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Abstract

Recent advances in diffusion models have significantly
enhanced the cotrollable generation of streetscapes for
and facilitated downstream perception and planning tasks.
However, challenges such as maintaining temporal coher-
ence, generating long videos, and accurately modeling driv-
ing scenes persist. Accordingly, we propose DreamForge,
an advanced diffusion-based autoregressive video genera-
tion model designed for the long-term generation of 3D-
controllable and extensible video. In terms of controlla-
bility, our DreamForge supports flexible conditions such as
text descriptions, camera poses, 3D bounding boxes, and
road layouts, while also providing perspective guidance
to produce driving scenes that are both geometrically and
contextually accurate. For consistency, we ensure inter-
view consistency through cross-view attention and tempo-
ral coherence via an autoregressive architecture enhanced
with motion cues. Codes will be available at https:
//github.com/PJLab-ADG/DriveArena.

1. Introduction
With the emergence of large-scale datasets [1–3] and grow-
ing demands for practical applications, autonomous driv-
ing (AD) algorithms have experienced remarkable advance-
ments in recent decades. These advancements have driven a
shift from traditional modular pipelines [4–6] to end-to-end
models [7, 8], as well as the incorporation of knowledge-
driven approaches [9–11]. Despite achieving impressive
performance on various benchmarks, significant challenges
such as generalization and handling corner cases remain,
largely due to the limited data diversity in these datasets.

To enhance the diversity of driving scenes and facili-
tate downstream perception and planning tasks, recent ap-
proaches [12–14] have leveraged generative technologies
such as NeRF [15], 3D GS [16], and diffusion models
[17] to create multi-view driving scenes. Among these,
diffusion-based methods [14, 18, 19] have gained partic-

ular attention due to their ability to produce high-fidelity,
diverse scenarios. However, these methods still encounter
challenges, such as maintaining temporal coherence across
frames, generating long videos, and modeling geometri-
cally and contextually accurate driving scenes, which can
affect their effectiveness in real-world applications.

To alleviate the above issues, following [14, 19], we de-
sign a diffusion-based framework, named DreamForge for
multi-view driving scene video generation. Specifically, our
DreamForge leverages flexible control conditions, such as
road layouts and 3D bounding boxes, along with textual in-
puts, to generate driving scenarios that are both geomet-
rically and contextually accurate, maintaining cross-view
and temporal consistency. By integrating perspective guid-
ance and motion-aware autoregressive generation into con-
ditional diffusion models [17, 20], our framework achieves
significant improvements in several key aspects: (1) Better
controllability. We can not only control the generation of
scenes with varying weather conditions and styles through
texts, layouts, and boxes, but also improve lane generation
and foreground control by explicitly projecting road layouts
and boxes into the camera view for perspective guidance.
(2) Better scalability. By using road layouts, our framework
can easily adapt to generating driving scenes for any city in
the world by leveraging layouts from OpenStreetMap. (3)
Better coherence. By injecting motion cues and generating
long videos sequentially, our DreamForge ensures flexible
video lengths while maintaining coherence and consistency,
especially in extended sequences.

2. Methodology

2.1. Overview

We illustrate our proposed DreamForge in Figure 1. Built
upon the stable diffusion pipeline [20], DreamForge incor-
porates an effective condition encoding module that handles
various inputs, including road layouts, 3D bounding boxes,
text descriptions, and camera parameters, to generate realis-
tic surround-view images. To enhance lane generation and
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Figure 1. The overall framework of our DreamForge. During the denoising process, DreamForge leverages various conditions, including
text descriptions, camera poses, 3D bounding boxes, road layouts, and perspective canvases, to enhance the modeling of driving scenes.
Additionally, we incorporate cross-view and motion-aware attention mechanisms to achieve both view and temporal consistency, supporting
long-term video generation through the autoregression mechanism. “P” denotes the perspective projection.

foreground control, we explicitly project road layouts and
boxes into the camera view for perspective guidance. Rec-
ognizing the importance of maintaining scene consistency
across different views, we integrate a cross-view attention
module inspired by [14] to ensure coherence across multi-
ple perspectives. Additionally, we have designed a motion-
aware temporal attention module and an autoregressive gen-
eration paradigm that facilitate seamless video generation
with flexible lengths while preserving coherence and con-
sistency, particularly in extended sequences, thereby pro-
viding robust support for autonomous driving simulations.

2.2. Condition Encoding with ControlNet

Similar to MagicDrive [14], we perform scene-level encod-
ing, 3D bounding box encoding, and road layout encod-
ing for various conditions before feeding into ControlNet.
Specifically, for scene-level encoding, we first enrich the
text descriptions using GPT-4 then utilize the CLIP text
encoder [21] (Etext) to extract the text embeddings etext
from these descriptions. The camera poses P = {K ∈
R3×3,R ∈ R3×3,T ∈ R3×1} of each camera are en-
coded to ecam by Fourier Embedding [15] and MLP (Ecam),
where K, R, T represent camera intrinsic, rotations and
translations respectively. For 3D bounding box encoding,
label embeddings are first extracted from the class labels
using a text encoder. Coordinate embeddings are derived
from the eight vertices of the 3D bounding box through
Fourier Embedding and MLP. Finally, both label and coor-

dinate embeddings are combined and compressed into the
final box embeddings ebox using MLP. These embeddings,
etext, ecam, and ebox, all have the same dimensions and
are concatenated before being fed into the ControlNet and
the denoising UNet, as illustrated in Figure 1. As for the
road layout encoding, the 2D grid-formatted road layouts
are processed through a ConvNet (Elayout) to produce lay-
out embeddings elayout, which are then combined with the
noised latents and fed into the ControlNet.
Perspective guidance. As mentioned above, ControlNet
encodes rich 3D information and camera poses, which
could theoretically allow it to perform view transformation
implicitly, however, our experiments found that this im-
plicit learning struggles to generate surround-view images
that accurately align with the road layout and 3D bounding
boxes, particularly in distant and complex areas, as illus-
trated in Figure 2. Therefore, we further project the road
layout and 3D bounding boxes into the camera view using
the camera poses to explicitly provide perspective guidance,
which decreases the difficulty of the network in learning
to generate geometrically and contextually accurate driv-
ing scenes. Specifically, the contents of each category in
the road layouts and in the 3D bounding boxes are pro-
jected onto the image plane of each camera to obtain the
road canvas and box canvas, respectively. These canvases
are concatenated to create the perspective canvas, which is
encoded with the ConvNet (Ecanvas) to form the canvas em-
beddings econvas. The canvas embeddings are merged with
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the noised latents, and then input into ControlNet, enhanc-
ing the accuracy of lane and foreground generation.

2.3. Motion-Aware Autoregressive Generation

Most recent works [14] focus on fixed-length video clip
generation, often struggling with extended video generation
due to GPU memory limitations and insufficient temporal
consistency between different clips. Some methods [18, 19]
propose using keyframes (e.g., the first frame) as control
conditions and employing sliding windows to enhance tem-
poral coherence during inference. However, due to the lack
of motion cues and inadequate temporal modeling between
video clips, the coherence of extended videos remains un-
satisfactory. In this report, we introduce motion frames and
design a motion-aware temporal attention module to incor-
porate ego-motion cues and enhance temporal consistency
between adjacent clips. By sampling historical frames as
motion frames, our DreamForge can easily achieve autore-
gressive video generation.
Motion-aware temporal attention. Let Ii−1

−M represent the
M motion frames sampled from the previous video clip. As
shown in Figure 1, these motion frames are processed by the
VAE encoder to extract motion latents, which are then fed
into the UNet using shared parameters with the denoising
UNet to generate multi-resolution motion features. During
the denoising process, these motion features are concate-
nated with the corresponding noised latents to compute tem-
poral attention. Additionally, we encode the relative poses
between adjacent frames into the motion embedding to fur-
ther incorporate motion cues. Specifically, given the mo-
tion features FM = {F−M , ...,F−1} ∈ RHW×M×C and
the noised latents ZT = {Z0, ...,ZT−1} ∈ RHW×T×C be-
fore being fed into the temporal attention layer, where M ,
T , H , W , and C denote the motion length, video length,
spatial height, width, and number of channels, respectively,
the motion-aware temporal attention can be formulated as
follows:

ZMT = [ϕ(FM ),ZT ] (1)

ZMT = ZMT + ZeroConv(SelfAttn(ZMT + δ(Prel)))
(2)

ZT = ZMT [M : ] (3)

where ϕ is a linear adapter, δ denotes the MLP used for
motion encoding, and Prel represents the relative poses be-
tween adjacent frames. Note that the relative pose is set to
the identity matrix for the initial motion frame.
Autoregressive video generation. To support online
inference and streaming video generation while maintain-
ing temporal coherence, we employ an autoregressive gen-
eration pipeline. During inference, we randomly sample
previously generated images as motion frames and calcu-
late the corresponding relative ego poses to provide motion
cues. This method allows the diffusion model to generate

the current video clip with enhanced consistency, ensuring
smoother transitions and better coherence with the previ-
ously generated frames. By utilizing motion frames, our
method eliminates the need for a sliding window and avoids
redundant generation. However, our experiments showed
that overlapping frames within the sliding window can im-
prove generation stability. Therefore, we also provide an
optional post-processing strategy to further enhance tempo-
ral coherence between adjacent video clips. Specifically,
at the t-step of the denoising process for the current video
clip, we replace the noised latents Zt

T [ : N ] with the noised

latents
√
αt · Ẑ

0

T [−N : ] +
√
1− αt · ϵt from the previous

video clip before inputting them into the denoising UNet,
where, Ẑ

0

T denotes the latents extracted using the VAE en-
coder, and ϵt represents the Gaussian noise at the t-step. By
this means, we force the first N frames of the current video
to be consistent with the last N frames of the previous clip
as possible for better coherence.

3. Experiments
3.1. Implementation Details

Our DreamForge is built on the pretrained Stable Diffusion
V1.5 [20]. The input resolution of the six camera views is
set to 224× 400. The video length T and length M of mo-
tion frames are set to 7 and 2.
Training details. We train the newly added modules on
eight A100 GPUs using the AdamW optimizer [22] with
a learning rate of 8e-5. The training process consists of
two stages. In the first stage, we train the single-frame ver-
sion without the motion-aware temporal attention module
for 100,000 iterations with a total batch size of 24. The
training objective and hype-parameters are consistent with
[14]. In the second stage, we focus solely on training the
temporal module for another 100,000 iterations, using a to-
tal batch size of 8. The motion frames are randomly sam-
pled from the previous 5 frames with GT values.
Inference stage. Following the approach outlined in Mag-
icDrive [14], we utilize the UniPC [23] scheduler for 20
steps, applying a CFG of 2.0 to generate the multi-view
videos. The motion frames are randomly sampled from pre-
viously generated video clips. When generating extended
videos, for the first video clip, we use the single-frame
model to generate the initial frame as the motion frames.
By default, the length of the overlapping frames in the post-
processing strategy described in Section 2.3 is set to 2.
Please note that we do not train a new model for different
video lengths; all videos of varying lengths are generated
using our 7-frame model.

3.2. Dataset and Metrics

Dataset. We utilize the nuScenes dataset [1] to train our
controllable multi-view street view video generation model
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Source of test data FID ↓ mAP ↑ NDS ↑ Divider Pred crossing Boundary mIoU ↑

Ori nuScenes - 41.86 51.32 48.81 33.92 49.55 44.09
MagicDrive [14] (Baseline) 19.05 15.15 29.37 24.48 7.79 22.92 18.40
+ Perspective guidance 16.03 16.57 29.50 33.03 20.99 36.62 30.21

Table 1. Comparison of generation fidelity on generate images. The data synthesis conditions are from the nuScenes validation set. All
results are computed by using the official implementation and checkpoints of BEVFormer. Bold represents the best results.

Source of test data FVD ↓ mAP ↑ mIoU ↑

MagicDrive-t [14] (Baseline) 218.12 11.86 18.34
DreamForge (ours) 224.76 13.80 29.05

Table 2. Comparison of generation fidelity on generated 16-frame
video clips. The data synthesis conditions are from the nuScenes
validation set. All results are computed by using the official im-
plementation and checkpoints of BEVFormer.

DreamForge. The nuScenes dataset provides 6 camera
views at 12 Hz, offering a 360-degree perspective of the
scenes. It includes 750 scenes for training and 150 scenes
for validation, encompassing different cities and a vari-
ety of lighting and weather conditions, such as daytime,
nighttime, sunny, cloudy, and rainy scenarios. Since the
nuScenes dataset only provides annotations at 2 Hz, we em-
ploy ASAP [24] to generate interpolated annotations at 12
Hz. Additionally, we annotated each scene using GPT-4,
providing detailed descriptions that include elements like
time, weather, street style, road structure, and appearance.
These descriptions serve as conditions for text input.
Metircs. We use FID [25] and FVD [26] to assess the qual-
ity of the generated images and videos. Additionally, we
evaluate the sim-to-real gap using BEVFormer [27] to mea-
sure performance on the generated images and videos in
downstream tasks, including 3D object detection (mAP and
NDS) and BEV segmentation (mIoU).

3.3. Quantitative Comparison

We use MagicDrive [14] as our baseline to evaluate perfor-
mance and demonstrate the effectiveness of our proposed
modules. As shown in Table 1, projecting road layouts and
3D bounding boxes onto the camera view for perspective
guidance enhances performance across all metrics, includ-
ing FID, accuracy in 3D object detection, and map segmen-
tation. We have observed that perspective guidance signifi-
cantly improves the quality of map segmentation (a 64.2%
improvement), demonstrating its effectiveness in generating
geometrically and contextually accurate driving scenes.

We provide the quantitative comparison of video genera-
tion in Table 2. The score evaluation aligns with W-CODA
Track 21, assessing the quality of the generated video with

1https://coda- dataset.github.io/w- coda2024/
track2/

Figure 2. Visual comparison between MagicDrive and our Dream-
Forge. We can see that our method generates more geometrically
and contextually accurate surrounding view images.

a length of 16. Compared with the temporal MagicDrive-t
trained with 16-frame clips, our DreamForge achieves com-
parable FVD and surpasses it by a large margin in terms
of object mAP and map mIoU. Note that we generate the
required clips through motion-aware autoregressive genera-
tion using our 7-frame model only. Additionally, there is no
need to retrain the model to generate longer videos, making
it more applicable and resource-friendly.

4. Conclusion
This report presents DreamForge, which integrates perspec-
tive guidance and motion-aware autoregressive generation
into conditional diffusion models to enhance the data diver-
sity. We improve lane generation and foreground control by
explicitly projecting road layouts and boxes onto the camera
view for perspective guidance. Also, the proposed motion-
aware autoregressive generation leverages motion cues and
sequential generation, ensuring flexible video lengths while
maintaining coherence.
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