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ABSTRACT

Image Quality Assessment (IQA) with reference images has achieved great success
by imitating the human vision system, in which the image quality is effectively
assessed by comparing the query image with its pristine reference image. However,
for the images in the wild, it is quite difficult to access accurate reference images.
We argue that it is possible to learn reference knowledge under the No-Reference
Image Quality Assessment (NR-IQA) setting, which is effective and efficient
empirically. Concretely, by innovatively introducing a novel feature distillation
method in IQA, we propose a new framework to learn comparative knowledge
from non-aligned reference images. Then, we further propose inductive bias
regularization to inject different inductive biases into the model to achieve fast
convergence and avoid overfitting. Such a framework not only solves the congenital
defects of NR-IQA but also improves the feature extraction framework, enabling it
to express more abundant quality information. Surprisingly, our method utilizes
less input—eliminating the need for reference images during inference—while
obtaining more performance compared to some IQA methods that do require
reference images. Comprehensive experiments on eight standard IQA datasets
show that our approach outperforms state-of-the-art NR-IQA methods.

1 INTRODUCTION

Image Quality Assessment (IQA)(Saad et al., 2012; Mittal et al., 2012; Zhang et al., 2015) has
been extensively applied in various computer vision tasks, including image restoration(Banham
& Katsaggelos, 1997) and super-resolution (Dong et al., 2015). By mimicking the human vision
system (HVS), IQA methods effectively estimate the quality of a query image using its pristine
reference image, yielding promising results with appropriate data support. For instance, a seminal
study (Wang et al., 2004) introduced a structural similarity index method that utilizes all or part of the
information from High Quality (HQ) reference images to evaluate image quality, marking substantial
progress toward establishing Full-Reference Image Quality Assessment (FR-IQA). Learning-based
FR-IQA methods such as IQT (Cheon et al., 2021) further improve accuracy by comparing pixel-
aligned HQ reference images with distorted ones. However, pristine reference images are rarely
available in real-world scenarios, limiting the practical application of FR-IQA.

To address the challenge of lacking reference images, No-Reference Image Quality Assessment (NR-
IQA) techniques (Zhang et al., 2023b; 2021) have been developed to evaluate image quality solely
based on the input image. Recently, the growing success of Vision Transformers (ViT)(Dosovitskiy
et al., 2021) has led to state-of-the-art NR-IQA methods(Golestaneh et al., 2022; Ke et al., 2021; Qin
et al., 2023) adopting ViT-based architectures, optimizing feature extraction and quality regression in
an end-to-end manner. Although this resolves the issue of missing reference images, the performance
of these methods remains suboptimal. Psychological studies have demonstrated that the HVS more
effectively perceives image quality by comparing multiple images rather than assessing a single image
in isolation (Sheikh & Bovik, 2006). As a result, NR-IQA methods that do not leverage comparative
information between HQ and low-quality (LQ) images tend to underperform (Yin et al., 2022).

Another line of work has attempted to reduce the dependency on reference images while retaining
compatibility with the HVS’s comparative mechanisms. For instance, methods like those in (Liang
et al., 2016) introduced non-aligned reference images, which relax the need for pixel-perfect alignment
but still require content similarity. Later work (Yin et al., 2022) extended this idea to allow reference
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Figure 1: The proposed RKIQT outperforms all existing NR-IQA methods because it develops an
awareness of quality comparison with high-quality images during the knowledge distillation process.
Note that it also exceeds some IQA methods that do require reference images, as shown in Tab. 2.

images without content similarity. However, it still require finding suitable HQ images as references
during inference, adding computational complexity and limiting scalability. This motivates our work:

Can NR-IQA benefit from the comparison knowledge used in reference-based IQA methods, while
eliminating the need for reference images during inference?

Furthermore, the popular ViT model excels at modeling non-local dependencies (Qin et al., 2023;
Golestaneh et al., 2022), but it demonstrates weakness in handling local structures and inductive
biases (Yuan et al., 2021; Cordonnier et al., 2019). This limits the potential of the ViT for the
NR-IQA task, which heavily relies on local and non-local features (Su et al., 2020) and often lacks
large amounts of available training data (Zhang et al., 2023b; Zhao et al., 2023b). Consequently,
previous works (Golestaneh et al., 2022; Xu et al., 2024) have shown the benefits of using local
features extracted from convolutional neural network (CNN) networks for enhancing ViT. However,
integrating different model architectures inevitably increases the inference cost and the risk of
overfitting (Raghu et al., 2021; Naseer et al., 2021), particularly in IQA tasks with small datasets.

In this paper, we propose a novel NR-IQA framework called the Reference Knowledge-Guided
Image Quality Transformer (RKIQT). This framework leverages reference information and rich
inductive biases acquired during knowledge distillation to perform IQA inference without the need
for high-quality reference images, as shown in Fig. 1. To comprehensively understand the differences
between high-quality and low-quality images and to develop a comparative awareness, we introduce a
novel Masked Quality-Contrastive Distillation (MCD) method. This method guides the student model
to emulate the teacher’s prior comparison information based on partial feature pixels. Furthermore,
to adjust the inductive biases of the ViT, ensuring rapid convergence and preventing overfitting, we
propose an inductive bias regularization method. This technique adds two learnable tokens to the ViT
encoder and employs a reverse distillation strategy to learn beneficial knowledge from both a CNN
teacher and an Involution Neural Network (INN) (Li et al., 2021) teacher. It integrates complementary
inductive biases from convolution (spatial-agnostic and channel-specific) and involution (spatial-
specific and channel-agnostic) into the ViT, thereby enriching its representation with local and global
quality-aware features. After training the student, it can predict the quality of test images without
requiring any reference images. Our contributions are summarized as follows:

• We creatively use feature distillation in the NR-IQA setting to achieve comparative knowl-
edge. This method requires less input by eliminating the need for reference images during
inference, yet it achieves a more impressive performance compared to some traditional IQA
methods that rely on reference images.

• For feature distillation, we introduce a Masked Quality-Contrastive Distillation method to
guide the student model in emulating the teacher’s prior comparison information based on
partial feature pixels, resulting in a more robust model with stronger representation capacity.

• For regularization, we leverage the reverse distillation strategy while distilling teachers and
tokens with different inductive biases while speeding up the training process, we adapt
students to this reverse distillation to obtain more competitive quality-aware benefits by
fine-tuning the quality-aware ability of pre-trained teachers.
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2 RELATED WORK

NR-IQA with Deep Learning. The deep learning methods have achieved extraordinary success
in various computer vision tasks, which by nature attracts a great deal of interest in utilizing deep
learning for IQA tasks. The early version of deep learning-based IQA method (Zhang et al., 2018b;
Su et al., 2020) is based on the convolutional neural network (CNN) (He et al., 2016) thanks to
its powerful feature expression ability. The CNN-based IQA method generally treats the IQA
task as the downstream task of object recognition, following the standard pipeline of pre-training
and fine-tuning. Such a strategy is useful as these pre-trained features share a certain degree of
similarity with the quality-aware features of images (Su et al., 2020). Recently, the Vision Transformer
(ViT) (Dosovitskiy et al., 2021) based NR-IQA methods are growing in popularity, owing to the strong
capability of ViT in modeling the non-local perceptual features of the image. There are mainly two
types of architectures for the ViT-based NR-IQA methods, including hybrid Transformer (Golestaneh
et al., 2022; Xu et al., 2024) and pure ViT-based Transformer (Ke et al., 2021). The hybrid architecture
generally combines the CNNs with the Transformer, which are responsible for the local and long-range
feature characterization, respectively. The ViT-based methods can be further exploited. Nevertheless,
transformers have fewer inductive biases than CNNs (e.g., translation equivariance and locality) and
thus suffer when the given amounts of training data are insufficient (Dosovitskiy et al., 2021).

Knowledge Distillation. Recent advancements in knowledge distillation have been significant.
(Hinton et al., 2015) laid the foundational concept of training a smaller “student” model to replicate a
larger “teacher” model. (Mirzadeh et al., 2020) added the concept of an assistant network that aims to
narrow the gap between teachers and students, thus improving the effectiveness of distillation. Recent
works in IQA, such as (Yue et al., 2022), have utilized mutual learning to improve IQA performance
in small sample scenarios. (Zheng et al., 2021) and (Yin et al., 2022) have explored using KD to
transfer reference information to student models. This approach aims to reduce the student models’
dependency on the availability of reference images, leading to the development of degraded-reference
IQA (DR-IQA) and non-aligned reference IQA (NAR-IQA) methods. However, these methods
still face limitations due to their reliance on reference images, which is impractical for NR-IQA.
To the best of our knowledge, we make the first attempt to transfer more HQ-LQ difference prior
information and rich inductive biases to the NR-IQA via KD, endowing students with the awareness
of comparison. Experiments prove that distillation operations can further help our students achieve
more accurate and stable performance.

3 METHODOLOGY

To clarify, we use bold formatting to denote vectors (e.g., x, y), matrices (e.g., X,Y ), or tensors.
Additionally, we define some common notations in image quality assessment (IQA). In particular,
we define the Low Quality (LQ) image to be estimated as IL, the randomly selected annotated
High-Quality (HQ) image as IH , the feature map of the network output as F , the quality prediction
of network N is denoted as Y .

IQA is highly correlated to subjective cognition, which is more accurate when the pristine reference
image is provided (Wang et al., 2004). However, it is impractical to find reference images in real-
world applications. In this paper, we propose a novel framework that learns reference information
under the NR-IQA setting. It consists of three dedicatedly designed components: (i) The NR-
student Reference Knowledge-guided Image Quality Transformer (RKIQT) Ns is the main network
of our method, which receives the knowledge from other teacher networks. (ii) The non-aligned
reference teacher (NAR-teacher) NTnar

offers the comparison knowledge to Ns by Masked Quality-
Contrastive Distillation. (iii) The inductive bias teachers NTconv

, NTinv
provide the inductive bias

from convolution and involution (Li et al., 2021) knowledge to Ns by Inductive Bias Regularization.

As illustrated in Fig. 2, given input images, our student and NAR-teacher first obtain the LQ local-
global fused features and the HQ-LQ distribution difference through the outputs of the transformer
encoder, respectively. The student’s feature map is first masked and then used to reconstruct a new
feature through a simple generation module, which is supervised by the teacher (Sec. 3.2). Then,
we further propose inductive bias regularization, which extracts local and global knowledge from
CNN and Involution (Li et al., 2021) respectively to achieve fast convergence and avoid overfitting
(Sec. 3.3). After training, all teacher distillation and regularization will be deprecated, the student
model is capable of directly assessing the quality of the input images without reference.
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Figure 2: The overview of our RKIQT. We first mask the feature map of the student network, which
is then used to generate the new feature that is supervised by a non-aligned reference teacher network
(Sec. 3.2). After that, we further propose inductive bias regularization, which extracts local and global
knowledge from CNN and involution to achieve fast convergence and avoid overfitting (Sec. 3.3).

3.1 STUDENT AND TEACHER ARCHITECTURE DESIGN

Non-aligned reference Teacher. Inspired by previous work (Yin et al., 2022), we utilize a non-
aligned reference IQA teacher (NAR-teacher) to provide reliable comparison knowledge during
training, as it only needs high-quality images with arbitrary content as reference images and no
reference images with specific pixel alignments. This also further narrows the training cost of our
method. Our NAR-teacher network employs a pre-trained Inception-ResNet-v2 (Szegedy et al.,
2017) to extract feature maps from both unaligned reference and distorted input images. It then
computes the difference features between these two sets of features and transforms them into a 1D
patch sequence. This sequence serves as the input to a ViT (Dosovitskiy et al., 2021) encoder, which
constructs globally aware difference features. By comparing the unaligned reference image with the
input image, the NAR-teacher network provides valuable comparative knowledge through offline
knowledge distillation, optimizing the student network for NR-IQA tasks.

Reference-guided Transformer Student. As mentioned before, we propose cross-inductive bias
teachers that can focus on various inductive biases (Sec. 3.3) to achieve fast convergence and prevent
overfitting. To align additional learnable tokens with different inductive bias teachers, we introduce
token inductive bias alignment. We use three tokens: Class token, Conv token, and Inv token. To
eliminate the inductive bias in the Class token, we apply truncated Gaussian initialization, which
ensures values are drawn from a neutral, unbiased distribution. On the other hand, we introduce the
corresponding inductive bias into the remaining two tokens. The Conv token and Inv token use the
average pooling outputs of convolution stem and involution stem, respectively, with added position
embeddings. The output of the encoder includes three inductive bias tokens denoted by F̂o ∈ R3×D.
Then, we follow previous work (Qin et al., 2023) by introducing a transformer decoder to further
decode inductive biases Class, Conv, and Inv tokens through multi-head self-attention (MHSA), thus
making the extracted features more significant and comprehensive to the image quality. Finally,
the outputs of the Class token, Conv token, and Inv token are supervised by the ground truth and
corresponding inductive bias teacher. For further details, refer to Sec. A.4.

3.2 MASKED QUALITY-CONTRASTIVE DISTILLATION

We make the first attempt to transfer HQ-LQ differential prior information from non-aligned reference
teacher (Sec. 3.1) to NR-IQA via Knowledge Distillation (KD). Traditional KD methods require the
student model to directly mimic the teacher model’s output. Such a mechanism is not suitable for
our method, since our student model lacks reference images, it can only mine the quality features
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of LQ images. It is misaligned with the HQ-LQ distribution difference features captured by the
teacher. Direct imitation teacher’s output may introduce negative regularization that degrades the
final performance and stability (Li et al., 2023) (refer to Tab. 4). Empirically, we have identified that
these negative effects stem mainly from two aspects: (1) the traditional mean squared error (MSE)
loss directly aligns features on a one-to-one basis, increasing the training difficulty (Li et al., 2023);
(2) The quality differences feature between high-quality (HQ) and low-quality (LQ) images tend to
appear in salient regions (Varga, 2022). This means that non-salient pixel features often miss the
chance to learn from reference knowledge, limiting the model’s ability to generalize to various types
of distorted images.

Inspired by the masking mechanisms (He et al., 2022; Yang et al., 2022), this paper proposes a simple
yet effective feature distillation method, named Masked Quality Contrastive Distillation (MCD). The
goal of the MCD is not to directly mimic the HQ-LQ difference features extracted by the teacher but
rather to use these features to guide the student in developing a comparative awareness. Specifically,
we first randomly mask the student features and then force the student model to generate the teacher’s
complete features based on partial pixels through a simple feature generation module. Benefiting
from the MCD module, the enhancement of the student’s comparative awareness is reflected in two
key aspects. First, reconstructing teacher features from masked segments rather than direct imitation
not only improves the student model’s ability to perceive local image contrast (He et al., 2022) but
also reduces training difficulty. Second, in each iteration, the MCD method randomly masks portions
of the feature map’s pixels. This ensures that all pixels are used throughout the training process to
learn reference knowledge.

Specifically, for a given i-th image, all layer features F (i)
T from the NAR-teacher are utilized to guide

the training of the NR-student. Initially, we define a random mask function M(·) to obscure the
corresponding features of the student that have been processed through an adaptive layer, aligning
them with the teacher’s feature map. Subsequently, the student’s features are used to generate new
feature maps via a generation module G(·), which comprises two 3×3 convolutional layers with ReLU
activation functions. Finally, mean squared error (MSE) loss is employed as the feature distillation
loss to transfer knowledge to the corresponding layer features F (i)

S of the NR-student. This process
can be expressed as follows:

F
(i)
S = G(M(F

(i)
S′ ))

Lfeature(FS ,FT ) =
1

K

K∑
i=1

∥F (i)
T − F

(i)
S ∥2F

(1)

where F
(i)
S′ represent the aligned feature map of the student encoder , K denotes the number of

images in the training set. Guided by MCD, our student effectively learns more HQ-LQ difference
knowledge and remains stable across differently distorted images.

3.3 INDUCTIVE BIAS REGULARIZATION

Prior research (Dosovitskiy et al., 2021) found that transformers have fewer inductive biases and
thus suffer when the given amounts of training data are insufficient. This issue can be addressed
through the logits distillation technique (Zhu et al., 2018), where a student model with smaller
inductive biases can learn various knowledge from teachers with different inductive biases (Touvron
et al., 2021). Therefore, to achieve fast convergence and avoid overfitting, we propose an inductive
bias regularization that adopts EfficientNet-b0 (Tan & Le, 2019) and RedNet101 (Li et al., 2021)
(pre-trained on ImageNet (Deng et al., 2009)) which considers the trade-off between accuracy and
complexity to guide the student’s logits output to obtain more comprehensive representation power.
1. To explain, CNN has a strong locality modeling capability, while the involution kernel is shared
across channels but distinct in the spatial extent, and dynamically generating kernel parameters,
which enables the extraction of long-range spatial information in images. In this way, the knowledge
from teachers compensates for each other and significantly improves the accuracy of our RKIQT.

However, we believe that if teachers’ logits with different inductive biases are directly used to
supervise students, there will be a relatively large quality perception gap between teacher and

1We do not use ViT as a teacher to guide long-range information because it has fewer inductive biases (Ren
et al., 2022)
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student (refer to Table 7). Therefore, we introduce a learnable intermediate layer to solve such a
problem. Specifically, the introduced learnable intermediate layer is proposed to aggregate the output
of the corresponding teacher network and also takes the supervision information from the student
network. Take the INN branch as an example (same with CNN branches), given the i-th image, the
teacher’s output is defined as YT ′

inv
. Meanwhile, the output of the teacher’s learnable intermediate

layer and student network is defined as YTinv
and YSinv

, respectively, which is expressed as follows:

YTinv = MLP((A1(F1)⊕A2(F2))⊕A3(F3)) (2)

(F1, F2, F3) are features from different middle layers of the pre-trained Teacher network, transformed
by the adaptation layer A(·) and feature addition ⊕. During training, L1 regression is used as the
distillation loss, and the loss function for the student and intermediate layers is:

LSinv =
1

K

K∑
i=1

∥Y (i)
Sinv

− Y
(i)
Tinv

∥1 (3)

LTinv =
1

K

K∑
i=1

∥Y (i)
Tinv

− Y
(i)
T ′
inv

∥1 +
1

K

K∑
i=1

∥Y (i)
Tinv

− Y
(i)
Sinv

∥1 (4)

where LSinv and LTinv donates the supervision loss of the student and teacher’s intermediate layer.
In this way, the ability gap between teachers and students is effectively narrowed. Meanwhile, the
students even outperform the teacher and get a noticeable improvement. From the perspective of a
student, the output takes supervision from two teachers, which is formally defined as:

LLogits = LSinv
+ LSconv

, (5)

where the calculation process of LSconv
is similar to LSinv

. Take the ground truth as extra supervision,
the loss function of the student () is finally formally defined as:

L =
1

K

K∑
i=1

∥Y (i)
gt −Ns(I

(i)
L )∥

1
+ λ1LFeature + λ2LLogits, (6)

where I
(i)
L is the ith distorted image,Ns(·) is the student predicted results and labeled ground-truth is

represented as Y (i)
gt . λ1, λ2 are the hyperparameters.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION CRITERIA

We evaluate the proposed RKIQT on eight typical datasets, including four synthetic datasets
(LIVE (Sheikh et al., 2006), CSIQ (Larson & Chandler, 2010), TID2013 (Ponomarenko et al.,
2015), KADID (Lin et al., 2019)) and four authentic datasets (LIVEC (Ghadiyaram & Bovik, 2015),
KonIQ (Hosu et al., 2020), LIVEFB (Ying et al., 2020), SPAQ (Fang et al., 2020)). Authentic datasets
contain diverse real-world images, while synthetic datasets feature distorted images with various
degradation types. Performance is measured using Spearman’s Rank Correlation Coefficient (SRCC)
and Pearson’s Linear Correlation Coefficient (PLCC). SRCC and PLCC values range from -1 to 1,
with superior performance indicated by absolute values close to one.

4.2 IMPLEMENTATION DETAILS

We build the Transformer encoder based on ViT-S from DeiT III (Touvron et al., 2022), with an
encoder depth of 12 and 6 heads. The decoder depth is set to 1. The model is trained for 9 epochs with
a learning rate of 2× 10−4. For each dataset, 80% of the images are for training and 20% for testing,
repeating this 10 times to mitigate bias and report the average SRCC and PLCC. In addition, during
training, randomly sample high-quality images from the DIV2K HR dataset (Agustsson & Timofte,
2017) as reference inputs for the NAR-teacher network. These experiments were performed on four
NVIDIA 3090 GPUs. During training on any of the 8 IQA datasets, the student network should
use the corresponding pre-trained CNN and INN teachers for that dataset, while the NAR-teacher
is pre-trained exclusively on the synthetic KADID dataset. The teacher performs offline distillation
during student training. Please refer to appendix A.3 for more details.
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Table 1: Performance comparison measured by averages of SRCC and PLCC, compared with
NR-IQA. Bold entries indicate the best results, underlines indicate the second-best.

LIVE CSIQ TID2013 KADID LIVEC KonIQ LIVEFB SPAQ

Method (Infer Params (M)) PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

DBCNN (Zhang et al., 2018b) 0.971 0.968 0.959 0.946 0.865 0.816 0.856 0.851 0.869 0.851 0.884 0.875 0.551 0.545 0.915 0.911
TIQA (You & Korhonen, 2021) 0.965 0.949 0.838 0.825 0.858 0.846 0.855 0.85 0.861 0.845 0.903 0.892 0.581 0.541 - -
MetaIQA (Zhu et al., 2020) 0.959 0.960 0.908 0.899 0.868 0.856 0.775 0.762 0.802 0.835 0.856 0.887 0.507 0.54 - -
HyperIQA (Su et al., 2020) 0.966 0.962 0.942 0.923 0.858 0.840 0.845 0.852 0.882 0.859 0.917 0.906 0.602 0.544 0.915 0.911
TReS (152M) (Golestaneh et al., 2022) 0.968 0.969 0.942 0.922 0.883 0.863 0.858 0.859 0.877 0.846 0.928 0.915 0.625 0.554 - -
MUSIQ (27M) (Ke et al., 2021) 0.911 0.940 0.893 0.871 0.815 0.773 0.872 0.875 0.746 0.702 0.928 0.916 0.661 0.566 0.921 0.918
Re-IQA (48M) (Saha et al., 2023) 0.971 0.970 0.960 0.947 0.861 0.804 0.885 0.872 0.854 0.840 0.923 0.914 - - 0.925 0.918
DEIQT (24M) (Qin et al., 2023) 0.982 0.980 0.963 0.946 0.908 0.892 0.887 0.889 0.894 0.875 0.934 0.921 0.663 0.571 0.923 0.919
LIQE (151M) (Zhang et al., 2023b) 0.951 0.970 0.939 0.936 - - 0.931 0.930 0.910 0.904 0.908 0.919 - - - -
LoDa (120M) (Xu et al., 2024) 0.979 0.975 - - 0.901 0.869 0.920 0.912 0.899 0.876 0.933 0.920 0.679 0.578 0.928 0.925
RKIQT (28M) 0.986 0.984 0.970 0.958 0.917 0.900 0.911 0.911 0.917 0.897 0.943 0.929 0.686 0.589 0.928 0.923

Table 2: Model comparisons on standard IQA datasets trained on the synthetic Kaddid-10K dataset,
with FR-IQA and NAR-IQA results reported from a previous study (Yin et al., 2022).

IQA Type Method LIVE CSIQ TID2013 KonIQ-10K

SRCC PLCC KRCC SRCC PLCC KRCC SRCC PLCC KRCC SRCC PLCC KRCC

FR-IQA
LPIPS (Zhang et al., 2018a) 0.932 0.934 0.765 0.876 0.896 0.689 0.670 0.749 0.497 - - -
DISTS (Ding et al., 2022) 0.954 0.954 0.811 0.929 0.928 0.767 0.830 0.855 0.639 - - -
IQT (Cheon et al., 2021) 0.970 - 0.849 0.943 - - 0.899 - 0.717 - - -

NAR-IQA

DCNN (Liang et al., 2016) 0.752 0.756 0.594 0.721 0.716 0.563 0.473 0.492 0.346 0.258 0.256 0.147
WaDIQaM (Bosse et al., 2017) 0.897 0.894 0.707 0.799 0.851 0.613 0.670 0.694 0.493 0.362 0.364 0.259
IQT-NAR (Cheon et al., 2021) 0.908 0.906 0.728 0.802 0.860 0.624 0.680 0.707 0.499 0.372 0.372 0.269
CVRKD (Yin et al., 2022) 0.913 0.917 0.748 0.829 0.872 0.655 0.691 0.733 0.501 0.416 0.413 0.287
Our NAR-teacher 0.903 0.888 0.717 0.799 0.821 0.609 0.674 0.691 0.490 0.470 0.472 0.322

NR-IQA RKIQT (Ours) 0.931 0.914 0.764 0.809 0.841 0.620 0.730 0.738 0.537 0.566 0.581 0.407

4.3 COMPARISON WITH SOTA IQA METHODS

Table 1 presents the comparative performance of the proposed RKIQT and other state-of-the-art
NR-IQA methods, including convolution-based methods such as HyperNet (Su et al., 2020), as well
as vision transformer-based methods such as DEIQT (Qin et al., 2023) and LoDa2 (Xu et al., 2024).
The evaluation results obtained from 8 diverse datasets demonstrate that RKIQT outperforms all other
NR-IQA methods across each dataset. Notably, as shown in Table 9, RKIQT continues to benefit from
larger backbone sizes, further demonstrating the effectiveness of our approach. Furthermore, Table 2
shows that our method outperforms various NAR-IQA approaches, including the teacher model,
demonstrating the effectiveness of the distillation strategy in learning reference knowledge with fewer
inputs. On the synthetic LIVE and TID2013 datasets, RKIQT achieves performance comparable to
or better than FR-IQA methods like LPIPS. Although the results are not entirely superior, it is worth
noting that the proposed method does not require reference images during inference, making it more
suitable for real-world IQA tasks where reference images are unavailable.

4.4 GENERALIZATION CAPABILITY VALIDATION
Table 3: SRCC on the cross datasets valida-
tion. The best results are highlighted in bold,
second-best is underlined.

Training LIVEFB LIVEC KonIQ LIVE CSIQ

Testing KonIQ LIVEC KonIQ LIVEC CSIQ LIVE

DBCNN 0.716 0.724 0.754 0.755 0.758 0.877
P2P-BM 0.755 0.738 0.740 0.770 0.712 -

TReS 0.713 0.740 0.733 0.786 0.761 -
DEIQT 0.733 0.781 0.744 0.794 0.781 0.932
LoDa 0.763 0.805 0.745 0.811 - -

RKIQT 0.759 0.797 0.760 0.818 0.793 0.935

We evaluate the generalization ability of RKIQT by
employing a cross-dataset validation approach. In
this approach, we train the NR-IQA model on one
dataset and test it on others without fine-tuning or
parameter adaptation. Table 3 shows the experimen-
tal results of SRCC averages on the five datasets. As
observed, RKIQT achieves the best performance on
five of the six cross-datasets. It clearly outperforms
the other methods on the LIVEC dataset and shows
competitive performance on the KonIQ dataset which
strongly demonstrates the generalization ability.

2For a fair comparison, we report the experimental results of LoDa with a ViT-B backbone (pre-trained on
ImageNet-1k) on the KADID and KonIQ datasets.
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Table 4: Ablation experiments on KADID, LIVEC, and KonIQ datasets (left) and MCD ablation
experiments on LIVE, LIVEC, and KonIQ datasets (right). Bold entries indicate the best performance.

KADID LIVEC KonIQ

Method PLCC SRCC PLCC SRCC PLCC SRCC

CNN-teacher 0.865 0.866 0.892 0.866 0.921 0.903
INN-teacher 0.789 0.798 0.815 0.811 0.910 0.900
NAR-teacher 0.909 0.902 - - - -

baseline 0.878 0.884 0.887 0.865 0.930 0.918
w/o Regular. 0.903 0.905 0.903 0.879 0.938 0.927
w/o MCD 0.902 0.902 0.907 0.881 0.939 0.926
RKIQT 0.911 0.911 0.917 0.897 0.943 0.929

LIVEC KonIQ

Method PLCC SRCC PLCC SRCC

baseline 0.887 0.865 0.930 0.918
std ±0.02 ±0.017 ±0.003 ±0.004
w/ DRD 0.908 0.889 0.940 0.925
std ±0.008 ±0.014 ±0.002 ±0.003
w/ MCD 0.917 0.897 0.943 0.929
std ±0.008 ±0.009 ±0.002 ±0.002

4.5 ABLATION STUDY

Ablation on overall Distillation framework. RKIQT consists of two main components: Masked
Quality-Contrastive Distillation (MCD) and Inductive Bias Regularization. We conducted ablation
studies to assess their individual contributions, as shown in Table 4. "w/o Regular." indicates MCD
without Inductive Bias Regularization, and "w/o MCD" refers to regularization without MCD. The
results demonstrate that both MCD and Inductive Bias Regularization significantly improve image
quality representation, leading to the superior performance of RKIQT. Notably, our model outperforms
the NAR-teacher model, which uses reference prior information. Specifically, the inductive bias
regularization approach significantly improves the model’s accuracy and stability, while the MCD
technique has a more pronounced impact on the KADID dataset. This outcome is expected since
inductive bias regularization involves a more expensive pre-training process, where each dataset is
pre-trained with the corresponding teacher, introducing significantly more prior information than
MCD. However, MCD still enables our model to achieve better performance and generalization than
existing SOTA NR-IQA methods. In conclusion, the ablation studies confirm that both MCD and
Inductive Bias Regularization are essential for improving model accuracy and stability.

Table 5: Ablation experi-
ments for Generation Module
in MCD on LIVEC dataset.

Layers Kernel PLCC SRCC

1 3×3 0.907 0.885
2 3×3 0.917 0.897
3 3×3 0.909 0.886
2 5×5 0.916 0.894
3 5×5 0.909 0.888

Table 6: Performance of us-
ing different inductive bias
teachers on LIVEC dataset.

CNN INN PLCC SRCC
0.903 0.879

! 0.909 0.886
! 0.910 0.89

! ! 0.912 0.892

! ! 0.917 0.897

Table 7: Ablation experiments on Re-
verse Distillation (RD) on the LIVEC
and KonIQ datasets.

LIVEC KonIQ
Method PLCC SRCC PLCC SRCC
baseline 0.894 0.875 0.935 0.922
std ±0.02 ±0.017 ±0.003 ±0.004
w/o RD 0.911 0.886 0.941 0.928
std ±0.009 ±0.014 ±0.004 ±0.003
w/ RD 0.917 0.897 0.943 0.929
std ±0.008 ±0.009 ±0.002 ±0.002

Ablation on Masked Quality-Contrastive Distillation. To further investigate the effectiveness of
MCD, we conducted ablation experiments where the feature distillation method was replaced with
MCD and direct feature distillation (DRD), respectively. The results of these experiments, as shown
in Table 4, indicate that the model trained using the MCD approach demonstrated significantly higher
accuracy and stability across both synthetic and real-world datasets, particularly on the real-world
dataset LIVEC. These findings clearly demonstrate that the MCD distillation method enhances the
model’s robustness in perceiving image distortions in natural environments. For a more detailed
analysis of MCD, please refer to Sec. A.5 in the Appendix.

Ablation on Inductive Bias Regularization and Reverse Distillation. We compare test loss during
training with the baseline (Fig. 3) to assess overfitting prevention. Regularization consistently leads
to lower test errors, while the baseline shows higher errors and oscillations at 70/50 steps, indicating
overfitting. In contrast, regularization maintains a steady reduction in errors. In the early phase of
LIVEC training (before 35 steps), regularization has limited impact, but its benefits become evident
after 70 steps through reverse distillation with inter-layer modules, gradually closing the gap between
teacher and student models (Table 4). Over time, logit regularization effectively mitigates overfitting
(Fig. 9). Additional experiments (as shown in Table 7) further confirm the role of reverse distillation
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Figure 3: (a) and (b) are sensitivity experiment of hyper-parameters λ1 and λ2, Fig. 3(c) and (d)
compare testing loss plots with regularization and baseline on LIVEC and KonIQ dataset which
demonstrate the effectiveness of preventing overfitting

Table 8: Performance results using HQ reference images
with different contents for knowledge distillation.

TID2013 CSIQ

Reference Image PLCC SRCC PLCC SRCC

Content-align 0.941 0.928 0.973 0.963
Content-similar 0.926 0.909 0.965 0.96

Content-dissimilar 0.917 0.897 0.97 0.958

Table 9: Performance results for various
ViT sizes (pre-trained on ImageNet-1K).

Encoder PLCC SRCC

RKIQT(ViT-S) 0.911 0.911
RKIQT(ViT-M) 0.917 0.914
LoDa (ViT-B) 0.920 0.912

RKIQT(ViT-B) 0.922 0.919

in improving performance and stability. The inter-layer modules help the student model learn more
effectively from teachers with different inductive biases, such as in texture extraction and detecting
subtle features (e.g., low contrast in Fig. 7). This strategy leverages prior knowledge and significantly
enhances training efficiency. For more details on accelerated convergence, refer to Fig. 9.

Ablation on Generation Block in MCD Module. We tested various generation block configurations
(Table 5). A single convolution layer showed minimal improvement, while three layers lowered
performance compared to two. Additionally, 5x5 kernels increased computational cost without
benefits over 3x3. Thus, we selected two convolution layers with one activation layer.

4.6 IN-DEPTH ANALYSIS

The necessity of different inductive biases in inductive bias regularization. We conducted ablation
experiments on the use of INN and CNN networks, with results shown in Table 6. Performance
declines when only one teacher is used, highlighting the necessity of both. This is in keeping with
our previous observations that (1) INNs provide distinct inductive biases and output distributions
compared to transformers, excelling on datasets like LIVE and CSIQ, while transformers, such as
Musiq, perform better on others, as shown in Table 13 in the appendix. This diversity enriches the
data perspectives for transformers. (2) Additionally, previous work relying solely on CNN teachers,
like DeiT, suffered from increased bias-related errors. Introducing INNs helps balance these biases,
reducing overfitting and improving model robustness. Please refer to Sec. A.5 for more details.

Inductive Bias Token Enhances Perspective Diversity.

Figure 5: Cosine similarity between percep-
tual features of CLS token, CNN token, and
INN token. The low similarity between them
suggests that each token judges the image
quality from a unique perspective.

To demonstrate that these tokens with different induc-
tive biases indeed model unique features, we com-
pute the cosine similarity between the CLS, CNN,
and INN tokens of the distillation model (results are
averaged over the LIVEC and LIVE datasets, respec-
tively). As shown in Fig. 5, the result is between
0.32 and 0.7. This is significantly lower than the
similarity between class and distillation labels in pre-
vious work (Touvron et al., 2021); 0.96 and 0.94 in
DeiT-T and Deit-S, respectively. This confirms our
hypothesis that modeling local and global features
with multiple perspectives separately with separate
tokens in Vits leads to a more comprehensive quality
feature representation.
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Figure 4: Activation maps of baseline, RKIQT, and NAR-Teacher using the Grad-CAM (Selvaraju
et al., 2017). Mean Opinion Scores are displayed in the figures. Our RKIQT model is designed to
focus more on image distortion and consequently improves image quality prediction performance.
Red crosses indicate the worst predictions, while green checkmarks indicate the best predictions.

Effect of Reference Image with Different Content. Given that HQ images are randomly sampled,
they may have no direct content relation to the LQ images. To assess the impact of this variability, we
conducted additional experiments using content-aligned and content-similar HQ images. Content sim-
ilarity was achieved through affine transformations (scaling: 0.95–1.05, rotation: −5◦ to 5◦) (Liang
et al., 2016). As shown in Table 8, the results show that using content-similar HQ images further
improves model performance. However, even with content-dissimilar HQ images, our RKIQT still
achieves superior results, demonstrating its robustness in learning from diverse reference knowledge.

Visualization of quality attention map. We use GradCAM (Selvaraju et al., 2017) to visualize feature
attention maps (Fig. 4). The teacher model focuses on global edges rather than semantic information,
emphasizing the importance of edges in image quality. In contrast, the baseline model often focuses
on semantic content but is easily distracted, frequently attending to undistorted regions. RKIQT,
benefiting from NR-IQA’s semantic awareness and contrastive features learned from the teacher
model, accurately identifies distorted areas. The prediction results indicate that RKIQT outperforms
the baseline and teacher models across distortion levels, though distinguishing severe edge distortions
remains challenging (first two columns) due to missing reference images. Nonetheless, RKIQT more
accurately identifies distorted regions than the baseline.

Analysis on Sensitivity of hyper-parameters. In this paper, we use λ1 and λ2 in Eq. 6 to balance
the MCD and regularization, respectively. In this subsection, we do the sensitivity study of the
hyperparameters and conduct experiments on different Loss weights λ to explore their effect on
RKIQT. As shown in Fig. 3, the MCD and Inductive Bias Regularization are not very sensitive to
the hyper-parameter λ, which is just used for balancing the loss. This indicates that the choice of
hyper-parameter in our approach is relatively arbitrary, highlighting the robustness of our model.

5 CONCLUSION

The primary challenge for NR-IQA is the absence of effective reference information. To mitigate this
issue, we introduce the reference knowledge into the NR-IQA and propose an RKIQT method. We
make the first attempt to introduce human comparative thinking into the IQA model, thus ensuring a
high consistency with the human subjective evaluation. In particular, we design a Masked Quality-
Contrastive Distillation module that distills teachers’ comparison knowledge given non-aligned
high-quality images. Furthermore, an inductive bias regularization is proposed based on the CNN
and INN networks. It allows the students with fewer inductive biases to learn from teachers with
various inductive biases, and subsequently achieve a fast convergence and generalization capability.
Experiments on 8 IQA datasets verify the superiority of the RKIQT.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 APPENDIX OVERVIEW

The supplementary material is organized as follows: Explanations for Concepts: provide explana-
tions for some of the concepts in the manuscript. Training and Evaluation Details: shows more
training and evaluation details. More ablation: provides more ablation experiments, including MCD,
random mask, Inductive Bias token, and Inter-layer. Limitation: analyzes the limitations of our
RKIQT as well as directions for future work

A.2 EXPLANATIONS FOR CONCEPTS

ClS Token: In classification tasks, the input image is divided into multiple patches. The Vision
Transformer (ViT) model learns to extract global aggregate information by aggregating relationships
between different patches through learnable CLS tokens.

Token Inductive Bias: This bias assigns different biases to tokens. The purpose is to align the
inductive bias of tokens with that of teachers, enabling tokens to learn more effectively from their
corresponding teachers.

Expansion of INN: Involution (INN) is a type of kernel that is shared across channels but distinct
in spatial extent. INN exhibits precisely inverse inherent characteristics compared to convolution,
enabling it to capture global spatial relationships in an image.

Pixel-Aligned Reference: This term refers to a clear reference image that corresponds to a distorted
image, having exactly the same content information as the distorted image.

Offline Distillation: During training, knowledge from a pre-trained teacher model is transferred to a
student network. Only the student network is trained, while the parameters of the teacher are frozen.

Non-aligned Reference: In this paper, "aligned" refers to situations where a blurred image has
a corresponding clear image of the same version. For instance, if we have a blurry photo due to
camera shake, two images are considered aligned when the camera captures the distorted image’s
corresponding clear image under the same scene, view angle, and lighting conditions. However,
obtaining this aligned clear image is often challenging in practical settings. Typically, the reference
image used is non-aligned. Therefore, the term "non-aligned model" means that the pixel of low-
quality image and the high-quality image don’t have a one-to-one correspondence. In other words,
the high-quality image only needs to be clear, while the image content can vary.

A.3 TRAINING AND EVALUATION DETAILS

Our teacher models are both pre-trained and freeze parameters during student training.

Implementation Details: To train the student network PyTorch (Paszke et al., 2019), we follow the
typical strategy of randomly cropping the input image into 10 image patches with a resolution of
224× 224. Each image patch is then reshaped as a sequence of patches with a patch size of p = 16
and a dimension of input tokens as in D = 384. We create the Transformer encoder based on the
ViT-S proposed in DeiT III (Touvron et al., 2022), with the encoder depth set to 12 and the number of
heads h = 6. The depth of the decoder is set to 1. The model is trained for 9 epochs with a learning
rate of 2× 10−4 and a decay factor of 10 every 3 epochs. The batch size varies depending on the
size of the dataset, with a batch size of 16 for LIVEC and 128 for KonIQ. For each dataset, 80% of
the images are used for training, and the remaining 20% are used for testing. We repeat this process
10 times to mitigate performance bias and report the average of SRCC and PLCC. For our pre-trained
CNN, INN teacher, and NAR-teacher, the pre-training follows a similar method to student training,
with hyperparameters from previous work (Qin et al., 2023).

Training Stage: As depicted in Fig. 2 and algorithm 1, begins with an input image. The student
model, along with three different inductive bias tokens, and the NAR-teacher model, acquire both LQ
features and the difference in distribution between HQ and LQ features. To improve the student’s
feature representation, we employ Mask Quality Contrast distillation. This involves masking the
student’s feature map and generating a new feature using a simple generation module. The generation
process is supervised by the NAR-teacher’s differential features. Subsequently, the student’s three
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different inductive bias tokens enter the decoder to predict three quality scores. Each quality score is
supervised by a specific inductively biased teacher. However, instead of directly using the teacher
logits with different inductive biases to supervise the students, we introduce a learnable intermediate
layer. This is done to mitigate the potential large quality perception gap between teachers and students.
Additionally, it is worth noting that the learnable intermediate layer is supervised by both the students
and the CNN and INN teachers.

Inference Stage: All teacher models, feature distillation, and regularization techniques are no longer
utilized. In other words, as depicted in algorithm 2, the student model is directly applied for inference
without reference images or high-quality images.

Algorithm 1 Training Process of RKIQT

Require:
1: Low-quality (LQ) images: XLQ

2: LQ images’ ground truth: Ygt

3: High-quality (HQ) images: XHQ

4: Inductive Bias Student Network: S
5: CNN teacher’s learnable intermediate layer: T l

cnn
6: INN teacher’s learnable intermediate layer: T l

inn
7: Encoder layer number i, 1 ≤ i ≤ L
8: Non-aligned reference teacher (NAR-teacher): Tnar

9: Pre-trained CNN teacher: Tcnn, INN teacher: Tinn

10: Loss hyper-parameters: λ1, λ2

11: Masked Quality-Contrastive Distillation:
12: for each encoder layer i = 1, 2, ..., L do
13: Obtain FLQ of input XLQ using the S encoder.
14: Obtain LQ-HQ difference-aware features FHQ−LQ using the Tnar encoder.
15: Randomly mask FLQ to obtain Fmask.
16: Generation module to restore Fmask to the Fnew.
17: MSE loss between Fnew and FHQ−LQ: Li

fea.
18: end for
19: Sum up Li

fea of all layers.
20: Inductive Bias Regularization:
21: Get the output Ycls, Yscnn

, Ysinn
using the S.

22: Obtain YT ′
cnn

, YT ′
inn

of input XLQ using Tcnn and Tinn.
23: Obtain pseudo-label YTcnn

, YTinn
of input XLQ using T l

cnn and T l
inn, respectively.

24: Calculate loss Llogits in Equ. 3,5 of our manuscript.
25: Calculate loss Lall in Equ. 6 of our manuscript.
26: Use Lall to update S.

Output: S

Algorithm 2 Inference Process of RKIQT

Require:
1: Low-quality (LQ) images: XLQ

2: Inductive Bias Student: S
3: Testing Process:
4: Using ClS token, Conv token, and Inv token in the S to get the quality score Ycls, Yscnn

, Ysinn
.

5: Select Ycls as the final output.
Output: Ycls

A.4 REFERENCE-GUIDED TRANSFORMER STUDENT DECODER

As mentioned before, we propose cross-inductive bias teachers that can focus on various inductive
biases (Sec. 3.3) to achieve fast convergence and prevent overfitting. To align additional learnable
tokens with different inductive bias teachers, we introduce token inductive bias alignment. We use
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Table 10: Comparison of model complexity during training and inference phases.

Phase Param (M) GFLOPs Memory (GB) Throughput (pairs/s)
Training 32M 32.71 15.6 126.8

Inference 28M 7.78 1.76 388.7

Image DRD MCD

Figure 6: Images from left to right are the input
images and their attention maps with DRD and
MCD. As observed, MCD pays more attention
to the background distortion region, and to the
quality distortion region of the subject.

Table 11: MCD ablation experiments on LIVE,
LIVEC, and KonIQ datasets. Bold entries indicate
the best performance.

LIVE LIVEC KonIQ

Method PLCC SRCC PLCC SRCC PLCC SRCC

baseline 0.978 0.977 0.887 0.865 0.930 0.918
std ±0.004±0.005 ±0.02 ±0.017±0.003±0.004
w/ DRD 0.983 0.981 0.908 0.889 0.940 0.925
std ±0.003±0.003±0.008±0.014±0.002±0.003
w/ MCD 0.986 0.984 0.917 0.897 0.943 0.929
std ±0.002±0.003±0.008±0.009±0.002±0.002

three tokens: Class token, Conv token, and Inv token. We apply truncated Gaussian initialization to
the Class token to eliminate its inductive bias and align it with the ground truth (Touvron et al., 2021).
On the other hand, we introduce the corresponding inductive bias into the remaining two tokens. The
Conv token and Inv token use the average pooling outputs of convolution stem and involution stem,
respectively, with added position embeddings. The output of the encoder includes three inductive bias
tokens denoted by F̂o ∈ R3×D. Then, we follow previous work (Qin et al., 2023) by introducing a
transformer decoder to further decode inductive biases CLS, Conv, and Inv tokens through multi-head
self-attention (MHSA), thus making the extracted features more significant and comprehensive to the
image quality. The queries Qd of the decoder are written by:

Qd = MHSA(Norm(F̂o + J)) + (F̂o + J), (7)

where J ∈ R3×D is initialized with random numbers, which evaluate the image quality from different
perspectives (Qin et al., 2023).

Ŷ = MLP(MHCA(Norm(Qd),Kd,Vd) +Qd) (8)

During Multi-Head Cross-Attention (MHCA), we utilize Qd to interact with the features of the image
patches preserved in the encoder outputs. The results are then fed to an MLP to derive the final quality
score Ŷ . The transformer decoder can significantly improve the learning ability of the ViT-based
NR-IQA model, thus improving the performance of the model and generalization ability. We further
present a comparison of the training and inference complexity of the RKIQT, as shown in Table 10.

A.5 MORE ABLATION

Ablation on Masked Quality-Contrastive Distillation.

To further investigate the effectiveness of the proposed MCD, we conduct ablation experiments to
train the model by changing the way of feature distillation to MCD and direct feature distillation
(DRD), respectively. We repeat the experiment 10 times for each set of training data and report
the average of PLCC, and SRCC. The experimental results are detailed in Table 4. Training model
via MCD achieves the best accuracy compared to DRD on both synthetic and authentic datasets,
especially on the authentic dataset LIVEC These observations vividly show that the distillation way
of MCD enhances the robustness of the model to image distortion perception in natural environments.
In other words, RKIQT effectively utilizes the information of the asymmetric reference graph and
achieves the best performance on both synthetic and real datasets.
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Image w/o Inter-layer w/ Inter-layer

Figure 7: The first picture is the distorted pic-
ture. The remaining images are the attention
map without and with learnable Inter-layer, re-
spectively. Incorporating the Inter-layer, our
model pays more attention to the quality-aware
features.

Figure 8: Inter-layer ablation experiments on LIVEC
and KonIQ datasets. Bold entries indicate the best
performance.

LIVEC KonIQ
Method PLCC SRCC PLCC SRCC
baseline 0.894 0.875 0.935 0.922
std ±0.02 ±0.017 ±0.003 ±0.004
w/o Inter-layer 0.911 0.886 0.941 0.928
std ±0.009 ±0.014 ±0.004 ±0.003
w/ Inter-layer 0.917 0.897 0.943 0.929
std ±0.008 ±0.009 ±0.002 ±0.002

Figure 9: Average SRCC versus Epochs on dif-
ferent datasets ablation on Inductive Bias Regu-
larization.

Table 12: Mask function ablation experiments
on LIVEC datasets. Bold entries indicate the
best performance.

Method PLCC SRCC

RKIQT w/ random mask 0.917 0.897
RKIQT w/ Gaussian (center) 0.916 0.897
RKIQT w/ all mask (center) 0.916 0.896
RKIQT w/ Gaussian (edge) 0.919 0.896
RKIQT w/ all mask (edge) 0.918 0.900

We provide a detailed analysis and consider that (i) MCD aids the model in acquiring HQ-LQ distri-
bution difference knowledge (i.e., contrastive ideas) and (ii) MCD preserves both local distortion and
global semantic features in the masked pixels, in conjunction with (i) to generate more comprehensive
quality-aware features. It is important to note that HQ-LQ distribution difference knowledge is
mainly represented by the edge of foreground and background in visualization, as illustrated in
row 4 of Fig. 4 of the manuscript. This is further demonstrated in Fig.6, which presents images
containing complex content (top) and simple content (bottom), accompanied by the corresponding
student encoder visualization outcomes. When the image is relatively simple, MCD’s response to
background quality perception is significantly reduced, with greater focus placed on the distortion
of the foreground content, thus confirming the second point (ii). However, as the complexity of
the image scene increases, MCD also starts to respond more to the quality perception of the edge
background, thus supporting the first point (i).

The effectiveness of accelerating convergence. To demonstrate the effect of the regularization on
convergence, we evaluate the training efficiency and performance of RKIQT distillation, as shown in
Fig. 9, which depicts the SRCC with an increasing number of epochs on LIVEC and KonIQ test sets.
The results show that RKIQT converges significantly faster than the other methods, achieving the
fastest convergence after only one epoch of training, which outperforms the second-best NR-IQA
method in Table 1 of the manuscript. Furthermore, on LIVEC, the use of the Inter-layer module
greatly reduces the negative impact of the teacher network’s less ideal performance, indicating that
the Inter-layer module preserves the diversity of knowledge and accelerates convergence. These
observations demonstrate that RKIQT and the teacher can "learn from each other", with the teacher
adapting its teaching to the student’s abilities, resulting in more comprehensive knowledge and
significantly improved model stability.

Ablation on Random Mask. Given that local distortions are often concentrated in the foreground
or center regions of an image, we conducted four sets of experiments to investigate the effects of
local distortion erasure, as shown in Table. 12. These experiments focused on the center and edge
regions of the image. 1)RKIQT W/ Gaussian(center): The random mask function was replaced with
a Gaussian distribution probability mask function, and the central region of the feature map was
masked with a higher probability. 2)RKIQT W/ Gaussian(edge): The random mask function was
replaced with a Gaussian distribution probability mask function, and the edge region of the feature
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LIVE CSIQ TID2013 KADID
PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

CNN 0.957 0.958 0.937 0.931 0.883 0.866 0.865 0.866
INN 0.965 0.963 0.948 0.939 0.901 0.901 0.789 0.798

MUSIQ 0.911 0.940 0.893 0.871 0.815 0.773 0.872 0.875

LIVEC KONIQ SPAQ LIVEFB
PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

CNN 0.892 0.866 0.921 0.903 0.864 0.860 0.653 0.557
INN 0.815 0.811 0.910 0.900 0.911 0.914 0.572 0.521

MUSIQ 0.746 0.702 0.928 0.916 0.928 0.918 0.661 0.566

Table 13: Performance comparison of NR-IQA methods with different inductive biases.

map was masked with a higher probability. 3)RKIQT W/ all mask(center): In this experiment, all
blocks in the central region were masked, while the edge region was masked with a lower probability.
4)RKIQT W/ all mask(edge): In this experiment, all blocks in the edge region were masked, while
the central region was masked with a lower probability.

From the experimental results shown in Table 12, we conducted two sets of experiments to mask the
central region. Interestingly, the experimental results indicate that masking the central region had
almost no impact on the performance of our model. On the contrary, when we considered applying
a larger probability of masking to the edge region or even masking the entire image except for the
central region, we observed some improvement in the model’s performance. These findings suggest
that the erasure of local distortions has little effect on the model’s performance, and in some cases,
an appropriate masking mechanism can even enhance the model’s performance. This provides a
potential direction for our future work.

The necessity of CNN teacher and INN teacher in inductive bias regularization. Intuitively,
including the INN teacher is necessary for three key reasons: 1) Highlighting Different Data Patterns:
Previous studies (Li et al., 2021) have shown that INN and CNN focus on different data patterns due
to their opposing inductive biases. As shown in Table 13, INN performs better on datasets like LIVE,
CSIQ, TID, and SPAQ, while CNN excels on others. Teachers with different inductive biases provide
complementary data perspectives, leading to more accurate and comprehensive representations.
Using both helps the transformer learn a more complete data representation (Zhang et al., 2023a;
Pan et al., 2022). 2) Mitigating CNN Biases: Previous studies (Zhao et al., 2023a) have shown
that DeiT relying solely on CNN teachers results in a strong influence from CNN inductive biases,
which can increase classification errors. Introducing an INN teacher with opposing inductive biases
can balance this effect, reducing the impact of specific CNN biases and alleviating related negative
regularization. 3) From empirical evidence, we conducted ablation experiments on the use of INN and
CNN networks. The results, as shown in the Table 6, indicate that performance declines when only
one of the teachers is used. This demonstrates that both CNN and INN teachers are indispensable for
optimal performance.

A.6 LIMITATION

Although we have demonstrated the superiority of RKIQT and found that incorporating random
and non-aligned reference information into traditional no-reference image quality assessment is
highly beneficial, there remains an important issue that cannot be ignored. Specifically, there may
be limitations for certain tasks such as underwater images and medical images, because the quality
contrast knowledge (e.g., shift and artifacts) is quite different from those in traditional NR-IQA
metrics (e.g., noise, and compression). Therefore, exploring how to adapt this framework to similar
directions in the future is an interesting area for further investigation.

A.7 BROADER IMPACTS

This paper aims to improve Image Quality Assessment (IQA) and considers its potential societal
impacts. Enhanced IQA models can significantly improve user experiences on digital platforms by
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ensuring that high-quality images are displayed. This is especially beneficial in online retail, social
media, and digital advertising, where the quality of visual content greatly influences user engagement
and satisfaction. However, IQA models may be vulnerable to adversarial attacks. Malicious actors
might manipulate image quality ratings to deceive users or automated systems. For instance, low-
quality advertisement images could be falsely rated as high quality, misleading consumers and
reducing the effectiveness of advertising campaigns. To mitigate these risks, a possible strategy is to
implement monitoring systems to detect and respond to anomalies will help maintain the reliability
and integrity of IQA models.
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