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Abstract

Generative modeling has evolved to a notable field of machine learning. Deep
polynomial neural networks (PNNs) have demonstrated impressive results in unsu-
pervised image generation, where the task is to map an input vector (i.e., noise)
to a synthesized image. However, the success of PNNs has not been replicated
in conditional generation tasks, such as super-resolution. Existing PNNs focus
on single-variable polynomial expansions which do not fare well to two-variable
inputs, i.e., the noise variable and the conditional variable. In this work, we
introduce a general framework, called CoPE, that enables a polynomial expan-
sion of two input variables and captures their auto- and cross-correlations. We
exhibit how CoPE can be trivially augmented to accept an arbitrary number of
input variables. CoPE is evaluated in five tasks (class-conditional generation,
inverse problems, edges-to-image translation, image-to-image translation, attribute-
guided generation) involving eight datasets. The thorough evaluation suggests that
CoPE can be useful for tackling diverse conditional generation tasks. The source
code of CoPE is available at https://github.com/grigorisg9gr/
polynomial_nets_for_conditional_generation.

1 Introduction

Modelling high-dimensional distributions and generating samples from complex distributions are
fundamental tasks in machine learning. Among prominent generative models, StyleGAN [Karras
et al., 2019] has demonstrated unparalleled performance in unsupervised image generation. Its success
can be attributed to the higher-order correlations of the input vector z captured by the generator. As
Chrysos et al. [2019] argue, StyleGAN1 is best explained as a deep polynomial neural network (PNN).
PNNs have demonstrated impressive generation results in faces, animals, cars [Karras et al., 2020b],
paintings, medical images [Karras et al., 2020a]. Nevertheless, PNNs have yet to demonstrate similar
performance in conditional generation tasks, such as super-resolution or image-to-image translation.

In contrast to unsupervised generators that require a single-variable input z, in conditional generation
(at least) two inputs are required: i) one (or more) conditional variables c, e.g., a low-resolution
image, and ii) a noise sample z. A trivial extension of PNNs for conditional generation would be to
concatenate all the input variables into a fused variable. The fused variable is then the input to the
single-variable polynomial expansion of PNNs. However, the concatenation reduces the flexibility of
the model significantly. For instance, concatenating a noise vector and a vectorized low-resolution
image results in sub-optimal super-resolution, since the spatial correlations of the input image are
lost in the vectorization. Additionally, the concatenation of the vectorized conditional variable c and

1This work focuses on the generator network; any reference to StyleGAN refers to its generator.
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z leads to a huge number of parameters when we use a fully-connected layer as typically done in the
input of StyleGAN, especially when c depicts an image.

In this work, we introduce a framework, called CoPE, for conditional data generation. CoPE resorts
to multivariate polynomials that capture the higher-order auto- and cross-correlations between the
two input variables. By imposing a tailored structure in the higher-order correlations, we obtain an
intuitive, recursive formulation for CoPE. The formulation enables different constraints to be applied
to each variable and its associated parameters. In CoPE, different architectures can be defined simply
by changing the recursive formulation. Our contributions can be summarized as follows:

• We introduce a framework, called CoPE, that expresses a high-order, multivariate polynomial
for conditional data generation. We exhibit how CoPE can be applied on diverse conditional
generation tasks.

• We derive two extensions to the core two-variable model: a) we augment the formulation to
enable an arbitrary number of conditional input variables, b) we design different architectures
that arise by changing the recursive formulation.

• CoPE is evaluated on five different tasks (class-conditional generation, inverse problems,
edges-to-image translation, image-to-image translation, attribute-guided generation); overall
eight datasets are used for the thorough evaluation.

The diverse experiments suggest that CoPE can be useful for a variety of conditional generation
tasks, e.g., by defining task-specific recursive formulations. To facilitate the reproducibility, the
source code is available at https://github.com/grigorisg9gr/polynomial_nets_
for_conditional_generation.

2 Related work

Below, we review representative works in conditional generation and then we summarize the recent
progress in multiplicative interactions (as low-order polynomial expansion).

2.1 Conditional generative models

The literature on conditional generation is vast. The majority of the references below focus on
Generative Adversarial Networks (GANs) [Goodfellow et al., 2014] since GANs have demonstrated
the most impressive results to date, however similar methods can be developed for other generative
models, such as Variational Auto-encoders (VAEs) [Kingma and Welling, 2014]. Four groups of
conditional generative models are identified below based on the type of conditional information.

The first group is the class-conditional generation [Miyato et al., 2018, Brock et al., 2019, Kaneko
et al., 2019], where the data are divided into discrete categories, e.g., a cat or a ship. During
training a class label is provided and the generator should synthesize a sample from that category.
One popular method of including class-conditional information is through conditional normalization
techniques [Dumoulin et al., 2017, De Vries et al., 2017]. An alternative way is to directly concatenate
the class labels with the input noise; however, as Odena et al. [2017] observe, this model does not
scale well to a hundred or a thousand classes.

The second group is inverse problems that have immense interest for both academic and commercial
reasons [Sood et al., 2018, You et al., 2019]. The idea is to reconstruct a latent signal, when corrupted
measurements are provided [Ongie et al., 2020]. Well-known inverse problems in imaging include
super-resolution, deblurring, inpainting. Before the resurgence of deep neural networks, the problems
were tackled with optimization-based techniques [Chan and Chen, 2006, Levin et al., 2009]. The
recent progress in conditional generation has fostered the interest in inverse problems [Ledig et al.,
2017, Pathak et al., 2016, Huang et al., 2017]. A significant challenge that is often overlooked in the
literature [Ledig et al., 2017, Yu et al., 2018a] is that there are many possible latent signals for each
measurement. For instance, given a low-resolution image, we can think of several high-resolution
images that when down-sampled provide the same low-resolution image.

Another group is image-to-image translation. The idea is to map an image from one domain to an
image to another domain, e.g., a day-time image to a night-time image. The influential work of Isola
et al. [2017] has become the reference point for image-to-image translation. Applications in condi-
tional pose generation [Ma et al., 2017, Siarohin et al., 2018], conditional video generation [Wang
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Table 1: Comparison of polynomial neural networks (PNNs). Even though the architectures1 of
Karras et al. [2019], Chen et al. [2019], Park et al. [2019] were not posed as polynomial expansions,
we believe that their success can be (partly) attributed to the polynomial expansion (please check
sec. F for further information). Π-Net and StyleGAN are not designed for conditional data generation.
In practice, learning complex distributions requires high-order polynomial expansions; this can be
effectively achieved with products of polynomials as detailed in sec. 3.2. Only Π-Net and CoPE
include such a formulation. The columns on discrete and continuous variable refer to the type
of conditional variable the method was originally proposed on, e.g., sBN was only tried on class-
conditional generation. Additionally, the only work that enables multiple conditional variables (and
includes related experiments) is the proposed CoPE.

Attributes of polynomial-like networks.

Model products of discrete continuous multiple
polynomials cond.variable cond. variable cond. variables

Π-Net [Chrysos et al., 2020] XXX 7 7 7
StyleGAN [Karras et al., 2019] 7 7 7 7

sBN [Chen et al., 2019] 7 XXX 7 7
SPADE [Park et al., 2019] 7 7 XXX 7

CoPE (ours) XXX XXX XXX XXX

et al., 2018a] or generation from semantic labels [Wang et al., 2018b] have appeared. Despite the
success, converting the mapping from one-to-one to one-to-many, i.e., having multiple plausible
outputs for a single input image, has required some work [Zhu et al., 2017b, Huang et al., 2018]. A
more dedicated discussion on diverse generation is deferred to sec. I.

The fourth group uses multiple conditional variables for generation, e.g., attribute-guided gener-
ation [Choi et al., 2018]. These methods include significant engineering (e.g., multiple discrimi-
nators [Xu et al., 2017], auxiliary losses). The influential InfoGAN [Chen et al., 2016] explicitly
mentions that without additional losses the generator is ‘free to ignore’ the additional variables.

Each technique above is typically applied to a single group of conditional generation tasks, while our
goal is to demonstrate that CoPE can be applied to different tasks from these groups.

2.2 Multiplicative interactions

Multiplicative connections have long been adopted in machine learning [Shin and Ghosh, 1991,
Hochreiter and Schmidhuber, 1997, Bahdanau et al., 2015, Rendle, 2010]. The idea is to combine
the inputs through elementwise products or other diagonal forms. Jayakumar et al. [2020] prove
that second order multiplicative operators can represent a greater class of functions than classic
feed-forward networks. Even though we capitalize on the theoretical argument, our framework can
express any higher-order correlations while the framework of Jayakumar et al. [2020] is limited to
second order interactions.

Higher-order correlations have been studied in the tensor-related literature [Kolda and Bader, 2009,
Debals and De Lathauwer, 2017]. However, their adaptation in modern deep architectures has been
slower. Π-Net [Chrysos et al., 2020] resorts to a high-order polynomial expansion for mapping
the input z to the output x “ Gpzq. Π-Net focuses on a single-variable polynomial expansion; an
in-depth difference of our work with Π-Net can be found in sec. E in the supplementary. Two efforts
on conditional generation which can be cast as polynomial expansions are SPADE [Park et al., 2019]
and sBN [Chen et al., 2019]. SPADE can be interpreted as a single-variable polynomial expansion
with respect to the conditional variable c. SPADE does not capture the higher-order cross-correlations
between the input variables. Similarly, sBN can be interpreted as a polynomial expansion of the
two variables for class-conditional generation. However, SPADE and sBN do not use the product
of polynomial formulation, which enables high-order expansions without increasing the number of
layers [Chrysos et al., 2020]. Importantly, SPADE and sBN are constructed for specific applications
(i.e., semantic image generation and unsupervised/class-conditional generation respectively) and it
remains unclear whether a PNN can effectively tackle a general-purpose conditional generation task.
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3 Method

In the following paragraphs we introduce the two-variable polynomial expansion (sec. 3.1), while
the detailed derivation, along with additional models are deferred to the supplementary (sec. B). The
crucial technical details, including the stability of the polynomial, are developed in sec. 3.2. We
emphasize that a multivariate polynomial can approximate any function [Stone, 1948, Nikol’skii,
2013], i.e., a multivariate polynomial is a universal approximator.

Table 2: Symbols

Symbol Role

N Expansion order of the polynomial
k Rank of the decompositions

zI, zII Inputs to the polynomial
n, ρ Auxiliary variables

W rn,ρs Parameter tensor of the polynomial
Urns,C,β Learnable parameters

˚ Hadamard product

Notation:Tensors/matrices/vectors
are symbolized by calli-
graphic/uppercase/lowercase boldface
letters e.g., W ,W ,w. The mode-m vector
product of W (of order M ) with a vector
u P RIm is W ˆm u and results in a
tensor of order M ´ 1. We assume that
śb
i“a xi “ 1 when a ą b. The core

symbols are summarized in Table 2, while
a detailed tensor notation is deferred to the
supplementary (sec. B.1).

3.1 Two input variables

Given two input variables 2 zI, zII P Kd where K Ď R or K Ď N, the goal is to learn a function
G : Kdˆd Ñ Ro that captures the higher-order correlations between the elements of the two inputs.
We can learn such higher-order correlations as polynomials of two input variables. A polynomial
expansion of order N P N with output x P Ro (such that x “ GpzI, zIIq) has the form:

x “
N
ÿ

n“1

n`1
ÿ

ρ“1

ˆ

W rn,ρs
ρ
ź

j“2

ˆjzI

n`1
ź

τ“ρ`1

ˆτzII

˙

` β (1)

where β P Ro and W rn,ρs
P Roˆ

śn
m“1 ˆmd for n P r1, N s, ρ P r1, n ` 1s are the learnable

parameters. The expansion depends on two (independent) variables, hence we use the n and ρ as
auxiliary variables. The two products of (1) do not overlap, i.e., the first multiplies the modes r2, ρs
(of W rn,ρs) with zI and the other multiplies the modes rρ` 1, n` 1s with zII.

𝑧𝐼

𝑧𝐼𝐼

+

𝑈 1,𝐼𝐼

𝑈 1,𝐼

∗

+

𝑈 2,𝐼𝐼
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+ … ∗

+

𝑈 𝑁,𝐼𝐼

𝑈 𝑁,𝐼

+
𝐶

+

𝛽
𝐺(𝑧𝐼, 𝑧𝐼𝐼)

∼

∼
𝐵𝑀𝑊,…

or

Figure 1: Abstract schematic for N th order approximation of x “ GpzI , zIIq. The inputs zI , zII
are symmetric in our formulation. We denote with zI a noise vector, e.g., a samples from Gaussian
distribution, while zII symbolizes a sample from a conditional input (e.g., a class label or a low-
resolution image).

Recursive relationship: The aforementioned derivation can be generalized to an arbitrary expansion
order. The recursive formula for an arbitrary order N P N is the following:

xn “ xn´1 `

´

UT
rn,IszI `U

T
rn,IIszII

¯

˚ xn´1 (2)

2To avoid cluttering the notation we use same dimensionality for the two inputs. However, the derivations
apply for different dimensionalities, only the dimensionality of the tensors change slightly.
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for n “ 2, . . . , N with x1 “ UT
r1,IszI ` U

T
r1,IIszII and x “ CxN ` β. The parameters C P

Roˆk,Urn,φs P Rdˆk for n “ 1, . . . , N and φ “ tI, IIu are learnable.

The intuition behind this model is the following: An embedding is initially found for each of the two
input variables, then the two embeddings are added together and they are multiplied elementwise
with the previous approximation. The different embeddings for each of the input variables allows
us to implement Urn,Is and Urn,IIs with different constraints, e.g., Urn,Is to be a dense layer and
Urn,IIs to be a convolution.

(a) Random samples per class (b) Intra-class interpolation (c) Inter-class interpolation
Figure 2: Synthesized images by CoPE in the class-conditional CIFAR10 (with resnet-based genera-
tor): (a) Random samples where each row depicts the same class, (b) Intra-class linear interpolation
from a source to the target, (c) inter-class linear interpolation. In inter-class interpolation, the class
labels of the leftmost and rightmost images are one-hot vectors, while the rest are interpolated
in-between; the resulting images are visualized. In all three cases, CoPE synthesizes realistic images.

3.2 Model extensions and technical details

There are three limitations in (2). Those are the following: a) (2) describes a polynomial expansion
of a two-variable input, b) each expansion order requires additional layers, c) high-order polynomials
might suffer from unbounded values. Those limitations are addressed below.

Our model can be readily extended beyond two-variable input; an extension with three-variable input
is developed in sec. C. The pattern (for each order) is similar to the two-variable input: a) a different
embedding is found for each input variable, b) the embeddings are added together, c) the result is
multiplied elementwise with the representation of the previous order.

The polynomial expansion of (2) requires ΘpNq layers for an N th order expansion. That is, each new
order n of expansion requires new parameters Urn,Is and Urn,IIs. However, the order of expansion
can be increased without increasing the parameters substantially. To that end, we can capitalize on
the product of polynomials. Specifically, let N1 be the order of expansion of the first polynomial.
The output of the first polynomial is fed into a second polynomial, which has expansion order of
N2. Then, the output of the second polynomial will have an expansion order of N1 ¨N2. The second
polynomial of degree N2 can either be a polynomial of one variable (i.e., the output of the previous
polynomial) or more variables (i.e., the output of the previous polynomial and one or more of the
inputs). In both cases the total degree of the output of the second polynomial will be N1 ¨N2. The
choice of the type of polynomial in each case is a design option. The product of polynomials can be
used with arbitrary number of polynomials; it suffices the output of the τ th polynomial to be the input
to the pτ ` 1qth polynomial. For instance, if we assume a product of Φ P N polynomials, where each
polynomial has an expansion order of two, then the polynomial expansion is of 2Φ order. In other
words, we need Θplog2pNqq layers to achieve an N th order expansion.

In algebra, higher-order polynomials are unbounded and can thus suffer from instability for large
values. To avoid such instability, we take the following three steps: a) CoPE samples the noise
vector from the uniform distribution, i.e., from the bounded interval of r´1, 1s, b) a hyperbolic
tangent is used in the output of the generator as a normalization, i.e., it constrains the outputs in
the bounded interval of r´1, 1s, c) batch normalization [Ioffe and Szegedy, 2015] is used to convert
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(a) Class-conditional generation (b) Class-conditional generation (c) Block-inpainting
Figure 3: Synthesized images by CoPE in the (a), (b) class-conditional generation (sec. 4.1) and (c)
block-inpainting (sec. 4.3). In class-conditional generation, each row depicts a single class.

the representations to zero-mean. We emphasize that in GANs the hyperbolic tangent is the default
activation function in the output of the generator, hence it is not an additional requirement of our
method. Additionally, in our preliminary experiments, the uniform distribution can be changed
for a Gaussian distribution without any instability. A theoretical analysis on the bounds of such
multivariate polynomials would be an interesting subject for future work.

Lastly, we highlight the flexibility of the proposed CoPE. sBN and SPADE can be considered as
special cases of the two-variable polynomial expansion. In particular, we exhibit in sec. F.1 how
SPADE can be extended into a general-purpose two-variable polynomial expansion. In addition, the
products of polynomials would enable both sBN and SPADE to perform higher-order expansions
without increasing the number of layers.

4 Experiments
To validate the proposed formulation, the following diverse conditional generation tasks are consid-
ered:

• class-conditional generation trained on CIFAR10, Cars196 and SVHN in sec. 4.1 and
sec. H.2.

• generation of unseen attribute combinations in sec. 4.2.
• attribute-guided generation in sec. H.5.
• inverse problems in imaging, e.g., super-resolution and block-inpainting, trained on Cars196

and CelebA in sec. 4.3.
• edges-to-image translation trained on handbags and shoes in sec. H.4.
• image-to-image translation in sec. H.3.

The details on the datasets and the evaluation metrics are deferred to the supplementary
(sec. G) along with additional visualizations and experiments. Additionally, the source code of
CoPE is available at https://github.com/grigorisg9gr/polynomial_nets_for_
conditional_generation.

Our framework, e.g., (2), does not include any activation functions. To verify the expressivity of our
framework, we maintain the same setting for the majority of the experiments below. Particularly,
the generator does not have activation functions between the layers; there is only a hyperbolic
tangent in the output space for normalization as typically done in GAN generators. However, we
conduct one experiment using a strong baseline with activation functions. That is, a comparison with
SNGAN [Miyato and Koyama, 2018] in class-conditional generation is performed (sec. 4.1).

Baselines: ‘Π-Net-SICONC’ implements a polynomial expansion of a single variable by concate-
nating all the input variables. ‘SPADE’ implements a polynomial expansion with respect to the
conditional variable. Also, ‘GAN-CONC’ and ‘GAN-ADD’ are added as baselines, where we replace
the Hadamard products with concatenation and addition respectively. A schematic of the differences
between the compared polynomial methods is depicted in Fig. 7, while a detailed description of
all methods is deferred to sec. G. Each experiment is conducted five times and the mean and the
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Table 3: Quantitative evaluation on class-conditional generation with resnet-based generator (i.e.,
SNGAN). Higher Inception Score (IS) [Salimans et al., 2016] (lower Frechet Inception Distance
(FID) [Heusel et al., 2017]) indicates better performance. The baselines improve the IS of SNGAN,
however they cannot improve the FID. Nevertheless, SNGAN-CoPE improves upon all the baselines
in both the IS and the FID.

class-conditional generation on CIFAR10
Model IS (Ò) FID (Ó)

SNGAN 8.30˘ 0.11 14.70˘ 0.97
SNGAN-CONC 8.50˘ 0.49 30.65˘ 3.55
SNGAN-ADD 8.65˘ 0.11 15.47˘ 0.74

SNGAN-SPADE 8.69˘ 0.19 21.74˘ 0.73
SNGAN-CoPE 8.77 ˘̆̆ 0.12 14.22 ˘̆̆ 0.66

Table 4: Quantitative evaluation on class-conditional generation with Π-Net-based generator. In CI-
FAR10, there is a considerable improvement on the IS, while in Cars196 FID drops dramatically with
CoPE. We hypothesize that the dramatic improvement in Cars196 arises because of the correlations
of the classes. For instance, the SUV cars (of different carmakers) share several patterns, which
are captured by our high-order interactions, while they might be missed when learning different
normalization statistics per class. The generator does not have activation functions between the layers,
so the deteriorated performance of GAN-CONC and GAN-ADD is reasonable.

class-conditional generation on CIFAR10
Model IS (Ò) FID (Ó)

GAN-CONC 3.73˘ 0.32 294.33˘ 8.16
GAN-ADD 3.74˘ 0.60 298.53˘ 16.54

SPADE 4.00˘ 0.53 294.21˘ 16.33
Π-Net-SICONC 6.65˘ 0.60 71.81˘ 33.00

Π-Net 7.54˘ 0.16 37.26˘ 1.86
CoPE 7.87 ˘̆̆ 0.21 34.35 ˘̆̆ 2.68

class-conditional generation on Cars196
Model FID (Ó)

GAN-CONC 240.45˘ 16.79
GAN-ADD 208.72˘ 12.65

SPADE 168.19˘ 39.71
Π-Net-SICONC 153.39˘ 27.93

Π-Net 120.40˘ 28.65
CoPE 55.48 ˘̆̆ 3.16

standard deviation are reported. Throughout the experimental section, we reserve the symbol zII for
the conditional input (e.g., a class label).

4.1 Class-conditional generation

In class-conditional generation the conditional input is a class label in the form of one-hot vector.
The experiments we conduct below modify only the generator, while in all cases we assume there is
the same discriminator. In particular, two types of generators are used: a) a resnet-based generator
(SNGAN), b) a polynomial generator (Π-Net). The former network has exhibited strong performance
the last few years, while the latter is a recently proposed PNN.

Resnet-based generator: The experiment is conducted by augmenting the resnet-based generator
of SNGAN3. Each compared method will be named according to the modification on the generator of
SNGAN, e.g., SNGAN-CoPE utilizes a resnet-based generator following the proposed framework
of (14). All methods are trained using CIFAR10 images; CIFAR10 is a popular benchmark in
class-conditional generation. The quantitative results are in Table 3 and synthesized samples are
illustrated in Fig. 2(a). SNGAN-CoPE improves upon all the baselines in both the Inception score
(IS) [Salimans et al., 2016] and the FID [Heusel et al., 2017]. The proposed formulation enables
inter-class interpolations. That is, the noise zI is fixed, while the class zII is interpolated. In Fig. 2(b)
and Fig. 2(c), intra-class and inter-class linear interpolations are illustrated respectively. Both the
quantitative and the qualitative results exhibit the effectiveness of our framework.

Π-Net-based generator: A polynomial expansion is selected as the baseline architecture for the
generator3. In the original Π-Net conditional batch normalization (CBN) was used in the generator;
this is replaced by batch normalization in the rest of the compared methods. The quantitative results
in CIFAR10 are summarized in Table 4 (left). SPADE does not utilize the products of polynomials

3Further implementation details are offered in sec. G.
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Figure 4: Synthesized images with CoPE-VAE. In (a), all combinations are illustrated (the red is the
combination missing during training, i.e. Female+Smile), while in (b), only images from the missing
combination are visualized.

formulation, which explains its poor performance. Additionally, even though Π-Net-SINCONC
and Π-Net both express a single-variable polynomial expansion, the inductive bias inserted into
the network has a substantial effect in the final performance. Notice that CoPE outperforms all the
baselines by a large margin.

We also evaluate class-conditional generation in Cars196 that has 196 classes. Cars196 is selected as
a reasonably larger dataset than CIFAR10; it contains 196 classes and yet it can be trained on a single
GPU. The compared methods and the training details remain the same. The results in Table 4 (right)
demonstrate a substantial difference between CoPE and the compared methods. Namely, the proposed
method achieves a 53.9% reduction of the FID over the best-performing baseline. We emphasize that
both SPADE and Π-Net were not originally built for class-conditional generation, however we have
tried to optimize the respective hyper-parameters to optimize their performance. The performance
gap between SPADE and the rest PNNs can be explained by the lack of products of polynomials. We
also verify the experimental results on CIFAR10 that demonstrate how Π-Net improves upon Π-Net-
SINCONC. However, even Π-Net obtains a substantially higher FID than CoPE; we hypothesize
that the improvement arises because of the correlations between the classes. For instance, the SUV
cars of different carmakers share several patterns. Such correlations are captured by our framework,
while they might be missed when learning different normalization statistics per class. Overall, CoPE
synthesizes plausible images (Fig. 3) even in the absence of activation functionsn.

4.2 Polynomial conditioning for generating unseen attribute combinations

The proposed CoPE is a general framework for conditional generation, and we have already demon-
strated how it can be used for conditional generation in GANs. In this section, we extend our method
to the Variational Autoencoder (VAE) [Kingma and Welling, 2014] to showcase a useful byproduct
of our formulation, namely the ability to generate unseen label combinations. In particular, as intro-
duced in [Georgopoulos et al., 2020], this is a multi-label setting where one (or more) combinations
are not seen in the training set. The method is then evaluated based on its ability to generate the
unseen attribute combinations. To this end, we implement CoPE-VAE, a variation of the conditional
VAE [Kingma and Welling, 2014] where both the encoder and decoder are polynomials. We perform
experiments on CelebA using the annotated attributes of smile and gender. Similar to [Georgopoulos
et al., 2020] we remove the combination (Smiling, Female) from the training set. The results in
Figure 4 highlight the efficacy of the proposed conditioning method in disentangling the two labels
and leveraging the multiplicative interactions to synthesize the missing combination.

4.3 Inverse problems in imaging

In the following paragraphs we evaluate the performance of CoPE in inverse problems. We select
super-resolution and block-inpainting as two popular tasks.
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Table 5: Quantitative evaluation on super-resolution with Π-Net-based generator on Cars196. The
task on the left is super-resolution 16ˆ, while on the right the task is super-resolution 8ˆ. Our
variant of SPADE, i.e., SPADE-CoPE (details in sec. G), vastly improves the original SPADE. The
full two-variable model, i.e., CoPE, outperforms the compared methods.

Super-resolution 16ˆ Cars196
Model FID (Ó)
SPADE 111.75˘ 13.41

Π-Net-SICONC 80.16˘ 12.42
SPADE-CoPE 72.63˘ 3.18

CoPE 60.42 ˘̆̆ 6.19

Super-resolution 8ˆ Cars196
Model FID (Ó) SSIM (Ò) LPIPS (Ó)
SPADE 119.18˘ 14.82 0.32 0.178

Π-Net-SICONC 186.42˘ 40.84 0.31 0.200
SPADE-CoPE 64.76˘ 8.26 0.49 0.135

CoPE 62.76 ˘̆̆ 4.37 0.53 0.127

The core architectures remain as in the experiment above, i.e., CoPE and Π-Net-SICONC implement
products of polynomials. A single change is made in the structure of the discriminator: Motivated by
[Miyato and Koyama, 2018], we include an elementwise product of zII with the real/fake image in
the discriminator. This stabilizes the training and improves the results. Even though architectures
specialized for a single task (e.g., Ledig et al. [2017]) perform well in that task, their well-selected
inductive biases (e.g., perceptual or `1 loss) do not generalize well in other domains or different
conditional inputs. Our goal is not to demonstrate state-of-the-art results, but rather to scrutinize the
effectiveness of the proposed formulation in different conditional generation tasks. To that end, we
consider Π-Net-SICONC, SPADE and SPADE-CoPE as the baselines.

We experiment with two settings in super-resolution: one that the input image is down-sampled 8ˆ
and one that it is down-sampled 16ˆ. The two settings enable us to test the granularity of CoPE
at different scales. In super-resolution 16ˆ, zII (i.e., the low-resolution input) has 48 dimensions,
while in super-resolution 8ˆ, zII has 192 dimensions. The FID scores in Cars196 for the task of
super-resolution are reported in Table 5. In addition, for the experiment on super-resolution 8ˆ, the
SSIM [Wang et al., 2004] and LPIPS [Zhang et al., 2018] are reported as widely-used metrics in
inverse imaging tasks. Notice that the performance of Π-Net-SICONC deteriorates substantially
when the dimensionality of the conditional variable increases. That validates our intuition about the
concatenation in the input of the generator (sec. E), i.e., that the inductive bias of single-variable
PNNs might not fare well in conditional generation tasks. We also report the SPADE-CoPE, which
captures higher-order correlations with respect to the first variable as well (further details in sec. G).
The proposed SPADE-CoPE outperforms the original SPADE, however it cannot outperform the
full two-variable model, i.e., CoPE. The results indicate that CoPE performs well even when the
conditional input is an image.

Beyond the quantitative results, qualitative results provide a different perspective on what the
mappings learn. Qualitative results on the super-resolution experiments on Cars196 are provided
in Fig. 8. We also provide synthesized results on both super-resolution 8ˆ and block-inpainting
on CelebA in Fig. 8 and Fig. 3 respectively. For each conditional image, different noise vectors
zI are sampled. Notice that the corresponding synthesized images differ in the fine details. For
instance, changes in the mouth region, the car type or position and even background changes are
observed. Thus, CoPE synthesizes realistic images that i) correspond to the conditional input, ii) vary
in the fine details. Similar variation has emerged even when the source and the target domains differ
substantially, e.g., in the translation of MNIST digits to SVHN digits (sec. H.3). We should mention
that the aforementioned experiments were conducted only using the adversarial learning loss. In the
literature, regularization techniques have been proposed specifically for image-to-image translation,
e.g., Yang et al. [2019], Lee et al. [2019]. However, such works utilize additional losses and even
require additional networks for training, which makes the training computationally demanding and
more sensitive to design choices.

5 Discussion

CoPE can be used for various conditional generation tasks as the experimental evaluation in both sec. 4
and the supplementary illustrate. Namely, CoPE can synthesize diverse content, which is typically
tackled using auxiliary losses or networks in conditional GANs. We expect this attribute of diverse
generation to be useful in inverse tasks, where multiple latent sharp images can correspond to a single
corrupted image. The diverse generation can be attributed to the higher-order correlations between
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the noise and the conditional variable. Such higher-order correlations also enable synthesizing images
with unseen attribute combinations (sec. 4.2).

One limitation of our work is that our method has not been tried in large-scale synthesis, e.g., like
Brock et al. [2019]. However, only a very limited number of labs/institutions have access to such
resources. In addition, our single-GPU training does have a reduced energy footprint when compared
to the multi-GPU setups of large scale GANs. We believe that the proposed method has merit despite
the single-GPU training. Indeed, we demonstrate that CoPE can perform well in different tasks,
which could help reduce the search for independent methods for every single task.

An interesting future step would be to evaluate the performance of the proposed CoPE in training
with limited data, e.g., using techniques similar to Karras et al. [2020a]. This task can also encourage
architecture discovery, similar to the various architectures devised in Chrysos et al. [2020]. In this
work, we have demonstrated two such architectures with recursive formulations as in (2) and (14),
however additional architectures can be designed by changing the tensor decomposition.

The equations of (2) and (14) express polynomial expansions of arbitrary order, which can approxi-
mate the target function without using activation functions between the recursive terms. However,
in sec. 4.1 we have also experimented with generators that include activation functions between
recursive terms (i.e., the experiment with SNGAN variants). In the future, we intend to study how
to include the activation functions in the formulation and study the properties of such piecewise
polynomial expansions. Lastly, demystifying the relationship between the order of the polynomial
expansion and the expressivity (e.g., the implementation details for the order in sec. G) is a promising
direction.

Societal impact of image generation: Manipulation of images is made possible through algorithms
and architectures like ours with well-studied potential negative applications. The rapid progress in
GAN-based image synthesis has made the discussion imperative. We encourage further work to be
conducted on understanding how to detect synthesized images, e.g., in the conditional generation
setting. For instance, our method can be used for training powerful classifiers that detect synthesized
images.

6 Conclusion
We have introduced CoPE for conditional data generation. CoPE expresses a polynomial expansion
of two input variables, i.e., a noise vector and a conditional variable. We exhibit how previously
published methods, such as SPADE and sBN, can be considered as special forms of this two-variable
polynomial expansion. Notably, CoPE can be augmented to accept an arbitrary number of conditional
variables as inputs. The empirical evaluation confirms that our framework can synthesize realistic
images in five diverse tasks, including inverse problems and class-conditional generation. Inverse
problems, such as super-resolution, can benefit from the proposed framework; we showcase that
sampling different noise vectors results in plausible differences in the synthesized image. We derive
two recursive formulations, i.e., (2) and (14), but a new task-specific formulation can be easily defined.
We expect this to be useful in learning from different modalities, such as visual question answering
(VQA) or text-to-speech synthesis, since CoPE can capture high-order auto- and cross-correlations
among the input variables.
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