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ABSTRACT

High-order interactions of multiple entities are ubiquitous in practical applications.
The associated data often includes the participants, interaction results, and the
timestamps when each interaction occurred. While tensor factorization is a popular
tool to analyze such data, it often ignores or underuses the valuable timestamp
information. More important, standard tensor factorization only estimates a static
representation for each entity, and ignores the temporal variation of the representa-
tions. However, such variations might reflect important evolution patterns of the
underlying properties of the entities. To address these limitations, we propose Dy-
namical eMbedIngs of TempoRal hIgh-order interactions (DMITRI). We develop
a neural diffusion-reaction process model to estimate the dynamic embeddings
for the participant entities. Specifically, based on the observed interactions, we
build a multi-partite graph to encode the correlation between the entities. We
construct a graph diffusion process to co-evolve the embedding trajectories of the
correlated entities, and use a neural network to construct a reaction process for each
individual entity. In this way, our model is able to capture both the commonalities
and personalities during the evolution of the embeddings for different entities. We
then use a neural network to model the interaction result as a nonlinear function
of the embedding trajectories. For model estimation, we combine ODE solvers to
develop a stochastic mini-batch learning algorithm. We propose a simple stratified
sampling method to balance the cost of processing each mini-batch so as to improve
the overall efficiency. We show the advantage of our approach in both the ablation
study and real-world applications.

1 Introduction

Many real-world applications are about interactions of multiple entities. For example, online shopping
and promotion activities are interactions among customers, commodities and online merchants. A
commonly used tool to analyze these high-order interactions is tensor factorization, which places the
participant entities/objects in different tensor modes (or dimensions), and considers the interaction
results as values of the observed tensor entries. Tensor factorization estimates an embedding repre-
sentation for each entity, with which to reconstruct the observed entries. The learned embeddings
can reflect the underlying structures within the entities, such as communities and outliers, and can be
used as effective features for predictive tasks, such as recommendation and ads auction.

Practical data often includes the timestamps when each multiway interaction occurred. These
timestamps imply rich, complex temporal variation patterns. Despite the popularity of tensor
factorization, current methods often ignore the timestamps, or simply bin them into crude time
steps (e.g., by weeks or months) and jointly estimate embeddings for the time steps (Xiong et al.,
2010; Rogers et al., 2013; Zhe et al., 2016a; 2015; Du et al., 2018). Therefore, the current methods
might severely under-use the valuable temporal information in data. More important, standard tensor
factorization always estimates a static embedding for each entity. However, as the representation
of entities, these embeddings summarize the underlying properties of the entities, and can naturally
evolve along with time, such as customer interests and preferences, user income and health, product
popularity, and fashion. Learning static embeddings can miss capturing these interesting, important
temporal knowledge.
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To address these issues, we propose DMITRI, a dynamic embedding approach for temporal high-order
interactions. We construct a nonlinear diffusion-reaction process in an Ordinary Differential Equation
(ODE) framework to jointly estimate embedding trajectories for the participant entities. The ODE
framework is known to be flexible and convenient to handle irregularly sampled timestamps and
sparsely observed data (Rubanova et al., 2019), which is often the case in practice. In addition,
since ODE models focus on learning the dynamics (i.e., time derivatives) of the target function,
they have promising potential for providing robust, accurate long-term predictions (via integration
with the dynamics). Specifically, to leverage the structural knowledge within the data, we first
build a multi-partite graph based on the observed interactions. The graph encodes the correlations
between different types of entities in terms of their interaction history. We then construct a graph
diffusion process in the ODE to co-evolve the embedding trajectories of correlated entities. Next, we
use a neural network to construct a reaction process to model the individual-specific evolution for
each entity. In this way, our neural diffusion-reaction process captures both the commonalities and
personalities of the entities in learning their dynamic embeddings. Given the embedding trajectories,
we model the interaction result as a latent function of the participants’ trajectories. We use another
neural network to flexibly estimate the function and to capture the complex relationships of the
participant entities. For efficient training, we base on ODE solvers to develop a stochastic mini-batch
learning algorithm. We develop a simple stratified sampling scheme, which can balance the cost of
executing the ODE solvers in each mini-batch so as to improve the efficiency.

We evaluated our method in both simulation and real-world applications. The simulation experiments
show that DMITRI can successfully capture the underlying dynamics of the entities from their
temporal interactions, and recover the hidden clustering structures within the trajectories. Then in
three real-world applications, we tested the accuracy in predicting the interaction results at different
time points. DMITRI consistently outperforms the state-of-the-art tensor factorization methods that
incorporate temporal information, often by a large margin. We also demonstrated that both the
diffusion and reaction processes contribute to the learning and predictive performance. Finally, we
investigated the learned embedding trajectories and found interesting evolution paths.

2 Notations and Background
Suppose we have collected data of interactions results between K types of entities (e.g., customers,
commodities and merchants). Each type k includes dk entities, and we index these entities by
1, . . . , dk. We then index each interaction by a tuple ` = (l1, . . . , lK) where for each k, we have
1 ≤ lk ≤ dk. Suppose we observed N interactions, their results and timestamps. The dataset
is denoted by D = {(`1, t1, y1), . . . , (`N , tN , yN )} where {tn} and {yn} are the timestamps and
interaction results. Our goal is for each entity j of each type k, to estimate a dynamic embedding
ukj (t) : R+ → RR. That is, the embedding is a time function (trajectory) of R-dimensional outputs.

High-order interaction data can be organized as multidimensional arrays or tensors. For example,
we can create a K-mode tensor, and place the entities of type k in mode k. Each interaction ` is
considered as an entry of the tensor, and the interaction result as the entry value. Hence, tensor
factorization is a popular approach to process and analyze high-order interaction data. Standard
tensor factorization introduces a static embedding representation for each entity, namely, ukj is
considered as time invariant. Tensor factorization aims to estimate the embeddings (or factors) to
reconstruct the tensor. For example, the classical Tucker decomposition (Tucker, 1966) employs
a multilinear factorization model,M = W ×1 U

1 ×2 . . .×K UK , whereM ∈ Rd1×...×dk is the
entire tensor,W ∈ RR1×···×RK is the tensor-core parameter, Uk comprises all the embeddings of the
entities in mode k, and ×k is the tensor-matrix multiplication at mode k (Kolda, 2006). The popular
CANDECOMP/PARAFAC (CP) decomposition (Harshman, 1970) can be viewed as a simplified
version of Tucker decomposition, where we set R1 = . . . = RK = R and the tensor-coreW to be
diagonal. Hence, each entry value is factorized asm` = (u1

l1
◦. . .◦uKlK )>λ, where ◦ is the Hadamard

(element-wise) product, and λ corresponds to diag(W). While CP and Tucker decomposition are
popular and elegant, their multilinear modeling can be oversimplistic for complex applications. To
estimate nonlinear relationships of the entities, Xu et al. (2012); Zhe et al. (2015; 2016a) used a
Gaussian process (GP) (Rasmussen and Williams, 2006) to model the entry value as a random function
of the embeddings, m` = g(u1

l1
, . . . ,uKlK ), where g ∼ GP (0, κ(x`,x`′)), x` = {u1

l1
, . . . ,uKlK} and

x`′ = {u1
l′1
, . . . ,uKl′K

} are the embeddings of the entities in entry ` and `′, respectively, and κ(·, ·)
is the covariance (kernel) function. Given the GP prior, any finite set of N entry values follow a
multi-variate Gaussian distribution, m ∼ N (0,K), where m = [m`1 , . . . ,m`N ], K is the N ×N
kernel matrix, and each [K]i,j = κ(x`,x`′). Suppose we have collected continuous observations
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Figure 1: The illustration of the embedding model in DMITRI.

for the N entries y = [y1, . . . , yN ]. We can use a Gaussian noise model: yn = m`n + εn where
εn ∼ N (0, σ2). The marginal likelihood of the observations is p(y) = N (y|0,K + σ2I). We can
maximize the likelihood to estimate the model parameters.

Practical interaction data often includes temporal information, i.e., the timestamp when each observed
interaction occurred. To integrate this information, current methods often bin the timestamps into a
series of steps, say, by weeks or months (Xiong et al., 2010; Rogers et al., 2013; Zhe et al., 2016a;
Song et al., 2017). The tensor is then expanded with an additional time-step mode. We can apply an
arbitrary tensor factorization algorithm to estimate embeddings for both the entities and time steps.
To learn the temporal dependency between the steps, a conditional model is often used (Xiong et al.,
2010), say, p(tj+1|tj) = N (tj+1|tj , τI) where tj is the embedding of j-th step. To leverage the
continuous time information, Zhang et al. (2021) recently developed continuous CP decomposition,
where the coefficients λ are modeled as a time function with polynomial splines.

3 Model
While successful, current tensor factorization methods assume the embeddings are static and time-
invariant. However, the embeddings essentially summarize/extract the properties of entities to give a
representation, and these properties can often evolve with time, such as customer interests, health
status, and product popularity. Therefore, only estimating static embeddings can miss capturing im-
portant temporal variations of the entities’ properties, resulting in poor representations and predictive
performance. To address this issue, we propose DMITRI, a novel dynamic embedding approach.

Specifically, we propose an ODE model to learn the embedding trajectories {ukj (t)|1 ≤ k ≤ K, 1 ≤
j ≤ dk}. The ODE framework is known to be amenable for irregularly sampled, sparsely observed
data, which is often the case in practice. More important, ODE models concentrate on learning the
time derivative dukj /dt (i.e., dynamics), rather than the trajectory function itself. Therefore, they have
a promising potential to give reliable, long-term trajectory prediction (via numerical integration) even
at time points far away from the training timestamps, provided the time derivative is well captured.
We construct a joint ODE model for all the embedding trajectories. The ODE consists of a diffusion
process and a reaction process. The diffusion process leverages the structural knowledge in data
to co-evolve the embeddings of correlated entities , so as to better overcome the data sparsity. The
reaction process models the entity-specific evolution so that it can capture the individual differences
in the embedding evolution. The ODE model synergizes the two processes to capture both the
commonalities and personalities of these embedding trajectories.

Diffusion Process on Multi-Partite Graphs. First, we construct a graph-based diffusion process to
exploit the entity correlations reflected in data D. Intuitively, if a K-way interaction involves entity A
(e.g., customer A) and B (e.g., commodity B), the two entities are likely correlated. Thus, we can
draw an edge between A and B to express the correlation. We can then generalize this intuition to
create a K-partite (undirected) graph G(E, V ), to encode all such correlations across all the entities
in the data. Each vertex represents a particular entity, and the entire collection of the entities is
partitioned into K groups, V = V 1 ∪ . . . ∪ V K , where group V k = {vk1 , . . . , vkdk} represents the
entities of type k. Two entities (of different types) are connected if they were observed to interact,
namely, (vkj , v

k′

j′ ) ∈ E if there is some interaction `n in D such that `n = (. . . , j, . . . , j′, . . .) where
j and j′ are the indices of k-th and k′-th participants, respectively. That is, lnk

= j and lnk′ = j′.
See Fig. 1 for an example. This graph can naturally imply some underlying information diffusion
across the entities within their interactions. For example, if customer A connects to products B and C,
it might mean that A distributes their interests/willingness/budges to purchase B and C. The edges
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between one merchant A and a list of products {B, C, . . . } might indicate the diffusion of willingness
to increase the inventory of these products.

To flexibly estimate the diffusion rate, we introduce a weight wk,k
′

j,j′ for each edge (vkj , v
k′

j′ ) ∈ E.
We can then arrange these weights into K(K + 1)/2 adjacent matrices,W = {Wk,k′ |1 ≤ k, k′ ≤
K, k 6= k′}. Each Wk,k′ is a sparse dk × dk′ matrix that represents the edges and edge weights
between V k and V k

′
, i.e., [Wk,k′ ]j,j′ = wk,k

′

j,j′ if (vkj , v
k
j′) ∈ E and 0 otherwise. We now construct

a diffusion process based on the K-partite graph. We view the embedding trajectory as a kind of
concentration. For each entity j of type k, the change rate of its concentration (embedding) ukj (t) is
determined by the difference from the concentrations of its neighbors. Since the neighbors can come
from entities of all the other K − 1 types, we have

dukj
dt

=
∑

s∈{1,...,K}\k

ds∑
j′=1

[Wk,s]j,j′
(
usj′(t)− ukj (t)

)
=

∑
s∈{1,...,K}\k

(
wk,s
j Us(t)

)>
− ak,sj ukj ,

where wk,s
j is the j-th row of Wk,s, Us(t) = [us1(t), . . . ,usds(t)]> is the embeddings of all the

entities of type s, of size ds × R, and ak,sj =
∑ds
j′=1[Wk,s]j,j′ is the degree of vertex j in Wk,s.

Consider Uk(t) — the embeddings of all the entities of type k, we therefore have

dUk(t)

dt
=
∑

s∈{1...K}\k
Wk,sUs(t)−Ak,sUk(t) (1)

where Ak,s = diag(ak,s1 , . . . , ak,sdk ) is the degree matrix of Wk,s. We can see that the evolution
of the embeddings for different types of entities are coupled. Hence, it is natural to formulate the
diffusion process jointly for all the embeddings,

dU(t)

∂t
= d

 U1(t)
...

UK(t)

 /dt =WU(t)−AU(t) = (W −A)U(t) (2)

where

W =


0 W1,2 . . . W1,K

W2,1 0 . . .
...

...
. . . WK−1,K

WK,1 · · · WK,K−1 0

 , A = diag



∑
s∈{1...K}\1 A

1,s

...∑
s∈{1...K}\kA

k,s

...∑
s∈{1...K}\K AK,s

 .

Reaction Process of Individual Entities. Next, to capture the individual difference of each entity in
evolving their embeddings, we model a local reaction process for each entity, fθk(ukj (t), t), where f(·)
is a neural network (NN), and θk are the NN (reaction) parameters for type-k entities1. The metaphor
from the chemical physics is as follows. While substances are being diffused across different sites, at
each site a chemical reaction process happens concurrently, which varies the concentration locally.
We extend the model as

dukj
dt

=
∑

s∈{1,...,K}\k

∑ds

j′=1
[Wk,s]j,j′

(
usj′(t)− ukj (t)

)
+ fθk(ukj , t). (3)

Our joint diffusion-reaction ODE model is therefore specified as follows,

∂U(t)

∂t
= (W −A)U(t) + F(U , t), U(0) = U0, (4)

where F(U , t) = [fθ1(u1
1, t), . . . , fθ1(u1

d1
, t), . . . , fθK (uK1 , t), . . . , fθK (uKdK , t)]

>.

1Note that while the reaction model is the same and each type of entities share the same set of reaction
parameters, those entities will have different reaction results due to the difference in the input to f .
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Interaction Result Generation. Given the embedding trajectories, to obtain the interaction result
m` at arbitrary time t, we model m`(t) as a function of the relevant embeddings at time t,

m`(t) = g
(
u1
l1(t), . . . ,uKlK (t)

)
. (5)

While one can follow (Xu et al., 2012; Zhe et al., 2016b) to assign a GP prior over g(·), the GP
model needs to compute a giant kernel matrix over all the observed interaction results (see Sec.
2). It is computationally too expensive or infeasible when the number of observations is large.
Hence one has to seek for complex sparse approximations. To avoid this problem, we model g with
another neural network, which is not only as flexible as GP, but is more scalable and convenient for
computation. Since now, the input to g(·) consists of the trajectory values, which vary with time, our
NN model for g can flexibly capture the complex temporal relationship of the entities. We finally
sample the observed interaction results with a Gaussian noise model, p(y|m) = N (y|m, σ2I) where
y = [y1, . . . , yN ]> and m = [m`1(t1), . . . ,m`N (tN )]>. We focus on real-valued data in this paper.
However, it is straightforward to extend our approach to other types of data.

4 Model Estimation
We now present the model estimation algorithm. Given data D = {(`1, t1, y1), . . . , (`N , tN , yN )},
the joint probability of our model is

p(β, {θk},y) = p(β) ·
∏K

k=1
p(θk) ·

∏N

n=1
N
(
yn|g

(
u1
ln1

(tn), . . . ,uKlnK
(tn)

)
, σ2I

)
, (6)

where β is the NN parameters for g, each θk is the NN reaction parameters for type-k entities,
their prior p(β) and p(θk) is element-wise standard Gaussian, and y = [y1; . . . ; yN ]. To obtain the
trajectory values in the Gaussian likelihood of each yn, we need to solve the ODE in (4) to time tn,

U(tn) = ODESolve(U0, 0, tn,Θ) (7)

where Θ = {W,θ1, . . . ,θK} consists of the ODE parameters. Our goal is to estimate the ODE
parameters Θ, the initial state U0, the NN parameters β, and the noise variance σ2.

Stratified Mini-Batch Sampling. We use stochastic mini-batch optimization to maximize the log
joint probability so as to estimate all the required parameters,

L = log p(β, {θk},y) = log(Prior)−
∑N

n=1
logN

(
yn|g (xn) , σ2I

)
where log(Prior) = log p(β) +

∑K
k=1 log p(θk), and xn = [u1

ln1
(tn), . . . ,uKlnK

(tn)]. Each time, we
sample a mini-batch of interaction results B, and obtain an unbiased stochastic estimate of the log
probability, L̂ = log(Prior) + N

B

∑
n∈B

[
logN (yn|g(xn), σ2)

]
. We compute ∇L̂ as the stochastic

gradient to update all the parameters.

For each data point n in the mini-batch, we need to run ODE solving (7) to obtain xn =
[u1
ln1

(tn), . . . ,uKlnK
(tn)]. To back-propagate the gradient so as to compute the gradient w.r.t the

ODE parameters Θ and initial state U0, we can either construct a computational graph during the
running of the solver (e.g., the Runge-Kutta method (Dormand and Prince, 1980)), or use the adjoint
state method (Pontryagin, 1987; Chen et al., 2018) that solves an adjoint backward ODE to compute
the gradient. In whichever case, we need to sort the time points in the mini-batch and solve the ODE
sequentially for these time points. As a result, the number of unique time points in the mini-batch
greatly influences the speed of processing the mini-batch. The standard mini-batch sampling (based
on the training example indices) can result in an uneven allocation of the computational cost across
the mini-batches — some mini-batch is fast and some including more time points is much slower. To
address this issue, we use a simple stratified sampling approach.

• We collect the unique time points in the whole dataset, T = {τ1, τ2, . . .} at the beginning.
• To conduct each stochastic update, we first sample B unique time points C from T , then

for each time point τj ∈ C, we look at all the interactions occurred at τj , namely Dτj =
{(`n, tn, yn) ∈ D|tn = τj)}.
• We randomly sample one interaction example from each Dτj to collect the mini-batch B.

In this way, we ensure the cost of running ODE solvers and related gradient computation in each
mini-batch is identical. There are no fluctuations in cost/running time when processing different
min-batches. Empirically, we found that the overall speed of our method is much faster than vanilla
stochastic mini-batch optimization.
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5 Related Work
To integrate the temporal information, most tensor factorization approaches augment the tensor with
a time mode (Xiong et al., 2010; Rogers et al., 2013; Zhe et al., 2016b; Ahn et al., 2021; Zhe et al.,
2015; Du et al., 2018), which includes a list of time steps. They jointly estimate the embeddings for
entities and time steps. To estimate the temporal dependencies, existing methods often employ a
dynamic model over the time steps, such as a conditional Gaussian prior (Xiong et al., 2010), recurrent
neural networks(Wu et al., 2019), and kernel smoothing/regularization (Ahn et al., 2021). To leverage
continuous timestamps, Zhang et al. (2021) modeled the CP coefficients λ as a time function, and
estimated it with polynomial splines. The most recent work (Wang and Zhe, 2022) places a GP
prior in the frequency domain, and construct a bi-level GP model to learn factor trajectories as a
combination of Fourier bases. Another set of works factorize the interaction events (Schein et al.,
2015; 2016; Zhe and Du, 2018; Pan et al., 2020; Wang et al., 2020), rather than the interaction
results (e.g., purchase amount and product ratings). These works mainly leverage Poisson processes,
Hawkes processes, or more general point processes to estimate the event rate. Like the standard
tensor factorization, these methods also estimate static embeddings for the event participants.

Our model can be viewed as an extension of the neural ODE model (Chen et al., 2018). If we
only employ the reaction process for each entity, our model is a latent neural ODE (we have an
additional NN that combines the latent trajectories to predict the interaction results). However, we
further leverage the structural knowledge in data to construct a multi-partite graph so as to encode
the correlations of the participants in their high-order interactions. Based on the multi-partite graph,
we construct a diffusion process to co-evolve the embeddings of the entities. In doing so, we can
better overcome the data sparsity issue. Our work is also related to (Rubanova et al., 2019), which
uses neural ODEs to model the state transition of recurrent neural networks (RNNs) or to build
auto-regressive models for time series analysis. The major difference is that our work deals with time
series of high-order interactions, and our ODE is used to model the evolution of the embeddings of
the interaction participants (rather than the RNN states). Many other works have leveraged/developed
graph diffusion processes given the graph data. For example, Chamberlain et al. (2021) proposed
a graph neural network (GNN) by using multi-head attention to construct the adjacent matrix for a
graph diffusion equation over the graph nodes. Atwood and Towsley (2016) introduced a diffusion
operator to develop diffusion-convolutional neural networks. Huang et al. (2021) developed a GNN
based ODE to model both the nodes and edges in dynamic graphs.

6 Experiment
6.1 Ablation Study
We first examined DMITRI on a synthetic task. Specifically, we considered interactions among two
types of entities, where each type includes 20 entities. Each entity has one underlying embedding
trajectory. For type-1, the trajectory of each entity is an exponential function, u1j (t) = c1j exp(0.5c1j t)

(1 ≤ j ≤ 20), while for type-2 is a linear function, u2j (t) = c2j + 2πc2j t. We generated two clusters
of trajectories for each entity type, where those of the first ten entities form the first cluster and
the remaining the second cluster. To this end, for type 1, we sampled the coefficients of the first
ten entities’ trajectories, namely, [c11, . . . , c

1
10]>, from N

(
[−5, . . . ,−5]>, 0.1I

)
, and the remaining

ten coefficients [c111, . . . , c
1
20]> from N

(
[0.5, . . . , 0.5]>, 0.1I

)
. Then for type 2, we sampled each

coefficient c2j conditioned on its counter-part for type 1, c2j |c1j ∼ N (c2j |c1j , 0.1). That means, the
coefficients of cluster-1 trajectories across the two event types are close, and so are those of cluster-2
trajectories. The result for a particular interaction ` = (l1, l2) is generated by

m`(t) =
(
u1l1(t)

)1(l1+l2 mod 2=0) ·
(
u2l2(t)

)1(l1+l2 mod 2=1)
. (8)

where 1(·) is the indicator function. When l1 + l2 is even, the interaction result is the trajectory value
of the first entity; otherwise, it is the trajectory value of the second entity. To generate the training
data, we randomly sampled interactions from {(l1, l2)|1 ≤ l1, l2 ≤ 10} ∪ {(l1, l2)|11 ≤ l1, l2 ≤ 20}
(namely, interactions between cluster-1 entities of the two types, and between cluster-2 entities). We
then sampled t ∼ Unifrom[0, 5], to obtain the interaction results. We randomly generated 6,400
interaction results and the timestamps for training, and another 1,600 data points for testing.

We implemented our method with Pytorch (Paszke et al., 2019). We used torchdiffeq library
(https://github.com/rtqichen/torchdiffeq) to solve ODEs and to compute the gra-
dient w.r.t ODE parameters and initial states via automatic differentiation. For the NN of the

6
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reaction process, we used one hidden layer, with 10 neurons and tanh activation, and for the NN to
predict the interaction result, we used two hidden layers, 50 neurons per layer and tanh activation.

(a) Ground-truth: type
1

(b) Ground-truth: type
2

(c) NONFAT: Type 1 (d) NONFAT: Type 2

(e) DMITRI: Type 1 (f) DMITRI: Type 2

Figure 2: The estimated embedding trajecto-
ries for each entity type. The color indicates
the ground-truth cluster membership

We compared with NONFAT (NONparametric Factor Tra-
jectory learning) (Wang and Zhe, 2022), a bi-level la-
tent GP model that uses Fourier bases to estimate factor
trajectories for dynamic tensor decomposition. To our
knowledge, this work is the only method (and also the
most recent) that also estimates trajectories. We used
the original implementation (https://github.com/
wzhut/NONFAT) and the default settings. We set the
mini-batch size to 50, and used ADAM (Kingma and Ba,
2014) algorithm for stochastic optimization. The learn-
ing rate was automatically adjusted in [10−4, 10−1] by
the ReduceLROnPlateau scheduler (Al-Kababji et al.,
2022). The maximum number of epochs is 2K, which is
enough for convergence. The estimated trajectories are
shown in Fig. 2c-f. As we can see, our estimation (Fig.
2e and 2f) well matches the ground-truth and accurately
recovers the cluster structure of the trajectories. The root-
mean-square error (RMSE) on the test set is 0.032. By
contrast, although the test error of NONFAT is close to
DMITRI (0.034), its learned trajectories (Fig. 2c and 2d)
are far from the ground-truth, and fail to reflect the cluster
structure. This might be due to that GP models are difficult
to capture the interaction function (8), which is a switch
function. These have shown the advantage of DMITRI in
capturing complex relationships within data to recover the
underlying trajectories and their structure.

6.2 Prediction Accuracy

Datasets. We next evaluated the predictive performance of DMITRI in three real-world applications.
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Figure 3: Predictive performance of the diffusion and reaction processes

(1) CA Weather (Moosavi
et al., 2019) (https:
//smoosavi.org/
datasets/lstw), weather
conditions in California from
August 2016 to December 2020.
We extracted four-way interac-
tions among 7 different weather
types, 6 severity levels, 30 lati-
tudes and 30 longitudes in GPS
coordinate. The interaction re-
sult is the count of the particular weather condition. We collected 15K interactions and the timestamps.
(2) CA Traffic (Moosavi et al., 2019) (https://smoosavi.org/datasets/lstw), traffic
accidents in California from January 2018 to December 2020. We extracted four-way interactions
between traffic type, severity level, latitudes, longitude. There are 7 traffic types, 6 severity levels, 20
latitudes and 20 longitudes. We collected 30K interaction results (accident counts) at different time
points. (3) Server Room (https://zenodo.org/record/3610078#.XlNpAigzaM8),
temporal temperature records of Poznan Supercomputing and Networking Center. The temperatures
were measured at 34 locations, under different air-condition modes (24◦, 27◦, and 30◦) and power
usage settings (50%, 75% and 100%). Hence, we extracted three-way interactions (location,
air-condition mode, power level). In total, 10K interactions and their timestamps were collected.

Competing Methods. The following popular and/or state-of-the-art temporal factorization ap-
proaches were compared. (1) CP-DTLD, discrete-time CP decomposition with linear dynamics, where
a conditional prior is placed over successive time steps, p(tj+1|tj) = N (tj+1|Atj+b, vI); A, b and
v were jointly estimated during the CP decomposition. Note that (Xiong et al., 2010) is an instance of
this model where A = I and b = 0. (2) GP-DTLD and (3) NN-DTLD, similar to CP-DTLD, except
using GP (Zhe et al., 2016b) and NN decomposition models (similar to (Liu et al., 2019)), respectively.
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CA Weather R = 2 R = 3 R = 5 R = 7
CP-DTLD 0.7440± 0.0035 0.7372± 0.0040 0.7290± 0.0042 0.7270± 0.0044
GP-DTLD 0.7417± 0.0031 0.7414± 0.0036 0.7444± 0.0036 0.7449± 0.0039
NN-DTLD 0.7228± 0.0054 0.7116± 0.0033 0.7070± 0.0041 0.7065± 0.0038
CP-DTND 0.7448± 0.0031 0.7360± 0.0035 0.7273± 0.0037 0.7280± 0.0044
GP-DTND 0.7399± 0.0034 0.7346± 0.0032 0.7448± 0.0037 0.7467± 0.0031
NN-DTND 0.7113± 0.0045 0.6979± 0.0126 0.6659± 0.0122 0.6543± 0.0155

CP-CT 1.0000± 0.0096 0.9959± 0.0067 1.0010± 0.0017 1.0060± 0.0034
GP-CT 0.7433± 0.0038 0.7354± 0.0027 0.7359± 0.0034 0.7377± 0.0033
NN-CT 0.8697± 0.0014 0.8679± 0.0022 0.8676± 0.0018 0.8695± 0.0016

NONFAT 0.7444± 0.0042 0.7460± 0.0032 0.7645± 0.0061 0.7553± 0.0029
DMITRI 0.6327± 0.0119 0.6109± 0.0056 0.6172± 0.0075 0.6354± 0.0085

CA Traffic
CP-DTLD 0.6498± 0.0257 0.6424± 0.0266 0.6436± 0.0268 0.6405± 0.0262
GP-DTLD 0.6309± 0.0167 0.6290± 0.0185 0.6383± 0.0204 0.6496± 0.0193
NN-DTLD 0.6528± 0.0230 0.6545± 0.0244 0.6401± 0.0282 0.6136± 0.0338
CP-DTND 0.6497± 0.0245 0.6456± 0.0265 0.6431± 0.0263 0.6419± 0.0259
GP-DTND 0.6544± 0.0213 0.6559± 0.0224 0.6604± 0.0243 0.6674± 0.0214
NN-DTND 0.6578± 0.0248 0.6528± 0.0256 0.6519± 0.0249 0.6482± 0.0261

CP-CT 0.9858± 0.0120 0.9972± 0.0056 0.9816± 0.0136 0.9991± 0.0120
GP-CT 0.6610± 0.0207 0.6668± 0.0191 0.6756± 0.0190 0.6768± 0.0196
NN-CT 0.9804± 0.0017 0.9815± 0.0015 0.9791± 0.0012 0.9802± 0.0017

NONFAT 0.4461± 0.0247 0.4610± 0.0231 0.5031± 0.0155 0.6307± 0.0847
DMITRI 0.3601± 0.0334 0.2972± 0.0099 0.3174± 0.0118 0.3269± 0.0162

Server Room
CP-DTLD 0.4211± 0.0029 0.4209± 0.0031 0.4208± 0.0028 0.4208± 0.0028
GP-DTLD 0.0914± 0.0020 0.0791± 0.0010 0.0739± 0.0014 0.0753± 0.0013
NN-DTLD 0.4213± 0.0032 0.4213± 0.0032 0.4212± 0.0034 0.4205± 0.0030
CP-DTND 0.2835± 0.0160 0.1751± 0.0020 0.1174± 0.0011 0.0829± 0.0044
GP-DTND 0.0925± 0.0013 0.0784± 0.0011 0.0739± 0.0009 0.0774± 0.0009
NN-DTND 0.4213± 0.0032 0.4212± 0.0030 0.4211± 0.0032 0.4205± 0.0030

CP-CT 0.9919± 0.0096 0.9951± 0.0050 0.9862± 0.0109 1.0121± 0.0070
GP-CT 0.1385± 0.0020 0.1223± 0.0016 0.1275± 0.0014 0.1365± 0.0014
NN-CT 0.1193± 0.0030 0.1140± 0.0015 0.1113± 0.0027 0.1149± 0.0028

NONFAT 0.1468± 0.0026 0.1407± 0.0023 0.1396± 0.0022 0.1409± 0.0030
DMITRI 0.0536± 0.0031 0.0403± 0.0014 0.0393± 0.0018 0.0403± 0.0027

Table 1: Normalized Root Mean-Square Error (nRMSE). The results were averaged from five runs.
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Figure 4: The learned embedding trajectories for location 1 (a-c),
air conditional mode 1 (d-f), and power usage level 1 (g-i) in Server
Room dataset.

(4) CP-DTND, (5) GP-DTND and (6)
NN-DTND — CP, GP and NN de-
composition with nonlinear dynam-
ics, where the conditional prior is
p(tj+1|tj) = N (tj+1|σ(Atj)+b, vI)
where σ(·) is an nonlinear activa-
tion. The dynamics can therefore be
viewed as an RNN transition. (7) CP-
CT (Zhang et al., 2021), continuous-
time CP factorization, which models
the CP coefficients as a time-varying
function, with polynomial splines. (8)
GP-CT, continuous-time GP decompo-
sition that extends (Xu et al., 2012;
Zhe et al., 2016b) by plugging the
time in the GP kernel so as to esti-
mate the interaction result as a func-
tion of the embeddings and time,
m` = g(u1

`1
, . . . ,uK`K , t). (9) NN-

CT, continuous-time NN decomposi-
tion, where the input consists of both
the embeddings and time t. (10) NON-
FAT (Wang and Zhe, 2022).
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Settings and Results. All the approaches were implemented with PyTorch. The Square Exponential
kernel was used for all the GP related methods, including GP-{DTLD, DTND, CT}. We used the
same variational sparse approximation (Hensman et al., 2013) to fulfill scalable posterior inference.
Following (Zhe et al., 2016b), the number of inducing point was set to 100. For the NN decomposition
methods, we employed a three-layer network with tanh activation. The layer width was chosen
from {10, 25, 50, 75, 100}. We used tanh as the activation function in the nonlinear dynamic
baselines, including {CP, GP, NN}-DTND. For our method, we used the same NN architecture for
both the reaction process and interaction result prediction, which includes two hidden layers with
50 neurons per layer. For CP-CT, we employed 100 knots to fulfill the polynomial splines. For
each discrete-time method, the number of time steps was chosen from {25, 50, 75, 100} via the
cross-validation on the training set. We trained all the models with stochastic mini-batch optimization.
We used the ADAM algorithm, and the mini-batch size was set to 100. We ran every method with
10K epochs to ensure convergence. The learning rate was automatically adjusted in [10−4, 10−1] by
the ReduceLROnPlateau scheduler. We varied the dimension of the embeddings R from {2, 3,
5, 7}. For DMITRI, R is the number of embedding trajectories; we used computational graphs to
obtain the gradient. We followed (Xu et al., 2012; Kang et al., 2012; Zhe et al., 2016b) to randomly
draw 80% observed interactions and their time stamps for training, with the remaining for test. We
computed the normalized root-mean-square error (nRMSE). We repeated the evaluation for five times
and computed the average nRMSE and standard deviation.

As shown in Table 1, DMITRI consistently achieves the best prediction accuracy, and in many cases
outperforms the competing methods by a large margin. Although learning an embedding trajectory
is much more challenging than learning a fixed-value embedding, the experimental results have
demonstrated the advantage of our method in predictive performance. To investigate the effect of
the two processes in our model, we also examined our method with the diffusion process only and
reaction process only on all the datasets. Their predictive performance, as compared with DMITRI,
is shown in Fig. 3. We can see that each individual component can lead to good prediction accuracy.
However, each component is worse than DMITRI that synergizes the two components together.
Therefore, the results show that each process is effective, and more important, the two processes can
bolster each other to further improve the performance when they are combined.

6.3 Learning Result Investigation
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Figure 5: Interaction result prediction on Server
Room.

Next, we looked into the learned embedding trajec-
tories and checked if they exhibit patterns. To do
so, we set R = 3 and ran DMITRI on Server Room
dataset. In Fig. 4, we show the learned embedding
trajectories for the first location (a-c), the first air
condition mode (d-f) and the first power usage level
(g-i). As we can see, even for the same object, e.g.,
a particular location, the corresponding embedding
trajectories vary quite differently, implying the evo-
lution of different underlying properties, such as the
workload, memory usage, and network latency.

Finally, we showcase the temporal predictions for two interactions. As we can see from Fig. 5, given
only a few training points (blue), our method can predict the test points (green) much more accurately,
as compared with GPCT, and the predictive uncertainty (reflected by the noise variance σ2) is much
smaller. This might be due to that via diffusion-reaction process, our method can more effectively
extract the temporal knowledge from sparse data. For example, DMITRI successfully captured the
periodic nature in the first interaction (Fig. 5a) while GPCT treated the fluctuation as noises and
ended up with much inaccurate predictions and much larger predictive variances.

7 Conclusion
We have presented DMITRI, a neural diffusion-reaction process model to learn dynamic embeddings
from high-order interaction time series. The predictive performance is encouraging and the learned
embedding trajectories exhibit interesting patterns. Currently, our method is limited to a small number
of entities since it has to integrate the entire multi-partite graph to construct the diffusion process. In
the future work, we plan to develop graph cut algorithms to partition the graph into a set of small
sub-graphs, so that we can construct multiple diffusion processes in parallel so as to scale up to big
graphs and a large number of entities.
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