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Abstract
Despite significant progress, Vision-Language
Models (VLMs) still struggle with hallucinations,
especially in long-form responses. Existing strate-
gies have had limited successes in specific cases,
and long-form generation remains problematic. In
this work we attempt to establish the link between
the data used to train the model and the halluci-
nations in the model’s output. To this end, we
examine hallucinations through data corruption.
We develop a method to corrupt training data and
then train models with this data to see the effect
on performance. We will show that corrupting
only a small portion of the long-form training
data significantly impairs the performance of the
model on long-form tasks, while leaving simpler
tasks like visual question-answering and multi-
ple choice relatively intact. All training code and
models are released for reproducibility and future
research.

1. Introduction
Foundation models (FMs), including Vision-Language Mod-
els (VLMs), have revolutionized the field of artificial intel-
ligence by enabling advanced applications such as image
captioning, visual question answering, and cross-modal re-
trieval (Radford et al., 2021; Alayrac et al., 2022). These
models hold immense potential for real-world applications,
from enhancing accessibility in education to supporting
critical decision-making in healthcare and finance. How-
ever, their deployment in practical, in-the-wild, scenarios
presents significant challenges, particularly concerning their
reliability and ethical implications.

One of the most pressing issues in the deployment of VLMs
is hallucinations — instances where the model generates
outputs that are factually incorrect or inconsistent with the
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given visual input (Rohrbach et al., 2019). This problem is
especially pronounced in long-form responses and detailed
image descriptions, which are critical for applications in
domains like clinical health and education as well as for
downstream machine learning applications (Betker et al.,
2023; Chen et al., 2023; Hammoud et al., 2024). Ensur-
ing the factual accuracy and coherence of VLM outputs is
essential for their responsible and effective use.

It is well known that for pure language models, the like-
lihood of hallucinations increases as the length of the lan-
guage model’s output grows (Holtzman et al., 2020). Simi-
larly, in VLMs, longer sequences provide more opportuni-
ties for the model to deviate from the visual grounding and
generate text based on spurious correlations or statistical
patterns in the training data. (Zhou et al., 2024)

In this paper, we aim to explore the link between the quality
of the training data and the prevalence of hallucinations
in VLM outputs. We propose a method to systematically
corrupt training data and train models on this corrupted data
to study its impact on performance.

Our contributions include the development of a data cor-
ruption pipeline, the creation of corrupted datasets, and
the training of models on varying levels of data corruption.
These resources are made publicly available to support re-
producibility and further research. By addressing the issue
of hallucinations through the lens of data quality, our work
contributes to the broader goal of deploying foundation
models in the wild with higher reliability, while reducing
concerns surrounding their use.

2. Related Work
Different strategies have been brought up to try and re-
duce hallucinations, such as rewriting-based approaches,
guidance-based approaches and data based approaches. We
decide to focus on this last category of data-driven strate-
gies. These focus on improving the quality and robustness
of the model at training. Training based methods typically
change something about the actual process in an online
manner. (Liu et al., 2024) developed LRV-Instruction and
GAVIE for robust visual instruction tuning to reduce hallu-
cinations. (Yu et al., 2024) proposed HalluciDoctor, which
uses a consistency cross-checking paradigm to detect and
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eliminate hallucinations in visual instruction data. (Zhao
et al., 2024) proposed Hallucination-Aware Direct Prefer-
ence Optimization (HA-DPO) to mitigate hallucinations
during inference. (Kim et al., 2023) creates synthetic data
aimed to remove spurious object correlations. (Ben-Kish
et al., 2024) introduced MOCHa, a framework for optimiz-
ing image captioning models to reduce open-vocabulary
hallucinations while preserving caption quality. However,
no comprehensive study has been conducted on how the data
quality, across a spread of qualities, affects the downstream
model’s performance.

3. Corrupting Data
To conduct our experiments on long-form responses, we
required a dataset that contained both reliable prompts and
systematically corrupted prompts. However, we were un-
able to locate any existing datasets that comprised prompts
alongside a corrupted or altered version. Consequently, we
decided to create our own dataset. We based our dataset on
the Detailed Caption dataset (Li et al., 2024), which consists
of 213k long captions of images. These captions served as
our ground truth for the experiments.

The procedure to corrupt the prompts involved iterating over
the list of prompts and selectively masking words of each
prompts. Each word is masked with a probability of 0.5,
which consists of replacing the word with “[MASK]”. After
masking a prompt, we utilized the Gemini LLM (Team
et al., 2023) to repair it. We prompted the model with the
instruction: “Replace the [MASK] with a suitable word”.
No information about the image was passed to the Gemini
LLM.

An example provided in Appendix A illustrates how this
method introduces hallucinations, as the most likely word
often replaces the original word. For instance, in the ex-
ample, the laptop in the image was replaced with a book
by the Gemini LLM, and a “black dress” was erroneously
changed to “white dress”. However, semantic integrity was
well preserved by the Gemini LLM.

For training, we would start with the original list of uncor-
rupted prompts and select an amount n of prompts that we
wished to have corrupted. We would then replace the n first
prompts with their corrupted version. The prompts were
then scrambled before beginning training.

4. Training Corrupted Models Efficiently
Our model training protocol was guided by methodologies
outlined in the Robin paper (Kaplan et al., 2023), while the
data utilized originated from the Monkey paper (Li et al.,
2024). To this end, the VLM itself is built using the Open-
Hermes instruction tuning of the Mistral 7B model (Nous

Research, 2023; Jiang et al., 2023) combined with the ViT
SigLip vision encoder (Zhai et al., 2023) with the LLaVA
architecture (Liu et al., 2023). This was chosen as it had
shown the most interesting results in the Robin paper (Ka-
plan et al., 2023). The composition and breakdown of the
dataset used for training is shown in Table 3. The specificity
in our training is the execution of two distinct steps: VLM
pretraining and VLM finetuning. For reproducibility, all
hyperparameters used are detailed in Table 4.

In the pretraining phase, the model was exposed to the com-
prehensive dataset shown in Table 3, excluding the Detailed
Caption dataset. This phase encompassed a total of 1.23 mil-
lion samples covering many tasks such as short form image
captioning, general Visual Question Answering (VQA), sci-
entific VQA and document-oriented VQA. The pretraining
process was resource-intensive, requiring 8 hours of com-
pute time on 8 NVIDIA H100 GPUs. This step ensured that
the model developed a robust foundational understanding
before being exposed to the specific nuances of the Detailed
Caption data.

The subsequent finetuning phase focused exclusively on the
Detailed Caption dataset, which had been systematically
corrupted using the method described in Section 3. This
finetuning allowed us to efficiently and economically train
models across varying levels of corruption. The compute
cost for this phase was significantly lower, demanding only 1
hour on the same hardware setup of 8 NVIDIA H100 GPUs.
This two-step approach facilitated rapid experimentation
and enabled us to train a wide range of corrupted models.

5. Results
We present the results of our experiments across three key
areas: General Visual Question Answering (VQA), Scene
Text-centric VQA, and AI assisted evaluations.

General VQA tasks necessitate the model ability to under-
stand and integrate visual and textual information. This
involves a comprehensive grasp of how these modalities
interrelate. We validate our model using four benchmarks:
ScienceQA (Lu et al., 2022), GQA (Hudson & Manning,
2019), VQAv2 (Goyal et al., 2017), and POPE (Li et al.,
2023). These benchmarks provide a broad assessment of
the model capabilities in general visual question answering
scenarios.

Scene Text-centric VQA tasks consist of text within im-
ages, as it is prevalent in real-world environments. This
highlights the ability to address questions about such text,
which is a critical component of VQA tasks. For evaluat-
ing our model’s performance in this area, we utilized the
TextVQA (Singh et al., 2019) benchmark. This dataset
specifically test the model’s proficiency in interpreting and
responding to queries involving text found within images.
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Table 1. Performance of the VLMs on standard benchmarks. The model is pretained on all the data except for the 213k samples from
the Detailed Caption, and is then finetuned only on these Detailed Captions with varying level of corruption. The mean and standard
deviation are calculated only on the finetuned models.

Corruption SQA Text SQA Image GQA VQA v2 POPE TextVQA MM-VET LLaVA Bench

pretrained 82.55% 82.35% 52.81% 70.19% 77.10% 47.58% 21.9% 27.5%
0 82.53% 82.00% 51.95% 68.93% 78.57% 46.75% 26.3% 46.3%
10k 82.55% 82.15% 51.55% 68.97% 77.57% 46.84% 26.9% 46.2%
20k 82.36% 82.05% 52.00% 68.87% 77.57% 46.58% 25.4% 41.5%
30k 82.60% 82.05% 51.87% 68.87% 77.70% 46.24% 25.7% 39.9%
40k 82.50% 82.05% 51.96% 68.81% 77.87% 46.21% 25.4% 38.6%
50k 82.39% 81.76% 51.85% 68.79% 77.20% 46.33% 24.4% 38.1%
70k 82.46% 81.76% 51.92% 68.68% 77.27% 46.18% 24.1% 36.8%
100k 82.60% 81.80% 51.73% 68.55% 76.47% 45.85% 23.7% 37.3%
150k 82.65% 82.00% 51.55% 68.12% 76.20% 44.89% 25.4% 35.1%
213k 82.79% 81.85% 51.33% 67.09% 75.70% 44.67% 24.1% 37.5%

Mean 82.54% 81.95% 51.77% 68.57% 77.21% 46.05% 25.14% 39.73%
STD 0.13% 0.14% 0.22% 0.58% 0.86% 0.73% 1.04% 3.84%

AI-based Evaluations are used to further gauge our model’s
performance on long-form prompts. To this end, we em-
ployed the MM-Vet (Yu et al., 2023) and LLaVA-Bench (Liu
et al., 2023) evaluation frameworks. These comprehensive
evaluations provide additional insights into the model’s ef-
fectiveness in handling detailed and complex textual queries.

We then proceeded to evaluate both the pretrained model
and all of the finetuned models on these benchmarks. The
complete table of results can be seen in Table 1. The first
result that we notice is that all our automated benchmarks,
both general and scene text-centric VQA, have a very tight
grouping of results, with the Detailed Caption finetuning
seeming to have very little effect on the model’s perfor-
mance, regardless of the amount of prompt corruption that it
present. This is quantified with the small standard deviation
in these results.

These results can be explained quite simply by the tasks
performed in these benchmarks. ScienceQA Text represents
questions asked only on a textual input, with no image, so it
is obvious why it is the least affected by our corruption at-
tempts on captioning prompts. Following this trend, we note
that ScienceQA Image also has a very low variation. As this
is a multiple choice benchmark, this stops the model from
improvising and having too many hallucinations. GQA,
VQA and TextVQA are all performed with the instruction
“Answer the question using a single word or phrase.” which
again contrains the model. We do see that the standard devi-
ation creeps up on TextVQA, as the prompts tend to be more
image focused by the scene-centric focus of the benchmark.
This requires a better understanding of the image, which
may have been impeded in training runs with corrupted data.
POPE shows the most variance out of the automated bench-
marks. This is because the POPE benchmark is a series of
yes/no questions, regarding specific objects and if they are

present or not in the image. How corruption can damage
this is made clear in Appendix A, where a computer became
a book. However, this effect remains rather weak as many
prompts would have to be corrupted in a similar manner to
make a meaningful impact.

Figure 2 illustrates the above results by showing the gentle
decline of the automated metrics as the training data be-
comes more corrupted. We can also clearly distinguish the
TextVQA and POPE benchmarks which degrade faster than
the other benchmarks. However, this loss in performance
remains rather small compared to the AI benchmarks. Both
Table 1 and Figure 1 also show that there is very little change
in the model’s performance over the automated benchmarks,
whether it has followed long form finetuning or not. In fact,
the model may have become more verbose during this fine-
tuning steps, as even with uncorrupted data the finetuned
model underperforms, compared to the pretrained one. A
notable exception to this trend is on the POPE benchmark,
where the model trained on the uncorrupted data outper-

Figure 1. Graph showing the relative gain in performance by fine-
tuning on long form data at different levels of corruption.
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Figure 2. Graph showing the relative loss in performance when
using corrupted data, compared with the model finetuned on un-
corrupted data.

forms the pretrained model. The pretrained model performs
as well as a model with 80 thousand samples, about one
third of the total samples, being corrupted. This is most
likely due to the the long form responses helping the model
to better identify objects in the image.

With regards to the AI-based benchmarks, we see much
more interesting results. Both the MM-Vet and the LLaVA-
Bench benchmarks evaluate long form responses with the
help of LLM models. Therefore this is where we expected to
see the biggest effect of our data corruption. Indeed, we can
see in Figure 2 that corrupting the data leads to a significant
loss in performance, which scales with the data corruption.
In fact, the performance of the models on the LLaVA-Bench
evaluation seems to follow an decreasing exponential trend,
dropping sharply at the beginning and then stabilizing at
-20% accuracy when compared to the uncorrupted model.
As we see in Figure 1, the performance of the uncorrupted
model and the model with 10 thousand prompts corrupted
is near identical, but the model with 20 thousand prompts
corrupted already experienced a sharp drop in performance.
This shows that the models are robust to finetuning on cor-
rupted data, as long as that data represents less than 5% of
the total finetuning data. However, anything larger than that
will damage the model significantly.

If we compare this to the results on the MM-Vet evaluation,
we also see a similar trend, however the results are not as bad.
This highlights how not all AI-based benchmarks are equiv-
alent. MM-Vet also shows a stronger drop in performance
as the finetuning data is more corrupted (Figure 2), but does
not show as strong of a decline as LLaVA-Bench. We notice
that the model trained with 150 thousand corrupted samples
gives particularly interesting results, performing worse on
LLaVA-Bench but better on MM-Vet compare to the models
trained with 100 and 213 thousand corrupted samples. We
are currently conducting additional work to investigate this.

6. Human evaluations
In order to validate the degradation of the model seen in the
previous benchmarks, we conducted some human evalua-
tions, comparing the model trained on the original Detailed
Caption data and the model trained on the most corrupted
Detailed Caption data (213k). A simple interface with an
image and a description by each of the 2 models was pre-
sented to individuals who were asked to vote for the one
they preferred. This interface is shown in Appendix C.

As we can see in Table 2, both models are found to pro-
vide a comparable level of detail when describing the image.
However, the model trained on the corrupted data performs
a lot worse in the hallucination category, confirming that
our data corruption technique is successful in significantly
degrading the end models performance. We see that this
increase in hallucinations directly leads to the model being
less popular, validating the use of long-form benchmarks
like LLaVA-Bench and the importance of improving reli-
ability by reducing hallucinations in VLMs for real-world
model usage.

Table 2. Percentage of votes per model for each category.

Category Clean Model Corrupted Model

Description detail 49% 51%
Hallucination accuracy 62% 38%

Overall preference 59% 41%

7. Conclusion
Our study demonstrates a clear link between training data
quality and the prevalence of hallucinations in VLMs. By
systematically corrupting training data and analyzing its
impact, we have shown that models are robust to minor
imperfections in the data, however the corruption threshold
of what can significantly impair the performance of VLMs
on long-form tasks remains low. Nevertheless, simpler tasks
remain relatively unaffected. These findings underscore
the critical importance of high-quality training data for the
reliable and ethical training and deployment of VLMs in
real-world applications.

The implications of our findings are significant for ensuring
the reliability and responsibility of VLMs, particularly in do-
mains requiring detailed and accurate outputs. Future work
will focus on developing more sophisticated data corruption
techniques, methods for detecting and mitigating halluci-
nations, and exploring frameworks for deploying VLMs
in sensitive applications. By addressing these challenges,
we can enhance the adaptability, robustness, and efficiency
of foundation models, paving the way for their successful
integration into various real-world scenarios.
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A. Example of the Prompt Corruption
Bellow is an example of a prompt corrupted with the method we present in Section 3. This prompt comes from the Detailed
Caption dataset (Li et al., 2024) and describes the image shown in Figure 3. Major differences which lead to hallucinations
have been highlighted.

Original Prompt

In this image, we see a beautiful blonde woman sitting among tall and ripe wheat ears. She is using a laptop which rests on
her lap. Her hand is resting on the keyboard as she works. The woman wears a black headband on her head, which
matches her hair color. The laptop screen illuminates her face as she sits in the tall grass, surrounded by the golden wheat
fields.

Masked Prompt

[MASK] [MASK] [MASK] we [MASK] [MASK] [MASK] [MASK] woman sitting among tall [MASK] ripe wheat [MASK]
[MASK] is [MASK] a [MASK] which [MASK] [MASK] her lap. [MASK] [MASK] is resting [MASK] [MASK] keyboard
as she works. [MASK] woman wears a [MASK] headband [MASK] [MASK] head, [MASK] matches her [MASK] [MASK]
[MASK] [MASK] screen illuminates her [MASK] as [MASK] sits in the [MASK] [MASK] surrounded by the [MASK]
wheat [MASK]

Corrupted Prompt

Gently swaying in the breeze, we see a young woman sitting among tall stalks of ripe wheat. In her lap is a book which she
reads intently, her eyes scanning the pages. She is resting her feet on a keyboard as she works. The woman wears a
white headband on her head, which matches her simple white dress. The screen illuminates her face as she sits in the
open field surrounded by the golden wheat stalks.

Figure 3. Image GCC train 000583645.jpg from the Detailed Caption dataset (Li et al., 2024).
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B. Training details
Tables showing training parameters needed for reproducibility studies.

Table 3. Details on the Monkey training data used, from the Monkey paper (Li et al., 2024).
Dataset Samples

Detailed Caption (Li et al., 2024) 213k
COCO Caption (Karpathy & Fei-Fei, 2015) 82k

TextCaps (Sidorov et al., 2020) 109k

VQAV2 (Goyal et al., 2017) 100k
OKVQA (Marino et al., 2019) 18k

GQA (Hudson & Manning, 2019) 150k
ScienceQA (Lu et al., 2022) 18k
VizWiz (Gurari et al., 2018) 20k

TextVQA (Singh et al., 2019) 34k
OCRVQA (Mishra et al., 2019) 250k
AI2D (Kembhavi et al., 2016) 24k

DocVQA (Mathew et al., 2021) 118k
ChartQA (Masry et al., 2022) 84k

InfoVQA (Mathew et al., 2022) 47k
DeepForm (Svetlichnaya, 2020) 7k
KLC (Stanisławek et al., 2021) 27k
WTQ (Pasupat & Liang, 2015) 28k

TabFact (Chen et al., 2019) 91k
VisualMRC (Tanaka et al., 2021) 21k

Total 1.44m

Table 4. Hyperparameters used for model training.
Parameter Value

Vision encoder learning rate 5 · 10−5

Language model learning rate 2 · 10−5

Projection learning rate 2 · 10−5

Use of fp16 True
Projection type mlp2x gelu
Weight decay 0
Warmup ratio 0.03
Amount of epochs 1
Batch size 128
LoRA r 128
LoRA α 256
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C. Human Evaluation Example
The prompt used to generate each model’s description of the image was “generate the detailed caption in English”. The
images used are a hand-picked selection from the Emu paper (Sun et al., 2024).

Model A is the model trained on the clean long form data from the Detailed Caption dataset and Model B is the model
trained on the corrupted dataset.

Table 5. Example of the human evaluation interface

Model A Model B
In this image, we see a brown dog lying on a bed
with a brown blanket. The dog has a black nose
and is looking directly at the camera. There is
also a black and white photo of a cross in the
background. The dog seems to be enjoying its
time on the bed, which is located in what appears
to be a bedroom.

In this image, we see a brown dog lying on a
bed with a white blanket. The dog is looking at
the camera with its tongue hanging out. There
is also a black cat sitting on the bed next to the
dog. The cat is looking at the camera with its eyes
closed. The bed is made up with a white sheet
and a brown blanket. There is also a brown pillow
on the bed. The room is decorated with a brown
rug and a brown curtain. The window is open and
there is a view of the outside.

Which model payed more attention to detail?
Model A Both Model B

Which description did you prefer overall?
Model A Both Model B

Which model was more accurate with regards to hallucinations?
Model A Both Model B
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