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ABSTRACT

Clustering is a crucial task in the fields of Machine and Representation Learning,
with the ability of grouping similar data points being of particular importance.
In this paper, we propose a novel non-parametric algorithm that performs Global
Clustering and Anomaly Detection in an unsupervised manner. Our algorithm is
both effective and efficient, requiring no prior assumptions or domain knowledge
to be applied. It features two modes that utilize the distance from the dataset’s
center for clustering data points together. The first mode splits the dataset into
global clusters where each cluster signifies proximity from the center. The second
mode employs a threshold value for splitting data points into outliers and inliers.
We evaluate our proposal against other prominent methods using synthetic and
real datasets. Our experiments demonstrate that the proposed algorithm achieves
state-of-the-art performance with minimum computational cost, and can success-
fully be applied to a wide range of Machine Learning applications.

1 INTRODUCTION

We begin our work by defining a vector x = (x1, x2, ... , xd) to be a data point in the d-dimensional
Euclidean space x ∈ Rd drawn iid from an unknown distribution X . Here, the pdf of the distribu-
tion is also unknown, hence the probability of assuming a particular point. In the context of outlier
detection, a supervised clustering algorithm such as KNN would generally perform well for a set
of data X = {(x1, y1), (x2, y2), ... , (xN , yN )} with known labels y ∈ {0, 1}, due to its ability to
predict labels based on neighboring points. However, in unsupervised clustering the labels are now
latent with X being defined as X = {(x1, •), (x2, •), ... , (xN , •)}, and splitting the data globally
means that each point belongs to a cluster that is yet to be observed. Therefore, each point needs
to be assigned to a particular cluster with center c ∈ C where C = {c1, c2, ...., cK} and K being a
fixed quantity defined by the user. In our work we assume a non-binary classification of anomalies,
and we aim to generate the set C consisting of K global centers, and assign each point to the nearest
cluster. Global clusters and the distance from their centers are defined in the next sections. For each
point x ∈ X the probability mass function of belonging to a cluster from {c1, c2, .... , cK} is defined
by

∑K
k=1 P (ck|x) = 1 where P (ck|x) needs to be estimated. From a probabilistic standpoint is

difficult to estimate:

P (ck|x) =
P (x|ck)P (ck)

P (c1)P (x|c1)+ . . . .+P (cK)P (x|cK) = P (x|ck)P (ck)∑K
k=1 P (ck)P (x|ck)

since a distribu-

tional assumption would have to be made, and even so, the probability of observing a particular
cluster is still unknown. We can however approximate P (ck|x) with a function that assigns the
point to the closest cluster-center, i.e.: argmaxk P (ck|x) := f(x|C) = argminc∈C{d(x, c)}, with
d(·) representing a distance measure.

2 BACKGROUND

We begin by reviewing parametric and non-parametric unsupervised clustering algorithms, and
how they relate to our work. Gaussian Mixture Models (GMM -Dempster et al. (1977)), repre-
sent a probabilistic approach for modeling data distributions in unsupervised learning. Given a
set of data points {xi}Ni=1, GMM assumes that the data points are generated from a mixture of K
Gaussian components. If the model parameters θ = (πk, {µk,

∑
k}) for each cluster are known,

the most probable cluster for a data point x can be estimated by c = argmaxk P (ck|x, θ) ∝
argmaxk P (ck|θ)P (x|ck, θ). The parameters πk, µk,Σk are estimated through methods like the
Expectation-Maximization (EM) algorithm. Although K-means can also be derived as a special
case of GMM, in which

∑
k = I and πk = 1/K, here we include the conventional distance-

based definition of K-means clustering. K-means MacQueen et al. (1967) is an iterative cluster-
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ing algorithm that partitions a dataset, and aims to assign a point x to the closest cluster cen-
ter, i.e.: c = argmink∥x − µk∥2, where µk represents the cluster center, given by the mean
µk = 1

Nck

∑Nck
i=1 xi of within-cluster points. The process of assigning data points to clusters and up-

dating the cluster centers is repeated until convergence. Other distance-based clustering algorithms
such as PAM - Rdusseeun & Kaufman (1987), CLARANS - Ng & Han (2002), have been applied
with some success to outlier detection (Murugavel & Punithavalli (2011); Vijayarani et al. (2011);
Lei et al. (2012)) although none of these algorithms can be used for creating groups of anomalies
and can only accommodate binary clustering (outliers or otherwise).

Unsupervised, density-based clustering algorithms are designed to identify dense regions in data
while identifying points that are not part of any such density-based structure as outliers. DB-
SCAN - Ester et al. (1996) aims to identify core points, border points, and noise points from a
given set of data. It’s governed by two hyperparameters epsilon (ϵ) and MinPts, and is able
to form a density if the conditions of Maximality (∀x, x′ : if x ∈ c and x′ is density reach-
able from x => x′ ∈ c) and Connectivity (∀x, x′ ∈ c : x is density-connected to x′) hold
true w.r.t. to ϵ and MinPts values. LOF - Breunig et al. (2000) improves density-based clus-
tering by quantifying the degree that each point is isolated from the surrounding densities, s.t.

LRD(x) = 1/(
∑

x′∈Nk(x)dk(x,x′)
|Nk(x)| ), where dk(·) represents the Euclidean distance. LOF introduced

the Outlier Factor score, LOF (x) =
∑

x′∈Nk(x)
LRDk(x′)
LRDk(x)

/|Nk(x)|, whereas LRD denotes the local

reachability density, and Nk(x) refers to the k-nearest neighbors of x. Similar approaches to LOF
include COF - Tang et al. (2002), INFLO -Jin et al. (2006), LoOP - Kriegel et al. (2009), which
use different distance measures or outlier scores for enhancing local density-clustering and anomaly
detection.

The One-Class SVM Schölkopf et al. (1999) is a binary classification algorithm that generates
a decision boundary around the majority of the data, identifying outliers as deviations from this
boundary. Mathematically, oSVM aims to solve the optimization problem: argminw,b,ξ

1
2∥w∥

2 +
1

vN

∑N
i=1 ξi − b subject to the constraints wTϕ(xi) ≥ b − ξi and ξi ≥ 0, where ϕ(·) represents

the RBF kernel and ξi a slack variable for dynamic margin formulation. Here ν (nu) represents the
contamination parameter (proportion of outliers in the dataset) and controls the trade-off between
maximizing the margin and minimizing the number of outlier-points.

Isolation Forest by Liu et al. (2008) comprises a fundamentally different approach for detecting
anomalies. Similar to conventional random forests, iForest leverages binary tree structures to isolate
anomalies by recursively partitioning the data space. It utilizes an anomaly score S(x) = 2E(h(x)

c(N)

where E(h(x)) is the expected path length of x in a tree, and c(N) a normalization constant; for
detecting anomalous data points that require fewer splits to be isolated. However, they have been
shown to suffer from some bias due to the way the splits takes place (Hariri et al. (2019)).

Reviewing the existing solutions in the context of outlier detection uncovers their limitations. Some
algorithms make distributional assumptions, and their performance is not guaranteed if the assump-
tions do not hold. Some are computationally intensive, unsuitable for big data. Distance-based
algorithms do not allow for data points that are located far from each other to be clustered together,
resulting in the anomalies being part of some of the formed clusters. Density-based algorithms, can
group distant points together, but are designed primarily for identifying clusters of points in local
densities. Although iForest does not suffer from any of the above it is often prone to biased results.

Our proposal addresses these limitations by being designed specifically for global clustering, not re-
lying on distributional assumptions, allowing the grouping of distant points, consistently producing
unbiased results, and having excellent computational efficiency.

2.1 DEFINTIONS

We begin our work by defining the necessary notions of Global Clustering and Global Outlier De-
tection. Existing distance-based algorithms assign points to local clusters based on the distance from
their centroids. In the case of global clustering, the center needs to be in a single fixed location, for
measuring the topological distance of each point in the data space.

Definition 1 - Global Center: The center of a dataset is given by the set of average values of each
dimension: x̄ = {x̄j}dj=1.
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Definition 2 - Global Clustering: Given a set of global clusters centers C = {c1, c2, ... , CK} a
point can be assigned to a cluster based on the minimum distance from the clusters’ center, i.e.:
cx = argminc∈C{d(x, c)}.

Definition 3 - Global Outliers: A point x is classified as an inlier if ∥x − x̄∥2 ≤ q where q is the
threshold distance for a point to be considered an inlier.

3 GLOBAL UNSUPERVISED (GU)-CLUSTERING

In the context of Global Clustering, a point x can be topologically located from the dataset’s center
with some finite distance. Here we are interested in generating synthetic labels y ∈ R ∀ x ∈ X

which indicate the proximity of each point from the center. Specifically using the Euclidean distance,

Yi = ∥xi − x̄∥2 =

√√√√ d∑
j=1

(
x
(j)
i − x̄j

)2

(3.1)

we measure the global distance of each point from the center. This process generates the vector
Y , a univariate distribution of point-distances. This distribution results from the fitting step of our
proposal, as outlined in Algorithm 1. It represents the distribution of distances of each point from
the center, which comprises the key component of our work.

Algorithm 1: Point-Distance from Global Center

Data: Input: X ∈ RN×d

Initialize distance vector Y = (0, 0, . . . , 0) ∀x ∈ X
for j ← 1 to d do

Y = Y + (Xj − X̄j)
2

end
Y ← Y 0.5

Furthermore, by utilizing the quantile discrepancy we can empirically measure the variability be-
tween a data point and a certain quantile. The vector of distances Y from (3.1), results in a univariate
random variable defined on the real line R with a strictly monotonically increasing CDF such that
q(θ) = F−1

Y (θ) = inf{y : FY (y) ≥ θ} where θ ∈ [0, 1] is a percentile and q(θ) its corresponding
quantile.

3.1 OUTLIER DETECTION

For performing outlier detection we can use the quantile discrepancy, and determine the value of
q(θ) that minimizes the following variability measure:

θ

∫
y>q(θ)

|y − q(θ)| d

dy
FY (y) + (1− θ)

∫
y<q(θ)

|y − q(1− θ)| d

dy
FY (y) (3.1.1)

Equation (3.1.1) can be evaluated empirically, and provides a practical measure for quantifying the
spread of the distribution at certain quantiles, by:

var(Y ) =

∑N
i=1 I(yi > q(θ))∑N

i=1 I(yi)

N∑
i=1

θ |yi−q(θ)| +
∑N

i=1 I(yi ≤ q(θ))∑N
i=1 I(yi)

N∑
i=1

(1−θ) |yi−q(1−θ)|

(3.1.2)
where θ denotes the weight assigned to each quantile. Optimizing equation (3.1.2), we can
determine the value of θ that leads to the best separation between inliers and outliers based on
the corresponding quantile. However, it may not be feasible to solve equation (3.1.2) analytically,
and numerical optimization methods such as projected gradient descent are necessary (since θ is
constrained within the range [0,1]). While we have not pursued this optimization approach at this
time, we leave this for future work.
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The quantile discrepancy for a single point can be mapped as f : R2 → {0, 1}, where
f(y, q(θ)) = I(y > q(θ)) and for the vector of distances Y :

Y = f(Y, q(θ)) = I(Y > q(θ)) (3.1.3)

where q(θ) denotes the threshold distance for a point to be considered an inlier. Thus, we generate
binary labels y ∈ {0, 1} to detect outliers based on their distance from the global center. Points
that exceed a certain threshold distance are classified as outliers, while the remaining points are
considered inliers.

Algorithm 2: Global Outlier Detection
Data: Vector of distances Y = (y1, y2, ... , yN ), q
Y ← I(Y > q)

3.2 GLOBAL CLUSTERING

For global clustering the same approach is adjusted for measuring the variability between a data point
and K quantiles. Particularly, we aim to minimize the variability measure based on the number of
chosen clusters K. Equation (3.1.1) can now be expressed as:

K−1∑
k=1

(1−
K∑
j=1
j ̸=k

θj)

∫ q(θk+1)

y≥q(θk)

|y − q(θk)|
d

dy
FY (y) dy (3.2.1)

Evaluating the integral, the overall variability of Y can be measured by:

var(Y ) =

K−1∑
k=1

(1−
K∑
j=1
j ̸=k

θj) |q(θk+1)− q(θk)| P (q(θk) ≤ Y ≤ q(θk+1)) (3.2.2)

Equation (3.2.2) can be optimized to determine the optimal number of clusters that best split a
dataset. Future work aims to explore techniques such as reducing in-cluster variability (similar to
the elbow method in k-means), or using gradient descent for finding the optimal value of K. For
measuring the overall variability of a single point:

K−1∑
k=1

(1−
K∑
j=1
j ̸=k

θj) |q(θk+1)− y| (3.2.3)

Following, we can estimate K cluster centers by splitting Y into K quantiles, where the value of
each quantile represents the center of each cluster.

C = {c1, c2, ... , cK} := {q(θ1), q(θ2), ... , q(θK)}
and for measuring the distance from each quantile (cluster-center):(1−

K∑
j=1
j ̸=k

θj) |ck − y|

∀ ck ∈ C (3.2.4)

Assuming a choice of equally spaced percentiles, we can omit the weights of each
quantile, and the cluster for each point in Y can be determined based on the shortest
distance from each cluster-center, such that:

cx = argmin
k∈{1,..,K}

{|ck − y|} (3.2.5)
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Thus, we can assign the points to the closest cluster by measuring the distance from each cluster-
center. Measuring the absolute distance from the center of each cluster, we are now able to group
points from both ends of the data space, and permit them to be in the same cluster. A practical
implementation of Global Clustering is presented in Algorithm 3.
GU-Clustering performs component-wise operations which are computationally efficient and allow
for vectorized operations. These operations result in very fast performance with a runtime com-
plexity of O(d) for fitting the model, O(K) in the Global Clustering mode, and O(1) in the Outlier
Detection mode. A comprehensive review of computational performance is featured in Appendix
A.

Algorithm 3: Assigning Points to K Global Clusters
Data: Vector of distances Y = (y1, y2, ... , yN ), K
Calculate K quantiles from Y
Y ← argmink abs((q1, q2, ..., qK)− Y )

4 EXPERIMENTS AND RESULTS

4.1 GLOBAL CLUSTERING IN SYNTHETIC DATASETS

The proposed notion of Global Clustering is applied to low-dimensional synthetic datasets for visual
inspection. Common metrics used to evaluate the quality of an unsupervised clustering algorithms,
such as the Silhouette Coefficient -Rousseeuw (1987) and Dunn’s index - Dunn (1974) are not
applicable in global clustering since they measure the distance from within-cluster points. Therefore
in the context of global clustering, we measure the average distance of the points of each cluster from
the dataset’s center,  1

Nc1

Nc1∑
i=1

Yi,
1

Nc2

Nc2∑
i=1

Yi, ... ... ,
1

NcK

NcK∑
i=1

Yi

 (4.1)

where Yi as defined by equation (3.1). This allows us to perform Global Clustering and quantify the
rank of each point as an outlier.

4.1.1 SYNTHETIC DATASET 1. A 2-DIMENSIONAL SYNTHETIC DATASET WITH A SINGLE
DENSITY

Cluster K-Means DSCAN GMM GU-Clustering
1 0.3289 0.3653 0.4896 0.0695
2 0.3167 0.1610 0.374 0.1911
3 0.3429 0.2614 0.2742 0.3261
4 0.3977 0.1733 0.2806 0.5341

Table 1: Average distance from the global center

Figure 1: For the algorithms that allow cluster selection K was set to 4. DBSCAN generated a large number
of clusters and does not produce meaningful results for either local or global clustering. GMM and K-Means
split the data into 4 local clusters. GU-Clustering successfully splits the points into 4 global clusters.
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4.1.2 SYNTHETIC DATASET 2. A 2-DIMENSIONAL SYNTHETIC DATASET COMPRISED OF 4
DISTINCT DENSITIES WITH THE SAME CENTER

Cluster K-Means DSCAN GMM GU-Clustering
1 690.53 70.590 784.78 70.590
2 693.70 301.29 777.62 301.29
3 639.82 548.99 410.71 548.99
4 486.48 900.73 696.20 900.73

Table 2: Average distance from the global center

Figure 2: In this implementation, the number of clusters K was set to 4. DBSCAN and GU-Clustering were
successful in allocating the data to their correct densities, achieving the same distances from the center. GMM
and K-means group the points locally and do not allow for distant points to share the same cluster.

4.1.3 SYNTHETIC DATASET 3. A 2-DIMENSIONAL SYNTHETIC DATASET WITH 4 DENSITIES
AND 4 DISTINCT CENTERS

Cluster K-Means DSCAN GMM GU-Clustering
1 4.003 4.881 3.993 0.782
2 8.562 8.438 8.562 2.376
3 5.667 1.421 5.667 4.788
4 1.284 1.837 1.280 8.001

Table 3: Average distance from the global center

Figure 3: Similar to the previous applications, the number of clusters K was set to 4, for the algorithms that
allow cluster selection. GMM and K-means split the points into 4 local clusters, while GU-Clustering splits the
points into 4 global clusters. DBSCAN was again difficult to calibrate , generating several arbitrary clusters.
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4.1.4 SYNTHETIC DATASET 4. GLOBAL CLUSTERING IN A SYNTHETIC DATASET OF TIME
SERIES DATA

Cluster K-Means DSCAN GMM GU-Clustering
1 4,715 N/A 4,087 2,532
2 5,796 N/A 7,028 7,062
3 6,819 N/A 4,677 12,988
4 4,260 N/A 5,789 26,450

Table 4: Average distance from the global center

Figure 4: This paradigm illustrates the effectiveness of GU-Clustering for grouping points located on opposite
ends of the data distribution. On the other hand, the competing algorithms, when confronted with the same
time series data, still produce local clusters and fail to group anomalies from both ends of the distribution.

4.1.5 SYNTHETIC DATASET 5. A 3-DIMENSIONAL SYNTHETIC DATASET WITH 3 MIXED
DENSITIES

Cluster K-Means DSCAN GMM GU-Clustering
1 1.580 2.032 1.459 0.543
2 1.648 1.001 1.641 1.170
3 1.611 1.521 1.725 2.166

Table 5: Average distance from the global center

Figure 5: Similar to the previous paradigms, the conventional unsupervised clustering algorithms split the data
locally, with DBSCAN generating a large number of non-systematic clusters.
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The conventional unsupervised clustering algorithms fail to split the data globally, as they are op-
timized for local clustering and cannot group distant points together. DBSCAN is effective for
handling arbitrary shapes but proved difficult to calibrate. It often exhibits an unsystematic behav-
ior, generating a much larger number of clusters, since it does not permit the user to set the value
of K. On the other hand, GU-Clustering excels in splitting the datasets globally, making it ideal for
analyzing high-dimensional datasets where data visualization is impractical.

4.2 OUTLIER DETECTION

Although unsupervised anomaly detection does not utilize any label information, in this context
they are needed for evaluation and comparison. The following datasets as presented by Goldstein
et.al. Goldstein & Uchida (2016), are used for comparative evaluation of unsupervised anomaly
detection algorithms. These datasets come from various domains and they differ in size, outlier
percentage, and dimensionality, offering a broad evaluation spectrum. For outlier detection, the rank
of the anomalies should be considered. Specifically, each point should be ranked as being an outlier
compared against the other data points that comprise the dataset. In principal, a random outlier-
point should rank higher than a random inlier-point. This is important in quantifying the quality
(discrimination) of an algorithm. The Area Under the Curve (AUC) of the Receiver Operating
Characteristic (ROC) curve is used to measure discrimination quality, with a focus on ranking using
the AUC score. For evaluating predictive capabilities, the F1 score is employed due to the inherent
class imbalance of outlier prediction datasets.

Dataset Size Dimensions Outliers Percentage
b-cancer - Lichman et al. (2013) 367 30 10 2.72%
pen-global - Lichman et al. (2013) 809 16 90 11.12%
letter - Lichman et al. (2013) 1,600 32 100 6.25%
speech - Brümmer et al. (2012) 3,686 400 61 1.65%
sattelite - Lichman et al. (2013) 5,100 36 75 1.47%
per-local - Lichman et al. (2013) 6,724 16 10 0.15%
ann-thyroid - Lichman et al. (2013) 6,916 21 250 3.61%
shuttle - Lichman et al. (2013) 46,464 9 878 1.89%
aloi - Geusebroek et al. (2005) 50,000 27 1,508 3.02%
kdd99 - Lichman et al. (2013) 620,098 29 1,052 0.17%

Table 6: Datasets for Benchmarking

Dataset Robust Covariance oSVM iForest LOF GU-Clustering
b-cancer 0.794 0.603 0.795 0.846 0.988
pen-global 0.601 0.660 0.750 0.706 0.945
letter 0.557 0.544 0.509 0.701 0.469
speech 0.5 0.505 0.508 0.517 0.492
sattelite 0.756 0.679 0.783 0.601 0.993
pen-local 0.5 0.5 0.5 0.5 0.5
annthyroid 0.672 0.502 0.527 0.492 0.482
shuttle 0.846 0.731 0.978 0.516 0.927
aloi 0.498 0.517 0.5 0.563 0.605
kdd99 0.502 0.665 0.761 0.501 0.839

Table 7: Comparison of the discriminative performance of each outlier detection algorithm. GU-Clustering
performs well, yielding the highest AUC score (higher is better) in 5 of the 10 datasets that were used in this
comparison. The pen-local dataset proved to be difficult with all algorithms achieving exactly the same AUC
score.

The most prominent algorithms for outlier detection are compared against our proposal for measur-
ing their performance. In our experiments, the algorithms were implemented using the scikit-learn
library Pedregosa et al. (2011). All of their hyperparameters were left at default with the contamina-
tion parameter set as the outlier percentage from Table 6 for achieving the best possible performance.
For GU-Clustering, the hyperparameter q was set to 0.999. The value at q signifies the threshold
distance for points to be classified as inliers. Preprocessing included applying a min-max transfor-
mation so the scale of all dimensions was between [0,1]. No other operations were performed and
the datasets were used the same way as presented by Goldstein & Uchida (2016).
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Dataset Robust Covariance oSVM iForest LOF GU-Clustering
b-cancer 0.978 0.972 0.989 0.992 0.988
pen-global 0.842 0.924 0.944 0.935 0.942
letter 0.896 0.942 0.939 0.963 0.967
speech 0.967 0.976 0.984 0.984 0.991
sattelite 0.986 0.991 0.994 0.988 0.993
pen-local 0.997 0.997 0.999 0.999 0.999
annthyroid 0.954 0.964 0.966 0.963 0.981
shuttle 0.989 0.990 0.999 0.982 0.991
aloi 0.941 0.971 0.970 0.974 0.985
kdd99 0.997 0.999 0.999 0.998 0.999

Table 8: Comparison of the predictive performance of each outlier detection algorithm. In terms of F1 score
(higher is better) GU-clustering performs the best by either leading the results or being a close second.

Dataset Robust Cov. oSVM iForest LOF GU-Clustering
b-cancer 0.13s 0.00s 0.31s 0.02s 0.00s
pen-global 1.12s 0.02s 0.34s 0.02s 0.00s
letter 2.37s 0.06s 0.39s 0.12s 0.00s
speech 65.9s 0.46s 2.58s 0.54s 0.01s
sattelite 5.58s 0.13s 0.77s 0.63s 0.00s
pen-local 4.67s 0.09s 0.81s 1.24s 0.00s
annthyroid 1.18s 0.41s 0.80s 1.16s 0.00s
shuttle 21.9s 5.90s 3.61s 5.09s 0.01s
aloi 11.5s 22.4s 5.25s 36.7s 0.01s
kdd99 161s 0.79hrs 50.9s 2.13hrs 0.14s

Table 9: Computational performance comparison of the algorithms evaluated in section 4.2. The experiments
were conducted on a Google Colab environment with an Intel Xeon(R) CPU (1 core @ 2.2 GHz) and 12 GB of
memory. GU-Clustering is more frugal on resources and significantly more efficient in terms of computational
time.

5 CONCLUSIONS

Global Clustering is a critical process in learning representations and plays a vital role in applications
such as data mining, anomaly detection, and pattern recognition. Despite its importance, past work
in this area has not fully explored this potential. In turn, we address the limitations of the current
solutions by providing a novel and effective framework for both global clustering and anomaly
detection. Using quantiles to split the distribution into K regions, each point is assigned to the value
of the closest quantile (defined as the cluster center in the global clustering mode) or classified as
an outlier if it exceeds the cutoff distance (outlier detection mode). Our proposal is computationally
efficient, has no underlying assumptions, and can be applied to a wide range of datasets. Finally,
we evaluated the performance of our algorithm in various scenarios, and the results demonstrate its
superiority over existing methods.

Regarding implementation, GU-Clustering is straightforward to implement, due to the few hyperpa-
rameters that govern it. However, similar to other algorithms that use distance to group data points,
GU-Clustering might be affected by the scale of particular variables and a preprocessing step could
be necessary (e.g. normalization, standardization) for producing unbiased results.

The work performed in this paper sets the foundation for future work that we want to carry out.
Specifically, we aim to establish some well-grounded heuristics for choosing the optimal hyperpa-
rameters of our algorithm.

The implementation of our algorithm in code with all the experiments and results can be repro-
duced in this anonymous GitHub repository.
https://github.com/SampleUser122/GU-Clustering
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APPENDIX A - EVALUATION OF COMPUTATIONAL PERFORMANCE

We now review the computational performance of the algorithms that are most prevalent in unsu-
pervised clustering and are featured in this work, both for global clustering, and outlier detection.
GU-Clustering operates in two modes, a Global Clustering mode, and a Global Anomaly Detec-
tion mode. It is designed to be simple to implement, yet highly effective and efficient. Since
the data are stored in contiguous blocks of memory, it allows to perform component-wise opera-
tions. Component-wise operations are computationally efficient, and allow for vectorized opera-
tions, rather than looping over each element of the data structure individually.

Algorithm Run time complexity
K-means O(nKdi)

GMM O(nKd3)
FMCD (RC) O(nlog(n))

DBSCAN O(nlog(n))
LOF O(n2) +O(nlog(n))

oSVM O(n2)
iForest O(n)

GU-Clustering O(d)
Table 10: Run Time Complexity of featured unsupervised clustering algorithms

Although there are various implementations of the algorithms that are presented above, we review
the variants used for benchmarking our proposal. Generally, algorithms that use covariance matrices
to uncover the relationships between points tend to be slow, since a run time complexity of O(n3)
is required for computing the covariance matrix, and cannot be applied efficiently to large datasets.
Despite that, it is worth mentioning that in the case of oSVM, the run time complexity reduces to
O(n2) when the contamination parameter is provided. FMCD (Robust Covariance) is more efficient
since it uses a sample of the dataset for estimating the covariance matrix. Traditional K-means
needs to sum the distance for d dimensions, for n points, and check for K clusters if the point can be
included. Usually, it takes a number of i iterations to converge to the optimal result. Depending on
the implementation of the algorithm this can be reduced to a time complexity of O(nKi). iForest
is the most efficient among the competing algorithms operating in linear time for the evaluation of
each point. DBSCAN and LOF also operate in a polynomial run time complexity, for visiting every
neighboring region and testing each point as a candidate for that region. LOF however, does default
to a higher run time complexity, since it needs to compute the score for each data point and work
out the upper/lower bounds for its minpts parameter. GU-Clustering is by far the most efficient
algorithm since all its operations are performed component-wise, and requires only d iterations for
fitting the model. In the evaluation process, the run time complexity is reduced to O(K) for the
global clustering mode and O(1) for the outlier detection mode.

Dataset Robust Cov. oSVM iForest LOF GU-Clustering
b-cancer 0.13s 0.00s 0.31s 0.02s 0.00s
pen-global 1.12s 0.02s 0.34s 0.02s 0.00s
letter 2.37s 0.06s 0.39s 0.12s 0.00s
speech 65.9s 0.46s 2.58s 0.54s 0.01s
sattelite 5.58s 0.13s 0.77s 0.63s 0.00s
pen-local 4.67s 0.09s 0.81s 1.24s 0.00s
annthyroid 1.18s 0.41s 0.80s 1.16s 0.00s
shuttle 21.9s 5.90s 3.61s 5.09s 0.01s
aloi 11.5s 22.4s 5.25s 36.7s 0.01s
kdd99 161s 0.79hrs 50.9s 2.13hrs 0.14s

Table 11: Computational performance comparison of the algorithms evaluated in section 4.2. The experiments
were conducted on a Google Colab environment with an Intel Xeon(R) CPU (1 core @ 2.2 GHz) and 12 GB of
memory. GU-Clustering is more frugal on resources and significantly more efficient in terms of computational
time.
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APPENDIX B - VISUAL INSPECTION WITH LEADING ANOMALY DETECTION
ALGORITHMS

Figure 6: This application is an extension of scikit-learn’s section of comparing outliers for anomaly detection
Pedregosa et al. (2011). The datasets contain one or two modes (regions of high density) to illustrate the ability
of the algorithms to cope with multimodal data. For each dataset, 15% of samples are generated as random
uniform noise. This proportion is the value given to the nu parameter of the oSVM and the contamination
parameter of the other outlier detection algorithms. The decision boundaries between inliers and outliers are
displayed in black except for LOF and GU-Clustering as they do not have a predict method to be applied to
new data. All algorithms parameters were hand-picked by the authors for achieving the best results. GU-
Clustering effectively detects global outliers, as seen in the figure above, providing a new perspective to outlier
detection. Similar to the results from the previous sections, the outliers detected focus on the global position of
the points rather than outliers belonging to specific densities. Similar to LOF, GU-Clustering does not need to
be fitted to a dataset before classifying new points, thus offering the possibility of detecting outliers in real time.
Furthermore, GU-Clustering does not require prior knowledge of the contamination fraction and can achieve
state-of-the-art performance using a default value for q.
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