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Abstract

Empirical risk minimization (ERM) with a com-
putationally feasible surrogate loss is a widely
accepted approach for classification. Notably, the
convexity and calibration (CC) properties of a
loss function ensure consistency of ERM in maxi-
mizing accuracy, thereby offering a wide range of
options for surrogate losses. In this article, we pro-
pose a novel ensemble method, namely ENSLOSS,
which extends the ensemble learning concept to
combine loss functions within the ERM frame-
work. A key feature of our method is the con-
sideration on preserving the “legitimacy” of the
combined losses, i.e., ensuring the CC properties.
Specifically, we first transform the CC conditions
of losses into loss-derivatives, thereby bypassing
the need for explicit loss functions and directly
generating calibrated loss-derivatives. Therefore,
inspired by Dropout, ENSLOSS enables loss en-
sembles through one training process with doubly
stochastic gradient descent (i.e., random batch
samples and random calibrated loss-derivatives).
We theoretically establish the statistical consis-
tency of our approach and provide insights into
its benefits. The numerical effectiveness of EN-
SLOSS compared to fixed loss methods is demon-
strated through experiments on a broad range of
45 pairs of CIFARI10 datasets, the PCam image
dataset, and 14 OpenML tabular datasets and with
various deep learning architectures. Python repos-
itory and source code are available on GITHUB.

1. Introduction

The objective of binary classification is to categorize each
instance into one of two classes. Given a feature vector
X € X C R% a classification function f : R — R
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produces a predicted class sign(f(x)) to predict the true
class Y € {—1,+1}. The performance of the classification
function f is typically evaluated using the risk function
based on the zero-one loss:

R(f) =E(1(Y f(X) <0)), (1

where 1(-) is an indicator function, and the classification
accuracy is defined as Acc(f) = 1 — R(f). Clearly, the
Bayes decision rule f*(x) = sgn(P(Y = 1|X = x) — 1/2)
is a minimizer of the risk function R(f). Due to the discon-
tinuity of the indicator function, the zero-one loss is usually
replaced by a convex and classification-calibrated 10oss ¢
to facilitate the empirical computation (Lin, 2004; Zhang,
2004b; Bartlett et al., 2006). For example, typical losses
including the hinge loss ¢(z) = (1 — z) for SVMs (Cortes
& Vapnik, 1995), the exponential loss ¢(z) = exp(—z) for
AdaBoost (Freund & Schapire, 1995; Hastie et al., 2009),
and the logistic loss ¢(z) = log(1 + exp(—2z)) for logistic
regression (Cox, 1958), and others (Lin et al., 2017; Leng
et al., 2022). Then, the risk based on ¢(-) is defined as:

Ry(f) =E(o(Y f(X))).

Note that convexity and classification-calibration (hereafter
referred to as calibration for simplicity) are widely accepted
requirements for a loss function ¢(z). The primary motiva-
tions behind these requirements are that convexity facilitates
computations, while calibration ensures the statistical con-
sistency of the empirical estimator derived from Ry, as
formally defined below.

Definition 1.1 (Bartlett et al. (2006)). A loss function ¢(+) is
classification-calibrated, if for every sequence of measurable
function f,, and every probability distribution on X x {£1},

R¢(fn) - iIJ}f R¢(f) implies that R(f,) — iI;fR(f),

as n approaches infinity.

According to Definition 1.1, a calibrated loss function ¢
guarantees that any sequence f, that optimizes R, will
eventually also optimize IR, thereby ensuring consistency
in maximizing classification accuracy. To achieve this, the
most commonly used and direct approach is ERM, which
directly minimizes the empirical version of 24 to obtain
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fn. Specifically, given a training dataset (x;,y;)" ,, the
¢-classification framework is formulated as:

~

Fo = agmin Ry(f), Bo(h) =+ 3 0(nif(x0)), @)
=1

fer

where F = {fo : 6 € O} is a candidate class of classi-
fication functions. For instance, F can be specified as, a
Reproducing kernel Hilbert space (Aronszajn, 1950; Wahba,
2003), neural networks, or deep learning (DL) models (Le-
Cun et al., 2015). Notably, most successful classification
methods fall within the ERM framework of (2), utilizing
various loss functions and functional spaces.

Given a functional space F, the training process of ERM in
(2) focus on optimizing the parameters 6 within ®. Stochas-
tic gradient descent (SGD; (Bottou, 1998; LeCun et al.,
2002)) is widely adopted for its scalability and generaliza-
tion when dealing with large-scale datasets and DL models.
Specifically, in the ¢-th iteration, SGD randomly selects one
or a batch of samples (x;,,y;, )2, with the index set Zp,
and subsequently updates the model parameter 0 as:

1
ol — o) — 15 > Voo fo (x:))

i€lp

= 01 5 37 06w foro (1)) Vi oo (x0). B

i€lp

where v > 0 represents a learning rate in SGD, the second
equality follows from the chain rule, and Vp fo(x) can be
explicitly computed when the form of fg or F is specified.

The ERM paradigm (2) with calibrated losses, when com-
bined with ML models and optimized using SGD, has
achieved tremendous success in numerous real-world appli-
cations. Notably, with deep neural networks, it has become
a cornerstone of supervised classification in modern datasets
(Goodfellow et al., 2016; Krizhevsky et al., 2012; He et al.,
2016; Vaswani, 2017).

Overfitting. The overparameterized nature of deep neural
networks is often necessary to capture complex patterns
and various datasets in the real world, thereby achieving
state-of-the-art performance. However, one of the most per-
vasive challenges in DL models is the problem of overfitting,
where a model becomes overly specialized to the training
data and struggles to generalize well to testing datasets. Par-
ticularly, DL models can even lead to a phenomenon where
they perfectly fit the training data, achieving nearly zero
training error, but typically, with a significant gap often
persisting between the training (close to zero) and testing
errors, a discrepancy attributable to overfitting. Given this
fact, many regularization methods (c.f. Section 2) have been
proposed, achieving remarkable improvements in alleviating
overfitting in overparameterized models. The purpose of this

article is to also propose a novel regularization method EN-
sLoss, which differs from existing regularization methods,
or rather, regularizes the model from a different perspective.

Our motivation. The primary motivation for ENSLOSS
stems from ensemble learning, but it specifically focuses the
perspective of loss functions, applying the ensemble concept
to combine various “valid” losses. As mentioned previously,
numerous CC losses can act as a valid surrogate loss in (2),
yielding favorable statistical properties in terms of the zero-
one loss in (1). Yet, pinpointing the optimal surrogate loss
in practical scenarios remains a challenge. A potentially
effective idea is loss ensembles, by implementing an ensem-
ble of classification functions fitted from various valid loss
functions. However, for large models, particularly those
involving deep learning, the computational cost associated
with multiple training sessions can often be prohibitively
expensive. It is worth mentioning that a similar computation
challenge is also prevalent with model ensembles or model
combination. This issue, has been effectively addressed by
Dropout (Srivastava et al., 2014): by randomly taking dif-
ferent network structures during each SGD update, thereby
achieving the outcome akin to model ensembles. In our
content, we employ a loosely analogous of Dropout, adopt
different surrogate losses in each SGD update to achieve the
objective of loss ensembles. This motivating idea behind
ENSLOSS is roughly outlined in Table 1.

2. Related Works

This section provides a literature review of related works on
regularization methods for mitigating overfitting, as well as
related ML literature focused on the loss function.

Dropout. One simple yet highly effective method for pre-
venting overfitting is dropout (Srivastava et al., 2014). The
key advantage of Dropout lies in its ability to simulate an
ensemble approach during SGD updates, thereby mitigating
overfitting without substantial computational costs. Thus,
Dropout has become a standard component in many DL ar-
chitectures, and its advantages have been widely recognized.
Notably, the direction of ensemble in Dropout is achieved
through different model architectures, whereas our method
achieves ensemble through different “valid” loss functions.
Thus, the proposed method and Dropout exhibit a comple-
mentary relationship and can be used simultaneously, as
implemented in Section 4.4.

Penalization methods. Another approach to mitigate over-
fitting is to impose penalties or constraints (such as a L1/Lo
norm) on model parameters, which aims to reduce model
complexity and thus prevent overfitting (Hoerl & Kennard,
1970; Tibshirani, 1996; Zou & Hastie, 2005). Similar ap-
proaches include weight decay during SGD (Loshchilov &
Hutter, 2017). The underlying intuition is to strike a balance
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between model complexity and data fitting, thereby miti-
gating overfitting through the bias-variance tradeoff. Thus,
these methods can also be seamlessly integrated with the
proposed method, as demonstrated in Section 4.4.

Classification-calibration. Note that the zero-one loss (or
accuracy) cannot be directly optimized due to its discon-
tinuous nature, and thus, a surrogate loss is introduced to
facilitate the computation. A natural question that arises
is: how can we ensure that the classifier obtained under the
new loss performs well in terms of accuracy? The answer
leads to the definition of classification-calibration for a loss
function (Definition 1.1). Meanwhile, a series of works (Lin,
2004; Zhang, 2004b; Lugosi & Vayatis, 2004; Bartlett et al.,
2006) have finally summarized loss calibration to a simple if-
and-only-if condition, as stated in Theorem 3.1. Calibration
is an extensively validated condition through both empirical
and theoretical consideration, and is widely regarded as a
necessary minimal condition for a loss function.

Post loss ensembles. A straightforward approach to con-
structing loss ensembles is to fit separate classifiers for each
calibrated losses (e.g., SVM and logistic regression) and
then combining their outputs using simple ensemble meth-
ods, such as bagging, stacking, or voting (Breiman, 1996;
Wolpert, 1992). This approach has empirically achieved
satisfactory performance; however, its major drawback is
that it requires refitting a classifier for each loss, resulting
in substantial computational costs that make it impractical
for large complex models.

Loss Meta-learn. A recently related topic is the learning of
loss functions via the meta-learn framework in multiple-task
learning or domain adaptation (Gonzalez & Miikkulainen,
2021; Bechtle et al., 2021; Gao et al., 2022; Raymond, 2024).
These methods primarily employ a two-step approach: first,
learning a loss function from source datasets/tasks via
bilevel optimization under Model-Agnostic Meta-Learning
(Finn et al., 2017), and then applying the learned loss to tra-
ditional ERM in the target tasks/datasets. While they share
some similarities with our approach in relaxing the fixed
loss in ERM, they are mainly applied in transfer learning
and typically require additional source tasks or datasets to
learn the loss, differing from our setting and objectives.

3. Calibrated Loss Ensembles

As previously mentioned in the introduction, the motiva-
tion behind ENSLOSS lies in incorporating different loss
functions into SGD updates. The proposed method can be
delineated roughly within an informal outline in Table 1
(refer to Algorithm 1 for the formal details).

Key empirical results. Before delving into the technical de-
tails of our method, we begin by providing a representative
“epoch-vs-test_accuracy” curve (Figure 1), to underscore

Table 1. Stochastic calibrated loss ensembles under SGD. Upper:
A standard SGD updates (based on a fixed surrogate loss). Lower:
Informal outline for the proposed loss ensembles method (please
refer to Algorithm 1 for the formal details).

SGD + Fixed Loss

For each iteration:

* batch sampling from a training set;
e implement SGD on batch samples and a fixed sur-
rogate loss.

SGD + Ensemble Loss (ENSLOSS; our)

For each iteration:

* batch sampling from a training set;
#+ randomly generate a new “valid” surrogate loss;
=» implement SGD on batch samples and the generated
surrogate loss.

the notable advantages of our proposed method over fixed
losses. The experimental results in Figure 1 and Section
4 are highly promising, suggesting that ENSLOSS has the
potential to significantly improve the performance of the
fixed loss framework, with this improvement exhibiting a
universal nature across epochs and various network mod-
els. The detailed setup and comprehensive evaluation of
our method’s empirical performance, along with related
exploratory experiments, can be found in Section 4.

Based on the empirical evidence of its promising perfor-
mance, we are now prepared to discuss the proposed loss
ensembles method in detail. Certainly, the generation of
surrogate loss functions is not arbitrary; it must still satisfy
the requirements for consistency or calibration (Lin, 2004;
Zhang, 2004b; Bartlett et al., 2006). Furthermore, the im-
pact of the loss function under SGD is solely reflected in the
loss-derivative, as discussed in subsequent sections. Thus,
our primary focus is on the development of conditions of
“valid” losses or loss-derivatives, as well as how to randomly
produce them.

3.1. Calibrated loss-derivative

In this section, we aim to list the conditions for a valid loss
and transform them into loss-derivative conditions, thereby
facilitating the usage in SGD training; ultimately, these con-
ditions directly inspire the implementation of our algorithm,
with the overall motivation illustrated in Figure 2.

As indicated in the literature (c.f. Section 2), the well-
accepted conditions for a valid surrogate loss ¢ are: (i)
convexity; (ii) calibration. The key observation of SGD in
(3) is that the impact of the loss function ¢ on SGD or other
(sub)gradient-based algorithms is solely reflected in its loss-
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Figure 1. Comparison of epoch-vs-test_accuracy curves for various models on CIFAR?2 (cat-dog) dataset using ENSLOSS (ours) and other
fixed losses (logistic, hinge, and exponential losses). The training accuracy curves are omitted, as they have largely stabilized at 1 after
few epochs. The pattern shown in the figure, where ENSLOSS consistently outperforms the fixed losses across epochs, is a phenomenon
observed in almost all CIFAR10 label-pairs and the PCam dataset, and with different scales of ResNet, MobileNet, and VGG architectures.
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Figure 2. The overall motivation behind generating “valid” loss-
derivatives in our algorithm: first transform the loss conditions
(left) into loss-derivative (middle), thereby bypassing the loss and
directly generating loss-derivatives in SGD algorithms (right).

derivative 0¢. Interestingly, the convexity and calibration
conditions for ¢ can also be transformed to d¢: (i) convex-
ity can be ensured by stipulating that its loss-derivative is
non-decreasing, and (ii) a series of literature (Lin, 2004;
Zhang, 2004b; Lugosi & Vayatis, 2004; Bartlett et al., 2006)
is finally summarized in the subsequent theorem, which
provides a necessary and sufficient condition for calibration.

Theorem 3.1 (Classification-calibration; (Bartlett et al.,
2006)). Let ¢ be convex. Then ¢ is classification-calibrated
if and only if it is differentiable at 0 and ¢'(0) < 0.

Theorem 3.1 effectively transfers the properties of con-
vex calibration from ¢ to its loss-derivative 0¢, offering a
straightforward and convenient approach to validate, design
and implement a convex calibrated loss or loss-derivative
under SGD implementation.

3.2. Superlinear raising-tail

Notably, there is one condition that could be easily over-
looked yet remains crucial: the surrogate loss function ¢
must be nonnegative or bounded below (since we can al-
ways add a constant to make it a nonnegative loss, without
affecting the optimization). Its importance lies in two-folds.
Firstly, it directly influences calibration: the bounded be-
low condition is a necessary condition of calibration, see

Corollary D.1. Secondly, although some unbounded below
losses are proved calibrated in certain specific data distri-
butions, yet they may introduce instability in the training
process when using SGD in our numerical experiments, see
more discussion in Appendix D. Therefore, we impose the
bounded below condition for a loss ¢, or a form of regularity
condition on the loss-gradient 0¢, see Lemma 3.2.

Lemma 3.2. Let ¢ is convex and calibrated. If there exists
a continuous function g(z) > 0 such that f:)o g(z)dz con-
verges, and O¢(z)/g(z) is nondecreasing when z > zy for
some zg > 0. Then, ¢ is bounded below.

Lemma 3.2 offers an implementation to translate the
bounded below condition of loss functions into require-
ments on the loss-derivatives. Without loss of generality, we
set zgp = 1 in the subsequent discussion. This is analogous
to the cut-off point in the hinge loss, which can be nullified
through scaling f(x) and does not significantly affect per-
formance. Additionally, g(z) can be chosen as p-integrals,
i.e., g(z) = 1/2P for p > 1. Naturally, a smaller value of
p provides more flexibility to 0¢. Figure 3 illustrates the
rights tails of loss-derivatives for some widely-used loss
functions. Intuitively, Lemma 3.2 essentially indicates that
the right tail of a valid loss-derivative needs to rise rapidly
from ¢’(0) < 0 towards zero, either surpassing zero (as in
the case of squared loss), or vanishing faster than 1/z when
z is large (ignoring the logarithm). We refer to this condition
in Lemma 3.2 as a superlinear raising-tailed loss-derivative.

‘We now present all the conditions for the loss-derivative of
a bounded below convex calibrated loss. Convexity implies
that the loss-derivative is nondecreasing, while calibration
requires the loss to be differentiable at 0 with ¢'(0) < 0.
Additionally, the bounded below assumption yields that the
loss-derivative exhibits a superlinear raising-tail. We re-
fer this particular form of loss-derivatives as superlinear
raising-tailed calibrated (RC) loss-derivatives. The follow-
ing lemma indicates that RC loss-derivatives essentially
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Figure 3. Plot of loss-derivatives of existing losses when z > 1.
Conclusion. Lemma 3.2 essentially indicates that the right tail of
the loss-derivatives needs to rise rapidly from ¢'(0) < 0 towards
zero, either surpassing zero (as in the case of squared loss) or
vanishing faster than 1/z when z is large (ignoring the logarithm).

correspond to a bounded below convex calibrated loss.

Lemma 3.3. Given a set of samples (X;,V;)i=1,... g and a
classification function f, let z; = y; f(X;), and denote g =
(91, ,9B)T as RC loss-derivatives, that is, satisfying the
following conditions:

1. (Convexity) g; < g; if z; < zj, and g; = g; if z; = 2j;
2. (Calibration) g; < 0if z; < 0;
3. (Superlinear) 2 g; < z;’gj ifl <z <z forp>1

Then, there exists a bounded below convex calibrated loss
function ¢, such that 0p(z;) = g; foralli =1,--- | B.

Lemma 3.3 sheds light upon the conditions for RC loss-
derivatives (or its implicitly corresponding CC loss). Hence,
it allows us to bypass the generation of loss and directly gen-
erate the loss-derivatives in SGD, thereby inspires doubly
stochastic gradients in Algorithm 1.

Given that Conditions 1 and 3 require at least two samples
to demonstrate the properties, our primarily focus on imple-
menting our algorithm using mini-batch SGD. For sake of
simplicity in implementation, we directly choose p = 1, as
the numerical difference between z and z” when p is very
close to 1 is exceedingly tiny. Our empirical experiments
also demonstrate that p = 1 does not significantly affect the
performance compared with p close to 1, yet not performing
superlinear raising tail adjustment on loss-derivatives can
significantly impact the performance.

Doubly stochastic gradients. The most important impli-
cation of Lemma 3.3 is that it provides a guideline for gen-
erating RC loss-derivatives, as Conditions 1-3 are straight-
forward to satisfy. For example, we can obtain a set of RC
loss-derivatives by sampling from a positive random vari-
able &, then sorting and rescaling. Specifically, in Algorithm

Algorithm 1 (Minibatch) Calibrated ensemble SGD.

1: Input: a train set D = (z;,y;)!"_,, a minibatch size B;

2: Initialize 6.

3: for number of epoches do

4: /» Minibatch sampling =/

5:  Sample a minibatch from D without replacement:
B = {(Xiwyh)ﬂ T (Xisﬂyis)}'

6: Computez = (z1,--- ,2p)T, where 2z, = y;, fo(Xi,)
forb=1,---,B.

7 / *

/* calibration and convexity =*/

Generate random RC loss-derivs »*/

9:  Generate g = (g1, - ,98)T, where g u =&,
where £ is a positive random variable (accomplished
through Algorithm 2)

10:  Sort z and g decreasingly, that is

Zrp(1) > * > Zx(B)s  Yo(1) > > Yo (B)>

11:  (the derivative corresponding to zp iS go(r—1(1)))-
12: /» Dbounded below x/
13: Forb=1,---,B,

Jo(x=1(b)) < Jo(x-1(b))/ 26, if 25 > 1.

14: /* Update parameters «/
15:  Compute gradients and update

B
-
00— 5 > YinGo(n-1 () Vo fo(xi,)
b=1

16: end for
17: Return the estimated 0

1!, the lines 8 to 11 (sampling and sorting) are dedicated to
satisfy Conditions 1 and 2; the line 13 (rescaling) is for Con-
dition 3. This implementation approach, which builds upon
stochastic gradients by adding an another level of “stochas-
ticity”, is thus referred to as doubly stochastic gradients.

Note that Algorithm 1 does not explicitly implement Con-
dition 2. In fact, for simplicity, we consider a sufficient
condition that g; < O for all7 = 1,--- , B. This adapta-
tion, made only for implementation simplicity, does not
fundamentally alter the framework inspired by Lemma 3.3.
Furthermore, the choice of the positive random variable &
impacts the diversity of the random loss-derivatives. To
address this, we propose Algorithm 2 to generate distribu-
tion of ¢ using the inverse Box-Cox transformation (see
discussion in Appendix A).

'We assume z; # z;, otherwise we can duplicate the derivative
by merging and treating them as one sample.
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3.3. Enhance loss diversity via the inverse Box-Cox
transformation

In addition to considering the RC regularity and stochastic
generating of loss-derivatives, it is also interesting to further
boost the diversity of the loss functions or loss-derivatives
generated from our proposed method (Algorithm 1). This
could potentially improve the performance of loss ensem-
bles, based on previous experience with ensemble learning
(Breiman, 1996; 2001; Wood et al., 2023).

In fact, the diversity of loss functions in Algorithm 1 is partly
associated with the loss-derivatives generated from the vari-
ety of positive random distributions. Consequently, a crucial
consideration is to generate a sufficiently diverse range of
positive random distributions. This naturally invokes the
concept of the Box-Cox transformation (Box & Cox, 1964),
which transforms (any) positive data via a power transfor-
mation with a hyperparameter A such that the transformed
data closely approximates a normal distribution.

ATHEN 1), ifA£0,
BCA(§) =

log(¢), if A=0.

Interestingly, the Box-Cox transformation is to transform a
diverse range of positive random distributions into a normal
distribution. This represents our exact “inverse” direction:
we need to generate a sufficiently diverse range of positive
random distributions. Consequently, we propose the inverse
Box-Cox transformation, defined as invBC, (-) in (4).

1+, ifA#£0,
invBC, (§) = 4
exp(§), ifA=0.

On this ground, the final loss-derivatives can be generated in
this manner, see Algorithm 2. First, we generate derivatives
from a standard normal distribution, then using the inverse
Box-Cox transformation (4) (with a random \) transforms
them into an arbitrary positive random distribution. This
guarantees a variety in the loss function during the ensemble
process over SGD. Here, the randomness of A is used to
control a diverse range of loss-derivatives.

In our numerical experiments, we fix A = 0 (no hyperpa-
rameter tuning) for a fair comparison, which corresponds
to an exponential transformation of normally distributed
random variables. In practice, to further enhance loss di-
versity, we can implement random sampling of A every T'
epochs. This approach presents beneficial in certain cases,
as demonstrated in our ablation studies presented in Ta-
ble 6. However, determining a reasonable value of 7" in a
straightforward manner likely requires further investigation
in future research.

Algorithm 2 Inverse Box-Cox transformation of loss-
derivatives:

1: Input: a minibatch size B, a hyperparameter A (default
A=0)

2: /+ Generate normal grad »*/

iid
3: Generate g = (g1,--- ,9p)T, where g, ~ N(0,1)
4: /+» Inverse Box—-Cox transformation x/

gp < —ianC,\ (gb)

5: Return the
(917 e agB)T~

generated loss-derivatives g =

3.4. Statistical consistency of loss ensembles

In this section, we establish a theoretical framework to ana-
lyze the statistical behavior and consistency of the proposed
loss ensemble framework. Our idea comprises two primary
steps: first, aligning the proposed method with a novel risk
function; second, leveraging learning theory to evaluate the
calibration and consistency of the risk function.

To proceed, we introduce relevant definitions to construct
the corresponding risk function for the proposed method.
Specifically, we denote £ as a measurable space consisting
of bounded below convex calibrated (BCC) losses. A ran-
dom surrogate loss @ is considered as a £-valued random
variable, where a loss ¢ represents an observation or sample
of ®. Note that in our analysis, ® is assumed independent of
(X,Y); for detailed probabilistic definitions of random vari-
ables in functional spaces, refer to (Mourier, 1953; Vakhania
et al., 2012). On this ground, we introduce the calibrated
ensemble risk function as follows:

R(f) = Bxy (Ea (Y (X)), 5)

where Eg is the expectation taken with respect to ®. In
this content, given a classification function fg, with a mini-
batch data (x;,y;)icz, and the sampled loss & = ¢, the
stochastic gradient of R in SGD is defined as:

1 > Ved(yifo(x:). (6)

g = —
sl 2,

Thus, the proposed method (Algorithm 1) can be regarded
as the SGD updating based on g, and R(-) is an appropriate
risk function for characterizing the proposed method.

Next, we discuss the loss space L. To ensure the calibration
of the proposed method, we require that £ is a measurable
subspace of the collection of all BCC losses:

L C {¢is convex | inf ¢(z) > —o0, ¢'(0) < 0}.
Assumption 3.4. Let (€2, 1) be a probability space and £

be a measurable space. Suppose @ : Q — L is a L-valued
random variable satisfies following conditions.
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1. E®(z) exists and E®(z) < oo for any given z € R.

2. There exists a random variable U : 2 — R such that
®(z) > U as. forall zand EU > —o0;

3. There exist a random variable G : € — R and a
constant §o > 0, such that |0®(d)| < G a.s. for any
o€ [—50,50] and EG < oc.

Assumption 3.4 characterizes the feasibility of the loss space
L and probability measure u, thereby establishing the scope
of applicability for our proposed method. Notably, a finite
loss space automatically satisfies Assumption 3.4.

Lemma 3.5. [fthe loss space L is finite, then Assumption
3.4 is automatically satisfied.

Indeed, £ can be extended to a more general functional
space, subject to the mild uniform assumptions in Assump-
tion 3.4, which are necessary to preserve the completeness
of BCC properties. For example, limiting over £ without
uniform assumptions may violate the calibration condition.
In practice, during SGD training, the number of epochs is
typically fixed, which implies that the number of ensemble
losses implemented is also fixed. As a result, our analy-
sis of the proposed method in practical scenarios can be
exclusively focused on a finite £ case.

Now, we have aligned the proposed method with the pro-
posed ensemble risk (5). Hence, we can infer the statistical
behavior of our method by analyzing R. Of primary require-
ment is the calibration or Fisher-consistency, as formally
stated in the following theorem.

Theorem 3.6 (Calibration). Suppose Assumption 3.4 holds,
and R(-) is defined as in (5) for any distributions Px y and
Pg, then for every sequence of measurable function f,,

R(fn) — ir}f R(f) implies that R(f,) — ir}f R(f).
@)

Moreover, the excess risk bound is provided as:
R(f) - it R(f) < v~ (R(f) —imf R(f)),  (®)

where ¥~ is the inverse function of v, and 1 is defined as:

$(6) = E(3(0)) — iIgRE(#CI)(a) 4 1;2%(—@)).

Theorem 3.6 ensures the classification-calibration of the
proposed method, indicating that minimizing the ensem-
ble calibrated risk R would provide a reasonable surrogate
for minimizing R(f). Furthermore, the excess risk bound
is also provided in (8), which enables presenting the re-
lationship between R(f) — R* and R(f) — R* when the
distribution of @ is given.

In addition, there is a substantial amount of literature that
discusses the convergence results based on (batch) SGD

(Moulines & Bach, 2011; Shamir & Zhang, 2013; Fehrman
et al., 2020; Garrigos & Gower, 2023). Given that the
stochastic gradient g in (6) for the proposed method offers
an unbiased estimate of Vg R( fg), many existing SGD con-
vergence results can be extended to our ensemble setting,
ensuring that R(f,,) — inf; R(f).

By combining the convergence results from SGD and the
calibration established in Theorem 3.6, we demonstrate that
the proposed loss ensemble preserves statistical consistency
for classification accuracy. We illustrate the usage of the
theorem by a toy example in Example C.1 of Appendix C.

The proposed method appears to have an analogous effect
to bagging (Bithlmann & Yu, 2002; Soloff et al., 2024).
‘We next provide theoretical insights into a natural question:
what advantages do loss ensembles offer over a fixed loss
approach? We partially address this question by examining
the Rademacher complexity. Specifically, given a classi-
fication function space F, the Rademacher complexity of
¢-classification are defined as follows:

)

Rady(F) := ;lelg‘i ZTi¢(Yif(Xi))
im1

where (7;)_; are i.i.d. Rademacher random variables in-
dependent of (X;,Y;)I ;. The Rademacher complexity
plays a crucial role in many existing concentration inequali-
ties (Talagrand, 1996a;b; Bousquet, 2002), determining the
convergence rate of the excess risk (Bartlett & Mendelson,
2002) (with smaller values yielding a faster rate). On this
ground, the corresponding Rademacher complexity for the
proposed ensemble loss method can be formulated as:

n

— 1
() = sup | 30 rBa (1 (X0)

< Eq (Rada (F)), ©

where the inequality follows from the Jensen’s inequality.
This simple deduction yields a positive result, that is, the
Rademacher complexity of the ensemble loss is no worse
than the average based on the set of fixed losses. Yet, (9)
only partially showcases potential benefits of loss ensemble,
but it does not provide conclusive evidence of its superiority
over fixed losses, as a comparison of their excess risk bounds
is also crucial. In fact, ensemble loss appears suboptimal in
terms of distribution-free excess risk bounds. Furthermore,
achieving definitive and practical conclusions across specific
datasets or distributions remains a longstanding challenge
for statistical analysis. The development of more effective
combining weights, as in ensemble learning (Yang, 2004;
Audibert, 2004; Dalalyan & Tsybakov, 2007), may provide
a promising solution for future research.
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4. Experiments

This section presents experiments comparing ENSLOSS
with fixed loss methods and assessing its compatibility with
regularization methods. All Python codes is openly acces-
sible at our GITHUB. All experimental results, up to the
epoch level, are publicly available on our W&B projects
ENSLOSS-IMG and ENSLOSS-TAB, enabling transparent
and detailed tracking and analysis.

4.1. Datasets, models and losses

Image datasets. We present the empirical results for image
benchmark datasets: the CIFAR10 (Krizhevsky et al., 2009)
and the PatchCamelyon (PCam; (Veeling et al., 2018)). CI-
FAR10 was originally designed for multiclass image classifi-
cation. In our study, we construct 45 binary CIFAR datasets,
denoted as CIFAR2, by selecting all possible pairs of two
classes from CIFAR10, which enables the evaluation of our
method. PCam is a binary image classification dataset com-
prising 327,680 96x96 images from histopathologic scans of
lymph node sections, each annotated with a label indicating
the presence or absence of metastatic tissue. CIFAR and
PCam datasets are widely recognized benchmarks in image
classification, frequently employed in various studies, such
as (He et al., 2016; Huang et al., 2017; Srinidhi et al., 2021).

Tabular datasets. We applied a filtering (n > 1000,d >
1000) across all OpenML (Vanschoren et al., 2014) binary
classification dense datasets, resulting 14 datasets: Biore-
sponse, guillermo, riccardo, christine, hiva-agnostic, and 9
OVA datasets: Breast, Uterus, Ovary, Kidney, Lung, Omen-
tum, Colon, Endometrium, and Prostate.

Models. To assess the effectiveness of the proposed method,
we explore a range of commonly used neural network struc-
tures, including Multilayer Perceptrons (MLPs; (Hinton,
1990)) with varying depths for tabular data, as well as VGG
(Simonyan & Zisserman, 2014), ResNet (He et al., 2016),
and MobileNet (Sandler et al., 2018) for image data.

Fixed losses. ENSLOSS is benchmarked against with the
ERM framework (2) using three widely adopted fixed classi-
fication losses: the logistic loss (BCE; binary cross entropy),
the hinge loss (HINGE), and the exponential loss (EXP).

4.2. Evaluation

All experiments are replicated 5 (for image data) or 10 (for
tabular data) times, and the resulting accuracy values are
reported. Moreover, to evaluate the statistical significance,
p-values are calculated using a one-tailed paired sample
t-test, with the null and alternative hypotheses defined as:

Hy: Accqg < Accp, Hip:Accy > Acep, (10)

where Acc 4 and Accp are accuracies provided by two com-
pared methods. A p-value of < 0.05 indicates strong evi-

dence suggesting that A outperforms 5. Pairwise hypothesis
tests are performed for each pair of methods. If a method ex-
hibits statistical significance compared to all other methods,
it will be highlighted in bold font in the tables. Our primary
focus is on accuracy, but we also provide AUC results in our
accompanying W&B projects and GitHub repository.

4.3. ENSLOSS vs fixed loss methods

This section presents our experimental results, wherein we
examine the numerical performance of ENSLOSS and com-
pare it with other fixed loss methods across various setups.

Design. The experiment design is straightforward: we com-
pare various methods on 46 image datasets (including 45
CIFAR2 datasets and the PCam dataset) and 14 OpenML
tabular datasets and using different network architectures.
The implementation settings for each method are identical,
with the only difference in loss functions.

Results. Due to space limitations, we only present the
summary statistics of significant testing results across all
datasets in Table 2 (for 14 tabular datasets) and Table 3
(for 45 CIFAR?2 datasets). Moreover, some highlighting
detailed empirical results are provided in Appendix B, and
all performance metrics for all experiments are publicly
accessible at the epoch level via our W&B projects.

Conclusion. The key findings are summarized as follows.

Image data. Tables 9 - 10 and Figure 4 demonstrate that
ENSLOSS consistently outperforms existing fixed loss meth-
ods. (i) The improvement is universal across experiments.
As shown in Table 9, ENSLOSS achieves non-inferior per-
formance in all 45 CIFAR?2 datasets, and significantly out-
performs ALL other methods in at least 60% of the datasets.
(ii) The improvement is remarkable, with substantial gains
of 3.84% and 3.79% observed in CIFAR2 (cat-dog) and
PCam, respectively, surpassing the best fixed loss method
paired with the optimal network architecture.

Tabular data. Table 11 reveals that: (i) When dealing with
overparameterized models, ENSLOSS tends to be a more
desirable option compared to fixed losses, whereas for less
complex models, ENSLOSS may underperform or outper-
form on certain datasets compared to the optimal fixed loss,
yet it remains a viable alternative worth considering overall.
(ii) The effectiveness of ENSLOSS exhibits a clear upward
trend as model complexity increases, as evident from the
performance comparison from MLP(1) to MLP(5).

The superiority of ENSLOSS is more pronounced in image
data than in tabular data, likely attributable to the increased
risk of overfitting associated in high-dimensional inputs and
complex models characteristic of image datasets.

The improvement is also prominently reflected at the epoch
level, particularly after the training accuracy for the pro-
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posed ENSLOSS reaches or approaches one, as suggested
by the epoch-vs-test_accuracy curves in Figure 1 (and those
for all experiments in our W&B projects). This is crucial
for practitioners: by specifying a relatively large number of
epochs, ENSLOSS is a promising choice compared to fixed
loss methods; furthermore, its training accuracy can some-
times serve as a key indicator for early-stopping, obviating
the need of a validation set.

Table 2. The summary statistics of datasets exhibiting statistical
significance when comparing the proposed ENSLOSS against
all other fixed loss methods in 45 CIFAR2 binary classification
datasets (provided by pairwise labels subset of CIFAR10) are pre-
sented. The significance of “better”, “no diff”, and “worse” are
suggested by the significance test, as described in Section 4.2.

(ENSLoOSS) (vs BCE) (vs EXP) (vs HINGE)
MODELS (better, no diff, worse) with p < 0.05
ResNet34 41,4,0) (45,0,0) (36,9, 0)
ResNet50 (42,3,0) (45,0,0)  (43,2,0)
ResNet101 (39,6,0) (45,0,0) (40, 5,0)
VGG16 (36,9,0) (45,0,0) (29, 16,0)
VGG19 (36,9,0) (45,0,0) (27, 18, 0)
MobileNet (45,0,0) (45,0,0) 44,1,0)
MobileNetV2 (45,0,0) (45,0,0) 45,0,0)

Table 3. The summary statistics of datasets exhibiting statistical
significance when comparing the proposed ENSLOSS against all
other fixed loss methods in 14 OpenML datasets are presented.

(ENsLoss) (vs BCE) (vs ExP) (vs HINGE)
MODELS (better, no diff, worse) with p < 0.05
MLP(1) 0,4, (7,52 5,4,5)
MLP(3) (7,7,0) 8,5, 1) 9,3,2)
MLP(5) (11,3,0) (11,2, 1) (13,0, 1)

4.4. Compatibility of prevent-overfitting methods

As discussed in Section 2, the proposed ENSLOSS comple-
ments most existing prevent-overfitting methods, suggesting
the potential for their simultaneous use. In this experiment,
we empirically investigate the compatibility of ENSLOSS
with widely used regularization methods: DROPOUT, L2-
regularization (or equivalently weight decay, denoted as
WEIGHTD), and data augmentation (DATAAUG; (Wong
et al., 2016; Xu et al., 2016)).

Design and results. To illustrate the compatibility, we
conduct on the CIFAR-2 (cat-dog) dataset and ResNet50,
using the same experimental setup as the main experiment.
Specifically, we compare the performance of ENSLOSS
with fixed losses under various regularization methods, and
the results are presented in Table 4, which illustrates their
compatibility and effectiveness in preventing overfitting.

Conclusion. According to Table 4, our prior hypothesis
is confirmed: ENSLOSS is compatible with other regular-
ization methods, and their combination yields additional

Table 4. The averaged accuracy (with AUC included in our Github
repository, exhibiting similar patterns) and their standard errors (in
parentheses) for all methods with various regularization on the
CIFAR?2 (cat-dog) image dataset are presented. “HP” indicates
the corresponding hyperparameter for each regularization method.

REG HP BCE Exp HINGE ENsSLoOsSS

NO REG;

baseline ~ —  67.99(0.30) 60.09(0.19) 68.19(0.40) 69.52(1.38)

WEIGHTD 5e-5 67.64(0.14) 60.43(0.23) 68.26(0.65) 71.01(1.04)
Se-d  67.59(0.35) 61.57(0.56) 67.57(0.28) 72.04(0.35)
5e-3 68.00(0.31) 62.26(0.45) 68.26(0.35) 70.84(0.67)

DrOPOUT 0.1  67.50(0.39) 60.70(0.34) 67.89(0.30) 72.48(0.22)
02  68.13(0.54) 60.02(0.52) 67.78(0.44) 70.08(1.28)
03 67.65(0.29) 59.70(0.46) 67.78(0.49) 72.44(0.68)

DATAAUG —  79.22(0.12) 58.96(0.31) 80.47(0.26) 83.00(0.25)

benefits in mitigating overfitting. Moreover, the advantages
of ENSLOSS is further demonstrated by its consistent su-
perior performance compared to other fixed losses, even
with additional regularization methods. Another benefit of
ENSLOSS is its relative insensitivity from time-consuming
hyperparameter tuning, as a simple strategy of setting a
large epoch often yields improved performance.

5. Conclusion

ENsLoSS is a framework designed to enhance ML per-
formance by mitigating overfitting. The proposed method
has shown potential to improve performance across a wide
variety of datasets and models, particularly for overparame-
terized models. The primary motivation behind consists of
two components: “ensemble” and the “calibration” of the
loss functions. Therefore, this concept can be extensively
applied to various ML problems, by identify the specific con-
ditions for loss consistency or calibration. Fortunately, some
consistency conditions have been extensively studied in the
literature, including Section 4 in (Zhang, 2004a), Theorem
1 in (Zou et al., 2008), gamma-phi losses in (Wang & Scott,
2023), Theorem 7 in (Tewari & Bartlett, 2007) and encoding
methods in (Lee et al., 2004) for multi-class classification,
Theorem 2 in (Gao & Zhou, 2015) for bipartite ranking or
AUC optimization, and Theorem 3.4 in (Scott, 2012) for
asymmetric classification. In addition, new discussions re-
garding consistency, such as H-consistency (Awasthi et al.,
2022), would also be intriguing in the context of ensembles
with specific functional spaces.

A limitation of ENSLOSS is that it often requires more
epochs to achieve stable training (see Table 8), resulting
in longer training times. This issue is also seen in stochas-
tic regularization methods like Dropout. Additionally, the
selection of the positive random variable ¢ during random
loss-derivative generation, currently done using the inverse
Box-Cox transformation, needs further investigation.
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A. Ablation studies

The necessity of the bounded below condition. The bounded below condition is an important yet easily overlooked
condition. Here, we present ablation studies to demonstrate its significance. Our experimental setup is straightforward—we
simply remove the superlinear raising-tail condition induced by the bounded below condition (Line 13 in Algorithm 1).

Table 5 presents typical training and test performance metrics at 20-epoch intervals for CIFAR2 (dog-cat) using VGG16,
comparing models with and without this condition. Similar patterns are consistently observed across all datasets and network
architectures.

epoch 20 40 60 80 100 120 140 160 180 200

w/o B-below
Train Acc 0.498 0.503 0499 0498 0491 0499 0.501 0.506 0.502 0.502

Test Acc 0.488 0.508 0.507 0.495 0.508 0.488 0.507 0491 0.492 0.493
w/ B-below

Train Acc 0961 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Test Acc 0.741 0.826 0.827 0.827 0.827 0.827 0.829 0.827 0.826 0.828

Table 5. Comparison of training and testing accuracy with and without the bounded below (B-below) condition across different epochs.
The results indicate that the absence of the bounded below condition leads to model fail to learn.

According to Table 5, without the bounded below condition, the model fails to learn, achieving only random-level
performance (~50% accuracy) throughout training. In contrast, with the bounded below condition implemented, the model
achieves high training accuracy (100%) and demonstrates good generalization with approximately 83% test accuracy.

From a loss-derivative perspective, the explanation is straightforward: Line 13 implements a superlinear loss-derivative
that effectively discounts gradients for correctly classified samples (z = yf(x) > 1). This focuses optimization efforts on
misclassified or boundary samples, a common design principle in classification loss functions.

When this condition (Line 13) is reflected into a loss function as a boundedness below constraint, the result is somewhat
counterintuitive and unexpected. However, within the framework of convexity and calibration, the boundedness below
condition appears to take on additional significance: Lemma 3.2 suggests that this condition provides essential regularity
for the right tail of the loss-derivative. Additionally, in the Appendix D, we provide a more comprehensive theoretical
investigation of the importance of the bounded below condition for loss calibration.

Randomly updating the inverse Box-Cox transformation. The performance of ENSLOSS, based on ResNet50 and
CIFAR?2 datasets, with varying values of 7', is presented in Table 6, under the same experimental setting as described in
Section 4.3.

DATASETS fixed A =0

(used in Section 4) T=10 T=20 T =50
CIFAR?2 (cat-dog) 70.04(1.21) 70.87(0.72) 71.48(0.62) 70.22(1.11)
CIFAR?2 (bird-cat) 81.12(0.28) 80.45(0.30) 80.58(0.38) 80.63(0.47)

CIFAR?2 (cat-deer) 83.11(0.29) 83.05(0.12) 82.82(0.25) 83.47(0.15)

Table 6. The averaged classification Accuracy and their standard errors (in parentheses), for different periods 71" of randomly updating
inverse Box-Cox transformation based on ResNet50 are reported for CIFAR2 datasets.

These preliminary experiments suggest that randomly updating A over epochs can be beneficial in certain cases; however, the
effects are not particularly significant, and identifying the optimal value for this tuning parameter seems challenging. Conse-
quently, we implement experiments in Section 4 with a fixed A = 0, which corresponds to an exponential transformation of
normally distributed random variables, and defer further investigation of this topic for future research.

Baseline of post-ensemble over fixed losses. We supplement our comparison by evaluating our approach against baselines
of post-ensembling fixed losses. For illustration, we report test performance for model averaging (AVERAGE) and majority
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BCE EXP HINGE AVERAGE VOTING ENsLoOss
(Ace) 67.53(1.05) 67.30(0.38) 67.90(1.33) 70.61(1.09) 69.67 (1.59) 72.37 (1.04)
(AUC) 74.31(0.73) 73.94(0.75) 74.39(0.93) 77.63(0.37) — 79.81 (1.14)

Table 7. The averaged classification Accuracy and AUC and their standard errors (in parentheses) of model combination methods in the
image dataset CIFAR2 (cat-dog) based on ResNet50 are presented. Bold font is used to denote statistical significant improvements over
ALL other competitors.

voting (VOTING) on CIFAR?2 (dog-cat) using ResNet50 trained with three fixed losses. Similar patterns are observed across
all datasets and network architectures. The results are presented in Table 7.

As shown, post-ensembling indeed improves single fixed loss methods, but the proposed ENSLOSS still performs better. The
challenge with post-ensembling is that selecting too many fixed losses requires substantial computational costs of training,
while combining too few losses produces less effect. A key advantage of ENSLOSS is that it requires only a single model
training. Therefore, ENSLOSS differs from post-ensembling methods in practical application.

B. Highlighting empirical results

In this section, we highlight some detailed empirical results of our proposed method, ENSLOSS, and compare it with other
fixed loss methods on various image and tabular datasets. All detailed performance metrics for all experiments are publicly
accessible at the epoch level via our Github repository and W&B projects.

Training time comparison. To more accurately compare the computational differences between ENSLOSS and fixed loss
training, we provide detailed time comparisons between BCE, Hinge, and ENSLOSS in Table 8. Specifically, we report the
minimum number of epochs required for training accuracy to stabilize (defined as remaining within an error margin of 0.005
thereafter) across different neural network architectures on the CIFAR?2 (cat-dog) dataset.

Loss MobileNet MobileNetV2 ResNetl0l ResNet34 ResNet5S0 VGG16 VGGI19
BCE 90 80 80 70 45 15 45
HINGE 40 35 60 25 35 25 35
ENsLoss 110 90 160 145 150 55 150

Table 8. Comparison of minimum epochs required for training accuracy to stabilize (within an error margin of 0.005) across different
neural network architectures on the CIFAR2 (cat-dog) dataset.

As indicated in Table 8, ENSLOSS training typically requires 2-3 times more epochs than traditional BCE or Hinge loss
training to stabilize the training procedure. This computational overhead is acceptable for practical applications, and we are
actively exploring methods to reduce the training time in future work.

Performance on CIFAR2 datasets. Figure 4 illustrates the overall pattern of performance of all methods in 45 CIFAR2
binary classification datasets. Table 9 presents the performance results (accuracy and AUC values) for a representative single
CIFAR?2 dataset (CIFAR2 (cat-dog)). Additional detailed results for other network architectures and datasets available in our
accompanying W&B projects and GitHub repository.

Performance on PCam dataset. Table 10 presents the performance results (accuracy and AUC values) for the PCam
dataset for all different network architectures.

Performance on OpenML datasets. Table 11 presents the accuracy results for the 14 OpenML datasets using MLP(5),
with additional detailed results for other network architectures available in our accompanying W&B projects and GitHub
repository.

C. Technical proofs

C.1. Auxiliary definitions

To proceed, let us first introduce or recall the definitions and notations:
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Figure 4. The overall pattern of performance (Accuracy) of ENSLOSS against all other fixed loss methods in 45 CIFAR2 binary
classification datasets (provided by pairwise labels subset of CIFAR10), based on VGG16, is illustrated. The x-axis represents label-paired
binary CIFAR datasets, where, for example, CIFAR35 corresponds to the CIFAR2 (cat-dog) dataset.

* Classification probability: n(X) := P(Y = 1|X).
* The Bayes classifier: f*(x) = sgn(n(x) — 1/2).

* The pointwise minimization of R:
Co(m,a) =nl(a20)+ (1 -n)lla <0), Ho(n) = inf Co(n, a).

* The pointwise minimization of R:
Co(n, @) = nd(a) + (1 —m)g(~a),  Hy(n) = inf Cy(n, ),

H;()= inf C Hf(p)= if C :
s (1) o s(n.a),  Hy(n) R LI s(n, @)

Proof of Theorem 3.6
Proof. We begin by defining the ensemble loss, denoted by o( z), as the expected value of ®(z) with respect to the distribution
of ¥, ie., ¢(z) := E4P(z). Note that the expectation is well-defined according to Assumption 3.4. Consequently, the

calibrated ensemble risk function can be reformulated as follows:
R(f) =Exy (¢(Y f(X))).

Thus, we can rewrite the ensemble risk in the classical form of a fixed loss, namely, R(f) = R$( f), thereby enabling us to
leverage Theorems 1 and 2 in (Bartlett et al., 2000) to facilitate statistical analysis of the proposed method. Therefore, it
suffices to verify the BCC condition of the ensemble loss ¢, that is, convexity, the bounded below condition, and having a

negative derivative at 0.
To clarify, we sometimes denote ®(z) as ®(z,w) to emphasize that & : Q — L is a L-valued random variable, equipped
with a probability measure ;. Now, we start with considering a simple finite space case, which provides insight into the

underlying proof strategy.
Specific case: a finite space. Suppose £ = {¢1, -+ ,pg} is a finite space, ¢(z) can be simplified as ¢(z)
Z(?:l TqPq(2), where 7, = P(® = ¢,) > 0 and 22221 Ty = 1. Next, we check the BCC conditions of ¢. (i)

¢ is a convex combination of convex functions, thus ¢ is convex; (ii) since ¢q is bounded below by ¢4, thus o
is bounded below by ming_1,... g ¢4; (iii) ¢4 is differentiable at O for all ¢, thus ¢ is also differentiable at 0, and

#'(0) :=E®'(0) = 22221 mq®,(0) < 0. Therefore, ¢ satisfies the BCC conditions.
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Table 9. The averaged classification Accuracy and AUC and their standard errors (in parentheses) of all methods in the image dataset
CIFAR2 (cat-dog) are presented. Bold font is used to denote statistical significant improvements over ALL other competitors.

MODELS BCE Exp HINGE ENsLoss
(Acc)

ResNet34 68.94(0.45) 60.10(0.44) 70.39(0.37) 72.03(0.71)
ResNet50 67.59(0.35) 61.57(0.56) 67.57(0.28) 72.04(0.35)
ResNet101 67.32(0.23) 53.57(0.41) 67.12(0.32) 70.07(0.90)
VGG16 77.36(0.68) 69.27(0.44) 78.13(0.87) 81.13(0.77)
VGG19 76.96(1.03) 66.38(1.17) 78.06(0.68) 80.57(0.76)

MobileNet 66.77(0.86) 55.89(1.69) 67.66(1.03) 69.98(1.08)
MobileNetV2  73.34(1.12) 62.94(1.09) 73.45(1.02) 78.40(1.56)

(AUC)

ResNet34 75.97(0.44)  64.39(0.52) 76.02(0.32) 79.24(1.09)
ResNet50 73.96(0.29)  65.52(0.60) 74.37(0.23) 79.40(0.31)
ResNet101 73.35(0.24) 54.88(0.34) 68.61(0.66) 76.60(0.87)
VGG16 85.42(0.71) 76.13(0.94) 86.20(0.63) 89.54(0.29)
VGG19 85.61(0.97) 72.88(1.12) 84.47(1.07) 87.55(1.08)

MobileNet 73.12(0.97) 58.51(1.77) 73.96(1.34) 76.61(1.23)
MobileNetV2  81.29(0.96) 67.53(1.11) 81.31(0.74) 86.22(1.37)

Table 10. The averaged classification Accuracy and AUC and their standard errors (in parentheses) of all methods in the image dataset
PCam are presented. Bold font is used to denote statistical significant improvements over ALL other competitors.

MoDELS BCE Exp HINGE ENSLOSS

(Ace)

ResNet34 76.91(0.52) 73.78(0.52) 77.20(0.18) 82.33(0.30)
ResNet50 77.23(0.51) 74.10(0.49) 77.96(0.34) 82.00(0.07)
VGGIl16 80.97(0.25) 77.11(0.50) 82.69(0.30) 85.77(0.35)
VGGI19 81.58(0.25) 76.13(0.35) 82.77(0.41) 85.91(0.19)

(AUC)

ResNet34  88.69(0.34) 83.30(0.57) 76.11(0.37) 92.24(0.13)
ResNet50  88.75(0.30) 83.51(0.46) 77.24(0.67)  92.07(0.49)
VGGI6  93.35(0.26) 88.77(0.59) 86.18(0.56) 95.44(0.24)
VGGI19  93.49(0.17) 87.89(0.46) 84.09(0.60) 95.51(0.14)

General cases. Now, suppose L is a general measurable BCC subspace satisfying Assumption 3.4. The crucial issue is
whether the BCC conditions are complete in the space £ over limiting. Let us check the BCC conditions of ¢. (i) Convexity.
Note that

55(/\21 (- )\)22) _ /Q@(/\Z1 +(1- A)zz,w)du(W) < /Q)«I)(zl,w) + (1 = NP (22, w)dp(w)
= )\(75(2:1) +(1- A)&('Z2)7

where the inequality follows from the fact that £ is a BCC subspace and thus ®(z, w) is convex for any w € €2. Thus, ¢ is a
convex function. (ii) Bounded below.

3(z) = / B (2, w)dp(w) > /Q U(w)dpu(w) = EU > —oo,

where the inequality follow from the second condition in Assumption 3.4 such that ®(z,w) > U(w) for any z almost surely.

(iii) Calibration. For every sequence &,, with §,, — 0, without loss of generality, we assume |d,,| < do, which can be satisfied
for sufficiently large n. We now check the definition of differentiability of ¢ at z = 0:

Q

5n n—00

G (w)dp(w),
Q

n—o00 On n— o0
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Table 11. The averaged classification Accuracy and its standard errors (in parentheses) of all methods with MLP(5) in 14 OpenML datasets
are presented. Bold font is used to denote statistical significant improvements over ALL other competitors.

MLP(5) (n,d)x103 BCE Exp HINGE ENSLoOSS (our)
Bioresponse (3.75, 1.78) 76.84(1.33) 77.49(1.44) 76.03(0.67) 77.18(1.18)
guillermo (20.0, 4.30) 70.35(0.44) 70.26(0.67) 69.67(0.63) 75.34(0.78)
riccardo (20.0, 4.30) 98.68(0.21) 98.69(0.13) 98.62(0.23) 99.14(0.23)
hiva-agnostic ~ (4.23, 1.62) 91.02(0.85) 91.65(1.30) 95.55(0.53) 90.61(1.49)
christine (5.42,1.64) 69.62(1.07) 69.42(1.30) 67.48(0.72) 69.94(0.93)

OVA-Breast  (1.54, 10.9) 94.27(1.33) 94.38(1.41) 92.61(1.75) 95.45(1.30)
OVA-Uterus  (1.54, 10.9) 80.54(1.54) 82.09(1.50) 84.22(1.75) 86.68(1.66)
OVA-Ovary  (1.54,10.9) 81.83(1.69) 82.82(2.19) 82.76(1.69) 87.16(1.40)
OVA-Kidney  (1.54, 10.9) 97.59(0.83) 97.72(0.65) 96.47(0.95)  98.06(0.48)
OVA-Lung  (1.54,10.9) 88.17(1.70) 89.31(2.36) 89.76(1.53) 93.00(1.31)

OVA-Om (1.54,10.9) 71.42(3.53) 74.91(1.84) 79.25(2.19) 82.00(1.98)
OVA-Colon (1.54,10.9) 95.73(0.87)  95.73(0.88) 95.15(0.79)  96.27(0.63)
OVA-En (1.54,10.9) 71.66(3.79) 74.33(1.73) 81.68(1.87) 83.19(2.01)

OVA-Prostate  (1.54, 10.9) 97.39(0.51)  96.96(0.77) 97.22(0.84)  97.93(0.60)

where G, (w) := (®(8,,w) — ®(0,w))/d,. Next, the proof involves usage of the Dominated Convergence Theorem (c.f.
Theorem 1.19 in (Evans, 2018)) to exchange the limit and the integration. To proceed, since ®(z,w) is differentiable at 0 for
any w € §Q, it follows that lim,,_, G, (w) = ®'(0,w) pointwise. Note that ®(z, w) is convex w.r.t. z for any w € €, then
by the definition of the subderivative, we have,

b5, w) — ®(0,w) > ®'(0,w)d,, and (0, w) — B(5n,w) > —0P(6,,, W)y,
which yields that

|G (w)] < max(|8(l>(6n,w)|, |<I>'(O,w)|) < sup |09(4,w)| < G(w),
[6]<60

/ Gw)dp(w) =EG < .
Q

Thus, G, is dominated by G, then the Dominated Convergence Theorem yields that the limit exists and equals to,

lim M :/Q lim G, (w)dp(w) = /Q<I>'(O,w)du(w) =E(®'(0)) := ¢'(0) <0,

n—oo n n— oo

where the last inequality follows from that ®’(0,w) < 0 for all w € .

In summary, we have proved that ¢ : R — R satisfies the BCC conditions. Consequently, according to Theorem 1 and
Theorem 2 (part 2) in (Bartlett et al., 2006), we can draw the following conclusions:

1. (?5 is classification-calibrated, as stated in Definition 1.1.
2. The excess risk bound of R(-) is provided as:
R(f) - R* <¢ '(R(f) - RY),

where 1) is defined as:

0(0) = 30) - H;(37) = E(2(0)) - H(37),

where H(n) := infoer EaCa (1, a).
This completes the proof. O
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Proof of Lemma 3.2

Proof. Since ¢ is convex and calibrated, ¢’'(0) < 0, and ¢(z) > ¢(0) + ¢'(0)z > ¢(0) when z < 0, thus ¢(z) is bounded
below when z < 0. Next, we aim to establish a lower bound of ¢(z) for z > 0.

CASE 1. If there exists a constant zy > 0 such that d¢(zg) > 0, then ¢(2) > P(z0) + 0P (z0) (2 — 20) > @(20) for z > 2.
For 0 < z < zg, ¢(z) is bounded according to the boundedness theorem. Then, ¢(z) is bounded below.

CASE 2. If 9¢(z) < 0 for all z > 0. Then, for any z > 0, we partition [0, z] as n intervals with dy = 0,d; =
z/n, - dn_1 = (n—1)z/n,d, = z, for the i-th interval, we have

¢(dit1) = ¢(di) + 0p(d;)z/n.

Taking the summation for both sides, and 9¢(z) is nondecreasing according to Lemma C.2,
n—1 n—1
9¢(d;)z ¢/(0)Z a¢(di)z
= ¢(dn) > o(d ——— =¢(0) + —— —_—
9(2) = o )_<z>(o>+_z = 0(0) + — Z

> 6(0) + /&b )z > 6(0) / 96(

where the second last inequality follows from the integral test, and the last inequality again follows from Lemma C.2. Taking
the limit for n — oo, for any z > 0, we have

* = 09(2)
d(z) = lim ¢(z / 09(z O—|—/ 3¢zdz—|—/
(2) = lim 60 + [ o0+ | TS
0 '(0) [
> 6(0) + (0)z0 + 22 / 922 90 + 6020 + 50 [ @)z > o
g(Z()) 20 g(Zo) 20
The desirable result then follows. O
Proof of Lemma 3.3
Proof. Before proceed, we add z = 0 into the batch points as {z1,- -, zp+1}. Without loss generality, we assume (i)

z; # zj, as we can duplicate the gradient by merging and treating them as one point; and assume that (i) z; < 22 -+ < 2p4+1
and zp, = 0, as we can always sort the batch points. Next, we also design and add the loss-derivative for z;, = O into the
given loss-derivatives g to form a new gradient vector g, specifically,

gi == gi, ifi < 2, Gi = gi—1 ifi > 2,

where gbo = min(§b0*1/27 (gbofl + gb0+1)/2)’ it bg > 1; gbo = min(gboJrh_l)s if bo = 1. Hence, gbo < 0 and
Gbo—1 = Gby < Gbo+1-

Then, we define uy = (21 + 22)/2, -+, u; = (2; + 2i41)/2, -+, up = (2B + 2B+1)/2, up+1 = zp+1 + 1, and the
corresponding loss function ¢ can be formulated as follows.
11(2):g127 ifzguh
lg(z)zgg(z—ul)—l—ll(ul), ifu; <z <ug,
$(2) : { loo (2) = Goo (2 = tpg—1) + lpg—1(up,—1); if up, -1 <z < g,
IB+1(2) = gp+1(z —up) +p(up), ifup <z <upti,
lp+42(2) = max(gp+1,1)(2 — upt1) + lpt1(uptr), if 2> uptr.

By definition, ¢ provides the loss-derivatives for original sample points, that is, ¢'(z;) = g; for all i # by. Now,
we verify that ¢(z) is a BCC loss. Specifically, (i) ¢(z) is a continuous piecewise linear function with coefficients
91 < g2 << gpy1 <max(gp+1,1) according to Condition 1 and the definition of g. ¢(z) is a convex function. (ii)
Note that 2, = 0 € (up,—1,up,), hence ¢(z) is differentiable at 0 and ¢'(0) = 1j (0) = gn, < 0. ¢ is calibrated. (iii) ¢(2)
is increasing function when z > up1, thus it is bounded below. This completes the proof. O
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Proof of Lemma 3.5

Proof. Suppose L = {¢1, -, ¢} is a finite space, then E®(z) is defined as E®(z) := Zf 1 TqPq(z) < oo, where

g = P(® = ¢4) > 0 and ZQ 1 ™ = 1, which leads to Condition 1. Since ¢, is bounded below, that is, there exists
a constant U, > —o0, such that ¢q(z) > U, thus E®(z) > ming—; ... o(U,) =: U > —o0, which leads to Condition
2. Finally, qbq is convex and differentiable at 0, then d¢,(z) converges to ¢;(O) when z — 0, see Corollary 4.2.3 in

(Hiriart-Urruty & Lemaréchal, 1996). Therefore, for each g = 1, - - - , @, there exists constants 6, > 0 and G4 > 0, such that
|0¢q(2)| < G, forall z € [—dg, dq], which leads to Condition 3 by the fact that [0¢4(2)| < maxg=1....,9 Gg =: G < o0
for z € [0, dp] with dp = ming—; ... ¢ d; forallg =1,--- , Q. This completes the proof. O

Auxiliary lemmas

Lemma C.1. For Cy(n, ), Hy(n), Hy (n) and H+( ) defined in Appendix C.1 with a convex and bounded below ¢, then

a. Cg(n, o) is convex with respect to c.

b. Foranyn #1/2, Hy (n) > Hy(n) is equivalent to Hy (n) > H;(n)

c. If 0¢(0) <0, then H, (n) = $(0).

Proof. (a). Since 0 < 1 < 1, Cy(n, ) = no(a) + (1 — n)¢(—a) is a convex combination of ¢(«) and ¢(—a). Then,
Cy(n, o) is convex with respect to « since both ¢ () and ¢(—ca) are both convex.

(b). Denote A = {a|a(2n — 1) < 0}, then Hy(n) = infacavac Cy(n, @), Hy (n) = infaea Cy(n, @), and H;(n) =
infoeae Cy(n, o). Given that y # 1/2, both A and A® are nonempty.

We first show that H¢( ) = min (H (n), H+( )). Note that Hy(n) < Hy (n) and Hy(n) < H*( ), then
Hy(n) < min (H g 17)). On the other hand, for any o € R, then either « € A or a € A°, thus
Cy(n, @) > min (H (2' 1)), and Hy(n) > min (H (n), H+( ).

Now, H (1) > H¢(77) = min (H(; (n),H¢ (1)) if and only if Hg(n) < Hy(n).
(c). Since ¢ is convex, Cy(n, a) = nd(cr) + (1 — n)¢(—a) > ¢((2n — 1)r). Hence,

¢(0) = Cy(n,0) > Hy (n) = _inf  Cy(n,a) > Zir§1f0¢(2) = ¢(0),

a(2n—1)<0

where the last equality follows from the fact that ¢ is convex and ¢(z) > ¢(0) + 9¢(0)z > ¢(0) when z < 0. The desirable
result then follows. O

Lemma C.2. Let ¢ : R — R be a convex function. Then

a. The sub-derivative ¢ is nondecreasing.

b. If p(x) > ¢(y) for some (x,y), then for any z between x and y (excluding x and y), p(x) > ¢(z).

Proof. (a). By the definition of sub-derivative, for any y > x, we have

Py) = o(x) +¢'(@)(y —x), d(@) = d(y) + ¢'(y) (= — y),
providing that (y — z)(¢'(x) — ¢'(y)) < 0. Thus, ¢’ is a nondecreasing function.

(b). For any z between x and y, there exists A > 0, such that z = Az + (1 — \)y, then

P(2) = p(Az + (1 = Ny) < Ad(2) + (1 = A)o(y) < ().
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An example illustrating Theorem 3.6

Let £ = {¢1, ¢}, where ¢1(2) = exp(—=z) is the exponential loss, and ¢2(z) = log(1 + e~2?) is the logistic loss, and

P(® = ¢,) = my > 0, then R(+) is classification-calibrated, and the excess risk bound is provided as:

¥(R(f) = R*) < R(f) - R,
where 1(0) = 7 (1 — V1 = 62) +m2/2((1 - 6) log(1 — ) + (1 +6) log(1 +6)) for § € [0, 1], which can be simplified as:

2 — —

R(f)—R" < R(f)— R*.

T V2m +mo

D. Calibration for unbounded below losses

In this section, we discuss the relationship between the unbounded below condition and calibration for surrogate loss
functions. First, we present that the bounded below condition is indeed a necessary condition for classification-calibration.

Corollary D.1. Suppose a convex loss function ¢(-) is unbounded below, then it is not classification-calibrated.

Proof. Since ¢(z) is convex and unbounded below, then ¢(z) — —oo for z — oco. Let’s consider the case where there
exists a domain &p such that 1 > P(X € &p) > 0 and n(x) = 1 for x € A). Then, define f;(x) = [ when x € X), and
fi(x) = 0 when x ¢ Xy. In this case,

Ry(fi) = E(1(X € X0)¢(1)) + E(1(X ¢ X)$(0)) — —o0 = Ry,

however, it is clear that R(f;) - R*, since f; fails to match the Bayes rule when x ¢ Xj. Thus, if ¢ is calibrated, it must be
bounded below. O

The concept of classification-calibration is considered “universal”, as it requires the loss function to ensure consistency for
all data distributions. We then investigate a weak version of calibration: can unbounded below loss functions guarantee
calibration for some specific data distributions?

To address this question, we start by extending the if and only if condition for the equivalent definitions of classification-
calibration in (Bartlett et al., 2006).

Lemma D.2. For any loss function ¢ : R — (—o0, 00), RY, > —oo if and only if the statements (a) and (b) are equivalent,
where statements (a) and (b) are defined as:

a. Foranyn #1/2, Hy (n) > Hy(n).
b. For every sequence of measurable function f; : X — R and every probability distribution on X x {£1},

Ry(fi) — Ry, implies that  R(f;) — R”.

Proof. The necessity (=>). Suppose R, > —oo, then (a) = (b) can be proved by following the proof of Theorem 1
(the last paragraph) in (Bartlett et al., 2006). Next, we tend to prove (b)) = (a) by contradiction. Suppose there exist a
sequence of { f;} and some probability distribution, such that
R¢(fl) —)R:;, butR(fl) - R*. (11
Define
Q= {X: lim Cy(n(X), £i(X)) = Hy(n(X)) },

Q= {X: lim Co(n(X), /(X)) = Ho(n(X)) }.
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Since ¢(0) > Rj > —oo, and 1 > R* > 0, (11) implies that P(€23) = 1 and P(Q2) < 1, and thus P(Q° \ QF) >
P(Q2¢) — P(25) > 0. Therefore, there exists a subset A C Q¢ \ QF with P(A) > 0, such that for any x € A, we have

Co(n, 01) = Hy(n), but Co(n, ou) » Ho(n),

where 7 := n(x) and «; := fj(x). This implies that 3¢ > 0,VLg, 3 > Lo, such that, Cy(n, ;) > Ho(n), and thus
ay(2n — 1) < 0. Now, H, (n) = Hg(n) follows from by taking limits of Hy(n) < H (1) < Cy(n, i), and the fact that
Cy(n, oq) = Hy(n), which contradicts to the calibration definition of ¢ in (a). This completes the proof of the necessity.

The sufficiency («<=). We construct the proof by contradiction. Suppose R} = —oo, we can find an example that (a) does
not imply (b). Specifically, assume that ¢ is classification calibrated and Ry(f;) — RY, = —oo0, then there exists a sequence
{fi} such that P(2,) = 1, and a set A with P(A) = ¢ > 0, such that Hy(n(x)) = —o0, for x € A. Now, we split A as
two disjoint sets A; and A, each with probability measure ¢/2, and define a new sequence f;(x) := f;(x) for x € A¢$, and
fi(x) := 0 for x € A;. In this case,

Ry(fi) = P(X € A1)o(0) + ]E((l(X € A)+1(X ¢ A))C¢(n(X)7ﬁ(X))) — —00 = R},

However, R(f;) - R* since x € A1, Co(n(x), fi(x)) = 1 > min(n(x),1 — n(x)) = Ho(n(x)) and P(A;) = ¢/2 > 0.
This completes the proof. O

Lemma D.2 relaxes the non-negativeness or bounded below condition for calibration in (Bartlett et al., 2006), which helps
extend the if and only if conditions of classification-calibration to more general loss functions. For example, if we work
with specific data distributions, many calibrated surrogate losses do not need to be unbounded below, as illustrated in the
following examples.

Hinge loss with varying right tails. In this example, we examine the impact of various right tails on calibration of loss
functions. Specifically, we adopt the shape of hinge loss function ¢(z) = 1 — z, when z < 1, and explore different right
tails when z > 1, then discuss calibration.

e Whenz < 1,¢(2) =1—z;

» When z > 1, (zero tail) ¢(z) = 0; (exponential tail) ¢(z) = e~ (*~1) — 1; (inverse tail) ¢(z) = 1/z — 1; (inv-log tail)
d(2) = e/log(z + e — 1) — e; (logarithm tail) ¢(z) = — log(z).

Lemma D.3. Suppose n(X) € [e,1 — €] almost surely for any fixed € > 0, then the hinge loss, with the zero, exponential,
inverse, inverse-logarithm, and logarithm tails, are all classification-calibrated.

Proof. We can check that R}, > —oo for all pre-defined losses, and ¢ is convex with ¢'(0) < 0 then ¢ is classification-
calibrated. O

Therefore, some unbounded below loss functions can still provide calibration for particular data distributions. Unfortunately,
unbounded below loss functions often exhibit instability during training with SGD, even if they are calibrated in simulated
cases (see details). One possible explanation is that the batch sampling may disrupt the distribution assumptions necessary for
calibration of unbounded below losses. Conversely, bounded below calibrated loss functions do not rely on data distribution
assumptions to maintain calibration.

This appendix delineates the relationship between the bounded below condition and calibration. First, the bounded below
condition is a necessary condition for calibration. Next, by introducing additional distribution assumptions, it is demonstrated
that certain unbounded below loss functions can still be calibrated. Lastly, through numerical experiments, it is suggested
that unbounded below loss functions may exhibit potential instability during SGD training. In conclusion, the unbounded
below condition (or superlinear raising tail) is identified as a critical yet often underestimated criterion for loss functions,
both theoretically and in numerical implementations.
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