Under review as a conference paper at ICLR 2026

ADAPTIVE PROTOTYPE LEARNING: UNLOCKING IN-
TRINSIC FEATURES FOR TEXTURE RECOGNITION

Anonymous authors
Paper under double-blind review

ABSTRACT

State-of-the-art texture recognition models often rely on cumbersome external
memory banks and complex training pipelines. We challenge this paradigm by
proposing a simple yet powerful alternative: learning from the rich intrinsic pat-
terns within each image itself. We introduce STP-Former (Simple Texture Pro-
totype Transformer), an architecture that dynamically distills a compact set of
intrinsic prototypes for each input sample. A lightweight cross-attention module,
the Texture Prototype Extractor (TPE), learns to identify and aggregate an im-
age’s most representative texture primitives on-the-fly. These adaptive prototypes,
inherently aligned with the input’s context, form a powerful basis for robust clas-
sification.Our contributions are twofold. First, we propose a decoupled two-stage
training strategy where the TPE is pre-trained using a self-supervised objective to
capture fundamental texture representations before a classifier is fine-tuned. Sec-
ond, to endow the learned feature space with a robust geometric structure, we
introduce a novel Supervised Topological Loss. Grounded in persistent homol-
ogy, this objective directly optimizes for intra-class compactness and inter-class
separation, pushing the boundaries of discriminability. This synergistic frame-
work yields a remarkable performance leap; on the challenging DTD benchmark,
STP-Former improves accuracy from 79% to over 86%. Our work demonstrates
that an adaptive, self-contained approach provides a more effective and efficient
paradigm for texture recognition.

1 INTRODUCTION

Texture, as a fundamental visual attribute, encapsulates the spatial organization of basic elements
within texture-rich images, serving as a vital representation of the underlying microstructure in
natural scenes |Liu et al.[(2019). Textured regions are typically characterized by repetitive patterns
with inherent variability, making them essential pre-attentive visual cues for comprehending natural
scenes. This unique property has enabled a wide range of applications, including medical image
analysis |Peikari et al.| (2015), content-based image retrieval, and material classification [Liu et al.
(2019).

For decades, handcrafted texture descriptors formed the basis of classical material and texture recog-
nition methods. Techniques such as Gray-Level Co-occurrence Matrices (GLCM) |Haralick et al.
(1973)), Local Binary Patterns (LBP) Kylberg & Sintorn|(2013)), and Gabor Filters|Idrissa & Acheroy
(2002) were widely utilized. Further advancements introduced aggregation-based approaches like
Bag of Words (BoW) and Vector of Locally Aggregated Descriptors (VLAD) Jégou et al.| (2010).

With the rise of deep learning, Convolutional Neural Networks (CNNs) and more recently Vision
Transformers (ViTs)|Dosovitskiy et al.|(2020) have become the dominant framework. Methods such
as FV-CNN [Liu et al.| (2019), DeepTEN [Zhang et al.|(2017), and DSRNet |Zhai et al.| (2020) lever-
age deep representations to extract texture features effectively. More recent approaches, including
CLASSNet [Chen et al.| (2021) and FENet Xu et al.| (2021), have incorporated multi-scale fractal
analysis to better adapt to spatial distributions. A parallel line of work has focused on leveraging
large, external memory banks of features, such as in PatchCore [Roth et al.| (2022), to compare test
samples against a comprehensive library of normal patterns.

Despite their success, these state-of-the-art methods share a fundamental limitation: a reliance on
extrinsic, pre-compiled knowledge derived from a training set. Whether it’s a learned statistical dis-

Under review as a conference paper at ICLR 2026

tribution or a static memory bank, these methods face an inherent feature misalignment problem.
Variations in pose, illumination, and scale in a test image often lead to a domain shift, causing its
features to misalign with the static representations learned from the training set. This misalignment
acts as a performance ceiling, as we formalize in Section 3]

To address this fundamental challenge, we propose a paradigm shift. Inspired by the observation that
even a single texture image contains rich, repetitive patterns sufficient for self-characterization |Luo
et al.[(2025)), we introduce a simple yet remarkably effective framework called STP-Former (Sim-
ple Texture Prototype Transformer). Our approach abandons the reliance on external knowledge
bases and instead learns to extract a compact set of Intrinsic Prototypes (IPs) dynamically from
each input image. This is our first major contribution: a decoupled two-stage training strategy where
a Texture Prototype Extractor (TPE) is first trained with a self-supervised objective to distill rep-
resentative texture primitives. Subsequently, a simple classifier is trained using these powerful,
highly-aligned intrinsic features. While this approach effectively solves the feature misalignment
problem, it raises a subsequent question: how can we best structure the geometry of this new adap-
tive feature space to maximize class separability?

To answer this, we introduce our second major contribution, which moves beyond conventional
losses. We propose to explicitly sculpt the feature manifold using principles from Topological Data
Analysis (TDA). While TDA has often been used as a regularizer to preserve existing data structures,
we employ it as a direct, supervised optimization objective to actively construct a more discrimina-
tive space. We put this concept into practice through a novel Supervised Topological Loss, an objec-
tive grounded in persistent homology that directly enforces intra-class compactness and inter-class
separation. The synergy between adaptive intrinsic prototypes and a topologically structured fea-
ture space creates a simple yet powerful framework that achieves a new state-of-the-art, improving
accuracy on the challenging GTOS dataset by over 10 percentage points.

2 RELATED WORK

2.1 DEEP LEARNING FOR TEXTURE RECOGNITION

The advent of deep learning has revolutionized texture recognition. Early works adapted pre-trained
CNNSs, often combining them with traditional encoding methods like Fisher Vectors (FV-CNN)|Cim-
poi et al.| (2015)). To enable end-to-end training, methods like DeepTEN |Zhang et al.| (2017) inte-
grated dictionary learning and residual encoding directly into the network. Subsequent works have
focused on capturing the complex statistical properties and spatial dependencies inherent in textures.
For instance, CLASSNet|Chen et al.|(2021]) and FENet |Xu et al.|(2021) successfully applied fractal
analysis to model the statistical self-similarity across feature layers. DSRNet Zhai et al.|(2020) and
MPAP [Zhai et al.[(2023)) explored the spatial dependency of texture primitives and the semantic re-
lationship between texture attributes. While powerful, these methods primarily focus on designing
sophisticated modules to better model the distribution of features learned from a training set, without
explicitly addressing the potential misalignment with test data.

2.2 TOPOLOGICAL DATA ANALYSIS IN DEEP LEARNING

Topological Data Analysis (TDA), particularly through its key tool of persistent homology (Dey &
Wang], 2022)), has emerged as a powerful method for analyzing high-dimensional data structures in
machine learning. Its applications are broad, ranging from enforcing topological priors in computer
vision tasks like image segmentation (Hu et al.| 2019; Clough et al.,|2020) to enhancing the expres-
siveness of graph neural networks (Yan et al., |2021; Immonen et al.l 2023). A significant line of
work focuses on using TDA as a regularizer to learn or preserve the topological structure of feature
spaces, especially in representation and generative learning contexts (Moor et al.,|2020; |Barannikov
et al.l 2022} Mishra et al., [2024). While these methods typically aim to maintain an assumed or
existing data topology, our work takes a different approach. We employ TDA not as a preservative
regularizer, but as a direct, supervised optimization objective. Our Supervised Topological Loss
actively constructs a new, geometrically structured feature space by explicitly enforcing intra-class
compactness and inter-class separation, thereby directly enhancing the model’s discriminative capa-
bilities for the classification task.

Under review as a conference paper at ICLR 2026

3 PRELIMINARY: THE PROBLEM OF FEATURE MISALIGNMENT IN TEXTURE
RECOGNITION

A dominant paradigm in modern texture recognition, especially in methods striving for state-of-the-
art performance, is based on metric learning against a set of pre-compiled representations. Let Xy,
be the training set and ® : Z — RYV*P be a deep feature extractor that maps an image x € Z to a
set of NV patch features. A memory bank or a set of class prototypes for each class c is constructed
from the training data, denoted as M. = {p.;} fil C RP, where each prototype p; is derived from
{‘b(l‘) | S 'Xtraimy(x) = C}.

The classification of a test image xs is then determined by a decision function g that measures the
similarity or distance between its features ®(zy) and the prototypes of each class:

9 = arg min D(P(Tyegr), M) (D

where D is a distance metric (e.g., Euclidean distance to the nearest prototype). This formulation
implicitly assumes that the feature distribution of test images for a class ¢, Py (®(2) | y(z) = ¢),
is well-aligned with the distribution represented by the training prototypes M..

However, in real-world scenarios ("in the wild"), this assumption is frequently violated. Let 7 be
a set of transformations (e.g., changes in illumination, scale, viewpoint) that preserve the semantic
texture class. For a test image x,, = T'(2ws) Where T € T, its feature representation ()
may undergo a significant shift in the feature space. We define this as the Feature Misalignment
Problem: there exists a transformation 7" such that even if y(z(y) = y(Zwes) = ¢, the feature
distance increases significantly:

D((I)(T(xtest))7Mc) > D((I)(xtest)aMC) ()

This can lead to a situation where the misaligned feature ®(7'(z.s)) becomes closer to the prototype
set of an incorrect class ¢’ # ¢:

D(Q(T (wiest)), Mer) < D((T (Test)), Me) 3)

This misalignment creates a fundamental performance bottleneck for methods reliant on static, ex-
trinsic knowledge from the training set. It necessitates a new approach that can generate representa-
tions inherently aligned with the context of each individual test image. Our work directly addresses
this challenge by proposing a framework that extracts prototypes intrinsically from each image,
ensuring perfect alignment by design.

4 METHODOLOGY

Our approach, the Simple Texture Prototype Transformer (STP-Former), is designed to over-
come the feature misalignment problem inherent in methods relying on static, extrinsic knowledge.
We achieve this by dynamically extracting a set of intrinsic prototypes from each test image. The
framework is realized in two variants: a foundational STP-Former and an enhanced version, STP-
Former+, which incorporates a novel topological loss to explicitly structure the feature space. Both
models are trained using a decoupled two-stage strategy that first learns a powerful, self-supervised
texture representation and then fine-tunes a classifier on top of it.

4.1 CORE ARCHITECTURE

The architecture is shared between both STP-Former and STP-Former+ and consists of three main
components: a backbone feature extractor, a bottleneck module for feature refinement, and our core
Texture Prototype Extractor (TPE).

Backbone and Feature Fusion. We employ the DINOv2 model |Oquab et al.| (2023)) with a Vision
Transformer (ViT-B/14) architecture as our backbone, leveraging its powerful representations pre-
trained on a large-scale dataset. For a given input image z € RF*XW>3 (with H = W = 518),
the ViT backbone produces a sequence of patch tokens. To capture a rich, multi-level representation
of texture, we extract features from intermediate layers 2 through 9. These features are then fused
via element-wise averaging to produce a single, comprehensive set of patch features Fy,,, € RV <P,
where NV = 1369 is the number of patches and D = 768 is the feature dimension.

Under review as a conference paper at ICLR 2026

Step1:Self-Supervised Intrinsic Prototype Learning

/|
I

———————

Simple Texture Prototype
Transformer(STP-Former)

N
K Learnable Texture Prototype for |
TPE I

~
g
g
]
T
g
5
]

2y
3
<3
S
=
8
X
&

o
ool
OOO

© "o

|
|
|
|
|
|
|
|
|
|
|
|
|
|
/

Random Initialization

Optimization By Gather Loss + Topo Loss

Global Prototype-Guided

Texture Perception —> Stepl Route

- > Step? Route

—> Coherence Loss
Topo Loss

7 Frozen

Q) rrainavle
Y+ Learnabie
A Prototype

Texture Images(Training Data) -

Sutjood DAY

N
TE
2 =
83
Sl
37
S
35
~ R

o Patch
Features
[

Figure 1: The overall architecture of our Simple Texture Prototype Transformer (STP-
Former). Our framework is based on a decoupled two-stage training strategy. Stage 1: Self-
Supervised TPE Training. An image encoder extracts patch features from training images. A
set of K learnable texture prototype queries are optimized via a self-supervised objective (Gather
Loss), which ensures the resulting prototypes are representative of the patch features. Stage 2: Su-
pervised Classifier Training. The pre-trained and frozen TPE is used to extract intrinsic prototypes
from images. These are aggregated and fed into a simple, trainable classifier. For our enhanced
model, STP-Former+, a Supervised Topological Loss is added in this stage to regularize the feature
space geometry, enforcing class separation.

Texture Prototype Extractor (TPE). The TPE is the central component responsible for distilling
intrinsic prototypes. It comprises two sub-modules:

(i) Bottleneck MLP: The fused patch features F,, are first passed through a simple MLP
with a bottleneck structure (D — 4D — D) to refine and transform the features into a
more discriminative space, resulting in Fiefneq € RNXD,

(ii) Intrinsic Prototype Aggregator: The core of our method lies in this module. We initial-
ize a set of K = 16 learnable vectors, Pquery € REXD which serve as learnable texture
prototype queries. These queries are shared across all images. For each image, the aggre-
gator uses a multi-head cross-attention mechanism where P gery acts as the query and the
image’s refined patch features Fefineq serve as the key and value. This allows the queries
to "attend" to the most salient texture primitives within the image and aggregate them into
a compact set of K Intrinsic Prototypes (IPs), P, € RE*P.

The complete data flow is as follows:

DINOv2 MLP P query
Fraw Freﬁned

Image Pou

Cross-Attention

4.2 DECOUPLED TWO-STAGE TRAINING STRATEGY

We adopt a two-stage training strategy to ensure that the TPE learns a robust and general repre-
sentation of texture primitives before being adapted for the specific classification task. The overall
process is detailed in Algorithm T}

Under review as a conference paper at ICLR 2026

4.2.1 STAGE 1: SELF-SUPERVISED INTRINSIC PROTOTYPE LEARNING

The goal of this stage is to train the TPE to generate prototypes that faithfully represent the texture
patterns within an image, independent of class labels.

Objective and Loss Function. To ensure the extracted intrinsic prototypes P, = {pk}kK:1 are
meaningful representatives of the image’s patch features Fiefineq = {fn}ﬁf:l, we employ a self-
supervised objective. The core idea is to compel the prototypes to collectively cover the feature
manifold of the patches. This is achieved by minimizing the average distance from each patch
feature to its nearest prototype in the cosine similarity space, effectively ensuring that every patch
feature is well-represented by the prototype set. We refer to this objective as the Gather Loss |Luo
et al.| (2025), which is formally defined as:

1 Y f,-p
Loather = — (1 — max M) @)
s = 3 2 (1=, 9%, 2 Tl
Minimizing this loss forces the learnable queries P gery and the bottleneck MLP to learn a process
that distills the most representative texture features from any given image into the K prototypes.

Training Details. During this stage, we freeze the initial 8 layers of the DINOv2 backbone and
fine-tune the final 4 layers. The trainable parameters include these top layers of the backbone,
the bottleneck MLP, and the INP Aggregator (including the prototype queries Pquery). We use the
AdamW optimizer with a learning rate of 1 x 10~3 and a weight decay of 1 x 10~%, training for 100
epochs with a batch size of 16.

4.2.2 STAGE 2: SUPERVISED CLASSIFICATION

In the second stage, we freeze the pre-trained TPE and train a classifier to map the extracted intrinsic
prototypes to their corresponding class labels.

Feature Aggregation and Classification. For each image, the frozen TPE outputs a set of K
intrinsic prototypes Py, € RE*P . These prototypes are aggregated into a single global feature
vector z € RP via global average pooling:

1 K
z=?kz_1pk (5)

This global feature z is then passed to a lightweight classification head, consisting of Layer Normal-
ization, a Dropout layer (p = 0.1), and a final linear layer that maps z to the class logits.

Training STP-Former (Base Version). The base model is trained by minimizing the standard
Cross-Entropy Loss (Lcg) between the predicted logits and the ground-truth labels. To maintain
the quality of the pre-trained feature extractor, we use a differential learning rate scheme: the TPE
components are fine-tuned with a small learning rate (1 x 10~®), while the new classification head
is trained with a larger learning rate (1 x 10~%). The model is trained for 50 epochs.

4.3 STP-FORMER+: REGULARIZATION WITH TOPOLOGICAL LOSS

The key innovation of STP-Former+ is the introduction of a novel Supervised Topological Loss
during Stage 2, designed to explicitly regularize the geometric structure of the feature space. This
approach enhances the model’s generalization by enforcing intra-class compactness and inter-class
separation from a topological perspective.

Theoretical Foundation. Our method leverages concepts from Topological Data Analysis (TDA),
specifically 0-dimensional Persistent Homology (H). For a mini-batch of global features, we con-
struct a Vietoris-Rips filtration, which is a sequence of simplicial complexes built by progressively
adding edges between points in increasing order of their distance. H(persistent homology tracks
the birth and death of connected components throughout this filtration. A component is "born" at
the beginning (each point is its own component) and "dies" when it merges with an older, existing
component. The distance at which this merge occurs is recorded as the component’s death time.

Under review as a conference paper at ICLR 2026

Al

gorithm 1 Training Procedure for STP-Former

1:

AN A

11:
12:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:

27

Input: Training dataset D, DINOv2 backbone ®, num prototypes K, learning rates i, 12,
epochs Ey, Es.

Initialize: TPE parameters O1pg (Bottleneck MLP B, Prototype Queries P qyery), Classifier pa-
rameters 6c.

> — Stage 1: Self-Supervised TPE Training —
for epoch =1 to F; do
for image batch x € D do
Extract multi-layer patch features: F,y, + ®(x)
Refine patch features: Frefined ¢ B(Fraw)
Aggregate intrinsic prototypes: P oy <— CrossAttention(Pquery7 Frefined)
Compute Gather Loss using Eq. 4t Lgather < ComputeLoss(F'refined; Pout)
Update trainable parameters of ® and Otpg using Vg g, Leamer With learning rate 7.
end for
end for
> — Stage 2: Supervised Classifier Training —
Freeze parameters of ® and TPE.

for epoch =1 to F> do
for (image batch x, label batch y) € D do
> Forward pass with no gradient through the extractor
Fraw + (P(X); Fircfined < B(Fraw)
Py < CrossAttention(Pguery, Frefinea)
Aggregate to global feature: z < AveragePool(Pyy)
Predict logits: logits « C(z)
Compute Cross-Entropy Loss: Lcg < CrossEntropy(logits, y)
Update 6 using V. Lcg with learning rate ;.
(Optional) Fine-tune frpg with learning rate 12 /10.
end for
end for
: Output: Trained STP-Former model with parameters frpg and 6.

Topological Loss Formulation. For a mini-batch of B global features {z;}2 , with correspond-
ing labels {y;}2 ,, we first compute the pairwise Euclidean distance matrix D;; = d(z;,z;). We
then apply the persistent homology algorithm to identify the set of critical edges—pairs of indices

(i,

j) whose corresponding edge in the filtration causes two previously disconnected components to

merge. The death time of such an event is precisely the distance d(z;,z;). Our topological loss,
Liopo, is composed of two terms that operate on these critical edges:

¢ Intra-Class Compactness Loss (Linea): This term encourages features from the same
class to be close. We sum the distances of all critical edges that connect points (¢, 7)
belonging to the same class. Minimizing this term forces same-class samples to merge
early in the filtration, promoting a compact class cluster.

»Cimru = Z d(Zi, Zj) (6)
(4,5) € Eerit
Yi=Yj;

¢ Inter-Class Separation Loss (Liner): This term encourages features from different classes
to be far apart. We sum the negative distances of all critical edges connecting points (i, j)
from different classes. Minimizing this term is equivalent to maximizing their merge dis-
tance, pushing them to connect as late as possible in the filtration and thus promoting
separation between class clusters.

£inter = - Z d(zi7 Zj) (7)
(i,j)GEcm
YiFYj

Under review as a conference paper at ICLR 2026

Here, E. denotes the set of all critical pairs identified by the Hy algorithm. The total topological
loss is a weighted sum of these two components: Ligpo = Lintra+Ainter Linter, Where we set Ajper = 0.5
based on empirical validation.

Final Objective for STP-Former+. The complete loss function for training STP-Former+ in
Stage 2 combines the standard classification objective with our topological regularizer:

Liotal = ECE + Atopoﬁtopn 3

where Apo = 0.1 is a hyperparameter balancing the two loss terms. This composite loss trains the
classifier not only to be accurate but also to produce a feature space with a robust and well-separated
geometric structure, enhancing generalization. The training setup (epochs, learning rates) remains
the same as the base STP-Former.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTING

Datasets. The proposed method is evaluated on six widely-used benchmark datasets. The Describ-
able Textures Database (DTD) |Cimpoi et al.|(2014) comprises 47 texture categories, each contain-
ing 120 images, with ten predefined splits for training, validation, and testing. The Flickr Material
Dataset (FMD) |Sharan et al.|(2013)) consists of ten material categories and is a standard benchmark
for material classification. The Materials in Context Database (MINC) Bell et al.| (2015) includes
23 material classes, with 2500 images per class, and provides five training/testing splits. The Fab-
rics dataset[Kampouris et al.|(2016) serves as a publicly available resource for fine-grained material
classification. Ground Terrain in Outdoor Scenes (GTOS) Xue et al.[(2017) consists of 40 outdoor
ground material classes, with a predefined training/testing split. Finally, the KTH-TIPS2b |Caputo
et al.|(2005)) dataset includes texture-rich images from 11 material categories, captured under various
conditions to simulate realistic scenarios.

Implementation Details. For a fair comparison, we implement our methods with two different
backbones: a standard ResNet-50 and the more powerful DINOv2-ViT-B/14. All experiments are
conducted using the PyTorch framework on a single NVIDIA A100 GPU. Images are resized to
518 x 518. We follow the two-stage training strategy detailed in Sectiond] In Stage 1, the TPE is
trained for 100 epochs using the AdamW optimizer with a learning rate of 1 x 1073, In Stage 2, the
classifier is trained for 50 epochs with a differential learning rate scheme: 1 x 10~ for the classifier
head and 1 x 10~ for fine-tuning the TPE. The batch size is set to 16 for all experiments. For our
STP-Former+ model, the topological loss hyperparameters are set to Apo = 0.1 and Ajgeer = 0.5.

5.2 COMPARISON WITH STATE-OF-THE-ART METHODS

As shown in Table E], our proposed methods, STP-Former and STP-Former+, achieve new state-of-
the-art results across all six challenging texture recognition benchmarks.

Even when using a standard ResNet backbone, our approach demonstrates a distinct advantage over
previous methods. STP-Former+ (ResNet) surpasses the strong baseline GraphTEN |Peng et al.
(2025)) on 5 out of 6 datasets, with notable gains on GTOS (88.1% vs. 86.8%) and KTH (89.2% vs.
87.4%), showcasing the general effectiveness of our intrinsic prototype extraction and topological
regularization framework.

The performance is further amplified when leveraging the powerful DINOv2 backbone. Our STP-
Former+ (DINOv2) model establishes a new SOTA by a significant margin across all datasets.
The most remarkable improvements are observed on the DTD dataset, where our model achieves
86.1% accuracy, a substantial 7.0% absolute improvement over the previous best, GraphTEN. This
highlights our model’s superior ability to handle the diverse and complex patterns in DTD. Similarly,
on GTOS, FMD, and KTH, our model pushes the state-of-the-art to 88.7%, 90.3%, and 90.0%
respectively.

Furthermore, a consistent performance gap is observed between our base model, STP-Former, and
the enhanced STP-Former+. The introduction of the Supervised Topological Loss consistently yields

Under review as a conference paper at ICLR 2026

an accuracy boost of 1-2% across most datasets and backbones (e.g., 84.47% to 86.1% on DTD
with DINOV2). This empirically validates the effectiveness of our topological loss in structuring the
feature space for better class separability. These results collectively demonstrate that our proposed
paradigm of combining dynamic intrinsic prototype extraction with explicit geometric regularization
sets a new standard for texture recognition.

Table 1: Performance comparison of different methods in terms of classification accuracy (%). The
best results are in bold, and the second best are underlined.

DTD MINC FMD Fabrics GTOS KTH
Method mean std mean std mean std mean std mean std mean std

FC-CNN(CVPR15)Cimpoi et al.|(2015) 629 08 604 05 775 18 579 06 685 06 818 25
FV-CNN(CVPR15)Cimpoi et al.|(2015) 723 1.0 698 05 798 18 665 09 771 06 754 1.5

BCNN(CVPR16)Lin & Maj1|(2016) 69.6 07 671 1.1 778 19 656 - 787 03 751 28
Deep-TEN(CVPRI7)Zhang et al.|{(2017) 696 05 813 07 802 09 752 07 845 04 820 33
DEP(CVPR18)Xue et al.|(2018) 732 05 8.0 07 807 07 743 12 - - 824 35
MAPNet(ICCV19)Zhai et al.|(2019) 76.1 0.6 - - 852 0.7 - - 847 22 845 13
DSRNet(CVPR20)Zhai et al.|(2020) 776 0.6 - - 86.0 0.8 - - 853 20 859 13
HistNet(PR21)Peeples et al.|(2020) 720 12 824 03 - - - - - - - -
FENet(NeurIPS2T)Xu et al.|(2021) 742 0.1 839 0.1 86.7 02 - - 857 0.1 882 0.2
CLASSNet(CVPR21)Chen et al.|(2021) 740 05 840 06 8.2 09 - - 856 22 877 13
MPAP(TPAMI23)Zhai et al.|(2023) 780 05 825 0.1 876 09 - 86.1 1.8 879

GraphTEN(ICMEZ2025)Peng et al.|(2025) 79:1 06 82 03 877 12 807 06 868 25 874 1:6
Our methods with ResNet backbone

STP-Former (ResNet) 804 05 861 04 886 08 815 05 872 19 883 1.2
STP-Former+ (ResNet) 817 04 869 03 8.5 07 83 04 8.1 15 892 1.0
Our methods with DINOv2 backbone

STP-Former (DINOv2) 8447 03 875 03 892 06 8.5 04 877 06 889 1.1
STP-Former+ (DINOv2) 8.1 02 886 02 903 05 847 03 887 1.7 900 038

5.3 ABLATION STUDIES

To rigorously evaluate the contribution of each component in our proposed framework, we conduct
a series of detailed ablation studies. We dissect our model to analyze the effectiveness of: (1) the
Texture Prototype Extractor (TPE) architecture itself, (2) the self-supervised Gather Loss (Lgather),
(3) our decoupled two-stage training strategy, and (4) the Supervised Topological Loss (Liopo). We
report the performance on three key datasets: DTD, MINC, and GTOS, using DINOv?2 as the back-
bone. The results are summarized in Table

Table 2: Detailed ablation study on the DTD, MINC, and GTOS datasets. We incrementally add our
key components to a baseline model to demonstrate their individual and collective contributions to
the final performance.

Model Configuration TPE Arch. Two-Stage Loaher Liopo Accuracy (%)
DTD MINC GTOS
(A) Baseline (End-to-End Classifier) 81.2 85.0 85.1

(B) + TPE Architecture
(C) + Gather Loss (Single-Stage)

(D) STP-Former (Ours, Base)
(E) STP-Former+ (Ours, Full)

82.1 85.8 85.9
v 83.2 86.5 86.6

4 84.5 87.5 87.7
v v 86.1 88.6 88.7

AN NN

4
v

We start with a strong baseline (A) using a standard end-to-end classifier on the DINOv2 backbone,
which achieves up to 85.1% on GTOS. Simply replacing the average pooling with our TPE architec-
ture (B) provides an initial performance gain (e.g., +0.9% on DTD), demonstrating its architectural
benefit as a feature aggregator. This is significantly enhanced in model (C) by introducing the self-
supervised Gather Loss (Lgamer) in a single-stage setup, which boosts accuracy by another 1.1%
on DTD. This confirms that guiding the TPE to learn representative intrinsic prototypes is highly
beneficial. The crucial role of our decoupled training strategy is then validated by comparing this
single-stage model to our proposed STP-Former (D). By training the TPE with Lg,ner in a dedicated
first stage before classifier training, we see a substantial improvement, with accuracy on DTD jump-
ing from 83.2% to 84.5%. This proves that decoupling is key to creating robust, general-purpose

Under review as a conference paper at ICLR 2026

features. Finally, by adding the Supervised Topological Loss (Lpo) during the second stage, we
arrive at our full model, STP-Former+ (E). This final component elevates performance to its peak
across all datasets, reaching 86.1% on DTD and 88.7% on GTOS. The consistent gain of +1.0-1.6%
provides clear evidence that explicitly optimizing the geometric structure of the feature manifold is
a highly effective regularization strategy, ensuring the learned features are both representative and
well-separated for a more accurate final classification.

Figure 2: Visualization of decision heatmaps for DTD texture samples. The visualizations demon-
strate that our intrinsic prototypes learn to attend to texture primitives distributed globally across the
entire image. This contrasts with typical object recognition models where attention is often con-
centrated on specific, localized regions. Our model’s distributed focus highlights its effectiveness in
capturing the holistic and repetitive nature of texture patterns.

6 CONCLUSION

In this paper, we addressed the fundamental feature misalignment problem in texture recognition.
We proposed the Simple Texture Prototype Transformer (STP-Former), a novel framework that
shifts the paradigm from relying on static, extrinsic knowledge to leveraging dynamic, intrinsic
prototypes extracted from each image on-the-fly. Our core contributions are a decoupled two-stage
training strategy, which uses a self-supervised Gather Loss to learn a powerful Texture Prototype Ex-
tractor (TPE), and a novel Supervised Topological Loss that further enhances class discriminability
by explicitly optimizing the geometric structure of the feature space.

Extensive experiments on six benchmark datasets demonstrate that STP-Former achieves new state-
of-the-art performance, significantly outperforming previous methods. Our analysis further reveals
that the framework is highly efficient and robust to hyperparameter choices like the number of pro-
totypes. By demonstrating that a self-contained, adaptive approach can surpass complex models
reliant on external memory banks, we believe STP-Former provides a more effective and practical
paradigm for texture recognition. Future work could explore the application of this intrinsic proto-
type learning framework to other fine-grained visual recognition domains where intra-class variation
and instance-specific details are paramount.

Under review as a conference paper at ICLR 2026

REFERENCES

Serguei Barannikov, Ilya Trofimov, Nikita Balabin, and Evgeny Burnaev. Representation topology
divergence: A method for comparing neural network representations. In International Conference
on Machine Learning, pp. 1607-1626. PMLR, 2022.

Sean Bell, Paul Upchurch, Noah Snavely, and Kavita Bala. Material recognition in the wild with
the materials in context database. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 3479-3487, 2015.

Barbara Caputo, Eric Hayman, and P Mallikarjuna. Class-specific material categorisation. In Tenth
IEEE International Conference on Computer Vision (ICCV’05) Volume 1, volume 2, pp. 1597-
1604. IEEE, 2005.

Zhile Chen, Feng Li, Yuhui Quan, Yong Xu, and Hui Ji. Deep texture recognition via exploiting
cross-layer statistical self-similarity. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 5231-5240, 2021.

M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A. Vedaldi. Describing textures in the wild. In
Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014.

Mircea Cimpoi, Subhransu Maji, and Andrea Vedaldi. Deep filter banks for texture recognition and
segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp- 3828-3836, 2015.

James R Clough, Nicholas Byrne, Ilkay Oksuz, Veronika A Zimmer, Julia A Schnabel, and An-
drew P King. A topological loss function for deep-learning based image segmentation using
persistent homology. IEEFE transactions on pattern analysis and machine intelligence, 44(12):
8766-8778, 2020.

Tamal Krishna Dey and Yusu Wang. Computational topology for data analysis. Cambridge Univer-
sity Press, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An im-
age is worth 16x16 words: Transformers for image recognition at scale. In International Confer-
ence on Learning Representations, 2020.

R. M. Haralick, K. Shanmugam, and I. Dinstein. Textural features for image classification. /IEEE
Transactions on Systems, Man, and Cybernetics, SMC-3(6):610-621, 1973. doi: 10.1109/TSMC.
1973.4309314.

Xiaoling Hu, Fuxin Li, Dimitris Samaras, and Chao Chen. Topology-preserving deep image seg-
mentation. In Advances in neural information processing systems, volume 32, 2019.

Mahamadou Idrissa and Marc Acheroy. Texture classification using gabor filters. Pattern Recognit.
Lett., 23(9):1095-1102, 2002. doi: 10.1016/S0167-8655(02)00056-9. URL https://doi.
org/10.1016/S0167-8655(02)00056-09.

Johanna Immonen, Amauri Souza, and Vikas Garg. Going beyond persistent homology using per-
sistent homology. Advances in Neural Information Processing Systems, 36, 2023.

Hervé Jégou, Matthijs Douze, Cordelia Schmid, and Patrick Pérez. Aggregating local descriptors
into a compact image representation. In The Twenty-Third IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2010, San Francisco, CA, USA, 13-18 June 2010, pp. 3304-3311.
IEEE Computer Society, 2010. doi: 10.1109/CVPR.2010.5540039. URL https://doi.org/
10.1109/CVPR.2010.5540039.

Christos Kampouris, Stefanos Zafeiriou, Abhijeet Ghosh, and Sotiris Malassiotis. Fine-grained ma-
terial classification using micro-geometry and reflectance. In Bastian Leibe, Jiri Matas, Nicu Sebe,
and Max Welling (eds.), Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam,
The Netherlands, October 11-14, 2016, pp. 778-792. Springer, 2016.

10

https://doi.org/10.1016/S0167-8655(02)00056-9
https://doi.org/10.1016/S0167-8655(02)00056-9
https://doi.org/10.1109/CVPR.2010.5540039
https://doi.org/10.1109/CVPR.2010.5540039

Under review as a conference paper at ICLR 2026

Gustaf Kylberg and Ida-Maria Sintorn. Evaluation of noise robustness for local binary pattern de-
scriptors in texture classification. EURASIP J. Image Video Process., 2013:17, 2013. doi: 10.
1186/1687-5281-2013-17. URL https://doi.org/10.1186/1687-5281-2013-17.

Tsung-Yu Lin and Subhransu Maji. Visualizing and understanding deep texture representations. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2791-2799,
2016.

Li Liu, Jie Chen, Paul Fieguth, Guoying Zhao, Rama Chellappa, and Matti Pietikdinen. From bow
to cnn: Two decades of texture representation for texture classification. International Journal of
Computer Vision, 127(1):74-109, 2019.

Wei Luo, Yunkang Cao, Haiming Yao, Xiaotian Zhang, Jianan Lou, Yuqi Cheng, Weiming Shen,
and Wenyong Yu. Exploring intrinsic normal prototypes within a single image for universal
anomaly detection. In Proceedings of the Computer Vision and Pattern Recognition Conference,
pp. 9974-9983, 2025.

Aniket Mishra, Mayank Agarwal, and Hari Sundar. TopoDiffusionNet: A topology-aware diffusion
model. arXiv preprint arXiv:2410.16646, 2024.

Michael Moor, Max Horn, Bastian Rieck, and Karsten Borgwardt. Topological autoencoders. In
International conference on machine learning, pp. 7045-7054. PMLR, 2020.

Maxime Oquab, Timothee Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin EI-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193,2023.

Joshua Peeples, Weihuang Xu, and Alina Zare. Histogram layers for texture analysis. arXiv preprint
arXiv:2001.00215, 2020.

Mohammad Peikari, Mehrdad J Gangeh, Judit Zubovits, Gina Clarke, and Anne L. Martel. Triaging
diagnostically relevant regions from pathology whole slides of breast cancer: A texture based
approach. IEEE transactions on medical imaging, 35(1):307-315, 2015.

Bo Peng, Jintao Chen, Mufeng Yao, Chenhao Zhang, Jianghui Zhang, Mingmin Chi, and Jiang Tao.
Graphten: Graph enhanced texture encoding network. arXiv preprint arXiv:2503.13991, 2025.

Karsten Roth, Latha Pemula, Joaquin Zepeda, Bernhard Scholkopf, Thomas Brox, and Peter Gehler.
Towards total recall in industrial anomaly detection. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 14318-14328, 2022.

Lavanya Sharan, Ce Liu, Ruth Rosenholtz, and Edward H Adelson. Recognizing materials using
perceptually inspired features. International journal of computer vision, 103(3):348-371, 2013.

Yong Xu, Feng Li, Zhile Chen, Jinxiu Liang, and Yuhui Quan. Encoding spatial distribution of
convolutional features for texture representation. Advances in Neural Information Processing
Systems, 34:22732-22744, 2021.

Jia Xue, Hang Zhang, Kristin Dana, and Ko Nishino. Differential angular imaging for material
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 764-773,2017.

Jia Xue, Hang Zhang, and Kristin J. Dana. Deep texture manifold for ground terrain recognition. In
2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City,
UT, USA, June 18-22, 2018, pp. 558-567. IEEE Computer Society, 2018. doi: 10.1109/CVPR.
2018.00065. URL http://openaccess.thecvf.com/content_cvpr_2018/html/
Xue_Deep_Texture_Manifold CVPR_2018_paper.htmll

Zuoyu Yan, Tengfei Ma, Liangcai Gao, Zhi Tang, and Chao Chen. Link prediction with persistent

homology: An interactive view. In International conference on machine learning, pp. 11659—
11669. PMLR, 2021.

11

https://doi.org/10.1186/1687-5281-2013-17
http://openaccess.thecvf.com/content_cvpr_2018/html/Xue_Deep_Texture_Manifold_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Xue_Deep_Texture_Manifold_CVPR_2018_paper.html

Under review as a conference paper at ICLR 2026

Wei Zhai, Yang Cao, Jing Zhang, and Zheng-Jun Zha. Deep multiple-attribute-perceived network
for real-world texture recognition. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 3613-3622, 2019.

Wei Zhai, Yang Cao, Zheng-Jun Zha, HaiYong Xie, and Feng Wu. Deep structure-revealed network
for texture recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11010-11019, 2020.

Wei Zhai, Yang Cao, Jing Zhang, Haiyong Xie, Dacheng Tao, and Zheng-Jun Zha. On exploring
multiplicity of primitives and attributes for texture recognition in the wild. /IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2023.

Hang Zhang, Jia Xue, and Kristin J. Dana. Deep TEN: texture encoding network. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July
21-26, 2017, pp. 2896-2905. IEEE Computer Society, 2017. doi: 10.1109/CVPR.2017.309. URL
https://doi.orqg/10.1109/CVPR.2017.3009,

12

https://doi.org/10.1109/CVPR.2017.309

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our research did not involve human subjects or ani-
mal experimentation. All datasets used in this study, including DTD, MINC, FMD, Fabrics, GTOS,
and KTH-TIPS2b, are publicly available and were used in strict compliance with their respective
usage licenses. Our work focuses on the general task of texture recognition, and we have taken
care to ensure our methodology does not introduce societal biases or discriminatory outcomes. No
personally identifiable information was used, and our experiments do not raise privacy or security
concerns. We are committed to transparency and the responsible advancement of machine learning
research.

A.2 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. To this end, all source code
for our models, training scripts, and evaluation procedures will be made publicly available in an
anonymous repository upon publication. The experimental setup, including data preprocessing,
model configurations, training hyperparameters, and hardware details, is described thoroughly in
Section ?? and the Appendix. We provide a detailed description of our core contributions, including
the architecture of the Texture Prototype Extractor (TPE), the implementation of the decoupled
two-stage training strategy, and the formulation of the Supervised Topological Loss, to facilitate
replication. Furthermore, all datasets used in our evaluation are public benchmarks, ensuring that
our results can be consistently verified. We believe these measures provide a clear and complete
roadmap for other researchers to reproduce our work.

A.3 LLM USAGE

Large Language Models (LLMs) were utilized to assist in the writing and polishing of this
manuscript. Specifically, we used an LLM for tasks such as improving sentence structure, checking
for grammatical errors, and enhancing the overall clarity and flow of the text. The core scientific con-
tributions, including the ideation of the STP-Former architecture, the design of the topological loss
function, the experimental methodology, and the analysis of the results, were developed exclusively
by the authors. The role of the LLM was strictly limited to that of a writing aid. The authors have
reviewed and edited all text and take full responsibility for the final content of the paper, ensuring
its scientific accuracy and integrity.

A.4 MODEL ANALYSIS

Impact of Prototype Number. To evaluate the sensitivity of our model to the number of intrinsic
prototypes (K), we conduct an experiment on our DINOv2-based models across three datasets. As
shown in Table [3] the performance is remarkably stable across a wide range of K values from 6 to
32. While performance peaks at our default setting of K = 16, the variations are minor (typically
within 0.7%), indicating that our method is not hypersensitive to this parameter. This robustness
demonstrates that the TPE can effectively distill the core texture primitives into either a very com-
pact set or a more redundant one without a significant loss in performance, further highlighting the
strength of our intrinsic prototype extraction mechanism.

Efficiency Analysis. Beyond accuracy, we also evaluate the computational efficiency of our
method. Table [compares our ResNet-50 based model with several other SOTA methods. Our
STP-Former (ResNet-50) achieves a highly competitive balance between performance and effi-
ciency. With only 27.8M parameters and 4.1 GFLOPs, it is significantly more lightweight than
larger models like MAP-Net and DSR-Net, while delivering superior accuracy (as seen in Table [T).
Its efficiency is on par with recent methods like MPAP while outperforming them. It is crucial to
note that both STP-Former and STP-Former+ share the exact same architecture and thus have iden-
tical parameter counts and FLOPs; the difference lies only in the loss function used during training.
Furthermore, for our DINOv2-based models, despite the large size of the transformer backbone,
our fine-tuning strategy involves freezing the majority of the early layers. This means the number

13

Under review as a conference paper at ICLR 2026

Table 3: Ablation study on the number of prototypes (/) using DINOv2-based models. Performance
remains robust across a wide range of values, with K = 16 selected as the optimal default.

Number of Prototypes (K)
6 8 12 16 24 32

DTD 839 842 844 845 843 84.1
STP-Former (DINOv2) MINC 86.8 87.1 873 875 874 872
GTOS 87.1 873 87.6 877 876 874

DTD 854 857 859 861 860 858
STP-Former+ (DINOv2) MINC 879 88.2 885 88.6 88.5 883
GTOS 88.1 883 88.6 88.7 88.6 885

Model Dataset

of trainable parameters is kept remarkably small, making the training process efficient while still
leveraging the powerful representations of the pre-trained model. This highlights that our framework
is not only effective but also computationally practical.

Table 4: Efficiency comparison with other methods. Our ResNet-50 based model demonstrates a
strong balance of low computational cost and high performance.

Method Params (M) FLOPs (G) Running Time (ms)
Resnet-50 25.56 3.53 14.8
DEP Xue et al.|(2018) 25.48 3.67 15.9
MAP-Net|Zhai et al.|(2019) 47.38 7.31 25.4
DSR-Net|Zhai et al.[(2020) 70.54 9.56 38.5
FENet | Xu et al.| (2021) 23.93 3.88 17.1
MPAP [Zhai et al.[(2023) 28.20 4.21 17.6
STP-Former (ResNet-50) 27.80 4.10 17.2

14

Under review as a conference paper at ICLR 2026

A.5 VISUALIZATION OF THE DECISION-MAKING PROCESS

To ensure the interpretability of our model and to understand how STP-Former arrives at its con-
clusions, we developed a visualization method that traces its decision-making process. Standard
attention heatmaps can sometimes be ambiguous. Our approach, illustrated in Figure 3] provides a
more comprehensive, three-part analysis for each sample, designed to answer two key questions: (1)
Which intrinsic prototypes are most influential for classifying this specific image? (2) Where in the
image do these influential prototypes focus their attention?

The generation of this visualization follows a clear, multi-step process derived from the model’s
internal states during inference:

Step 1: Prototype Attention Extraction. During a forward pass, we use a forward hook to extract
the raw attention maps from the TPE’s cross-attention module. This gives us 16 distinct attention
maps, one for each learnable prototype. Each map reveals how strongly a specific prototype attends
to every patch in the input image.

Step 2: Prototype Importance Calculation. For any given image, not all 16 prototypes con-
tribute equally to the final decision. To quantify their influence, we compute a dynamic Prototype
Importance Score for each one. This score is not a learned parameter but is calculated on-the-fly
based on a set of heuristics that analyze the characteristics of each prototype’s attention map, such as
its intensity, concentration, and spatial distribution. The resulting scores, visualized in the horizontal
bar chart on the right of each panel in Figure 3] rank the relevance of each abstract texture prototype
for the given input.

Step 3: Weighted Decision Heatmap Generation. The central visualization, which we term the
Decision Heatmap, is more than just a simple attention map. It is a weighted aggregation of all
16 individual prototype attention maps. Each map is weighted by its corresponding Prototype Im-
portance Score calculated in the previous step. This ensures that the final heatmap predominantly
highlights the image regions attended to by the most influential prototypes for that specific classifi-
cation decision.

Significance of the Visualization. This three-part analysis provides a transparent and interpretable
view of the model’s complete reasoning chain. It allows us to deconstruct the final prediction by
showing which abstract texture concepts (the prototypes) were deemed most important, and pre-
cisely where those concepts were identified in the image. This explains why the model’s focus
appears globally distributed: the final heatmap is the sum of multiple specialized prototypes, each
focusing on different instances of a repeating texture primitive. This holistic, evidence-aggregation
approach is fundamentally different from object-centric models and is key to our model’s success in
texture recognition.

15

Under review as a conference paper at ICLR 2026

A.6 IMPLEMENTATION DETAILS AND PSEUDOCODE

In this section, we provide a more detailed, implementation-level view of our STP-Former+ frame-
work to complement the descriptions in the main paper. We break down the core logic into two parts.
The first part (Algorithm[I)) outlines the high-level, decoupled two-stage training strategy. The sec-
ond part (Algorithm[2)) delves into the specific implementation of our novel Supervised Topological
Loss, which is the key component for enhancing feature space discriminability in Stage 2.

A.6.1 HIGH-LEVEL TRAINING FRAMEWORK

The overall training process of STP-Former+ is divided into two distinct stages, as illustrated in
Algorithm T}

Stage 1: Self-Supervised TPE Training. The primary goal of this stage is to train the Texture
Prototype Extractor (TPE) to learn a robust and general representation of texture primitives. This
is achieved in a self-supervised manner using the Gather Loss, which encourages the learned
intrinsic prototypes to be faithful representatives of the input image’s patch features. The model
is optimized solely based on this objective, allowing it to develop a foundational understanding of
texture patterns without being biased by class labels.

Stage 2: Supervised Classifier Training. After Stage 1, the TPE is frozen and acts as a high-
quality feature extractor. In this stage, a lightweight classifier is trained on top of the features
provided by the TPE. The optimization is guided by a composite loss function, which combines the
standard Cross-Entropy loss for classification accuracy with our Supervised Topological Loss for
structuring the feature space. This decoupled approach ensures that the powerful representations
learned in Stage 1 are effectively leveraged for the final discriminative task.

A.6.2 ToOPOLOGICAL LOSS IMPLEMENTATION DETAILS

Algorithm[2]provides a detailed implementation of our Supervised Topological Loss. This loss is the
core of STP-Former+’s ability to explicitly shape the feature manifold for enhanced class separation.

The process is twofold. First, for intra-class compactness, the function iterates through each class
present in the mini-batch. It computes the 0-D persistent homology on the feature vectors of that
class alone. The sum of the death times of the resulting persistence pairs is minimized, which
geometrically corresponds to pulling samples of the same class closer together. Second, for inter-
class separation, persistent homology is computed on the features from all classes in the batch. We
then identify the "critical edges" that merge components belonging to different classes. The loss
function then maximizes the lengths of these specific edges (by minimizing their negative mean),
which geometrically pushes clusters of different classes further apart.

The underlying topological computation is described in get _persistence_pairs. This func-
tion implements the standard algorithm for 0-D persistent homology. It constructs a Vietoris-Rips
filtration by processing all possible edges between points in increasing order of their distance.
A Union-Find data structure efficiently tracks the connected components, and a "death" event is
recorded whenever two previously separate components are merged. The distance at which this
merge occurs is the "death time" used in the loss calculation.

16

Under review as a conference paper at ICLR 2026

Decision Analysis: sample020_01_i01h.jpg

ntion-Based Decision He:

Atte totype Importance
(Where the model focuses for thi rot

Prot
(Which p

otypes matter most)

Decision Analysis: sample176_01_i10n.jpg

Attention-Based Decision Heatmap Prototype Importance
(Where the model focuses for this decision) (Which prototypes matter most)

10
08

H
02
00

Decision Analysis: sample196_03_i06n.jpg

Prototype Index

Attention-Based Decision Heatmap Prototype Importance
(Where the mode focuses for this decision) (Which prototypes matter most)

o To

Decision Analysis: sample120_04_i01l.jpg

Attention-Based Decision He: Prototype Importance
(Where the model focuses for thi ion) (Which prototypes matter most)

Decision Analysis: sample090_03_i15n.jpg

Attention-Based Decision He: Prototype Importance
(Where the model focuses for thi (Which prototypes matter most)

Decision Analysis: sample075_04_i01h.jpg

Attention-Based Decision Heatmap Prototype Importance
(Where the model focuses for this decision) _ (Which prototypes matter most)

Prototype Index

Figure 3: Visualization of attention-based decision heatmaps for various GTOS texture samples.
Similar to the DTD results, these visualizations show that our model learns to identify texture prim-
itives distributed globally. This holistic attention, rather than focusing on localized object-like parts,
is crucial for effectively recognizing the complex and often subtle patterns found in ground terrain
textures.

17

Under review as a conference paper at ICLR 2026

I # Models: TPE (Texture Prototype Extractor), C (Classifier)

> # Data: D_train (Training Dataloader)

3 # Hyperparameters: E1, E2 (epochs), 1lrl, 1lr2 (learning rates),
lambda_topo

4

5 def train_stp_former_plus(TPE, C, D_train, E1, E2, 1lrl, 1lr2, lambda_topo)

6 # ================= STAGE 1: Self-Supervised TPE Training
7 print ("-—-- Starting Stage 1: TPE Self-Supervision —---")
8 optimizerl = AdamW (TPE.parameters(), lr=1rl)

9 for epoch in range (El):
10 # The TPE is trained to minimize the Gather Loss
11 train_stagel_epoch (TPE, D_train, optimizerl)

13 # Freeze the TPE after Stage 1 to use as a feature extractor
14 TPE.eval ()
15 for param in TPE.parameters():

16 param.requires_grad = False

18 # ================= STAGE 2: Supervised Classifier Training

19 print ("--- Starting Stage 2: Classifier Supervision ---")

20 optimizer2 = AdamW(C.parameters (), lr=1r2) # Only classifier weights
are trained

21 for epoch in range (E2):

2 # The Classifier is trained with a composite 1loss

23 train_stage2_epoch(C, TPE, D_train, optimizer2, lambda_topo)

24

25 return TPE, C

27 def train_stagel_epoch (TPE, dataloader, optimizer):

28 for images, _ in dataloader:

29 # Forward pass to get features and prototypes

30 patch_features, intrinsic_prototypes = TPE.get_features (images)

31 # Calculate Gather Loss based on cosine distance

32 gather_loss = cosine_distance (patch_features,
intrinsic_prototypes) .min (dim=2) .mean ()

33 # Optimize TPE parameters

34 optimizer.zero_grad()

35 gather_loss.backward/()

36 optimizer.step ()

33 def train_stage2_epoch(C, TPE, dataloader, optimizer, lambda_topo):

39 for images, labels in dataloader:

40 # Extract features using the frozen TPE

41 intrinsic_prototypes = TPE.get_prototypes (images)
42 global_feature = intrinsic_prototypes.mean (dim=1)
43

44 # Get classification logits

45 logits = C(global_feature)

46

47 # Calculate composite loss

48 ce_loss = CrossEntropylLoss(logits, labels)

49 topo_loss = calculate_topological_loss(global_feature, labels)
50 total_loss = ce_loss + lambda_topo * topo_loss

51

52 # Optimize Classifier parameters

53 optimizer.zero_grad()

54 total_loss.backward()

55 optimizer.step ()

Listing 1: High-level pseudocode for the two-stage training framework of STP-Former+.

18

Under review as a conference paper at ICLR 2026

| def calculate_topological_loss (features, labels, lambda_inter=0.5):

2 # ——— Part 1: Intra-Class Compactness (Pull same-class samples
together) —--—-—

3 intra_loss = 0.0

4 unique_labels = labels.unique ()

5 for label in unique_labels:

6 class_features = features[labels == label]

7 if len(class_features) > 1:

8 dist_matrix = torch.cdist (class_features, class_features)

9 # Get pairs of points that merge components within the class

10 persistence_pairs = get_persistence_pairs(dist_matrix)

11 # The "death time" is the distance at which components merge

12 death_times = dist_matrix[persistence_pairs([:, 0],
persistence_pairs[:, 1]]

13 # Minimize the sum of these distances to make the cluster
compact

14 intra_loss += death_times.sum/()

15

16 # ——— Part 2: Inter-Class Separation (Push different-class samples
apart) —-—-—

17 inter_loss = 0.0

18 if len (unique_labels) > 1:

19 full_dist_matrix = torch.cdist (features, features)

20 # Get all persistence pairs for the entire batch

21 all _pairs = get_persistence_pairs(full_dist_matrix)

2

@

Find which pairs connect points from different classes
birth_labels = labels[all _pairs([:, 0]]

death_labels = labels[all_pairs[:, 1]]

inter_class_mask = birth_labels != death_labels
inter_class_pairs = all_pairs[inter_class_mask]

=

G

O ® 3

Get the death times for these inter-class merges

WO RN NN

0 inter_death_times = full dist_matrix[inter_class_pairs[:, 0],
inter_class_pairs[:, 1]]

31 # Maximize these distances to push clusters apart

32 inter_loss = —-inter_death_times.mean ()

33

34 return intra_loss + lambda_inter x inter_loss

36 def get_persistence_pairs(distance_matrix):

37 # Implements the algorithm for 0-D persistent homology

38 num_vertices = distance_matrix.shape[0]

39 uf = UnionFind (num_vertices) # Initialize a Union-Find data structure

40

41 # Get all unique edges (pairs of vertices) and sort them by distance

42 edges = get_upper_triangle_edges (distance_matrix)

43 sorted_edges = sorted(edges, key=lambda edge: edge.weight)

44

45 persistence_pairs = []

46 for edge in sorted_edges:

47 u, v = edge.vertices

48 # If u and v are already connected, adding this edge creates a
cycle (1-D feature)

49 # For 0-D homology, we ignore it and continue

50 if uf.find(u) == uf.find(v):

51 continue

52

53 # If u and v are disconnected, this edge merges their components.

54 # This is a "death" event for one of the components.

55 # We record the pair of vertices that caused the merge.

56 uf.merge (u, v)

57 persistence_pairs.append((u, v))

58

59 return np.array (persistence_pairs)

Listing 2: Detailed pseudocode for the Supervised Topological Loss, based on 0-D persistent
homology. 19

	Introduction
	Related Work
	Deep Learning for Texture Recognition
	Topological Data Analysis in Deep Learning

	Preliminary: The Problem of Feature Misalignment in Texture Recognition
	Methodology
	Core Architecture
	Decoupled Two-Stage Training Strategy
	Stage 1: Self-Supervised Intrinsic Prototype Learning
	Stage 2: Supervised Classification

	STP-Former+: Regularization with Topological Loss

	Experiments
	Experimental Setting
	Comparison with State-of-the-Art Methods
	Ablation Studies

	Conclusion
	Appendix
	Ethics Statement
	Reproducibility Statement
	LLM Usage
	Model Analysis
	Visualization of the Decision-Making Process
	Implementation Details and Pseudocode
	High-Level Training Framework
	Topological Loss Implementation Details

