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Abstract

Predictions and generations from large language models are increasingly being1

explored as an aid in limited data regimes, such as in computational social science2

and human subjects research. While prior technical work has mainly explored the3

potential to use model-predicted labels for unlabeled data in a principled manner,4

there is increasing interest in using large language models to generate entirely new5

synthetic samples (e.g., synthetic simulations), such as in responses to surveys.6

However, it remains unclear by what means practitioners can use synthetic data7

alongside real data without invalidating downstream statistical conclusions. In this8

paper, we introduce a new estimator based on generalized method of moments,9

providing a hyperparameter-free solution with strong theoretical guarantees to10

address this challenge. We find that interactions between the moment residuals11

of synthetic data and those of real data (i.e., when they are predictive of each12

other) can substantially improve estimates of the target parameter. To the best of13

our knowledge, our framework provides the first theoretically-sound approach for14

incorporating fully synthetic samples in downstream statistical analyses.15

1 Introduction16

Practitioners increasingly leverage large language models (LLMs) as cheap but noisy labelers for17

automating tasks traditionally reliant on manual human annotations Ziems et al. [2024]. Beyond18

annotation, recently, practitioners have started to explore the possibility of leveraging LLMs for19

more diverse and open-ended forms of model-generated data. For instance, practitioners have20

started to leverage LLMs to output entirely new synthetic samples, e.g., simulating human responses21

to surveys or human participants in early pilot studies [Argyle et al., 2023, Brand et al., 2023,22

Dominguez-Olmedo et al., 2024, Anthis et al., 2025, Hwang et al., 2025b]. Determining the extent to23

which researchers should integrate LLM simulations—whether by simulating all samples, combining24

simulated and real samples, or relying entirely on human participants—remains an open and task-25

dependent question. While such pipelines leveraging fully synthetic simulations have yet to be fully26

realized, developing reliable mechanisms for aggregating these data sources is indeed what will27

inform both the feasibility of such design choices and how such pipelines should be implemented in28

practice.29

A persistent challenge, however, is that naively aggregating synthetic samples with real data for30

downstream inference often lead to greatly biased estimates, compromising statistical validity of31

downstream conclusions. Ideally, we would like to realize the benefits of incorporating information32

from these additional data sources, while retaining favorable statistical properties—consistency and33

proper asymptotic coverage. We consider the setting where practitioners have access to a corpus of34

unlabeled text and a small set of human annotated samples with labeled covariates and outcomes.35

Here, practitioners can leverage LLMs to (1) predict covariates and outcomes for the unlabeled text36
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samples; and (2) generate new text samples conditioned on available samples and label the covariates37

and outcomes for them similarly to (1).38

First of all, it is not immediately obvious how to even produce synthetic samples such that they can39

be used in a principled manner. Naively drawing samples from a generative model and treating them40

as additional samples alongside real data makes it impossible to provide statistical guarantees for41

the resulting estimate if the generative model does not perfectly match the real distribution—which42

is expected in practice. We propose a specific sampling strategy in which each synthetic sample is43

generated conditional on an individual real text as an example (see Section 3 for details). What makes44

this formulation statistically powerful is that it introduces a correlation structure between each real45

text and synthetic sample. This correlation structure will prove critical for principled methods for46

integrating synthetic data, as it enables us to more effectively share information across them.47

We introduce a new estimation framework based on generalized method of moments (GMM) that48

naturally incorporates this synthetic data. The construction of our GMM estimator defines separate49

parameters and corresponding moments for each data source to avoid distributional assumptions (i.e.,50

assuming that the generative model’s distribution will match the real distribution). Prospectively,51

it is not intuitive that the incorporation of moments based exclusively on synthetic data (defined in52

terms of a separate parameter, independent of the target parameter) should yield any benefits (or even53

affect) the estimation of the target parameter. Intriguingly, we find that the interactions between the54

moment residuals of synthetic data and that of real data in the weighting matrix can substantially55

improve estimates of the target parameter (see Sections 4.5 and 6). The key intuition is that synthetic56

data will lead to more precise estimation and tighter confidence intervals when the synthetic data57

residuals are predictive of the real data residuals. When the synthetic residuals are independent of the58

observed data residuals, the variance reduces to the optimal variance based only on the fully observed59

data. That is, in the worst case where synthetic data is completely uninformative, including it does60

not hurt (at least asymptotically).61

At a fundamental level, this work takes a first step towards understanding how imperfect synthetic62

data from foundation models can systematically be leveraged to support valid inference. As the usage63

and future promise of foundation models continue to grow, so too will the complexity of pipelines64

that incorporate their outputs. Our framework provides a foundation for easily extensible estimation65

methods that can safely incorporate the growing variety and quality of synthetic data sources from66

such models. More broadly, this GMM-based estimation framework for incorporating auxiliary67

data may be of broader interest as an alternative to the predominant debiasing-based methods in the68

surrogacy literature [Angelopoulos et al., 2023a], as it can more flexibly accommodate multiple proxy69

covariates and proxy outcomes compared to existing approaches.70

2 Related Work71

LLMs for Data Annotation and Synthetic Simulation Tasks. Our work is motivated by the72

increasingly growing use and future promise of LLMs for annotations and simulation studies,73

particularly as a means to reduce human labeling costs [Hwang et al., 2025a]. Recently, LLMs74

have been tested in fully synthetic simulation studies [Dillion et al., 2023, Anthis et al., 2025],75

with primary applications in exploratory research or early pilot studies. For instance, recent work76

has studied simulating individuals in society and their interactions [Park et al., 2022, Chen et al.],77

analyzing whether the resulting LLM agents produced accurate responses on surveys and accurately78

predicted behavioral outcomes [Park et al., 2023]. Other works have applied LLMs to simulate survey79

responses [Geng et al., 2024, Rothschild et al., 2024], while others have cautioned about specific80

flaws in LLM responses [Dominguez-Olmedo et al., 2024], such as not accurately reflecting the81

influence of demographic groups [Dominguez-Olmedo et al., 2024, Wang et al., 2025]. In summary,82

this line of work shows the potential of fully synthetic experiments powered through strong generative83

models but also exhibits clear failure modes and imperfect conclusions from such studies. While84

most of these studies focus on qualitative takeaways and early signals for future experiments, we85

focus on the challenging and forward-looking setting of making statistically valid inference given86

such synthetic samples.87

Statistical Inference and Debiasing Methods. Our work is broadly related to performing statistical88

inference with missing data, where past works have explored approaches to yielding valid and efficient89

parameter estimates [Robins et al., 1994]. Other work has notably explored the usage of ML models90
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to estimate nuisance parameters [Chernozhukov et al., 2018]. The most related line of research are91

debiasing methods [Egami et al., 2023, Gligorić et al., 2024] that focus on combining ground truth92

data with surrogate predictions (often produced by a machine learning model) to perform statistical93

inference. These frameworks are often referred to as prediction-powered inference [Angelopoulos94

et al., 2023a,b] in the machine learning literature. A key difference between these works and our95

setting is that the primary focus of our work is how to incorporate fully synthetic samples, which96

remains unaddressed by previous work.97

3 Preliminaries98

Notation and Setup. We consider a parameter estimation task where the goal is to estimate a99

target parameter θ⋆ ∈ Rd. Let (T,X, Y ) ∼ D denote a random triple drawn from an unknown100

data-generating distribution D over text inputs T ∈ T , covariates about the text (e.g., structured101

metadata) X ∈ X ⊆ Rd, and labels Y ∈ Y . For example, T can be texts from online requests,102

where X are linguistic markers of hedging (i.e., notions of uncertainty) and Y is perceived politeness.103

Due to labeling budget constraints, we assume we only observe a small fraction of human-annotated104

data (i.e., ground-truth covariates and labels about the text). Specifically, we have access to labeled105

dataset Dlabeled = {(Ti, Xi, Yi)}ni=1 that is sampled i.i.d. from D and an unlabeled corpus of text106

Dunlabeled = {(Tj)}n+m
j=n+1 sampled i.i.d. from DT (i.e., the marginal distribution over T ), where107

m ≫ n. To supplement this limited supervision, we leverage machine learning models in the108

following two ways.109

Proxy Covariates and Labels. We use a machine learning model f to produce predictions110

{fX(Tj), fY (T j)} for the available set of input texts T ∈ T . Here, fX and fY denote the same111

machine learning model, using separate prompts for the target outcome (either a covariate X or out-112

come Y ) (see Appendix for details). This yields the following Dproxy = {(Ti, fX(Ti), fY (Ti)}ni=1 ∪113

{(Tj , fX(Tj), fY (Tj)}n+m
j=n+1. For simplicity, we will refer to this as proxy samples and denote114

them as (T, X̂, Ŷ ). We will refer to the distribution over proxy samples as D̂. Note that this is the115

setting previous works have considered (mainly restricted to predicted outcomes) when addressing116

this problem.117

Synthetic Covariates and Labels. We propose a new data augmentation process which generates118

new samples using a text-based foundation model (employing it as a generative model, instead of a119

classifier as in previous works studying the proxy setup). Specifically, our method conditions the120

generation process on each individual text Tj as an example and asks the model to generate a new121

synthetic sample given that context. Formally, for each i, we sample a new text T̃i, conditioned on122

(Ti, Xi) if the sample is labeled and (Tj , X̂j) if the sample is unlabeled. For example, “Consider123

text taken from user requests on Stack Exchange, either containing a hedging device124

or not containing one. {Insert example Ti and covariate Xi}. Now, generate a new125

example of a request that matches the style of the provided example.”1 Based on the126

generated sample, which we denote as T̃i, we then extract its corresponding covariates and outcomes127

similarly as in proxy samples. More concretely,128

T̃k ∼ P(· | Ti, Xi) if labeled,

T̃k ∼ P(· | Tj , X̂j) if unlabeled

X̃k ∼ P(· | T̃k),
Ỹk ∼ P(· | T̃k)

resulting in the following Dsynthetic = {(T̃k, X̃k, Ỹk)}n+m
k=1 . We will refer to the distribution over129

synthetic samples (T̃ , X̃, Ỹ ) as D̃.130

This specific sampling process has two motivations. First, from a machine learning perspective it can131

be seen as a form of in-context prompting, where the model is given an example from the dataset132

in order to align it more closely with the task. Iteratively prompting with different samples Ti is133

also likely to produce more diverse samples than asking for many samples with the same prompt.134

Second, from a statistical perspective, it introduces a correlation structure between each real text135

Ti and synthetic sample T̃i. This correlation structure will prove critical for principled methods for136

integrating synthetic data because it allows us to more effectively share information across them.137

1See Appendix for further prompt details.
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Indeed, naively drawing a set of synthetic samples from the generative model and pooling them with138

the real data would render it impossible to provide statistical guarantees for the resulting estimate if139

generative model fails to perfectly match the real distribution.140

Finally, we introduce some notation that combines all of these data sources into draws from a single141

joint distribution. Specifically, we introduce a new random variable s ∈ {0, 1} which is an indicator142

for whether T is labeled (1) or unlabeled (0). Then, we view the complete generative process as143

draws (T, s, s ·X, s · Y, X̃1, Ỹ 1...X̃M , ỸM ) for M different kinds of auxiliary data. So far, we have144

discussed two kinds, proxy and synthetic, that we employ empirically (M = 2), but our methods145

are fully extensible to additional kinds of auxiliary data. For example, we could include samples146

from multiple different generative models. The real (X,Y ) are observed only for labeled points with147

s = 1 while the auxiliary data is available for all samples. The joint distribution over this full tuple is148

induced by the composition of the generative processes for the components described above.149

4 Combining Synthetic Information via Generalized Method of Moments150

To estimate the target parameter θ⋆, we adopt a generalized method of moments (GMM) approach151

[Hansen, 1982] that combines information from the different types of data in the following manner.152

4.1 Moment Conditions153

Our framework is applicable whenever the target parameter can be identified by a set of moment154

conditions, functions whose expectation should be zero at the true value of the parameter. Moment-155

based estimation is a broad and flexible framework that includes almost all commonly used statistical156

frameworks (e.g., maximum likelihood, generalized linear models, instrumental variables, etc). We157

begin by defining the moment conditions that identify θ∗ under the distribution of interest (i.e.,158

the real-data distribution D). In the following section, we introduce how this can be adapted to159

incorporate surrogate data (i.e., proxy and synthetic data).160

Formally, we consider the problem of estimating a parameter θ ∈ Rd. The true value θ∗ is identified161

as the solution to a set of p ≥ d moment conditions162

E[ψ(ℓ)(θ∗)] = 0, ℓ = 1...p

where the ψ(ℓ) are continuously differentiable functions Rd → R. For example, in a maximum163

likelihood model, we would have one ψ for the derivative of the log-likelihood with respect to164

each parameter, and the moment conditions enforce that θ∗ satisfies the first-order conditions for165

maximizing the likelihood. Let ψ(θ) = [ψ(1)(θ)...ψ(p)(θ)]⊤ denote a column vector stacking the p166

moments.167

4.2 Constructing Our GMM Estimator168

To leverage the auxiliary data (i.e., proxy data and synthetic data) in making our GMM estimator169

more efficient, we can construct a set of auxiliary moments for each additional source of data. We170

estimate an additional set of auxiliary parameters η1, ..., ηM ∈ Rp, one parameter vector for each171

set of new auxiliary data. In the specific instantiation of the model that we use here, we always172

have M = 2 (proxy and synthetic data), but in principle our method is extensible to many sources173

of auxiliary data, for example synthetic samples generated from several different models. Roughly,174

each new parameter vector ηi can be understood as the parameter that we would estimate using175

each auxiliary data source, and our augmented model will automatically determine how to use these176

auxiliary estimates to inform the estimate of the parameter of interest θ.177

For each new parameter vector ηi, we introduce a corresponding set of new moments to estimate178

this parameter and allow its estimate to inform the estimate of θ. Specifically, we introduce for each179

ηi two new blocks of moments that are copies of the original moments for θ. Intuitively, one block180

of moments will be evaluated only on the real (labeled) data, while the other will be taken on the181

pooled set of labeled data and auxiliary dataset i. The pooled-data moment will allow us to improve182

the estimation of ηi using the larger sample. The version evaluated only on the real data will allow183

the GMM to evaluate how well the moments for the auxiliary parameter correlate with those of the184

true parameter on the same data, and share information across them if the auxiliary moments are185

informative (as we would expect if the generated data is high quality).186
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Formally, let St ∈ Rp stack p copies of the indicator variable st for whether a data point t is labeled.187

In block matrix notation, the combined model takes the form of the augmented moments188

gt(θ, η) =



St

St

...
St

1
...
1


⊙



ψ(θ)
ψ(η1)

...
ψ(ηM )
ψ(η1)

...
ψ(ηM )


∈ Rp+2Mp (1)

We will then jointly estimate (θ, η) as the solution to the moment condition E[gt(θ, η)] = 0. For189

clarity, we refer to our estimator that uses real and proxy data (M = 1) as GMM-Proxy and our190

estimator that uses real, proxy, and synthetic data (M = 2) as GMM-Synth throughout the paper.191

We remark that since the parameter of interest θ appears only in its original set of moments, which192

are evaluated only on the labeled data, this new moment condition still identifies the target parameter193

θ∗. However, as we discuss below, when we apply standard methods for efficiently estimating the194

augmented GMM, the new moment conditions will be leveraged to reduce the variance of the estimate195

without compromising consistency or asymptotic normality.196

4.3 GMM Estimation197

Given our augmented moment conditions g, we estimate the parameters (θ, η) by minimizing the198

GMM objective:199

θ̂T , η̂T = arg min
θ∈Θ,η∈R2Mp

Q̂T (θ, η), (2)

where200

Q̂T (θ, η) =

[
1

T

T∑
t=1

gt(θ, η)

]⊤
ŴT

[
1

T

T∑
t=1

gt(θ, η)

]
. (3)

Here, ŴT ∈ RM×M is a (possibly data-dependent) positive semidefinite weighting matrix that201

determines the importance of each moment condition in the estimation objective. While GMM202

estimators are consistent and normal under any choice of positive definite ŴT , the selection of ŴT203

influences their efficiency.204

Two-step GMM estimator. We adopt the two-step GMM procedure as described in Newey and205

McFadden [1994]. First, we compute the one-step estimator θ̂(os)
T , η̂

(os)
T using an identity weight206

matrix ŴT = I. Then, we estimate the optimal weight matrix as:207

Ω̂T (θ̂
(os)
T , η̂

(os)
T ) =

[
1

T

T∑
t=1

gt(θ̂
(os)
T , η̂

(os)
T )gt(θ̂

(os)
T , η̂

(os)
T )⊤

]
, (4)

and set208

ŴT =
[
Ω̂T (θ̂

(os)
T , η̂

(os)
T )

]−1

. (5)

This optimal weighting has the interpretation as the inverse empirical covariance of the moment209

conditions on the one-step estimate. We then compute the final two-step estimator by minimizing210

Q̂T (θ) with this updated weighting matrix. This choice of ŴT yields an asymptotically efficient211

estimator under standard GMM regularity conditions.212

The adoption of two-step GMM is a critical component of our proposed estimation framework.213

Indeed, in the first-step estimates, the synthetic and proxy data will have no impact on the estimate214

of θ because they never appear in the moment conditions concerning θ. In the second stage though,215

the weight matrix ŴT accounts for the covariance between moment conditions, where off-diagonal216

terms in the matrix allow moments for the auxiliary data sources to influence the estimation of θ.217
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4.4 Consistency and Asymptotic Inference218

We now present results on the consistency and asymptotic behavior of our GMM estimators.219

Proposition 1. Our estimate θ̂T (as defined in Equation 3) is consistent and asymptotically normal.220

It converges in distribution as221

√
T ((θ̂′T , η̂

′
T )

′ − (θ′, η′)′)
d−→ N (0, V )

where the covariance V is given by222

V =
(
G(θ, η)TŴG(θ, η)

)−1

G(θ, η)TŴFŴG(θ, η)
(
G(θ, η)TŴG(θ, η)

)−1

,

and where G(θ, η) is the Jacobian of the population moments at the ground truth parameter values223

θ, η.224

For optimal weight matrix 5, this simplifies to V = (G(θ, η)TF−1G(θ, η))−1. These are standard225

results on GMM estimators, which follow by straightforwardly applying the results in Hansen [1982].226

We remark that these asymptotic results require a set of conditions on the sample moments, which227

are slightly nuanced in this setting with multiple sources of information. We discuss these conditions228

and prove that they are satisfied in Appendix A for the setting of proxy and synthetic samples. Given229

this asymptotic behavior, we can derive valid confidence intervals for our parameter estimates.230

4.5 Why does synthetic data improve performance?231

To understand where the benefits arise from incorporating the proxy and synthetic data into our GMM232

estimator, we analyze the interaction between our moment conditions. Note that the functions ψ233

are often referred to as “residuals" in the GMM literature; since ψ(θ) should be zero in-expectation,234

deviations from zero are interpretable as a kind of residual. The key intuition is that synthetic data235

will improve performance when the synthetic-data residuals are predictive of the real-data residuals.236

First, we note that if the synthetic data were perfectly simulated, X and Y would be perfectly237

recovered from the unlabeled text T . With ground truth X,Y , we can perfectly recover the residual238

terms. In settings where we have good but imperfect simulations, X̂ ,Ŷ and X̃, Ỹ are highly correlated239

with the errors in the true data, and we can approximately estimate the real-data residuals with the240

synthetic data. Within our GMM-based approach, this is all handled implicitly in our two-step241

estimation procedure. During the first estimation step, each set of parameters (e.g., defined on the242

observed, proxy, and synthetic data) is independently identified since the initial weighting is an243

identity matrix. The key insight is that, during the second estimation step, the weighting matrix Ŵ,244

which is the inverse of the moment covariance matrix, captures the interactions between the observed245

residual terms and the residuals from the synthetic data in our GMM objective.246

Partitioning the moments into observed data residuals mt(θ) and synthetic data residuals ht(η), we247

derive an explicit formula for the asymptotic variance of
√
T (θ̂T − θ) in Appendix C. We find two248

important conclusions. First, when these residuals are independent of the observed data, the formula249

reduces to the optimal variance based only on the fully observed data. That is, in the worst case250

where synthetic data is completely uninformative, including it does not hurt (at least asymptotically).251

Second, when the real and synthetic residuals are correlated (as we would hope), we derive a lower252

bound on the variance which is proportional to the residual variance in a regression of the observed253

data residuals on the span of the synthetic data residuals. This bound is minimized by choosing254

moments that span the conditional expectation of the observed data residuals given Ti, a sufficient255

condition for which is that the conditional distribution of X̂, Ŷ or X̃, Ỹ given T equals the conditional256

distribution of X,Y .257

5 How to Apply a Debiasing-based Approach258

In addition to proposing our GMM-based estimator, we consider how existing debiasing-based259

methods, such as PPI++ [Angelopoulos et al., 2023b], might be adapted to our setting. These methods260

have been well-studied in the context of predicted outcomes and, more recently, predicted covariates.261

However, it is not immediately clear how to aggregate multiple sources of information (i.e., proxy262
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Figure 1: Grid search of the proposed debiasing-based approach (PPI++Synth) across different α
values (on 1PP, Hedging, and Stance estimation tasks (from left to right)). We can observe that
the optimal α value amongst the ones searched is defaulted to 1 in all cases, which is equivalent to
collapsing to fully using the proxy data. Results are averaged over 200 trials.

data and synthetic data) in this setup. Perhaps the most general approach is given by RePPI [Ji et al.,263

2025], which predicts the optimal loss through fitting an arbitrary model that maps the proxy and264

synthetic loss to the real loss. In order to limit the number of parameters, we examine a natural265

instantiation of this, where the model is a convex combination.266

Proposition 2. The adapted, debiasing-based loss objective with multiple predicted covariates and267

outcomes is given by268

LPP (θ) :=
1

N

N∑
i=1

[(1− α) · lθ(X̃i, Ỹi) + α · lθ(X̂i, Ŷi)] (6)

+
1

n

n∑
i=1

(lθ(Xi, Yi)− [(1− α) · lθ(X̃i, Ỹi) + α · lθ(X̂i, Ŷi)]). (7)

where the estimate retains asymptotic normality conditions (see Appendix for the proof and algorithm269

details).270

Importantly, note that the addition of this hyperparameter α adds increased complexity, and techniques271

such as cross-fitting must be used to select it in a statistically valid fashion. We refer to the estimator272

with α = 1 as PPI++Proxy, as the synthetic terms vanish, yielding an estimator that combines real273

and proxy data. We refer to the estimator with tunable α ∈ [0, 1] as PPI++Synth, which combines274

real, proxy, and synthetic data. We note that our implementation builds on PPI++, retaining all275

additional benefits, such as power tuning, over the standard PPI estimator.276

6 Experimental Results277

We evaluate the finite-sample performance of our proposed estimators (GMM-Synth and GMM-278

Proxy) as well as the adapted debiasing-based estimators (PPI++Synth and PPI++Proxy) in the279

following setup.280

Datasets and Experimental Setup. We focus on the small-data regime, where the need for281

additional data sources is especially well-motivated. In particular, we consider settings where the282

practitioner has a corpus of unlabeled text and only a small set of human-annotated samples (e.g.,283

ground-truth covariates and labels derived from the text). We evaluate our framework in four different284

computational social science tasks, each involving a regression coefficient as the target quantity.285

In the first two tasks, we use texts from online requests posted on Stack Exchange and Wikipedia286

[Danescu-Niculescu-Mizil et al., 2013] to estimate how certain linguistic features affect perceived287

politeness; specifically, the use of first-person plural pronouns and the presence of hedging markers288

(i.e., expressions of uncertainty). The third task examines the effect of affirming linguistic devices289

on media stance toward global warming (i.e., whether the news headline supports or rejects climate290

change) using a corpus of climate-related news headlines [Hmielowski et al., 2014]. Finally, in the291

fourth task, we analyze congressional bills texts [Adler and Wilkerson, 2011] to estimate the effect of292

a legislator’s DW-Nominate measure [Lewis et al., 2024] of ideology on the type of bill (whether293
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Figure 2: Main Results. We observe large reductions in MSE, especially in very low-label regimes.
Each row corresponds to a task (i.e., 1pp, Hedging, Stance (from top to bottom)); each column
corresponds to a metric (i.e., MSE, coverage, confidence interval width (from left to right)). Note
that when the best performing PPI++Synth is equivalent to PPI++Proxy, we report the second-best
performing PPI++Synth method (α = 0.8 for these tasks). Results are averaged over 200 trials.

the bill pertains to macroeconomy). In all the tasks, the target quantity is the regression coefficient294

corresponding to the explanatory variable of interest.295

To evaluate our framework, we use GPT-4o [Hurst et al., 2024] to generate proxy and synthetic296

data, without any task-specific fine-tuning, i.e., using the LLM out of the box. We report the297

empirical mean-squared error (MSE), coverage at level α = 0.05, confidence interval width, and298

effective sample size across all tasks. The effective sample size neffective denotes the number of299

human-labeled samples needed for the classical estimator θ̂human to match the MSE of the method’s300

estimate θ̂method. In other words, it quantifies how many human annotations the method effectively301

saves while maintaining equivalent accuracy. We defer the results and discussion for effective sample302

size results to the Appendix.303
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Key Observations. We begin by presenting our main results. In Figure 2, we evaluate the per-304

formance of our GMM-based estimators: GMM-Proxy and GMM-Synth. Across all studied tasks,305

we observe both methods consistently outperform only leveraging ground-truth human-annotated306

samples (Human-only), yielding improvements in both point estimation (MSE) and inference (tighter307

intervals while retaining proper coverage). As expected, we observe that benefits are especially308

pronounced in low-label regimes, which aligns with the motivating use case of our framework. On309

several tasks in low-label regimes, we observe large reductions in MSE (more than 50% reductions)310

compared to only using the human-labeled samples. We note that across all settings, the proxy data311

and synthetic data alone yield greatly biased estimates (see Appendix). However, the specific structure312

in how we combine these data sources with human-labeled data enables better estimation of the target313

parameter. See Section 4.5 for a deeper analysis of how this interaction improves performance.314

Next, we turn to analyzing the results of our adapted debiasing-based estimators, which we refer to315

as PPI++Proxy and PPI++Synth for convenience. Note that in the implementation of our debiasing-316

based estimators, we leverage PPI++ [Angelopoulos et al., 2023b], which further includes benefits317

of power tuning. We empirically find that PPI++Synth often underperforms in regimes, where the318

sample size of labeled data is small, due to cross-fitting restricting the sample size even further. As319

an upper bound, we conduct a grid search over different possible α values without cross-fitting. Note,320

this is not a valid solution in the setup, since this requires cheating in hyperparameter selection. In321

Figure 1, we empirically find that although this oracle incorporates proxy data effectively, introducing322

the synthetic data does not yield further performance improvement. We can clearly observe that the323

optimal α is 1 in all cases, which is equivalent to only utilizing information from the proxy data324

terms (i.e., ignoring the synthetic data terms completely). In Figure 2, we observe that although325

both methods retain reasonable coverage, we see that they underperform the GMM-based estimators,326

resulting in larger MSE and mostly wider intervals.327

7 Discussion328

In this work, we introduce a principled framework for incorporating fully synthetic samples into329

downstream statistical analyses. We provide practical guidance for constructing synthetic samples330

in ways that support valid inference, and propose a new estimator based on generalized method of331

moments (GMM) estimation, where the key intuition is that synthetic data will improve performance332

when the synthetic-data residuals are predictive of the real-data residuals. Across the studied333

regression tasks, we indeed observe a large degree of improvements in estimation, especially in very334

low-label regimes. More broadly, this work takes a first step toward understanding how imperfect335

synthetic data can systematically be leveraged to support valid inference. As the usage and future336

promise of LLMs continue to grow, so too will the complexity of pipelines that incorporate their337

outputs. Our framework provides one route towards easily-extensible estimation methods that can338

flexibly incorporate growing variety and quality in synthetic data sources.339

Limitations. A potential limitation of our framework is its reliance on the quality of the generative340

model (e.g., an LLM). As with other debiasing approaches, very poor-quality synthetic data would341

yield little-to-no benefits in statistical efficiency. Moreover, our theoretical guarantees, like those of342

debiasing methods, hold asymptotically and thus may fail to hold in extremely low-data regimes,343

potentially leading to undercoverage of the target parameter. Furthermore, we note that our framework344

assumes a specific sampling procedure in which each synthetic sample is conditioned on a real sample.345

In cases where synthetic data is generated differently—such as via zero-shot prompting without346

conditioning—our framework may not apply.347
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A Conditions for Consistency and Asymptotic Normality428

We provide a discussion about the necessary conditions for a GMM estimator to be consistent and429

asymptotically normal, showing that these conditions are indeed met for our augmented GMM.430

As mentioned in the construction of our estimator, we define one moment condition for each parameter431

on the observed data D. We also define two moments for each parameter on the proxy and synthetic432

data. This leads to an overidentified system, with more moments than parameters, ensuring that the433

target parameter is identifiable.434

Next, we establish a few conditions for valid asymptotic properties of our GMM estimator, specifically
about the convergence and distributions of the sample moments. First, we require that all of our
moments converge to their expectation, or that

1

n

n∑
i=1

ψ(j) → E[ψ(j)].

Next, they must also obey the central limit theorem, or that

√
n

(
1

n

n∑
i=1

ψ(j)

)
d−→ N (0, F ),

where F is some finite covariance matrix of all the moments.435

Under these standard regularity conditions on the moment functions ψ [Newey and McFadden,436

1994], these conditions are immediately satisfied for the moments defined on observed data, as each437

observation of the moments are independent. The same holds for the moments defined on proxy438

data, since X̂, Ŷ are functions of independent inputs T , and are therefore also independent across439

observations. The case of synthetic data is slightly more nuanced, but we show that the required440

conditions still hold, through the following lemma.441

Lemma 1. Let {ϕ}mj=1 represent our moments defined on synthetic observations. Then, they are i.i.d.,442

and consequently443

1

m

m∑
j=1

ϕj −→ E[ϕj ] and
√
m

 1

m

m∑
j=1

ϕj

 d−→ N (0, σ(ϕ)),

where σ(ϕ) is the variance matrix of ϕ.444

Proof. We begin by noting that the unlabeled texts {Tj}mj=1 are drawn i.i.d. from the marginal445

distribution DT . For each Tj , a synthetic text T̃j is generated by a generative model (i.e., an LLM),446

which uses independent randomness for each call. The model is conditioned only on an individual447

sample (Tj , Xj) if j is labeled or (Tj , X̂j) otherwise. Since the generative process for each Tj is448

independent and the mapping T̃j 7→ (X̃j , Ỹj) is applied identically to each sample, the resulting pairs449

(X̃j , Ỹj) are also i.i.d. As these pairs are drawn i.i.d., then these conditions are met via the central450

limit theorem.451

This result shows that the required conditions on the sample moments hold in our setting of proxy452

and synthetic samples; under the regularity conditions of Newey and McFadden [1994] Theorem 3.2,453

one immediately obtains Proposition 1 on the asymptotic behavior of our GMM estimator.454

B Moment Conditions455

We provide a concrete example of our moment construction for the case of generalized linear models456

(GLMs) in two-dimensions.457
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B.1 Example 1. Generalized Linear Models458

Recall that the standard GLM formulation optimizes the objective function,459

ℓθ(x, y) = −yxT θ + f(xT θ),

where f is a function that is convex and infinitely differentiable. We remark that this recovers the460

setting of logistic regression when f(z) = log(1+ exp(z)). Let us assume a two-dimensional setting461

for illustration. This translates to the population moment conditions of462

E
[
X1

(
Y − ∂f

∂θ1
(XT θ∗)

)]
= 0, E

[
X2

(
Y − ∂f

∂θ2
(XT θ∗)

)]
= 0

We have similar moments for proxy and synthetic data, where we use parameters η = (η(1), η(2)),463

which are also two-dimensional. Within our GMM framework, we construct the following set of464

moment conditions across the observed, proxy, and synthetic data.465

gt(θ, η) =



st
st
st

st

st

st

1

1

1

1



⊙



Xt,1(Yt − ∂f
∂θ1

(XT
t θ))

Xt,2(Yt − ∂f
∂θ2

(XT
t θ))

X̂t,1(Ŷt − ∂f

∂η
(1)
1

(X̂T
t η

(1)))

X̂t,2(Ŷt − ∂f

∂η
(1)
2

(X̂T
t η

(1)))

X̃t,1(Ỹt − ∂f

∂η
(2)
1

(X̃T
t η

(2)))

X̃t,2(Ỹt − ∂f

∂η
(2)
2

(X̃T
t η

(2)))

X̂t,1(Ŷt − ∂f

∂η
(1)
1

(X̂T
t η

(1)))

X̂t,2(Ŷt − ∂f

∂η
(1)
2

(X̂T
t η

(1)))

X̃t,1(Ỹt − ∂f

∂η
(2)
1

(X̃T
t η

(2)))

X̃t,2(Ỹt − ∂f

∂η
(2)
2

(X̃T
t η

(2)))


C Partitioned GMM Asymptotic Variance466

We now derive the asymptotic variance of our GMM estimator for specifically the target parameter467

θ̂T .468

*469

Proof. With the optimal choice of weight matrix for the full GMM estimation problem, the asymptotic470

variance of the vector (θ̂, η̂) converges to (GTF−1G)−1. To obtain the variance for θ̂ specifically,471

partition the moments into gt(θ, η) = (mt(θ)
′, ht(η)

′)′, where mt(θ) = St ⊙ ψ(θ), and472

ht(η) =



St

St

...
St

1
...
1


⊙



ψ(η(1))
...

ψ(η(M))
ψ(η(1))

...
ψ(η(M))


Given this partitioning, we can express473

G(θ, η) =

[
dE[m(θ)]

dθ 0

0 dE[h(η)]
dη

]
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F =

[
E[mt(θ)mt(θ)

′] E[mt(θ)ht(η)
′]

E[ht(η)mt(θ)
′] E[ht(θ)ht(θ)′]

]
By the partitioned inverse formula, we can express F−1 as474 [

A B
B⊤ D

]
where the upper left block A is475

(E[mt(θ)mt(θ)
′]− E[mt(θ)ht(η)

′]E[ht(θ)ht(θ)′]−1E[ht(η)mt(θ)
′])−1

This term can be interpreted as the inverse of the asymptotic residual variance of a regression of476

mt(θ) on the span of the vector ht(η).477

The lower right block D is, symmetrically, the asymptotic residual variance of a regression of ht(θ)478

on the span of the vector mt(η):479

(E[ht(θ)ht(θ)′]− E[ht(θ)mt(η)
′]E[mt(θ)mt(θ)

′]−1E[mt(η)ht(θ)
′])−1

Finally, the off-diagonal term multiplies A by the coefficient in a regression of m on h:480

B = −AE[mt(θ)ht(η)
′]E[ht(θ)ht(θ)′]−1

For the full variance,481

G⊤F−1G =

[
dE[m(θ)]

dθ′ AdE[m(θ)]
dθ

dE[m(θ)]
dθ′ B dE[h(η)]

dη
dE[h(η)]

dη′ B⊤ dE[m(θ)]
dθ

dE[h(η)]
dη′ D dE[h(η)]

dη

]

Applying the partitioned inverse formula again, the upper left block of (G⊤F−1G)−1, which gives
exactly the asymptotic variance of

√
T (θ̂T − θ), is equal to

(
dE[m(θ)]

dθ′
A
dE[m(θ)]

dθ
− dE[h(η)]

dη′ B⊤ dE[m(θ)]

dθ
(
dE[h(η)]

dη′ D
dE[h(η)]

dη
)−1 dE[m(θ)]

dθ′
B
dE[h(η)]

dη
)−1

This can be interpreted similarly as the asymptotic variance of the residual prediction error from a482

regression of A−1/2 dm(θ)
dθ onto the span of a weighted linear combination of terms in dh(η)

dη .483

We remark that a lower bound on the total variance is given by (dE[m(θ)]
dθ′ AdE[m(θ)]

dθ )−1, which is
minimized when A is maximized. Among choices of moment functions ht(η) that depend solely on
Tt, A is maximized in the positive semi-definite order when the span of ht(η) contains E[m(θ)|Tt]. A
sufficient but not necessary condition for this is that for some j ∈ 1 . . .M , the conditional moments
of the simulation are identical to those of the real data:

E[ψ(ηj)|Ti] = E[ψ(θ)|Ti]

This calibration condition is satisfied when the conditional distribution of the simulated data given484

T equals that of the real data, which is a natural simulation target, though not required for valid485

inference.486

D Baseline Details487

D.1 PPI++Proxy and PPI++Synth Implementation488

We now present a discussion on our adapted debiasing-based approach from Proposition 2.489
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Algorithm 1 Cross-Fitting for PPI++Synth

Require:
1: Labeled data D = {(Ti, Xi, Yi)}ni=1,
2: Proxy data D̂ = {(Tj , X̂j , Ŷj)}n+m

j=1 ,
3: Synthetic data D̃ = {(T̃j , X̃j , Ỹj)}n+m

j=1 ,
4: K folds

Ensure: Debiased estimate θ̂CF

5: Split D into folds {I1, . . . , IK}
6:
7: for k = 1, . . . ,K do
8: define train-fold Itrain =

⋃
r ̸=k Ir

9: θ̂−k
1 ← argminθ L

−k
PP(θ; 0) ▷ (1) initial fit on train-fold

10:
11: α̂−k ← argminα∈[0,1] L

−k
PP

(
θ̂−k
1 ;α

)
▷ (2) select mixture weight α on train-fold)

12:
13: θ̂k ← argminθ L

k
PP

(
θ; α̂−k

)
▷ (3) final fit on held-out fold with chosen α)

14:
15: end for

16: return θ̂CF =
1

K

K∑
k=1

θ̂k

D.1.1 Asymptotic Normality490

First, it is relatively straightforward to show that this is an unbiased estimate of the true objective.491

E[LPP (θ)] = (1− α) · E[lθ(X̃, Ỹ )] + α · E[lθ(X̂, Ŷ )]

+ E[lθ(X,Y )]− E[(1− α) · lθ(X̃, Ỹ )]− α · E[lθ(X̂, Ŷ )])]

= E[ℓθ(X,Y )].

Note that this holds for any choice of the hyperparameter α.492

Under the same assumptions as in the PPI++ paper [Angelopoulos et al., 2023b] (e.g., that n
n+m → c493

for some constant c and, in the case of generalized linear models, the Hessian is non-singular, we494

perform their same approach to power tuning), we recover the asymptotic normality guarantees of the495

parameter estimate (as in Corollary 1 from Angelopoulos et al. [2023b]).496

D.1.2 Hyperparameter Selection via Cross-fitting497

The added complexity from these modified debiasing-based approaches arises from the hyperpa-498

rameter α. We now discuss an approach for selecting α by performing cross-fitting. As previously499

mentioned, we can treat α as a simple version of RePPI [Ji et al., 2025] where we fit a convex500

combination of proxy and synthetic losses.501

Namely, we partition our available data into two splits. We select α on one fold by minimizing:502

arg min
α∈[0,1]

LPP (θ1),

where θ1 is defined as the solution to the naive minimzation of E[ℓθ(X,Y )] on the same split. This503

essentially captures picking the α that best combines the proxy and synthetic losses to best mimic the504

behavior of the standard loss function.505

We then take this optimal α and use it to produce a parameter estimate on the held-out fold. We506

aggregate these estimates as is standard in cross-fitting approaches. We outline this process in507

Algorithm 1.508
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E Experimental Details509

E.1 Prompt Texts510

We present the full text prompts that were used to generate proxy covariates and labels (for the proxy511

data) and synthetic data. Note that the prompts used to extract covariates and labels from the synthetic512

text are identical to those used for the proxy data.513

Proxy Data Generation Prompts

Politeness (First Plural Pronouns) - Covariates:
Does the following text contain first person plural pronouns (e.g., we, us, our, ourselves)?
Output either yes or no.
Text: """
{content}
"""
Answer:

Politeness (First Plural Pronouns) - Labels:
Is the following text polite? Output either A or B. Output a letter only.
A) Polite
B) Impolite
Text: """
{content}
"""
Answer:

Politeness (Hedging) - Covariates:
Does the following text contain hedging devices—expressions that indicate uncertainty,
caution, or a lack of full commitment to a claim (e.g., may, might, could, would, possibly,
probably, perhaps, apparently, suggest, indicate, seem, appear, it is likely that, it seems that)?
Respond with yes or no only.
Text: """
{content}
"""
Answer:

Politeness (Hedging) - Labels:
Is the following text polite? Output either A or B. Output a letter only.
A) Polite
B) Impolite
Text: """
{content}
"""
Answer:

Stance Dataset - Covariates:
Does the following text contain any affirmative device words? Output either yes or no.
Text: """
{content}
"""
Answer:

514
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Proxy Data Generation Prompts (continued)

Stance Dataset - Labels:
A statement can agree, be neutral, or disagree with the statement: “Climate change/global
warming is a serious concern”. Classify the following statement into one of the three
categories. Output either A, B, or C. Output a letter only.
A) Agree
B) Neutral
C) Disagree
Statement: """
{content}
"""
Answer:

Congressional Bills Dataset - Covariates:
You are a political scientist familiar with the U.S. Congress and the DW-NOMINATE scoring
system, which places legislators and legislation on a left-right ideological spectrum ranging
approximately from -1 (most liberal) to +1 (most conservative). Below is the text of a
proposed bill. Based on the policy content, language, and framing of the bill, estimate the
DW-NOMINATE score that best represents its ideological position. Output a single nonzero
float between -1 and +1 representing the estimated DW-NOMINATE score of the bill.
Bill: """
{content}
"""
Answer:

Congressional Bills Dataset - Labels:
Does the following text relate to the economy? Output either true or false.
Text: """
{content}
"""
Label:

515

Synthetic Data Generation Prompts

Politeness (First Plural Pronouns)
Consider texts taken from user requests on Stack Exchange or Wikipedia. Each text is
labeled as either polite or impolite, and either contains or does not contain first-person plural
pronouns. Below is an example that {x}:
Example: """
{example}
"""
Now, generate a new example of a request that also {x}.

Politeness (Hedging)
Consider texts taken from user requests on Stack Exchange or Wikipedia. Each text can
be labeled as either polite or impolite, and as either containing a hedging device or not
containing one. Hedging devices are expressions that indicate uncertainty, caution, or a lack
of full commitment to a claim (e.g., may, might, could, would, possibly, probably, perhaps,
apparently, suggest, indicate, etc.). Below is an example that {x}:
Example: """
{example}
"""
Now, generate a new example of a request that also {x}.

516
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Synthetic Data Generation Prompts (continued)

Stance
Consider news headlines that take a stance — agree, disagree, or neutral — on the statement:
“Climate change/global warming is a serious concern."
Each headline also either contains or does not contain an affirmative device.
Below is an example of a headline.
Example: """
{example}
"""
Affirmative device: {x}
Now, generate a new news headline about global warming that also {x}.

Congressional Bills Data
You are a political language model trained to generate realistic examples of U.S. congressional
bills. Each bill is labeled as either “related to the economy" or “not related to the economy",
and is associated with a DW-NOMINATE score representing ideological position (ranging
from −1 liberal to +1 conservative).
Example:
Bill Text: """
{example}
"""
DW-NOMINATE Score: {dw_nominate_score}
Now, generate a new example of a bill that also has a DW-NOMINATE score of
{dw_nominate_score}. Output only the new bill text: """

517
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