;)|Ti] = E[(0)|Ti]
This calibration condition is satisfied when the conditional distribution of the simulated data given

T equals that of the real data, which is a natural simulation target, though not required for valid
inference.

D Baseline Details

D.1 PPI++Proxy and PPI++Synth Implementation

We now present a discussion on our adapted debiasing-based approach from Proposition
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Algorithm 1 Cross-Fitting for PPI**Synth

Require:
1: Labeled data D = {(T;, X;,Y;) } 74,
2: Proxy data D = {(1}, X;, Y;)}1 2"

Jj=1>
3: Synthetic data D = {(T, X, Y;)};5",
4: K folds A
Ensure: Debiased estimate Ocp
5: Split D into folds {Z,...,Zx}
6:
7: fork=1,..., K do
8: define train-fold Z,ain = U, 2k T,

9: 67" « argming LpE(6;0) > (1) initial fit on train-fold
1(1) A~k arg min,eo,1) L;{i (él_k; a) > (2) select mixture weight « on train-fold)
g ok arg ming LIE,P (0; o?’k) > (3) final fit on held-out fold with chosen «)
}g end for

K
R 1 o
16: return Ocp = Ve ké_l 0

D.1.1 Asymptotic Normality

First, it is relatively straightforward to show that this is an unbiased estimate of the true objective.

E[L"P(0)] = (1 — a) - E[lo(X,Y)] + a-E[lsy(X,Y)]
+ E[lp(X,Y)] —E[(1 - @) - [p(X,Y)] — a-E[ls(X,Y)))]
=E[lp(X,Y)].

Note that this holds for any choice of the hyperparameter a.

n

Under the same assumptions as in the PPI++ paper [Angelopoulos et al., 2023Db] (e.g., that - — ¢
for some constant ¢ and, in the case of generalized linear models, the Hessian is non-singular, we
perform their same approach to power tuning), we recover the asymptotic normality guarantees of the
parameter estimate (as in Corollary 1 from |Angelopoulos et al.|[2023b]]).

D.1.2 Hyperparameter Selection via Cross-fitting

The added complexity from these modified debiasing-based approaches arises from the hyperpa-
rameter a. We now discuss an approach for selecting « by performing cross-fitting. As previously
mentioned, we can treat « as a simple version of RePPI [Ji et al. 2025]] where we fit a convex
combination of proxy and synthetic losses.

Namely, we partition our available data into two splits. We select o on one fold by minimizing:

in LFP (0
arg min (61),

where 6 is defined as the solution to the naive minimzation of E[¢y(X,Y")] on the same split. This
essentially captures picking the « that best combines the proxy and synthetic losses to best mimic the
behavior of the standard loss function.

We then take this optimal « and use it to produce a parameter estimate on the held-out fold. We
aggregate these estimates as is standard in cross-fitting approaches. We outline this process in
Algorithm [T}
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s0o E  Experimental Details

st0  E.1 Prompt Texts

511 We present the full text prompts that were used to generate proxy covariates and labels (for the proxy
s12 data) and synthetic data. Note that the prompts used to extract covariates and labels from the synthetic
513 text are identical to those used for the proxy data.

Py

Proxy Data Generation Prompts

Politeness (First Plural Pronouns) - Covariates:

Does the following text contain first person plural pronouns (e.g., we, us, our, ourselves)?
Output either yes or no.

Text: nnn

{content}

Answer:

Politeness (First Plural Pronouns) - Labels:

Is the following text polite? Output either A or B. Output a letter only.
A) Polite

B) Impolite

Text nnn

{content}

Answer:

Politeness (Hedging) - Covariates:

Does the following text contain hedging devices—expressions that indicate uncertainty,
caution, or a lack of full commitment to a claim (e.g., may, might, could, would, possibly,
probably, perhaps, apparently, suggest, indicate, seem, appear, it is likely that, it seems that)?
Respond with yes or no only.

Text nnn

{content}

Answer:

Politeness (Hedging) - Labels:

Is the following text polite? Output either A or B. Output a letter only.
A) Polite

B) Impolite

Text: nnn

{content}

Answer:

Stance Dataset - Covariates:

Does the following text contain any affirmative device words? Output either yes or no.
Text nnn

{content}

Answer:

514
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516

Proxy Data Generation Prompts (continued)

Stance Dataset - Labels:

A statement can agree, be neutral, or disagree with the statement: “Climate change/global
warming is a serious concern”. Classify the following statement into one of the three
categories. Output either A, B, or C. Output a letter only.

A) Agree

B) Neutral

C) Disagree

Statement: """

{content}

Answer:

Congressional Bills Dataset - Covariates:

You are a political scientist familiar with the U.S. Congress and the DW-NOMINATE scoring
system, which places legislators and legislation on a left-right ideological spectrum ranging
approximately from -1 (most liberal) to +1 (most conservative). Below is the text of a
proposed bill. Based on the policy content, language, and framing of the bill, estimate the
DW-NOMINATE score that best represents its ideological position. Output a single nonzero
float between -1 and +1 representing the estimated DW-NOMINATE score of the bill.

Bill nnn

{content}

Answer:

Congressional Bills Dataset - Labels:

Does the following text relate to the economy? Output either true or false.
Text: nnn

{content}

Label:

Synthetic Data Generation Prompts

Politeness (First Plural Pronouns)

Consider texts taken from user requests on Stack Exchange or Wikipedia. Each text is
labeled as either polite or impolite, and either contains or does not contain first-person plural
pronouns. Below is an example that {x}:

Example: """

{example}

Now, generate a new example of a request that also {x}.

Politeness (Hedging)

Consider texts taken from user requests on Stack Exchange or Wikipedia. Each text can
be labeled as either polite or impolite, and as either containing a hedging device or not
containing one. Hedging devices are expressions that indicate uncertainty, caution, or a lack
of full commitment to a claim (e.g., may, might, could, would, possibly, probably, perhaps,
apparently, suggest, indicate, etc.). Below is an example that {x}:

Example: """

{example}

Now, generate a new example of a request that also {x}.

17



517

Synthetic Data Generation Prompts (continued)

Stance

Consider news headlines that take a stance — agree, disagree, or neutral — on the statement:
“Climate change/global warming is a serious concern."

Each headline also either contains or does not contain an affirmative device.

Below is an example of a headline.

Example: """

{example}

nmnn

Affirmative device: {x}

Now, generate a new news headline about global warming that also {x}.

Congressional Bills Data

You are a political language model trained to generate realistic examples of U.S. congressional
bills. Each bill is labeled as either “related to the economy" or “not related to the economy",
and is associated with a DW-NOMINATE score representing ideological position (ranging
from —1 liberal to +1 conservative).

Example:

Bill Text: """

{example}

DW-NOMINATE Score: {dw_nominate_score}

Now, generate a new example of a bill that also has a DW-NOMINATE score of
{dw_nominate_score}. Output only the new bill text: """
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