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ABSTRACT

Artificial neural networks (ANNs) exhibit a narrow scope of expertise on station-
ary independent data. However, data in the real world is continuous and dynamic,
and ANNs must adapt to novel scenarios while also retaining the learned knowl-
edge to become lifelong learners. The ability of humans to excel at these tasks
can be attributed to multiple factors ranging from cognitive computational struc-
tures, cognitive biases, and the multi-memory systems in the brain. We incor-
porate key concepts from each of these to design a cognitive-inspired continual
learning method. Cognitive Continual Learner (CCL) includes multiple modules,
implicit and explicit knowledge representation dichotomy, inductive bias, and a
multi-memory system. CCL shows improvement across different settings and also
shows a reduced task recency bias. To test versatility of continual learning meth-
ods on a challenging distribution shift, we introduce a novel domain-incremental
dataset DN4IL. In addition to improved performance on existing benchmarks,
CCL also demonstrates superior performance on this dataset.1

1 INTRODUCTION

Deep learning has seen rapid progress in recent years, and supervised learning agents have achieved
superior performance in perception tasks. However, unlike a supervised setting, where data is static,
and independent and identically distributed, real-world data is changing dynamically. Continual
learning (CL) aims at learning multiple tasks when data is streamed sequentially (Parisi et al., 2019).
This is crucial in real-world deployment settings, as the model needs to adapt quickly to novel data
(plasticity), while also retaining previously learned knowledge (stability). Artificial neural networks
(ANN), however, are still not effective continual learners as they often fail to generalize to small
changes in distribution and also suffer from forgetting old information when presented with new
data (catastrophic forgetting)(McCloskey & Cohen, 1989).

Humans, on the other hand, show a better ability to acquire new skills while also retaining previously
learned skills to a greater extent. This intelligence can be attributed to different factors in human cog-
nition. Multiple theories have been proposed to formulate an overall cognitive architecture, which is
a broad domain-generic cognitive computation model that captures the essential structure and pro-
cess of the mind. Some of these theories hypothesize that, instead of a single standalone module,
multiple modules in the brain share information to excel at a particular task. CLARION (Connec-
tionist learning with rule induction online) (Sun & Franklin, 2007) is one such theory that postulates
an integrative cognitive architecture, consisting of a number of distinct subsystems. It predicates
a dual representational structure (Chaiken & Trope, 1999), where the top level encodes conscious
explicit knowledge, while the other encodes indirect implicit information. The two systems interact,
share knowledge, and cooperate in solving tasks. Delving into these underlying architectures and
formulating a new design can help in the quest of building intelligent agents.

Multiple modules can be instituted instead of a single feedforward network. An explicit module
that learns from the standard visual input and an implicit module that shares indirect contextual
knowledge. The implicit module can be further divided into more sub-modules, each providing dif-
ferent information. Inductive biases and semantic memories can act as different kinds of implicit
knowledge. Inductive biases are pre-stored templates or knowledge that provide some meaning-
ful disposition toward adapting to the continuously evolving world (Chollet, 2019). Furthermore,

1Code and the DN4IL dataset will be made accessible upon acceptance.
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theories (Kumaran et al., 2016) postulate that after rapidly learning information, a gradual consol-
idation of knowledge transpires in the brain for slow learning of structured information. Thus, the
new design incorporates multiple concepts of cognition architectures, the dichotomy of implicit and
explicit representations, inductive biases, and multi-memory systems theory.

To this end, we propose Cognitive Continual Learner (CCL), a multi-module architecture for CL.
The explicit working module processes the standard input data. Two different sub-modules are in-
troduced for the implicit module. The inductive bias learner embeds relevant prior information, and
as networks are shown to be biased toward textural information (unlike humans that are more biased
toward global semantics)(Geirhos et al., 2018), we propose to utilize the global shape information
as the prior. Shape is already present in the visual data but in an indirect way, and extracting this im-
plicit information and sharing with the explicit module will help to learn more generic and high-level
representations. Further, to emulate the consolidation of information in the slow-fast multi-memory
system, a gradual accumulation of knowledge from the explicit working module is embedded in
the second semantic memory sub-module. We show that interacting and leveraging information be-
tween these modules can help alleviate catastrophic forgetting while also increasing the robustness
to distribution shift.

CCL achieves superior performance across all CL settings on various datasets. CCL outperforms the
SOTA CL methods on Seq-CIFAR10, Seq-CIFAR100 in the class incremental settings. Furthermore,
in more realistic general class incremental settings where the task boundary is blurry and classes are
not disjoint, CCL shows significant gains. The addition of inductive bias and semantic memory helps
to achieve a better balance between the plasticity-stability trade-off. The prior in the form of shape
helps produce generic representations, and this results in CCL exhibiting a reduced task-recency
bias. Furthermore, CCL also shows higher robustness against natural corruptions. Finally, to test the
capability of the CL methods against distribution shift, we introduce a domain incremental learning
dataset, DN4IL, which is a carefully designed subset of the DomainNet dataset (Peng et al., 2019).
CCL shows considerable robustness across all domains on these challenging data, thus establishing
the efficacy of our cognitive-inspired CL architecture. Our contributions are as follows:

• Cognitive Continual Learner (CCL), a novel method that incorporates aspects of cognitive
architectures, multi-memory systems, and inductive bias into the CL framework.

• Introducing DN4IL, a challenging domain incremental learning dataset for CL.
• Benchmarks across different CL settings: class incremental, task incremental, generalized

class incremental, and domain incremental learning.
• Analyses on the plasticity-stability trade-off, task recency bias, and robustness to natural

corruptions.

2 METHODOLOGY

2.1 COGNITIVE ARCHITECTURES

Cognitive architectures refer to computational models that encapsulate the overall structure of the
cognitive process in the brain. The underlying infrastructure of such a model can be leveraged to
develop better intelligent systems. Global workspace theory (GWT) (Juliani et al., 2022) postulates
that human cognition is composed of a multitude of special-purpose processors and is not a single
standalone module. Different sub-modules might encode different contextual information which,
when activated, can transfer knowledge to the conscious central workspace to influence and help
make better decisions. Furthermore, CLARION (Sun & Franklin, 2007) posits a dual-system cog-
nitive architecture with two levels of knowledge representation. The explicit module encodes direct
knowledge that is externally accessible. The implicit module encodes indirect knowledge that is not
directly accessible, but can be obtained through some intermediate interpretive or transformational
steps. These two modules interact with each other by transferring knowledge between each other.

Inspired by these theories, we formulate a method that incorporates some of the key aspects of
cognitive architecture into the CL method. A working module, which encodes the direct sensory
data, forms the explicit module. A second module that encodes indirect and interpretive information
forms the implicit module. The implicit module further includes multiple sub-modules to encode
different types of knowledge.

2



Under review as a conference paper at ICLR 2023

Explicit  Module Implicit  Module

   Cognitive: Explicit Learning 
Knowledge: Direct 

Source of knowledge: 
External, Precise

 Cognitive: Implicit Learning 
Knowledge: Indirect 

Source of knowledge: 
Assimilated, Contextual 

Episodic 
Memory 

Sensory Data

In
du

ct
iv

e 
B

ia
s L

ea
rn

er
Se

m
an

tic
 M

em
or

y

Knowledge Sharing

W
or

ki
ng

 M
od

el

Stochastic 
Momentum

Update

Figure 1: Schematic of Cognitive Continual Learner (CCL). The working model in explicit module
learns direct sensory data. Within the implicit module, the inductive bias learner encodes the prior
shape knowledge and the semantic memory consolidates information from the explicit module.

2.2 INDUCTIVE BIAS

The sub-modules in the implicit module need to encapsulate implicit information that can provide
more contextual and high-level supervision. One of such knowledge can be prior knowledge or
inductive bias. Inductive biases are prestored templates that exist implicitly even in earlier stages of
the human brain (Pearl & Mackenzie, 2018). For instance, cognitive inductive bias may be one of
the reasons why humans can focus on the global semantics of objects to make predictions. ANNs,
on the other hand, are more prone to rely on local cues and textures (Geirhos et al., 2018). Global
semantics or shape information already exists in the visual data, but in an indirect way. Hence, we
utilize shape as indirect information in the implicit module. The sub-module uses a transformation
step to extract the shape and share this inductive bias with the working module. As the standard
(RGB) image and its shape counterpart can be viewed as different perspectives/modalities of the
same data, ensuring that the representation of one modality is consistent with the other increases
robustness to spurious correlations that might exist in only one of them.

2.3 MULTI MEMORY SYSTEM

Moreover, many theories have postulated that an intelligent agent must possess deferentially spe-
cialized learning memory systems (Kumaran et al., 2016). While one system rapidly learns the
individual experience, the other gradually assimilates the knowledge. To emulate this behavior, we
establish a second sub-module that slowly consolidates the knowledge from the working module.

2.4 FORMULATION

To this end, we propose a novel method Cognitive Continual Learner (CCL), which incorporates
all these concepts into the CL paradigm. CCL consists of two modules, the explicit module and
the implicit module. The explicit module has a single working model and processes the incoming
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direct visual data. The implicit module further consists of two sub-modules, namely the inductive
bias learner and the semantic memory. They share relevant contextual information and assimilated
knowledge with the explicit module, respectively. Figure 1 shows the overall architecture.

In the implicit module, semantic memory NSM , consolidates knowledge at stochastic intervals from
the working model NWM , in the explicit module. The other sub-module, the inductive bias learner
NIBL, processes the data and extracts the shape information (Section B). NWM processes the
RGB data, NSM consolidates the information from the working module at an update frequency
in a stochastic manner, and NIBL learns from the shape data. f represents the combination of the
encoder and the classifier, and θWM , θSM , and θIBL are the parameters of the three networks.

A CL classification consists of a sequence of T tasks and, during each task t ∈ 1, 2...T , samples
xc and their corresponding labels yc are drawn from the current task data Dt. Furthermore, for
each subsequent task, a random batch of exemplars is sampled from episodic memory B as xb. An
inductive bias (shape) filter is applied to generate shape samples, xcs = IB(xc) and xbs = IB(xb).
Reservoir sampling (Vitter, 1985) is incorporated to replay previous samples. Each of the networks
NWM and NIBL learns in its own modality with supervised cross-entropy loss on both the current
samples and the buffer samples:

LSupWM
= LCE(f(xc; θWM ), yc) + LCE(f(xb; θWM ), yb) (1)

LSupIBL
= LCE(f(xcs ; θIBL), yc) + LCE(f(xbs ; θIBL), yb) (2)

The Knowledge Sharing (KS) objectives are designed to transfer and share information between
all modules. KS occurs for current samples and buffered samples. We employ the mean squared
error as the objective function for all KS losses. To provide shape supervision to the working model
and vice versa, a bidirectional decision space similarity constraint (LbiKS) is enforced to align the
features of the two modules.

LbiKS = E
x∼Dt∪B

∥f(xs; θIBL)− f(x; θWM )∥22 (3)

The consolidated structural information in semantic memory is transferred to both the working
model and the inductive bias learner by aligning the output space on the buffer samples, which
further helps in information retention. The loss functions LKSWM

and LKSIBL
are as follows;

LKSWM
= E

xb∼B
∥f(xb; θSM )− f(xb; θWM )∥22 (4)

LKSIBL
= E

xb∼B
∥f(xb; θSM )− f(xbs ; θIBL)∥22 (5)

Thus, the overall loss functions for the working model and the inductive bias learner are as follows;
LWM = LSupWM

+ λLbiKS + λ′LKSWM
(6)

LIBL = LSupIBL
+ γLbiKS + γ′LKSIBL

(7)

The semantic memory of the implicit module is updated with a stochastic momentum update (SMU)
of the weights of the working model at rate r with a decay factor of d,

θSM = d · θSM + (1− d) · θWM if s ∼ U(0, 1) < r (8)

More details are provided in Algorithm 2. Note that we use semantic memory (θSM ) for inference,
as it contains consolidated knowledge across all tasks.

3 EXPERIMENTAL SETTINGS

ResNet-18 (He et al., 2016) architecture is used for all experiments. All networks are trained us-
ing the SGD optimizer with standard augmentations of random crop and random horizontal flip.
The different hyperparameters, tuned per dataset, are provided in E. The different CL settings are
explained in detail in Section D. We consider CLass-IL, Domain-IL and also report the Task-IL set-
tings. Seq-CIFAR10 and Seq-CIFAR100 (Krizhevsky et al., 2009) for the class incremental learning
(Class-IL) settings, which are divided into 5 tasks each. As an addition to Class-IL, we also con-
sider and evaluate General Class-IL (GCIL) (Mi et al., 2020) on CIFAR100 dataset. For the domain
incremental learning (Domain-IL), we propose a novel dataset, DN4IL.
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Table 1: Comparison of different methods on standard CL benchmarks (Class-IL, Task-IL and GCIL
settings). CCL shows a consistent improvement over all methods for both buffer sizes.

|B| Method Seq-CIFAR10 Seq-CIFAR100 GCIL-CIFAR100

Class-IL Task-IL Class-IL Task-IL Uniform Longtail

- JOINT 92.20±0.15 98.31±0.12 70.62±0.64 86.19±0.43 60.45±1.65 60.10±0.42

SGD 19.62±0.05 61.02±3.33 17.58±0.04 40.46±0.99 10.36±0.13 9.62±0.21

200

ER 44.79±1.86 91.19±0.94 21.40±0.22 61.36±0.39 16.52±0.10 16.20±0.30

DER++ 64.88±1.17 91.92±0.60 29.60±1.14 62.49±0.78 27.73±0.93 26.48±2.04

Co2L 65.57±1.37 93.43±0.78 31.90±0.38 55.02±0.36 - -
ER-ACE 62.08±1.44 92.20±0.57 32.49±0.95 59.77±0.31 27.64±0.76 25.10±2.64

CLS-ER† 66.19±0.75 93.90±0.60 43.80±1.89 73.49±1.04 35.88±0.41 35.67±0.72

CCL 70.04±1.07 94.49±0.38 46.55±1.51 76.66±0.41 39.61±0.70 38.94±0.16

500

ER 57.74±0.27 93.61±0.27 28.02±0.31 68.23±0.16 23.62±0.66 22.36±1.27

DER++ 72.70±1.36 93.88±0.50 41.40±0.96 70.61±0.11 35.80±0.62 34.23±1.19

Co2L 74.26±0.77 95.90±0.26 39.21±0.39 62.98±0.58 - -
ER-ACE 68.45±1.78 93.47±1.00 40.67±0.06 66.45±0.71 30.14±1.11 31.88±0.73

CLS-ER 75.22±0.71 94.94±0.53 51.40±1.00 78.12±0.24 38.94±0.38 38.79±0.67

CCL 76.20±0.70 95.95±0.14 53.23±1.62 80.12±0.18 44.25±0.21 42.75±0.18

4 RESULTS

We provide a comparison of our method with standard baselines and multiple other SOTA CL meth-
ods. The lower and upper bounds are reported as SGD (standard training) and JOINT (training
all tasks together), respectively. We compare with other rehearsal-based methods in the literature,
namely ER, DER (Buzzega et al., 2020), Co2L (Cha et al., 2021), ER-ACE (Caccia et al., 2021)
and CLS-ER (Arani et al., 2021). Table S2 shows the average performance in different settings over
three seeds. Co2L utilizes task boundary information, and therefore the GCIL setting is not applica-
ble. The results are taken from the original papers and, if not available, using the original codes, we
conducted a hyperparameter search for the new settings.

CCL achieves the best performance across all datasets in all settings. In the challenging Class-IL
setting, we observe a gain of ∼50% over DER++, thus showing the efficacy of adding multiple
modules to CL. Furthermore, we report improvements of ∼6% on both the Seq-CIFAR10 and Seq-
CIFAR100 datasets, over CLS-ER, which utilizes two memories in its design. CCL has a single
semantic memory, and the additional boost is procured by prior knowledge from the inductive bias
learner. Improvement is prominent even when the memory budget is low (200 buffer size). GCIL
represents a more realistic setting, as the task boundaries are blurry and classes can reappear and
overlap in any task. GCIL-Longtail version also introduces an imbalance in the sample distribu-
tion. CCL shows a significant improvement on both versions of GCIL-CIFAR100. Shape informa-
tion from the inductive bias learner offers the global high-level context, which helps in producing
generic representations that are not biased towards learning only the current task at hand. Further-
more, sharing of the knowledge that has been assimilated through the appearance of overlapping
classes through the training scheme, further facilities learning in this general setting. The overall
results indicate that the dual knowledge sharing between the explicit working module and the im-
plicit inductive bias and semantic memory modules enables both better adaptation to new tasks and
information retention.

5 DOMAIN INCREMENTAL LEARNING

Intelligent agents deployed in real-world applications need to maintain consistent performance
through changes in the data and environment. Domain-IL aims to assess the robustness of the CL
methods to the distribution shift. In Domain-IL, the classes in each task remain the same, but the
input distribution changes, and this makes for a more plausible use case for evaluation. However,
the datasets used in the literature do not fully reflect this setting. For instance, the most common
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Figure 2: Accuracy (left) and plasticity-stability analysis (right) on DN4IL dataset. CCL substan-
tially outperforms other methods and demonstrates a better plasticity-stability trade-off.

datasets used in the literature are different variations (Rotated and Permuted) of the MNIST dataset
(LeCun et al., 1998). MNIST is a simple dataset, usually evaluated on MLP networks, and its
variations do not reflect the real-world distribution shift challenges that a CL method faces. As is
evident from the different CL methods in the literature, the improvement in performance has been
saturated on all variants of MNIST. Farquhar & Gal (2018) propose fundamental desiderata for CL
evaluations and datasets based on real-world use cases. One of the criteria is to possess cross-task
resemblances, which Permuted-MNIST clearly violates. Thus, a different dataset is needed to test
the overall capability of a CL method to handle the distributional shift.

5.1 DN4IL DATASET

To this end, we propose DN4IL (DomainNet for Domain-IL), which is a well-crafted subset of the
standard DomainNet dataset (Peng et al., 2019), used in domain adaptation. DomainNet consists of
common objects in six different domains - real, clipart, infograph, painting, quickdraw, and sketch.
The original DomainNet consists of 59k samples with 345 classes in each domain. The classes have
redundancy, and moreover, evaluating the whole dataset can be computationally expensive in a CL
setting. Considering different criteria such as the relevance of classes, uniform sample distribution,
computational complexity, and ease of benchmarking for CL, we create the version DN4IL, which
is tailor-made for continual learning.

All classes were grouped into semantically similar supercategories. Out of these, a subset of classes
was selected that had relevance to domain shift while also having maximum overlap with other
standard datasets such as CIFAR-10 and CIFAR-100, as this can facilitate in performing out-of-
distribution analyses. 20 supercategories were chosen with 5 classes each (resulting in a total of
100 classes). In addition, to provide a balanced dataset, we performed a class-wise sampling. First,
we sample images per class in each supercategory and maintain class balance. Second, we choose
samples per domain, so that it results in a dataset that has a near-uniform distribution across all
classes and domains. The final dataset DN4IL is succinct, more balanced, and more computationally
efficient for benchmarking, thus facilitating research in CL. Additionally, the new dataset deems
more plausible for real-world settings and also adheres to all the evaluation desiderata by (Farquhar
& Gal, 2018). The challenging distribution shift between domains provides an apt dataset to test the
capability of CL methods in the Domain-IL setting. More details, statistics, and visual examples of
this crafted dataset are provided in Section I.

5.2 DN4IL PERFORMANCE

Figure 2 (left) reports the results on DN4IL for two different buffer sizes (Values are provided in
Table S8). CCL shows a considerable performance gain in the average accuracy across all domains
and can be primarily attributed to the supervision from the shape data. Standard networks tend to
exhibit texture bias and learn background or spurious cues (Geirhos et al., 2018) that result in per-
formance degradation when the distribution changes. Learning global shape information of objects,
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Figure 3: Task-wise performance on DN4IL (|B|=500), where each task represents a domain. CCL
shows more retention of old information without compromising much on current accuracy.

on the other hand, helps in learning generic features that can translate well to other distributions.
Semantic memory further helps to consolidate information across domains. Maintaining consistent
performance to such difficult distribution shift proves beneficial in real-world applications, and the
proficiency of CCL in this setting can thus open up new avenues for research in cognition-inspired
multi-module architectures.

6 ANALYSIS

6.1 PLASTICITY-STABILITY TRADE-OFF

Plasticity refers to the capability of a model to learn new tasks, while stability shows how well it can
retain old information. The plasticity-stability dilemma is a long-standing problem in CL, which
requires an optimal balance between the two. We measure each of these to assess the competence
of the CL methods. Plasticity is computed as the average performance of each task when it is first
learned (e.g., the accuracy of the network trained on task T2, evaluated on the test set of T2).
Stability is computed as the average performance of all tasks 1:T -1, after learning the final task T .
Figure 2 (right) reports these numbers for the DN4IL dataset. As seen, the ER and DER methods
exhibit forgetting and show low stability and concentrate only on the newer tasks. CLS-ER shows
greater stability, but at the cost of reduced plasticity. However, CCL shows the highest stability
while maintaining comparable plasticity. The shape knowledge in CCL helps in learning generic
solutions that can translate to new tasks, while the semantic consolidation update at stochastic rates
acts as a regularization to maintain stable parameter updates. Thus, CCL strikes a better balance
between plasticity and stability.

6.2 TASK-WISE PERFORMANCE

The average accuracy across all tasks does not provide a complete measure of the ability of a net-
work to retain old information while learning new tasks. To better represent the plasticity-stability
measure, we report the task-wise performance at the end of each task. After training each task,
we measure the accuracy on the test set of each of the previous tasks. Figure 3 reports this for all
tasks of DN4IL. The last row represents the performance of each task after the training is complete.
ER and DER++ show performance degradation on earlier tasks, as the model continues training on
newer tasks. Both perform well on the last task and display the lowest stability. CCL reports the
highest information retention on older tasks, while also maintaining plasticity. For example, the
accuracy on the first task (real) reduces to 27.6 on ER after training the 6 tasks (domains), while the
CCL maintains the accuracy of 54.9. CLS-ER shows better retention of old information but at the
cost of plasticity. The last task on CLS-ER shows lower performance compared to CCL (52.1 vs.
61.0). Similar trend (with more gains) is seen on Seq-CIFAR10 dataset in Appendix Figure S2. The
performance of the current task in CCL is relatively lesser and can be attributed to the stochastic
update rate of this model.

To shed more light on the performance of each of the modules in CCL, we also provide the perfor-
mance of the working model and the inductive bias learner, in Appendix Figure S1. The working
model shows better plasticity, while CCL (semantic memory) displays better stability. Overall, all

7



Under review as a conference paper at ICLR 2023

ER DER++ CLS-ER CCL
Method

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ta
sk

 P
ro

ba
bi

lit
y

Task 1
Task 2
Task 3
Task 4
Task 5

1 2 3 4 5
Severity

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Ro
bu

st
ne

ss
 (C

or
ru

pt
io

n)

ER DER++ CLS-ER CLL

Figure 4: CCL shows reduced task recency bias (left), as well as higher robustness against natural
corruption (right) on Seq-CIFAR10 (|B|=200) dataset.

the modules in the proposed approach present unique attributes that improve the learning process
and improve performance and reduce catastrophic forgetting.

6.3 RECENCY-BIAS ANALYSIS

Recency bias is a behavior in which the model predictions tend to be biased toward the current or the
most recent task (Wu et al., 2019). This is undesirable in a CL model, as it results in a biased solution
that forgets the old tasks. To this end, after the end of the training, we evaluate the models on the
test set (of all tasks) and calculate the probability of predicting each task. The output distribution for
each test sample is computed for all classes, and the probabilities are averaged per task.

Figure 4 (left) shows the probabilities for each task on Seq-CIFAR10 dataset. As shown, the ER
and DER++ methods tend to incline most of their predictions towards the classes seen in the last
task, thus creating a misguided bias. CCL shows a lesser bias compared to both of these baselines.
CLS-ER exhibits reduced bias due to the presence of multiple memories, but the distribution is still
relatively skewed (w.r.t. probability of 0.2). CCL shows more of a uniform distribution across all
tasks. The dual information from the shape data and the consolidated knowledge across tasks helps
in breaking away from the Occam’s razor pattern of neural networks to default to the easiest solution.

6.4 ROBUSTNESS

Lifelong agents, when deployed in real-world settings, must be resistant to various factors, such
as lighting conditions, changes in weather, and other effects of digital imaging. Inconsistency in
predictions under different conditions might result in undesirable outcomes, especially in safety-
critical applications such as autonomous driving. To measure the robustness of the CL method
against such natural corruptions, we created a dataset by applying fifteen different corruptions (Table
S6), at varying levels of severity (1- least severe to 5- most severe corruption).

The performances on the fifteen corruptions are averaged at each severity level and are shown in
Figure 4 (right). CCL outperforms all other techniques at all severity levels. ER, DER++, and
CLS-ER show a fast decline in accuracy as severity increases, while CCL maintains stable perfor-
mance throughout. Implicit shape information provides a different perspective of the same data to
the model, which helps to generate high-level, robust representations. CCL, along with improved
continual learning performance, also exhibits improved robustness to corruptions, thus proving to
be a better candidate for deployment in real-world applications.

6.5 ABLATION STUDY

CCL architecture comprises multiple components, each contributing to the efficacy of the method.
The explicit module has the working model, and the implicit module has semantic memory (SM)
and inductive bias learner (IBL). Disentangling different components in the CCL, can provide more
insight into the contribution of each of them to the overall performance.

8



Under review as a conference paper at ICLR 2023

Table 2: Ablation to analyse the effect of each component of CCL on Seq-CIFAR10 and DN4IL.

SM IBL KS (WM↔IBL) Seq-CIFAR10 DN4IL

✓ ✓ ✓ 70.04±1.07 44.23±0.05

✓ ✓ ✗ 69.28±1.34 40.35±0.34

✓ ✗ - 69.21±1.46 39.76±0.56

✗ ✓ ✓ 64.61±1.22 37.33±0.01

✗ ✗ ✗ 44.79±1.86 26.59±0.31

Table 2 reports the ablation study w.r.t to each of these components on both Seq-CIFAR10 and
DN4IL datasets. Considering the more complex DN4IL dataset, the ER accuracy without any of our
components is 26.59. Adding cognitive bias (IBL) improves performance by 40%. Shape informa-
tion plays a prominent role, as the networks need to learn the global semantics of the objects, rather
than background or spurious textural information to translate performance across domains. Adding
the dual-memory component (SM) shows an increase of approximately 49% over the vanilla base-
line. Furthermore, KS between explicit and implicit modules on current experiences also plays a key
role in performance gain. Combining both of these cognitive components and, in general, following
the multi-module design shows a gain of 66%. A similar trend is seen on Seq-CIFAR10.

7 RELATED WORKS

Rehearsal-based approaches, which revisit examples from the past to alleviate catastrophic forget-
ting, have been effective in challenging CL scenarios (Farquhar & Gal, 2018). Experience Replay
(ER) (Riemer et al., 2018) methods use episodic memory to retain previously seen samples for re-
play purposes. DER++ (Buzzega et al., 2020) adds a consistency loss on logits, in addition to the ER
strategy. CO2L (Cha et al., 2021) uses contrastive learning from the self-supervised learning domain
to generate transferable representations. ER-ACE (Caccia et al., 2021) targets the representation
drift problem in online CL and develops a technique to use separate losses for current and buffer
samples. All of these methods limit the architecture to a single stand-alone network, contrary to the
biological workings of the brain. CLS-ER (Arani et al., 2021) proposed a multi-network approach
that emulates fast and slow learning systems by using two semantic memories, each aggregating
weights at different times. Though CLS-ER utilizes the multi-memory design, sharing of different
kinds of knowledge is not leveraged, and hence presents a method with limited scope. CCL di-
gresses from the standard architectures and proposed a multi-module design that is inspired by the
cognitive computational architectures. It incorporates multiple sub-modules, each sharing different
knowledge to develop an effective continual learner that has better generalization and robustness.

8 CONCLUSION

We introduced a novel framework for continual learning which incorporates concepts inspired by
cognitive architectures, high-level cognitive biases, and the multi-memory system. Our method,
Cognitive Continual Learner (CCL), includes multiple subsystems with dual knowledge representa-
tion. CCL designed a dichotomy of explicit and implicit modules in which information is selected,
maintained, and shared with each other, to enable better generalization and robustness. CCL out-
performed on Seq-CIFAR10 and Seq-CIFAR100 on the Class-IL setting. In addition, it also showed
significant gain in the more realistic and challenging GCIL setting. Through different analyses, we
showed the better plasticity-stability balance achieved by CCL. Furthermore, shape prior and knowl-
edge consolidation helps to learn more generic solutions, indicated by the reduced task recency bias
problem and higher robustness against natural corruptions. Furthermore, we introduced a challeng-
ing domain-IL dataset, DN4IL, with six disparate domains. The significant improvement of CCL on
this complex distribution shift demonstrates the benefits of shape context, which helps the network
to converge on a generic solution, rather than a simple texture-biased one. In general, incorporating
a design inspired by the cognitive model and sharing information between explicit and implicit in-
ductive bias and implicit semantic memory modules, instead of a standalone network, helps enhance
lifelong learning, while also improving generalization and robustness.
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A APPENDIX

A.1 CCL

Figure S1 presents the task-wise performance of all the three networks in the CCL architecture, on
DN4IL dataset. Semantic memory helps in information retention by maintaining high accuracy on
older tasks and is more stable. The performance of the current task is relatively lower than that of
the working model and could be due to the stochastic update rate of this model. The working model
has better performance on new tasks and is more plastic. Inductive bias leaner is evaluated on the
transformed data (shape) and also achieves a balance between plasticity and stability. In general,
all modules in our proposed method present unique attributes that improve the learning process by
improving performance and reducing catastrophic forgetting.

T1 T2 T3 T4 T5 T6

After T1

After T2

After T3

After T4

After T5

After T6

60.5

62.9 61.4

59.0 62.1 26.9

60.1 60.7 26.6 52.8

59.7 63.2 23.7 51.8 61.3

54.9 61.4 19.0 44.5 56.6 61.0

Semantic Memory (Default)

T1 T2 T3 T4 T5 T6

66.5

57.0 71.2

50.8 54.3 30.4

55.2 54.8 21.5 55.5

54.3 60.8 20.1 45.6 64.7

47.3 54.2 14.3 36.6 47.7 71.4

Working Model

T1 T2 T3 T4 T5 T6

54.5

46.5 65.4

39.7 47.1 22.3

42.0 44.8 15.4 40.3

44.6 53.1 15.1 36.6 61.9

38.2 48.4 11.5 29.0 46.2 71.2

Inductive Bias Learner

Figure S1: Task probability analysis of all CCL components on DN4IL dataset with 500 buffer size.
Semantic memory displays better stability while working model displays better plasticity.

Figure S2 presents a similar analysis on the Seq-CIFAR10 dataset. The trend is similar, but the
performance gain is much higher on this dataset.
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DER++
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78.2 53.5 89.0

81.2 42.4 76.3 87.5

69.2 41.5 76.8 83.3 41.1

CLS-ER

T1 T2 T3 T4 T5

After T1

After T2

After T3
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After T5
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81.1 49.4 59.6 84.8 79.2

CCL (SM - Default)

T1 T2 T3 T4 T5

98.3

92.0 79.7

92.6 57.2 77.0

85.7 52.5 48.9 90.5

54.6 47.3 51.9 84.3 95.8

CCL (WM)

T1 T2 T3 T4 T5

97.0

88.3 77.2

83.5 43.0 78.5

69.0 35.3 44.9 90.4

42.9 33.6 46.6 73.3 93.2

CCL (IBL)

Figure S2: Task probability analysis on Seq-CIFAR10 dataset with 200 buffer size. Semantic mem-
ory shows better stability while working model shows better plasticity.
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Table S1: Comparison of different methods on standard CL benchmarks (Class-IL, Task-IL settings),
including non-ER based methods on Seq-CIFAR10 dataset

|B| Method Class-IL Task-IL

- JOINT 92.20±0.15 98.31±0.12

SGD 19.62±0.05 61.02±3.33

-

oEWC 19.49±0.12 68.29±3.92

SI 19.48±0.17 68.05±5.91

LwF 19.61 ±0.05 63.29±2.35

PNN - 95.13±0.72

200

ER 44.79±1.86 91.19±0.94

DER++ 64.88±1.17 91.92±0.60

Co2L 65.57±1.37 93.43±0.78

ER-ACE 62.08±1.44 92.20±0.57

CLS-ER† 66.19±0.75 93.90±0.60

CCL 70.04±1.07 94.49±0.38

500

ER 57.74±0.27 93.61±0.27

DER++ 72.70±1.36 93.88±0.50

Co2L 74.26±0.77 95.90±0.26

ER-ACE 68.45±1.78 93.47±1.00

CLS-ER 75.22±0.71 94.94±0.53

CCL 76.20±0.70 95.95±0.14

Table S2: Comparison on Seq-CIFAR100 dataset for different tasks on 500 buffer size

|B| Method 5-Tasks 10-Tasks 20-Tasks

500
ER 28.02±0.31 21.49±0.47 16.52±0.86

DER++ 41.40±0.96 36.20 ±0.52 22.25±5.87

CCL 53.23±1.62 41.09±0.72 33.60 ±0.25

B INDUCTIVE BIAS

The shape extraction is performed by applying a filter on the input image. Multiple filters were con-
sidered (such as Canny (Ding & Goshtasby, 2001), Prewitt), but the Sobel filter (Sobel & Feldman,
1968) was chosen because it produces a more realistic output by being precise and also smoothing
the edges. The overall algorithm is explained in the following.

Algorithm 1 Sobel Algorithm - Shape Extraction

Input: Input data xrgb

1: Up-sample the images to twice the original size: xrgb = us(xrgb)
2: Apply Gaussian smoothing to reduce noisy edges: xg = Gaussian Blur(xrgb, kernel size = 3)

3: Get Sobel kernels: Sx =

[−1 0 +1
−2 0 +2
−1 0 +1

]
and Sy =

[−1 −2 −1
0 0 0
+1 +2 +1

]
4: Apply Sobel kernels: xdx = xg ∗ Sx and xdy = xg ∗ Sy

∗ : the 2-dimensional convolution operation
5: The edge magnitude: xshape =

√
x2
dx + x2

dy

6: Down-sample to original image size: xshape = ds(xshape)

Figure S3 displays few examples of applying the Sobel operator on the original RGB images. The
Sobel output is fed to the IBL model.
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Figure S3: Visual examples of the shape images using Sobel operator

C CCL ALGORITHM

Algorithm 2 Cognitive Continual Learner (CCL)

Input: Dataset Dt, Buffer B
Initialize: Three networks: Encoder and classifier f parameterized by θWM , θSM , and θIBL

1: for all tasks t ∈ 1, 2...T do
2: Sample mini-batch: (xc, yc) ∼ Dt

3: Extract shape images: xcs = IB(xc) where IB is a Sobel filter
4: LSupWM

= LCE(f(xc; θWM ), yc)
5: LSupIBL

= LCE(f(xcs ; θIBL), yc)
6: if B ̸= ∅ then
7: Sample mini-batch: (xb, yb) ∼ B
8: Extract shape images: xbs = IB(xb)
9: Calculate the supervised loss:

10: LSupWM
+= LCE(f(xb; θWM ), yb)

11: LSupIBL
+= LCE(f(xbs ; θIBL), yb)

12: Knowledge sharing from semantic memory to working model and inductive bias learner:
13: LKSWM

= E∥f(xb; θSM )− f(xb; θWM )∥22
14: LKSIBL

= E∥f(xb; θSM )− f(xbs ; θIBL)∥22
15: Bidirectional knowledge sharing between working model and inductive bias learner:
16: LbiKS = E

x∼Dt∪B
∥f(x; θWM )− f(xs; θIBL)∥22

17: Calculate total loss:
18: LWM = LSupWM

+ λLbiKS + λ′LKSWM

19: LIBL = LSupIBL
+ γLbiKS + γ′LKSIBL

20: Update both working model and inductive bias learner: θWM , θIBL

21: Stochastically update semantic memory:
22: Sample s ∼ U(0, 1);
23: if s < r then
24: θSM = d · θSM + (1− d) · θWM

25: Update memory buffer B
return model θSM
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D SETTING AND DATASETS

We evaluate all methods in different CL settings. Van de Ven & Tolias (2019) describes three differ-
ent settings based on increasing difficulty: task incremental learning (Task-IL), domain incremental
learning (Domain-IL), and class incremental learning (Class-IL). In Class-IL, each new task consists
of novel classes, and the network must learn both new classes while retaining information about the
old ones. Task-IL is similar to Class-IL but assumes that the task labels are accessible at both train-
ing and inference. In Domain-IL, the classes remain the same for each task, but the distribution
varies for each task. We report the results for all three settings on the relevant datasets. CLass-IL
is relatively the most complex setting of the three and is widely studied; however, there are some
assumptions that simplify this setting to be realistic. Mi et al. (2020) highlighted some of the limi-
tations of Class-IL, such as the assumption of the same number of classes across different tasks, no
reappearance of classes, and the sample distribution per class is well balanced. Hence, Generalized
Class-IL (GCIL) was suggested to overcome these limitations and introduce a more realistic setting.
GCIL is a more generalized CL setting, where the number of classes in each task is not fixed, and the
classes can reappear with varying sample sizes. GCIL samples the number of classes and samples
from a probabilistic distribution. The two variations are Uniform (fixed uniform sample distribution
over all classes) and Longtail (with class imbalance).

We report results on all three settings: Task-IL, Domain-IL, and CLass-IL. Furthermore, we also
consider the GCIL setting for one of the dataset as an additional evaluation setting. All reported
results are averaged over three random seeds.

E HYPERPARAMETERS

We utilize a small validation set to tune the hyperparameters for all methods. For Seq-CIFAR10, we
report the results of the original articles (Buzzega et al., 2020; Cha et al., 2021; Caccia et al., 2021;
Arani et al., 2021). For the other datasets, we ran a grid search over the hyperparameters reported
in the paper for a similar dataset. For Seq-CIFAR100 and GCIL-CIFAR100, we formed the search
range using the Seq-CIFAR10 huperparameters as a reference point. Search ranges are shown in
Table S3.

Domain2L dataset is more complex compared to the CIFAR versions and includes images of larger
sizes. Hence, we consider the Seq-TinyImagenet hyperparameters in the respective paper as the
reference point for further tuning. The learning rate lr, the number of epochs, and the batch size are
similar across the datasets. The ema update rate r is lower for more complex datasets, as shown in
CLS-ER. r is chosen in the range of [0.01, 0.1] with a step size of 0.02 for CLS-ER and CCL. The
different hyperparameters chosen for the baselines, after tuning, are shown in Table S4.

The different hyperparameters chosen for CCL are shown in Table S5. The parameters : lr, batch
size, number of epochs are uniform across all datasets. The stochastic update rate and decay pa-
rameter are similar to CLS-ER. The hyperparaneters and stable across settings and datasets and and
also compliment each other. The loss balancing weights are reported as four different parameters for
clarity, however, they show similar pattern. Therefore, CCL does not require extensive fine-tuning
across different datasets and settings.

F COMPLEXITY

We discuss the computational complexity aspect of our proposed method. CCL involves three net-
works during training; however, in inference, only a single network is used (SM module). Therefore,
for inference purposes, the MAC count, the number of parameters, and computational capacity re-
main the same as the other single-network methods.

The training cost requires three forward passes, as it consists of three different modules. ER,
DER++, CO2L and ER-ACE have a single network. CLS-ER also has three networks and therefore
requires 3 forward passes. CCL has training complexity similar to CLS-ER; however, it outperforms
CLS-ER in all provided metrics.
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Table S3: Search ranges for tuning hyperparameters

Method Hyperparameters Search Range

ER lr [0.01, 0.03, 0.1, 0.5]

DER++
lr [0.01, 0.03, 0.1]
α [0.1, 0.2, 0.5]
β [0.5, 1.0]

CO2L

lr [0.01, 0.03, 0.1]
τ [0.01, 0.1, 0.5]
k [0.2, 0.5]
k∗ [0.01, 0.05]
e [100, 150]

ER-ACE lr [0.01, 0.03, 0.1, 0.5]

CLS-ER

lr [0.01, 0.03, 0.1]
λ [0.1, 0.2, 0.3]
rp [0:1:0.1]
rs [0:1:0.1]
αp [0.99,0.999]
αs [0.99, 0.999]

CCL

lr [0.01, 0.03, 0.1]
r [0:1:0.1]
d [0.99,0.999]
λ [0.01, 0.1]
γ [0.01, 0.1]
λ’ [0.01, 0.1]
γ’ [0.01, 0.1]

On the memory front, similar to all methods, we save memory samples based on the memory budget
allotted (200 and 500 in the experiments). There are no additional memory requirements, as we do
not save any extra information (such as logits) to be used later in our objectives.

G OTHER METRICS

Forward transfer, backward transfer, and forgetting are other metrics (Lopez-Paz & Ranzato, 2017)
used in CL literature. These metrics are estimated from the model checkpoint after a task is com-
pleted, as this checkpoint has the highest accuracy for that particular task. However, this does not
hold true for our method, which utilizes the stochastically updated model for inference and eval-
uation purposes. The SM module assimilates knowledge from the working model and is updated
stochastically by the exponential moving average. It achieves highest accuracy on previous tasks
while also learning the new tasks. Therefore, the results may be misleading.

However, we evaluate backward transfer (-1×forgetting) by considering the best accuracy of the SM
module after a particular task and then finding the difference between this and the final accuracy.
Taking into account Figure S2, if we use the backward metric formula directly, we get a positive
backward transfer for CCL in Tasks 3 and 4 (due to the SM model achieving high accuracy in the
previous task while also learning the new task at that stochastic update frequency); therefore, we
pick the maximum one and subtract it from the last row. We report the values for the metrics in
Table S7. CCL fares better in backward transfer (or forgetting) compared to other techniques.

H EXTENDED RELATED WORKS

One of the modules (IBL) in CCL utilizes the inductive bias in terms of shape to produce more
generic representations. There are several works Geirhos et al. (2018) that showcase the texture
bias problem of neural networks. Several techniques have been introduced to reduce texture bias
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Table S4: Selected hyperparameters for all baselines.

Dataset |B| Method Hyperparameters

Seq-CIFAR100

200

ER lr=0.1
DER++ lr=0.03, α=0.1, β=0.5
CO2L lr:0.5, τ :0.5, κ:0.2, κ∗:0.01, e:100
ER-ACE lr=0.01
CLS-ER lr=0.1 λ=0.15, rp=0.1, rs=0.05, αp=0.999, αs=0.999

500

ER lr=0.1
DER++ lr=0.03, α=0.1, β=0.5
CO2L lr:0.5, τ :0.5, κ:0.2, κ∗:0.01, e:100
ER-ACE lr=0.01
CLS-ER lr=0.1 λ=0.15, rp=0.1, rs=0.05, αp=0.999, αs=0.999

GCIL-CIFAR100

200

ER lr=0.1
DER++ lr=0.03, α=0.5, β=0.1
CO2L -
ER-ACE lr=0.1
CLS-ER lr=0.1 λ=0.1, rp=0.7, rs=0.6, αp=0.999, αs=0.999

500

ER lr=0.1
DER++ lr=0.03, α=0.2, β=0.1
CO2L -
ER-ACE lr=0.1
CLS-ER lr=0.1 λ=0.1, rp=0.7, rs=0.6, αp=0.999, αs=0.999

Domain2IL

200
ER lr=0.1
DER++ lr=0.03, α=0.1, β=1.0
CLS-ER lr=0.05 λ=0.1, rp=0.08, rs=0.04, αp=0.999, αs=0.999

500
ER lr=0.1
DER++ lr=0.03, α=0.5, β=0.1
CLS-ER lr=0.05 λ=0.1, rp=0.08, rs=0.05, αp=0.999, αs=0.999

Table S5: Selected hyperparameters for CCL across different settings.

|B| lr batch
size #epochs r d λ γ λ′ γ′

Seq-CIFAR10 200 0.03 32 50 0.2 0.999 0.1 0.1 0.1 0.1
500 0.03 32 50 0.2 0.999 0.1 0.1 0.1 0.1

Seq-CIFAR100 200 0.03 32 50 0.06 0.999 0.1 0.01 0.1 0.01
500 0.03 32 50 0.08 0.999 0.1 0.01 0.1 0.01

GCIL-CIFAR100 200 0.03 32 50 0.09 0.999 0.1 0.01 0.1 0.01
500 0.03 32 50 0.2 0.999 0.1 0.01 0.1 0.01

DN4IL 200 0.03 32 50 0.06 0.999 0.1 0.01 0.1 0.01
500 0.03 32 50 0.08 0.999 0.1 0.01 0.1 0.01

Table S6: Fifteen different natural corruptions

Corruptions

Gaussian Noise, Impulse Noise, Shot noise, Speckle noise
Defocus blur, Glass blur, Motion blur, Zoom blur, Gaussian blur
Brightness, Contrast, Fog, Frost, Snow
Elastic Transformation, JPEG compression, Pixelate, Spatter, Saturate

and improve representations. Geirhos et al. (2018) increases shape bias by adding multiple stylized
images along with the original images used for training. Styles of artistic paintings are transferred
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Table S7: Backward transfer metric on Seq-CIFAR10 dataset

Method Backward Transfer

ER -61.75
DER++ -33.45
CLS-ER -23.47
CCL -6.07

Table S8: Accuracy on the proposed DN4IL dataset for the Domain-IL setting. CCL shows a signif-
icant improvement in all disparate and challenging domains.

|B| Method real clipart infograph painting sketch quickdraw Acc

JOINT 59.93±1.07

- SGD 9.98±0.54 19.97±0.31 2.32±0.20 6.58±0.34 14.91±0.04 71.23±0.17 20.83±0.24

200

ER 20.08±0.45 26.37±0.35 5.56±0.39 13.92±0.91 23.69±1.54 69.95±0.56 26.59±0.31

DER++ 33.66±1.65 37.24±0.64 9.80±0.63 24.16±1.17 34.37±2.00 69.26±0.79 34.75±0.87

CLS-ER 45.53±0.88 49.17±1.12 15.79±0.48 35.80±0.64 48.03±0.85 54.40±1.25 40.83±1.07

CCL 47.52±0.25 54.69±0.10 15.70±0.33 37.54±0.30 51.98±0.96 58.80±0.18 44.23±0.05

500

ER 27.54±0.05 31.89±0.93 7.89±0.45 19.39±1.02 28.36±1.35 70.96±0.10 31.01±0.62

DER++ 44.49±1.39 46.17±0.35 14.01±0.23 33.44±0.90 43.59±1.11 69.53±0.29 41.87±0.63

CLS-ER 49.85±0.88 51.41±0.34 18.17±0.08 37.94±0.94 49.02±1.57 55.63±0.71 43.41±0.80

CCL 54.77±0.15 60.37±0.75 19.35±0.39 44.50±0.43 56.34±0.53 60.61±1.73 49.32±0.23

to Imagenet dataset to create stylized-imagenet. Style-transfer is performed using adaptive instance
stylization (ADaIN) and is an additional offline process. Chen et al. (2016) uses generative tech-
niques (InfoGan) to synthesize images that are less biased to texture. Li et al. (2020) also creates an
augmented dataset by blending the texture of one image and shape of another image in the training
set to create a new image. All of these techniques, then merge both the original and synthesized data
to train the network on a bigger dataset. However, training a single network with these different dis-
tributions leads to learning sub-optimal representations. This is also shown in the results in Geirhos
et al. (2018), where they had to do an additional fine-tuning on the original dataset to achieve better
results on the original data. Also, synthesizing and generating new data is expensive and might come
with an unaccounted bias.

CCL on the other hand, tries to leverage on the under-utilized implicit shape information with min-
imal overhead. There is no requirement of additional data, generative networks and the RGB and
shape data are not combined together to make one big training dataset. The RGB image is fed to
one network and the shape information is learnt by another network (IBL) and the supervision is
provided via a knowledge transfer between these two networks and is mutual. Each network has
enough flexibility to learn on its own feature while also getting guidance from the other feature.

I DN4IL

We introduce a new dataset for the Domain-IL setting. It is a subset of the standard DomainNet
dataset (Peng et al., 2019) used in domain adaptation. It consists of six different domains - real,
clipart, infograph, painting, quickdraw, and sketch. The shift in distribution between domains is
challenging. Few examples can be seen in Figure S4.

Each domain includes 345 classes, and the overall dataset consists of ∼59000 samples. The classes
have redundancy, and also evaluating on the whole dataset can be computationally expensive for CL
settings. Therefore, we create a subset by grouping semantically similar classes into 20 super cate-
gories (considering class overlap between other standard datasets can also facilitate OOD analysis).
Each super category has five classes each, which results in a total of 100 classes. The specifications
of the classes are given in Table S9. The dataset consists of 67080 training images and 19464 test
images. The image size for all experiments is chosen as 64×64 (the normalize transform is not
applied in the augmentations).
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Figure S4: Visual examples of DN4IL dataset

Table S9: Details on supercategory and classes in DN4IL dataset.

supercategory class

1 small animals mouse squirrel rabbit dog raccoon
2 medium animals tiger bear lion panda zebra
3 large animals camel horse kangaroo elephant cow
4 aquatic mammals whale shark fish dolphin octopus
5 non-insect invertebrates snail scorpion spider lobster crab
6 insects bee butterfly mosquito bird bat
7 vehicle bus bicycle motorbike train pickup truck
8 sky-vehicle airplane flying saucer aircraft carrier helicopter hot air balloon
9 fruits strawberry banana pear apple watermelon
10 vegetables carrot asparagus mushroom onion broccoli
11 music trombone violin cello guitar clarinet
12 furniture chair dresser table couch bed
13 household electrical devices clock floor lamp telephone television keyboard
14 tools saw axe hammer screwdriver scissors
15 clothes & accessories bowtie pants jacket sock shorts
16 man-made outdoor skyscraper windmill house castle bridge
17 nature cloud bush ocean river mountain
18 food birthday cake hamburger ice cream sandwich pizza
19 stationary calendar marker map eraser pencil
20 household items wine bottle cup teapot frying pan wine glass
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Figure S5: Number of samples per domain in DN4IL dataset.
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Figure S6: Number of samples per super category in DN4IL dataset.
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Figure S7: Number of overall samples per class in DN4IL dataset.
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Figure S8: Number of samples per supercategory for each domain in DN4IL dataset.
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