
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PROGRESSIVE DISTILLATION INDUCES AN IMPLICIT
CURRICULUM

Anonymous authors
Paper under double-blind review

ABSTRACT

Knowledge distillation leverages a teacher model to improve the training of a
student model. A persistent challenge is that a better teacher does not always yield
a better student, to which a common mitigation is to use additional supervision
from several “intermediate” teachers. One empirically validated variant of this
principle is progressive distillation, where the student learns from successive
intermediate checkpoints of the teacher. Using sparse parity as a sandbox, we
identify an implicit curriculum as one mechanism through which progressive
distillation accelerates the student’s learning. This curriculum is available only
through the intermediate checkpoints but not the final converged one, and imparts
both empirical acceleration and a provable sample complexity benefit to the student.
We then extend our investigation to Transformers trained on probabilistic context-
free grammars (PCFGs) and real-world pre-training datasets (Wikipedia and Books).
Through probing the teacher model, we identify an analogous implicit curriculum
where the model progressively learns features that capture longer context. Our
theoretical and empirical findings on sparse parity, complemented by empirical
observations on more complex tasks, highlight the benefit of progressive distillation
via implicit curriculum across setups.

1 INTRODUCTION

As the cost of training state-of-the-art models grows rapidly (Hoffmann et al., 2022), there is increased
interest in using knowledge distillation (Hinton et al., 2015) to leverage existing capable models to
train new models more efficiently and effectively. Knowledge distillation is an effective technique
to train smaller vision (Jia et al., 2021; Touvron et al., 2021; Yu et al., 2022; Lin et al., 2023) and
language models (Sanh et al., 2019; Gunasekar et al., 2023; Touvron et al., 2023; Reid et al., 2024) that
permit faster inference with comparable performance. However, one curiously persistent phenomenon
is that a better teacher does not always yield a stronger student. Prior works (Mirzadeh et al., 2019;
Jin et al., 2019; Jafari et al., 2021; Harutyunyan et al., 2022; Anil et al., 2018) hypothesized that this
is due to a capability gap between the teacher and the student. As such, they proposed progressive
distillation, where the student is incrementally supervised by increasingly capable teachers. This
technique has yielded strong empirical performance. One recent example is the training of Gemini-1.5
Flash from Gemini-1.5 Pro (Reid et al., 2024; Team et al., 2024): Gemini-1.5 Flash achieves 95% of
Gemini-1.5 Pro’s performance on average and outperforms Gemini-1.0 Pro on 41 out of 50 text-based
long-context benchmarks, while being substantially smaller. However, little is understood about
progressive distillation in terms of the optimization or generalization benefits, compared to directly
learning from the data or the final teacher checkpoint (i.e., one-shot distillation).

Most prior work hypothesizes that progressive distillation enables better generalization (Mirzadeh
et al., 2019; Jafari et al., 2021; Harutyunyan et al., 2022). In contrast, we identify a novel mechanism
by which progressive distillation helps a student by accelerating its optimization (Figure 1). We
define optimization acceleration as achieving improved performance with fewer training steps or
samples. In this paper, we use fresh training samples in each training step; hence we use training
steps and samples interchangeably to measure the optimization speed.

We study two tasks where learning the right features is believed to be important and show that the
intermediate checkpoints provide signal towards these features. The first is learning sparse parity
(Definition 3.1), which is a commonly studied setting to understand the feature learning dynamics of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

5M 10M 15M 20M
Training Steps

0.4

0.6

0.8

1.0

To
p-

1
Ac

cu
ra

cy

MLP on sparse parity

2M 4M 6M 8M
Training Steps

0.6

0.8

1.0
Transformer on sparse parity

5000 10000 15000
Training Steps

0.8

0.9

1.0
BERT on PCFG

CE
one-shot
progressive
Teacher

Figure 1: Progressive distillation accelerates training. Left: MLP on (100, 6)-sparse parity
(Definition 3.1), with width-50k teachers and width-100 students. Progressive distillation checkpoints
are at 100k-step intervals, and one-shot checkpoint uses the final (20M-step) checkpoint. Middle:
Transformer on (100, 6)-sparse parity, with 32-head teachers and 4-head students. Progressive
distillation checkpoints are at 10k-step intervals, and the one-shot checkpoint is at 250k steps. Right:
Transformers on PCFG (Section 4), with 32-head teachers and 8-head students using BERT-style
masked prediction. Progressive distillation uses 8 intermediate checkpoints.

neural networks. The second is learning probabilistic context-free grammars (PCFGs), which we use
as a sandbox for capturing certain aspects of language modeling. Theory and extensive experiments
in these settings support the following claims.

1. Progressive distillation accelerates student learning. Our experiments in multiple settings
demonstrate that progressive distillation accelerates training compared to standard one-shot
distillation and learning from the data directly (Figure 1). More specifically, for sparse parity,
progressive distillation can train a smaller MLP (or Transformer) at the same speed as a larger
MLP (or Transformer). For PCFGs, progressive distillation improves the accuracy of a smaller
BERT model (Devlin et al., 2018) at masked prediction. Finally, we verify our findings on more
realistic setups of training BERT on Wikipedia and Books dataset.

2. An implicit curriculum drives faster learning. We demonstrate theoretically and empirically that
acceleration comes from an implicit curriculum of easy-to-learn subtasks provided by intermediate
teacher checkpoints, which is not available from the final teacher checkpoint. For sparse parity, the
easy-to-learn subtasks provide supervision for the coordinates which constitute the support of the
sparse parity (Section 3). As a consequence, we show progressive distillation provably improves
the sample complexity for sparse parity over one-shot distillation or learning directly from data
(Theorem 3.2). For PCFGs, the implicit curriculum is defined in terms of learning features that
increasingly capture larger n-gram contexts. Our results also provide guidance on how to select
the intermediate teachers used during progressive distillation.

Related works1. One persistent surprise in knowledge distillation is that stronger teachers do not al-
ways lead to stronger students. Prior works have speculated that an overly large “teacher-student gap”
is the cause, and accordingly proposed to bridge this gap by introducing supervision of intermediate
difficulty (Mirzadeh et al., 2019; Cho & Hariharan, 2019; Harutyunyan et al., 2022; Jafari et al., 2021).
Mirzadeh et al. (2019) used multi-step distillation involving models of intermediate sizes, and Shi et al.
(2021) proposed to directly inject teacher supervision into the student’s trajectory using an approxima-
tion of mirror descent. Most related to our work, Harutyunyan et al. (2022) analyzed distillation for
extremely wide networks and found it helpful to learn from the intermediate checkpoints of the teacher,
a strategy also adopted by Jin et al. (2019). They speculated that this is because neural networks
learn progressively complex functions during training (Kalimeris et al., 2019). In contrast to their
focus on the generalization ability of the student, we study the optimization dynamics of distillation.

It is worth noting that there is also a rich body of work on understanding standard (one-shot)
distillation, mostly regarding regularization effects. In particular, Menon et al. (2021) shows that
learning from the teacher leads to a tighter generalization bound when the teacher is closer to the
Bayes distribution over the class labels. However, such Bayes perspective cannot explain the training
acceleration in the feature learning tasks considered in this work, whose the Bayes distributions are
delta masses and hence are the same as the one-hot labels themselves. Our results fill this gap by
providing an orthogonal view of implicit curriculum.

1We defer a detailed discussion of related work to Appendix A.1.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

The benefit of curriculum on sparse parity has also been explored in Abbe et al. (2024), where
the curriculum also helps identify the support. The difference though is that their curriculum is
defined by explicitly altering the distribution over the inputs, whereas our curriculum shows up
implicitly in the teacher supervision. Moreover, our implicit curriculum emphasizes that a properly
chosen intermediate checkpoint, while having a worse accuracy than the final checkpoint, can lead
to a better-performing student. This can be seen as a plausible mechanism for weak-to-strong
generalization (Burns et al., 2023).

Outline. Section 2 describes the distillation strategies. Section 3 introduces the implicit curriculum
with a case study on sparse parity, presenting both empirical evidence and a provable benefit in sample
complexity. Section 4 continues the empirical investigations on PCFG, and extends the observations
to BERT’s training on Wikipedia and Books dataset. Finally, Section 5 discusses open directions.

2 PRELIMINARIES

We now outline the distillation strategies considered in this paper and their empirical instantiation.
For ease of exposition, we discuss one-dimensional label classification tasks here and generalize to
sequence-to-sequence functions in Section 4. Denote the teacher and student models operating on
input domain X as fT : X → RC and fS : X → RC , respectively. The outputs of a model f are
logits that are transformed into a probability distribution over C classes using a softmax function with
temperature τ , denoted as p(x; τ) := softmax(f(x)/τ). We will use pT , pS to denote the probability
distributions of the teacher and the student, and will omit the subscript to denote a generic model.
When τ = 1, we omit τ from the notation for brevity. Following Zheng & Yang (2024), we set τ = 1
for the student and vary the temperature of the teacher.

We compare two loss functions: ℓ, where the student fS learns only from ground-truth labels , and
ℓDL , where the student fS is supervised only with the logits of some teacher fT .2

ℓ(x, y; fS) = KL(ey∥pS(x)), (1)
ℓDL(x; fS , fT) = KL(pT (x; τ)∥pS(x)), (2)

where ey is a one-hot vector whose yth entry is 1. We consider two strategies for choosing the teacher.
The first is one-shot distillation, where the student learns from a fixed fT throughout the training,
and the teacher is chosen as the final converged checkpoint. The second is progressive distillation,
where the student learns from multiple intermediate checkpoints of the teacher’s training run:

Definition 2.1 ((CT ,D)-progressive distillation). Given a set of teacher checkpoints CT = {fTi
}

and a set of training durations D, the student is trained with the logits of teacher checkpoint fTi
for

training length Di with i ∈ [|CT |] := {1, · · · , |CT |}.

To simplify the presentation, the main paper tests a specific type of progressive distillation schemes,
where CT contains N equally-spaced checkpoints and the student is trained on each one for T steps:

Definition 2.2 ((N,T)-progressive distillation). CT contains N − 1 equally-spaced intermediate
teacher checkpoints and the final teacher checkpoint. The student is trained with each checkpoint for
T training steps. After NT steps, the student is trained with the final teacher checkpoint.

To study the effect of each teacher checkpoint, we will also consider an extreme version of progressive
distillation with N = 2, where the student uses one intermediate teacher checkpoint.

Choice of temperature. We set τ = 10−4 for sparse parity and PCFG experiments (Section 4)
where the vocabulary size is smaller than 5, and τ = 10−20 for natural language experiments
(Section 4.2) whose vocabulary size is 30k.3 Using such a small temperature makes the teacher’s
outputs close to one-hot labels. This removes potential regularization effects due to the softness of the
labels (Yuan et al., 2020) which would otherwise be a confounding factor. Moreover, the supervision
with nearly one-hot labels is more representative of the setting where the student learns directly from
the teacher’s generations instead of the logits. This method, often described as generating synthetic

2We note that prior papers generally use a combination of these objectives, but we use supervision from one
source in order to isolate its effects on distillation.

3Figure 14 provides a comparison in temperature choices for sparse parity learning.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

data in the language modeling setting, has generally yielded small yet highly performant students
(Gunasekar et al., 2023; Liu et al., 2024). For one-shot distillation, we report the best-performing
temperature among τ = 1, 10−4 in the main paper and defer other results to Appendix D.8.

3 THE IMPLICIT CURRICULUM: A CASE STUDY WITH SPARSE PARITY

To elucidate the mechanism by which distillation accelerates training, we first focus on the well-
studied task of learning sparse parity.4 Sparse parity is a commonly used sandbox for understanding
neural network optimization in the presence of feature learning (Barak et al., 2022; Bhattamishra
et al., 2022; Morwani et al., 2023; Edelman et al., 2023; Abbe et al., 2024).

Definition 3.1 ((d, k)-sparse parity task). Let S ⊂ [d] denote a fixed set of coordinates, with |S| = k
and k < d. Then, the sparse parity task is defined for any input x ∈ {±1}d, whose label is computed
as y = 1 if

∏
i∈S xi > 0 and 2 otherwise.

We train the teacher and student models using 2-label classification, where fT and fS return logits
in R2. The teacher and the student have the same number of layers but different sizes. We vary the
model width for MLP, and vary the number of attention heads for Transformer, with a fixed per-head
dimension. These choices not only affect the parameter counts, but also govern the learning speed5.

Why can larger models learn faster? A natural way to learn sparse parity with gradient descent
involves first identifying the support S and subsequently computing the product of variables in the
support (i.e.,

∏
i∈S xi). Empirically, the two stages of learning manifest as a long plateau period in

the model’s accuracy, followed by a sharp phase transition (Figure 1, left and middle). The search
for the support is what makes learning problem difficult, as it depends on the input dimension d
rather than the support size (Abbe et al., 2023; Barak et al., 2022). The benefit of increasing the
width or the number of heads comes from providing more “parallel search queries.” For MLP, prior
work has shown that increasing the width accelerates training (Edelman et al., 2023), which we also
observe in Figure 7 (left) in appendix. For Transformers though, we find that increasing the number
of attention heads is the most effective for improving the convergence speed, as opposed to increasing
the per-head dimension or the MLP width. A detailed comparison is provided in Appendix C.2
(Figure 10). Given this finding, we will vary the number of attention heads between the teacher and
the student, while keeping the per-head dimension fixed. The number of heads hence directly controls
the parameter count. This choice also aligns with the practice in open-sourced models such as the
Llama series (Touvron et al., 2023).

In the following, we first empirically verify that carefully chosen intermediate teacher checkpoints
constitute an implicit curriculum for the student to learn from. Then, we show that this curriculum
provably improves the speed of learning in the student by improving its training sample efficiency.

3.1 ACCELERATING LEARNING WITH THE IMPLICIT DEGREE CURRICULUM

The difficulty of the search problem suggests that we can accelerate student learning by providing
direct supervision for what the support is (Abbe et al., 2023). We show that supplying the intermediate
signal from a bigger teacher model accelerates the search process for the smaller model, as described
by the following set of results.6

(R1) Intermediate teacher checkpoints constitute an implicit degree curriculum. We provide
empirical evidence that the supervision from intermediate teacher checkpoints serves as an implicit
curriculum supplying strong signals for certain degree-1 monomials, which require fewer samples to
learn. In Figure 2, we report the correlation between degree-1 monomials and the prediction of the
teacher logits at various checkpoints. The correlation for each monomial xj , j ∈ [d] is computed as
|Ex,y([pT (x)]1 · xj)| at each checkpoint fT . Here [pT (x)]1 refers to the first output dimension of
fT , which corresponds to p(y = 1) = p(

∏
i∈S xi > 0) = 1− p(y = 2) (recall Definition 3.1). We

take the absolute value as we are only concerned with the magnitude of the correlation. Importantly,

4We also experiment with a hierarchical generalization of sparse parity, which is deferred to Appendix C.3.
5In terms of the number of samples or the number of training steps, which coincide in our experiments as we

use freshly sampled batches.
6We will mark our results with (Ri) throughout the paper for easy reference.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

0.95 1.00 1.05 1.10
Training Steps 1e7

0.6

0.8

1.0

Ac
cu

ra
cy

1
2

3

Teacher's accuracy behavior

0.95 1.00 1.05 1.10
Training Steps 1e7

0.00

0.05

0.10

Ab
so

lu
te

 C
or

re
la

tio
n

1 2 3

Corr. to degree-1 monomials

1-6
Rest

0 1 2
Training Steps 1e6

0.6

0.8

1.0

Ac
cu

ra
cy

(2, 1M)-progressive

candidate 1
candidate 2
candidate 3

Figure 2: Implicit curriculum for (100, 6)-sparse parity. We compare 3 candidate intermediate
checkpoints, labeled as 1⃝, 2⃝, 3⃝, corresponding to 9.7M, 10.2M, and 10.8M steps, or the beginning,
middle, and end of the teacher’s phase transition. Left: Teacher’s accuracy throughout training.
Middle: During the phase transition, fT is much more strongly correlated with in-support variables
(x1, · · · , x6 in this case) than with off-support variables. Right: Only candidate 2⃝ (i.e., during
phase transition) enables (2, 1M)-progressive distillation to reach 100% accuracy. We use width-50k
teachers and width-100 students; Figure 8 shows similar results for width-1000 students.

these strong correlations emerge when the teacher learns the sparse parity task (i.e., during the phase
transition) but diminish with continued training.

Note that the monomials need not be strictly degree-1. While our theory (Section 3.2) will only
focus on degree-1 monomials for the sake of mathematical analysis, low-degree polynomials can
still provide acceleration, which we also observe in practice (see Figure 9 in the Appendix for
such an example). This transient low-degree supervision, available only through intermediate
teacher checkpoints, may explain the superior performance of progressive distillation over one-shot
distillation (Figure 1). We will confirm the provable sample complexity benefit of this implicit low
degree curriculum in Section 3.2. The importance of the implicit curriculum is further strengthened
by the superior performance of (2, T)-progressive distillation:

(R2) Progressive distillation with a single intermediate checkpoint can outperform one-shot
distillation. We consider the extreme version of progressive distillation where only a single
intermediate checkpoint is used (in addition to the final checkpoint). Figure 2 shows the result for
(2, 1M)-progressive distillation. We consider 3 candidates for the intermediate teacher checkpoint,
occurring respectively at the beginning, middle or the end of the teacher’s phase transition. Our result
demonstrates that the checkpoint selection is crucial, where only the checkpoint during the phase
transition is useful in accelerating training.7 This provides further evidence that the implicit degree
curriculum is the key to faster training via progressive distillation.

More complex tasks may require more intermediate checkpoints, which we discuss in more depth in
Appendix C.3. Nevertheless, we find that progressive distillation can be run efficiently and effectively
across tasks, and a small number of intermediate teacher checkpoints often suffice to accelerate
training provided that the checkpoints are properly selected.

3.2 THE LOW-DEGREE CURRICULUM REDUCES SAMPLE COMPLEXITY

We now formalize the benefits of progressive distillation for (d, k)-sparse parity in terms of sample
complexity. For the sake of mathematical analysis, we take the student fS and the teacher fT
models to be 1-hidden-layer MLPs with ReLU activations and scalar outputs. Further, the labels
y are given as ±1, where 1 (or −1) corresponds to the class dimension 1 (or 2) in Definition 3.1.
Following previous works (Barak et al., 2022; Abbe et al., 2023; Edelman et al., 2023), we analyze a
simplified two-stage training procedure and train the model using the hinge loss: Lα(x, y; fS , fT) =
αmax(0, 1− fS(x)y) + (1− α)max(0, 1− fS(x)fT (x)).

Let’s first recall the hardness of learning sparse parity.8 For simplicity, we consider the case of
MLPs of width Õ(2k) trained using online SGD. When learning from data alone, statistical query
(SQ, Kearns (1998)) lower bound shows that learning the support for a (d, k)-sparse parity requires

7We show similar results for width-1000 students (Figure 8) and transformers (Figure 13).
8A more detailed discussion is provided in Appendix A.1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Ω(dk−1) samples (Abbe et al., 2023; Edelman et al., 2023). We will show that although this lower
bound also applies to one-shot distillation from a strong teacher, it can be circumvented when learning
from the implicit low-degree curriculum identified in the previous section.

Specifically, we compare the sample complexity of one-shot distillation and (2, T)-progressive
distillation (Section 2). Both strategies use a well-trained final checkpoint with an error of O(ϵ) error
for an arbitrarily small ϵ > 0. Progressive distillation additionally uses the teacher’s intermediate
checkpoint after its first phase of training, where we can provably show its predictions to have
correlations at least Ω(1/k) to the monomials xi,∀i ∈ S. That is, progressive distillation first
learns from the intermediate checkpoint and then switches to the final checkpoint, whereas one-shot
distillation learns directly from the final checkpoint.

(R3) Progressive distillation reduces sample complexity. We formally demonstrate the sample
complexity benefit of progressive distillation.

Theorem 3.2 (Informal version of Theorem B.1). Consider learning (d, k)-sparse parity with a
student model of size m̃ = Θ̃(2k), where ·̃ hides polylog factors in d, k. Suppose the teacher has a
loss O(ϵ) for some small ϵ > 0. Then, the total sample complexity needed for the student to reach
ϵ-loss using progressive distillation with 2 checkpoints is Θ̃(2kd2ϵ−2 + k3). However, one-shot
distillation requires at least Ω(dk−1, ϵ−2) samples.
Proof sketch. We track the training behavior of the teacher model during its two-phase training. We
show that at the end of the first phase, the teacher’s predictions will have Ω(1/k) correlations to degree-
1 monomials xi,∀i ∈ S. In contrast, the correlations are smaller for degree-1 monomials xi,∀i /∈ S.
Hence, the teacher’s predictions can be written as

∑
i∈S cixi +

∑
i/∈S cixi, plus additional higher

degree odd polynomials which can be controlled, with |ci| ≥ Ω(1/k) for i ∈ S, and |ci| = o(1/kd),
if i /∈ S. When training on the predictions from this intermediate teacher checkpoints, the correlation
gap between in- and off-support degree-1 monomials will be reflected in the gradients of the student’s
weights. Namely, there is a Ω(1/k) gap between the support and non-support coordinates in the
weight gradients. This gap allows the coordinates i ∈ S in the student’s weights to grow quickly with
only O(k2 log(m̃)) samples.

On the other hand, for a teacher that has loss O(ϵ), a similar argument can show that the separation
gap between the correlations of the teacher’s predictions to degree-1 monomials on support and
outside support can be at most O(ϵ). So, harnessing this gap will require a sample size of at least
Ω(ϵ−2) by concentration inequalities. Learning directly from the labels will require Ω(dk−1) samples
from the SQ lower bound as discussed above. This gives the sample complexity differences between
one-shot and progressive distillation. The full proof is provided in Appendix B.

Remark. One gap between our theory and experiments is that our analysis applies to large-batch
SGD with small gradient noise, whereas the experiments use online SGD with batch size 1. Bridging
this gap, such as by adapting the analyses in Abbe et al. (2023) on Gaussian data, is an interesting
future direction.

4 IMPLICIT CURRICULUM WITH PCFGS AND NATURAL LANGUAGE

In this section, we empirically show that an implicit curriculum emerges generally, both when learning
on probabilistic context-free grammars (PCFGs) and when performing natural language modeling
tasks on the Wikipedia and Books datasets. We focus on BERT models (Devlin et al., 2018)9, and
discuss experiments on GPT-2 (Radford et al., 2019) in Appendix E.

The masked prediction task. Our experiments will be based on BERT models trained to perform
masked prediction, which requires filling in masked-out tokens in an input sequence and excels at
feature learning in natural languages (Hewitt & Manning, 2019; Tenney et al., 2019; Li et al., 2022).
Definition 4.1 (Masked prediction task with mask rate p). Let v denote the vocabulary that contains
a special token [mask], and let h denote an arbitrary sequence length. Given a sequence x ∈ vh,
sample a set of masked positionsM ∈ [h] following P (i ∈ M) = p, ∀i ∈ [h]. Create a masked
input x\M from x by replacing tokens at positions inM with [mask], a random token from X ,

9See Appendix D.5.1 for a primer on BERT.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3: An example of
a PCFG tree T(x) that gen-
erates x =“The cat ran
away”. “The cat” is an ex-
ample of level-2 span, and
“cat” is as a boundary to-
ken for the spans of both
the level-1 non-terminal Noun
and the level-2 non-terminal
Noun Phrase.

or kept unchanged with probabilities 80%, 10%, 10% respectively. Then, the masked prediction
objective is the cross-entropy of the model’s predictions at positions i ∈M on input x\M.

Since we are performing sequence-to-sequence modeling, we need to generalize the definition of
the teacher fT and student fS from Section 2 accordingly, denoted as fT : vh → Rh×C and
fS : vh → Rh×C . We will use p

(i)
T (x; τ) := softmax([fT (x)]i/τ) to denote the teacher’s output

distribution on the ith position; similarly for p(i)S . As before, we omit τ when τ = 1. We use the
following loss functions for the masked prediction task (Definition 4.1):

ℓ(x; fS) = EM
1

|M|
∑
i∈M

KL(exi
∥p(i)S (x\M)), (3)

ℓDL(x; fS , fT) = EM
1

|M|
∑
i∈M

KL(p(i)T (x\M; τ)∥p(i)S (x\M)), (4)

where ey is a one-hot vector whose yth entry is 1.

We train BERT models with ℓ, ℓDL and report the average top-1 accuracy on the masked tokens. As
discussed in Section 3.1, the teacher and student have the same depth (4 layers) but differ in the
number of attention heads, with 32 heads for the teacher and 8 heads for the student. Each attention
head has dimension 8, so the teacher has width 256 and the student has width 64. All hyperparameter
details are in Appendix D.6.

4.1 n-GRAM CURRICULUM IN PCFGS

We first consider probabilistic context free grammars (PCFGs), which are commonly used to emulate
the structure of natural language and thus provide mechanistic insights into language models (Zhao
et al., 2023; Allen-Zhu & Li, 2023a). A PCFG generates sentences following a tree structure; Figure 3
shows an example for the sentence “The cat ran away.” More precisely, a PCFG G = (N ,R,P, v) is
defined by a set of non-terminalsN , rulesR over the non-terminals, a probability distribution P over
R, and a vocabulary (terminals) v. A sentence x is associated with a generation tree T(x), whose
intermediate nodes are non-terminals in N , leaf nodes are terminals in v, and edges are defined by
rules sampled from R according to P . A formal definition of PCFG is provided in Appendix D.1.
Our choices of PCFGs are taken from Allen-Zhu & Li (2023a), where all leaves in the same tree
have the same distance to the root. Experiments in the main paper are based on the PCFG cfg3b
generated by depth-7 trees, and results on other PCFGs are deferred to Appendix D.4.

4.1.1 PROGRESS MEASURES OF IMPLICIT CURRICULUM

Unlike our experiments on parity, what constitutes as feature is less straightforward for PCFG. We
will use three progress measures to quantify the implicit curriculum for masked language modeling
on PCFGs, based on n-gram statistics and non-terminal prediction.

Measures that use n-gram statistics will measure the dependence of the model’s predictions on
tokens in the neighboring contexts, defined as follows:
Definition 4.2 (n-gram neighboring context). For a h-length sentence x ∈ vh and for i ∈ [h],
we define the n-gram neighboring context around the ith token as the set of tokens at positions
within (n − 1)/2 distance from i, denote as n-gram(i) := {j : max(i − ⌈(n − 1)/2⌉, 0) ≤ j ≤
min(i+ ⌊(n− 1)/2⌋, h)}.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.6 1 2 4 8
Training Steps (×103)

0.0

0.5

1.0

Va
lid

at
io

n
lo

ss
1 2 3

C1

Teacher's loss behavior

1 2 4 8
Training Steps (×103)

10 3

10 1

M
ed

ia
n

(o
ve

r (
x,

i))

C1

Mrobust for n-grams

n
3
5
7

0.4 1 2 4 8
Teacher Checkpoint(×103)

0.85

0.90

Fin
al

 To
p-

1
Ac

cu
ra

cy

C1
one-shot

(2, T)-progressive

Figure 4: BERT on the PCFG cfg3b. Left: A 32-head teacher’s loss exhibits three distinct
phases: 1⃝ an initial phase with little change, 2⃝ a middle phase with a rapid drop, and 3⃝ a final
plateauing phase until the end of training. The triangles mark the selected checkpoints for progressive
distillation, with the first teacher checkpoint (denoted by C1) located at the middle of phase 2⃝.
Middle: Mrobust across training, which peaks at C1. The model gets more robust to shorter n-gram
perturbation as training progresses. The median is taken over the input sequences. Right: A 8-head
student’s final accuracy with (2, T)-progressive distillation after 4000 total training steps. The x-axis
marks the choice of the first teacher checkpoint. T is grid-searched over {500, 1000, 2000}. The
best performance is obtained by choosing C1. Although results in the plots are for a single training
run of the teacher, similar behaviors occur robustly across random seeds.

In the example of Figure 3, for the word “cat”, its 3-gram neighboring context consists of words “The”
and “ran”, and its 5-gram neighboring context additionally includes the word “away.” The choice
of n-grams is inspired by results in Zhao et al. (2023), which show that a BERT model can solve
masked prediction by implementing a dynamic programming algorithm that builds hierarchically
on increasingly larger n-gram neighboring context spans (Definition 4.2). A model that primarily
uses short n-gram neighboring context will be largely affected if the tokens within the context are
perturbed during evaluation. This motivates us to consider two n-gram based measures.

Measure 1: Robustness to removing n-gram context. Our first progress measure of feature learning
checks how the model’s prediction changes when the n-gram context is present or absent. For each
masked position i, we measure the total variation (TV) distance between the probability distributions
when masking out only the current token, and when masking out all the tokens in n-gram(i), i.e.
the neighboring n-gram context centered at i. Recall that x\M denotes a masked version of x with
masked setM (Definition 4.1), and that p(i) denotes a model’s output probability distribution at the
ith position. Then, our first measure is defined as

Mrobust(f,x, i, n) = TV(p(i)(x\{i}), p
(i)(x\n-gram(i))). (5)

We report median of Mrobust(f,x, i, n) over randomly sampled x and i 10. A larger Mrobust(f,x, i, n)
indicates that the model heavily depends on neighboring n-gram context tokens for the masked
prediction.

Measure 2: Closeness between full and n-gram predictions. Our second progress measure
examines the change in predictions when the model is given the full sequence versus only a local
n-gram window:

Mclose(f,x, i, n) = TV(p(i)(x\{i}), p
(i)(xn-gram(i)\{i})), (6)

where xn-gram(i)\{i} denotes the n-gram context centered at position i, minus the position i itself.
We report median of Mclose(f,x, i, n) over randomly sampled x and i. A large Mclose(f,x, i, n)
indicates that the model utilizes contexts outside a n-gram window in its predictions.

Measure 3: Non-terminal prediction. Finally, we also measure how well the model outputs encode
the features of the underlying PCFG by checking the accuracy at predicting non-terminals (Allen-Zhu
& Li, 2023b). The predictions are given by a linear classifier on top of the output embeddings.
Definition 4.3 (PCFG non-terminal prediction task). Define the span of a non-terminal n as the set of
terminals within the subtree rooted at n, denoted by span(n). The (right) boundary of span(n) refers
to the rightmost position within span(n). We say a non-terminal is of level i if it is at distance i from
the root. Then, the level-i non-terminal prediction task aims to predict n(i) at the boundary of n(i).

10Our observations stay the same for other percentiles.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4 6 8
n-gram context

10 3

10 1

M
ed

ia
n

(o
ve

r(x
,i)

) Mclose for n-grams

2 3 4 5
n-gram context

10 3

10 1

Mrobust for n-grams

1 2 3 4
Non-terminal level

80

100

Ac
cu

ra
cy

Non-terminal prediction

CE
one-shot
progressive

Figure 5: Comparisons on a 8-attention head BERT model. (Left) Mclose for different n-grams.
Progressive distillation has a lower Mclose with longer n-gram context. (Middle) Mrobust for different
n-grams. Progressive distillation has a lower Mrobust for all n-gram contexts. (Right) Probe
performance to predict the non-terminals (NTs) (Definition 4.3). Progressive distilled student
performs better when probed for higher level non-terminals in its contextual embeddings.

As an example, in Figure 3, the level-2 non-terminal prediction task aims to predict the non-terminals
Noun Phrase and Verb Phrase at words “cat” and “away” respectively. More details are
provided in Appendix D.3.

4.1.2 EMPIRICAL VERIFICATION OF THE n-GRAM CURRICULUM

Similar to Section 3.1, we will start with examining the training dynamics of the teacher model. We
observe a phase transition period akin to that of sparse parity, during which we identify an inflection
point concerning Mrobust and Mclose. This inflection point proves to be a crucial intermediate
checkpoint. We then demonstrate that progressive distillation improves feature learning in the student
model, substantiated by the three measures defined in Section 4.1.1.

For training dynamics, we observe 3 distinct phases of training in the teacher’s loss (Figure 4 left): 1)
an initial phase where the loss doesn’t change much for the first 5% of training; 2) a rapid loss drop
phase in the next ≈ 20% of training; and 3) a final phase of slow loss drop till end of training. In
particular, the rapid loss drop phase is reminiscent of the phase transition in sparse parity (Section 3).
Moreover, we identify an inflection point (marked by C1) during the second phase: before the
inflection point, the robust loss Mrobust increases (Figure 4 middle), and the loss Mclose stays high
(Figure 22 left); after the inflection point, both Mrobust and Mclose start to drop rapidly, suggesting
that the model learns to utilize longer contexts as opposed to short neighboring n-grams.

(R4) The inflection point is best for (2, T)-progressive distillation. We study the importance of
each teacher checkpoint by comparing the performance of (2, T)-progressive distillation, where the
student learns from a single intermediate checkpoint in addition to the final checkpoint. The value of
T is grid-searched (more details in Appendix D.6). For the choice of the intermediate checkpoint,
Figure 4 shows that the best intermediate checkpoint is the one at the inflection point (at 1000 training
steps), which we denote as C1. Note that at the inflection point, the teacher has the highest reliance on
shorter n-grams (e.g. for n = 3), which are analogous to the low-degree monomials in Section 3 and
serves as intermediate tasks that are likely easier to learn. Hence, C1 being the optimal checkpoint
choice further strengthens our hypothesis that an implicit curriculum is the key to the acceleration
enabled by progressive distillation.

Following (R4), we will choose the checkpoints for progressive distillation at training steps that
are multiples of that of C1, i.e. at steps {i × 103}8i=1. As shown in Figure 1 (right), progressive
distillation helps the student learn faster than both one-shot distillation and cross entropy training.
Furthermore, progressive distillation leads to improved feature learning.

(R5) Progressive distillation improves feature learning on PCFG. Progressive distillation
improves over one-shot or no distillation over all 3 measures mentioned in Section 4.1.1. As shown
in Figure 5, progressive distillation makes the student better utilize long contexts rather than local
n-gram windows, evidenced by a lower Mrobust and Mclose. The student can also better predict the
non-terminals, suggesting a better structural learning of the underlying PCFG.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

104 105

Training Steps (log scale)
2

4

6
Va

lid
at

io
n

lo
ss

1 2 3

C1

BERT's loss behavior

4 8 16 32 64
Training Steps (×103) (log-scale)

10 2

10 1

100

M
ed

ia
n

(o
ve

r (
x,

i))

C1

Mrobust for n-grams

n
3
5
7

24000 60000 120000
Training Steps

0.4

0.5

To
p-

1
Ac

cu
ra

cy

Student BERT

CE
one-shot
progressive

Figure 6: BERT on Wikipedia and Books. Left to right: (a) Similar to our experiments on PCFG
(Figure 4), we observe three distinct phases in the loss behavior of 12-head teacher. The rapid loss
drop phase signifies a transition phase for the model. The triangles mark the selected checkpoints
for progressive distillation, with the first teacher checkpoint roughly picked in the middle of the
second phase (C1). (b) We observe Mrobust peaks at C1, and the model gets more robust to shorter
n-gram context masking, as training progresses. (c) A 4-head student achieves better top-1 accuracy
on masked prediction objective with progressive distillation.

4.2 BEYOND SYNTHETIC SETUPS: IMPLICIT CURRICULUM IN NATURAL LANGUAGES

We conduct experiments on BERT training (Devlin et al., 2018) on Wikipedia and Books (details
in Appendix F). The teacher and student both have 12 layers, with 12 and 4 attention heads per-layer
respectively. Each attention head is of dimension 64, corresponding to a width-768 teacher and a
width-256 student. Similar to PCFG, the teacher’s loss exhibits 3 distinct phases (Figure 6 left), with
an inflection point marking the change in Mrobust (Figure 6 middle). The inflection point can hence
provide an implicit curriculum towards easier-to-learn local n-grams. Finally, progressive distillation
helps the student achieve better accuracy at masked language prediction (Figure 6 right).

Connections to related works. Our results align with those of Chen et al. (2023), who observed
a phase transition in loss when training BERT on real-world language data corresponding to the
model learning syntax rules of language. Comparable findings were also reported in a concurrent
work on matrix completion (Gopalani et al., 2024). For auto-regressive models, prior work has
discussed the emergence of n-gram induction heads which indicate phases in which the model learns
to perform in-context learning (Akyürek et al., 2024; Quirke et al., 2023; Olsson et al., 2022). We
observe similar behavior for PCFGs and Wikipedia datasets and quantify the phase change using
n-gram context dependence. We take a step further and leverage the phase transitions to accelerate
the training of a smaller student model.

5 DISCUSSIONS

We have shown that progressive distillation can improve the student’s feature learning via an implicit
curriculum provided by the intermediate checkpoints. We discuss limitations and potential future
directions below, and provide preliminary results for some of them in the appendix (see Appendix A).

Impact of temperature. The teacher temperature τ is an important hyperparameter in knowledge
distillation, where varying τ can sometimes lead to a greater performance gain than changing the
distillation method (Touvron et al., 2021; Harutyunyan et al., 2022). Our results are consistent with
these prior findings. However, our experiments use limited temperature choices, i.e. the default
(τ = 1.0) and low temperature (τ = 10−4 or 10−20). A more precise understanding of temperature,
especially its impact on optimization, is an interesting direction for future work.

Distillation via generations. Another related distillation setting is training smaller (language) models
using the generations of larger models, which has been shown to greatly improve various abilities (Liu
et al., 2024; Yue et al., 2023; Yu et al., 2023; Luo et al., 2023; Chaudhary, 2023; Taori et al., 2023;
Zheng et al., 2023). There are two differences between our experiments and these generation-based
approaches. First, the supervision in our experiments are distributions (over classes or the vocabulary),
while generations are samples from distributions. Our experiments with a low or zero temperature
provide positive evidence towards bridging this gap, but the precise effect remains to be explored.
More importantly, given an input, there is a unique supervision in our settings, whereas there could
be multiple generations given by multiple steps of unrolling of the teacher. Extending our framework
to these generative setting will be an important direction for future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

E. Abbe, Enric Boix-Adserà, and Theodor Misiakiewicz. Sgd learning on neural networks: leap
complexity and saddle-to-saddle dynamics. Annual Conference Computational Learning Theory,
2023. doi: 10.48550/arXiv.2302.11055.

Emmanuel Abbe, Enric Boix-Adsera, and Theodor Misiakiewicz. The merged-staircase property: a
necessary and nearly sufficient condition for sgd learning of sparse functions on two-layer neural
networks. arXiv preprint arXiv: 2202.08658, 2022.

Emmanuel Abbe, Elisabetta Cornacchia, and Aryo Lotfi. Provable advantage of curriculum learning
on parity targets with mixed inputs. Advances in Neural Information Processing Systems, 36, 2024.

Ekin Akyürek, Bailin Wang, Yoon Kim, and Jacob Andreas. In-context language learning: Architec-
tures and algorithms. arXiv preprint arXiv:2401.12973, 2024.

Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation and self-
distillation in deep learning. In The Eleventh International Conference on Learning Representations,
2023a. URL https://openreview.net/forum?id=Uuf2q9TfXGA.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 1, context-free grammar. arXiv
preprint arXiv:2305.13673, 2023b.

Rohan Anil, Gabriel Pereyra, Alexandre Passos, Róbert Ormándi, George E. Dahl, and Geoffrey E.
Hinton. Large scale distributed neural network training through online distillation. International
Conference on Learning Representations, 2018.

Boaz Barak, Benjamin L. Edelman, Surbhi Goel, Sham M. Kakade, Eran Malach, and Cyril
Zhang. Hidden progress in deep learning: SGD learns parities near the computational limit. In
NeurIPS, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
884baf65392170763b27c914087bde01-Abstract-Conference.html.

S. Bhattamishra, Arkil Patel, Varun Kanade, and Phil Blunsom. Simplicity bias in transformers and
their ability to learn sparse boolean functions. Annual Meeting of the Association for Computational
Linguistics, 2022. doi: 10.48550/arXiv.2211.12316.

Blake Bordelon, Alexander B. Atanasov, and Cengiz Pehlevan. A dynamical model of neural scaling
laws. In Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria,
July 21-27, 2024. OpenReview.net, 2024a. URL https://openreview.net/forum?id=
nbOY1OmtRc.

Blake Bordelon, Hamza Tahir Chaudhry, and Cengiz Pehlevan. Infinite limits of multi-head trans-
former dynamics. arXiv preprint arXiv: 2405.15712, 2024b.

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschenbrenner,
Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, Ilya Sutskever, and Jeff Wu. Weak-to-
strong generalization: Eliciting strong capabilities with weak supervision. arXiv preprint arXiv:
2312.09390, 2023.

Sahil Chaudhary. Code alpaca: An instruction-following llama model for code generation. GitHub
repository, 2023.

Angelica Chen, Ravid Schwartz-Ziv, Kyunghyun Cho, Matthew L Leavitt, and Naomi Saphra. Sudden
drops in the loss: Syntax acquisition, phase transitions, and simplicity bias in mlms. arXiv preprint
arXiv:2309.07311, 2023.

Lénaı̈c Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks
trained with the logistic loss. In Jacob Abernethy and Shivani Agarwal (eds.), Proceedings of Thirty
Third Conference on Learning Theory, volume 125 of Proceedings of Machine Learning Research,
pp. 1305–1338. PMLR, 09-12 Jul 2020. URL https://proceedings.mlr.press/v125/
chizat20a.html.

11

https://openreview.net/forum?id=Uuf2q9TfXGA
http://papers.nips.cc/paper_files/paper/2022/hash/884baf65392170763b27c914087bde01-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/884baf65392170763b27c914087bde01-Abstract-Conference.html
https://openreview.net/forum?id=nbOY1OmtRc
https://openreview.net/forum?id=nbOY1OmtRc
https://proceedings.mlr.press/v125/chizat20a.html
https://proceedings.mlr.press/v125/chizat20a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Lénaı̈c Chizat and Francis R. Bach. On the global convergence of gradient descent for
over-parameterized models using optimal transport. In Samy Bengio, Hanna M. Wallach,
Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), Ad-
vances in Neural Information Processing Systems 31: Annual Conference on Neural Informa-
tion Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp.
3040–3050, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
a1afc58c6ca9540d057299ec3016d726-Abstract.html.

Jang Hyun Cho and Bharath Hariharan. On the efficacy of knowledge distillation. arXiv preprint
arXiv: 1910.01348, 2019.

Alex Damian, Eshaan Nichani, Rong Ge, and Jason D Lee. Smoothing the landscape boosts the
signal for sgd: Optimal sample complexity for learning single index models. Advances in Neural
Information Processing Systems, 36, 2024a.

Alex Damian, Loucas Pillaud-Vivien, Jason D. Lee, and Joan Bruna. Computational-statistical gaps
in gaussian single-index models. Annual Conference Computational Learning Theory, 2024b. doi:
10.48550/arXiv.2403.05529.

Tri Dao, Govinda M Kamath, Vasilis Syrgkanis, and Lester Mackey. Knowledge distillation as
semiparametric inference, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. Attention is not all you need: pure
attention loses rank doubly exponentially with depth. In Marina Meila and Tong Zhang (eds.),
Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July
2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, pp. 2793–2803.
PMLR, 2021. URL http://proceedings.mlr.press/v139/dong21a.html.

Simon Du and Wei Hu. Width provably matters in optimization for deep linear neural networks. In
International Conference on Machine Learning, pp. 1655–1664. PMLR, 2019.

Benjamin L Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang. Pareto frontiers in
neural feature learning: Data, compute, width, and luck. arXiv preprint arXiv:2309.03800, 2023.

Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Linearized two-layers
neural networks in high dimension. arXiv preprint arXiv: 1904.12191, 2019.

Margalit Glasgow. SGD finds then tunes features in two-layer neural networks with near-optimal
sample complexity: A case study in the XOR problem. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.
URL https://openreview.net/forum?id=HgOJlxzB16.

Pulkit Gopalani, Ekdeep Singh Lubana, and Wei Hu. How do transformers fill in the blanks? a case
study on matrix completion. In ICML 2024 Workshop on Mechanistic Interpretability, 2024. URL
https://openreview.net/forum?id=knrYGCXAfK.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital
Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai,
Yin Tat Lee, and Yuanzhi Li. Textbooks are all you need. arXiv preprint arXiv: 2306.11644, 2023.

Hrayr Harutyunyan, Ankit Singh Rawat, Aditya Krishna Menon, Seungyeon Kim, and Sanjiv Kumar.
Supervision complexity and its role in knowledge distillation. In The Eleventh International
Conference on Learning Representations, 2022.

John Hewitt and Christopher D. Manning. A structural probe for finding syntax in word repre-
sentations. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.), Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4129–4138, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1419.
URL https://aclanthology.org/N19-1419.

12

https://proceedings.neurips.cc/paper/2018/hash/a1afc58c6ca9540d057299ec3016d726-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/a1afc58c6ca9540d057299ec3016d726-Abstract.html
http://proceedings.mlr.press/v139/dong21a.html
https://openreview.net/forum?id=HgOJlxzB16
https://openreview.net/forum?id=knrYGCXAfK
https://aclanthology.org/N19-1419

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv: 1503.02531, 2015.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models. arXiv preprint arXiv: 2203.15556, 2022.

Jiri Hron, Yasaman Bahri, Jascha Sohl-Dickstein, and Roman Novak. Infinite attention: Nngp and
ntk for deep attention networks. arXiv preprint arXiv: 2006.10540, 2020.

Daniel Hsu. Dimension lower bounds for linear approaches to function approximation. 2021. URL
https://www.cs.columbia.edu/˜djhsu/papers/dimension-argument.pdf.

A. Jafari, Mehdi Rezagholizadeh, Pranav Sharma, and A. Ghodsi. Annealing knowledge distillation.
Conference of the European Chapter of the Association for Computational Linguistics, 2021. doi:
10.18653/v1/2021.eacl-main.212.

Ding Jia, Kai Han, Yunhe Wang, Yehui Tang, Jianyuan Guo, Chao Zhang, and D. Tao. Learning
efficient vision transformers via fine-grained manifold distillation. Neural Information Processing
Systems, 2021.

Xiao Jin, Baoyun Peng, Yichao Wu, Yu Liu, Jiaheng Liu, Ding Liang, Junjie Yan, and Xiaolin Hu.
Knowledge distillation via route constrained optimization. IEEE International Conference on
Computer Vision, 2019. doi: 10.1109/ICCV.2019.00143.

Dan Jurafsky. Speech & language processing. Pearson Education India, 2000.

Dimitris Kalimeris, Gal Kaplun, Preetum Nakkiran, Benjamin L. Edelman, Tristan Yang, Boaz
Barak, and Haofeng Zhang. SGD on neural networks learns functions of increasing complexity. In
Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and
Roman Garnett (eds.), Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pp. 3491–3501, 2019. URL https://proceedings.neurips.cc/paper/
2019/hash/b432f34c5a997c8e7c806a895ecc5e25-Abstract.html.

Michael Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM (JACM),
45(6):983–1006, 1998.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Huayang Li, Yixuan Su, Deng Cai, Yan Wang, and Lemao Liu. A survey on retrieval-augmented text
generation. arXiv preprint arXiv: 2202.01110, 2022.

Han Lin, Guangxing Han, Jiawei Ma, Shiyuan Huang, Xudong Lin, and Shih-Fu Chang. Supervised
masked knowledge distillation for few-shot transformers. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 19649–19659, June 2023.

Bingbin Liu, J. Ash, Surbhi Goel, A. Krishnamurthy, and Cyril Zhang. Transformers learn shortcuts
to automata. International Conference On Learning Representations, 2022. doi: 10.48550/arXiv.
2210.10749.

Ruibo Liu, Jerry Wei, Fangyu Liu, Chenglei Si, Yanzhe Zhang, Jinmeng Rao, Steven Zheng, Daiyi
Peng, Diyi Yang, Denny Zhou, et al. Best practices and lessons learned on synthetic data for
language models. arXiv preprint arXiv:2404.07503, 2024.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical
reasoning for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583,
2023.

13

https://www.cs.columbia.edu/~djhsu/papers/dimension-argument.pdf
https://proceedings.neurips.cc/paper/2019/hash/b432f34c5a997c8e7c806a895ecc5e25-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/b432f34c5a997c8e7c806a895ecc5e25-Abstract.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Aditya K Menon, Ankit Singh Rawat, Sashank Reddi, Seungyeon Kim, and Sanjiv Kumar. A
statistical perspective on distillation. In Marina Meila and Tong Zhang (eds.), Proceedings of
the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 7632–7642. PMLR, 18–24 Jul 2021. URL https://proceedings.
mlr.press/v139/menon21a.html.

William Merrill, Ashish Sabharwal, and Noah A Smith. Saturated transformers are constant-depth
threshold circuits. Transactions of the Association for Computational Linguistics, 10:843–856,
2022.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir Levine, Akihiro Matsukawa, and
H. Ghasemzadeh. Improved knowledge distillation via teacher assistant. AAAI Conference
on Artificial Intelligence, 2019. doi: 10.1609/AAAI.V34I04.5963.

Hossein Mobahi, Mehrdad Farajtabar, and Peter Bartlett. Self-distillation amplifies regularization in
hilbert space. Advances in Neural Information Processing Systems, 33:3351–3361, 2020.

Depen Morwani, Benjamin L. Edelman, Costin-Andrei Oncescu, Rosie Zhao, and Sham Kakade.
Feature emergence via margin maximization: case studies in algebraic tasks. arXiv preprint arXiv:
2311.07568, 2023.

Vaishnavh Nagarajan, Aditya Krishna Menon, Srinadh Bhojanapalli, Hossein Mobahi, and Sanjiv
Kumar. On student-teacher deviations in distillation: does it pay to disobey?, 2024.

Eshaan Nichani, Yu Bai, and Jason D Lee. Identifying good directions to escape the ntk regime and
efficiently learn low-degree plus sparse polynomials. Advances in Neural Information Processing
Systems, 35:14568–14581, 2022.

Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads.
arXiv preprint arXiv:2209.11895, 2022.

Lucia Quirke, Lovis Heindrich, Wes Gurnee, and Neel Nanda. Training dynamics of contextual
n-grams in language models. arXiv preprint arXiv:2311.00863, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini
1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Yi Ren, Shangmin Guo, and Danica J. Sutherland. Better supervisory signals by observing learn-
ing paths. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=Iog0djAdbHj.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Wenxian Shi, Yuxuan Song, Hao Zhou, Bohan Li, and Lei Li. Follow your path: a progressive
method for knowledge distillation, 2021.

Mahdi Soltanolkotabi, Adel Javanmard, and Jason D Lee. Theoretical insights into the optimization
landscape of over-parameterized shallow neural networks. IEEE Transactions on Information
Theory, 65(2):742–769, 2018.

Daniel Soudry and Elad Hoffer. Exponentially vanishing sub-optimal local minima in multilayer
neural networks. arXiv preprint arXiv: 1702.05777, 2017.

14

https://proceedings.mlr.press/v139/menon21a.html
https://proceedings.mlr.press/v139/menon21a.html
https://openreview.net/forum?id=Iog0djAdbHj
https://openreview.net/forum?id=Iog0djAdbHj

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Alpaca: A strong, replicable instruction-following model.
Stanford Center for Research on Foundation Models. https://crfm. stanford. edu/2023/03/13/alpaca.
html, 3(6):7, 2023.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard Hussenot,
Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam Roberts, Aditya Barua, Alex Botev, Alex
Castro-Ros, Ambrose Slone, Amélie Héliou, Andrea Tacchetti, Anna Bulanova, Antonia Paterson,
Beth Tsai, Bobak Shahriari, Charline Le Lan, Christopher A. Choquette-Choo, Clément Crepy,
Daniel Cer, Daphne Ippolito, David Reid, Elena Buchatskaya, Eric Ni, Eric Noland, Geng Yan,
George Tucker, George-Christian Muraru, Grigory Rozhdestvenskiy, Henryk Michalewski, Ian
Tenney, Ivan Grishchenko, Jacob Austin, James Keeling, Jane Labanowski, Jean-Baptiste Lespiau,
Jeff Stanway, Jenny Brennan, Jeremy Chen, Johan Ferret, Justin Chiu, Justin Mao-Jones, Katherine
Lee, Kathy Yu, Katie Millican, Lars Lowe Sjoesund, Lisa Lee, Lucas Dixon, Machel Reid, Maciej
Mikuła, Mateo Wirth, Michael Sharman, Nikolai Chinaev, Nithum Thain, Olivier Bachem, Oscar
Chang, Oscar Wahltinez, Paige Bailey, Paul Michel, Petko Yotov, Rahma Chaabouni, Ramona
Comanescu, Reena Jana, Rohan Anil, Ross McIlroy, Ruibo Liu, Ryan Mullins, Samuel L Smith,
Sebastian Borgeaud, Sertan Girgin, Sholto Douglas, Shree Pandya, Siamak Shakeri, Soham De,
Ted Klimenko, Tom Hennigan, Vlad Feinberg, Wojciech Stokowiec, Yu hui Chen, Zafarali Ahmed,
Zhitao Gong, Tris Warkentin, Ludovic Peran, Minh Giang, Clément Farabet, Oriol Vinyals, Jeff
Dean, Koray Kavukcuoglu, Demis Hassabis, Zoubin Ghahramani, Douglas Eck, Joelle Barral,
Fernando Pereira, Eli Collins, Armand Joulin, Noah Fiedel, Evan Senter, Alek Andreev, and
Kathleen Kenealy. Gemma: Open models based on gemini research and technology. arXiv preprint
arXiv: 2403.08295, 2024.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. Bert rediscovers the classical nlp pipeline. ACL, 2019.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Herve
Jegou. Training data-efficient image transformers and distillation through attention. In Marina
Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pp. 10347–10357. PMLR,
18–24 Jul 2021. URL https://proceedings.mlr.press/v139/touvron21a.html.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Colin Wei, Jason D Lee, Qiang Liu, and Tengyu Ma. Regularization matters: Generalization and
optimization of neural nets vs their induced kernel. Advances in Neural Information Processing
Systems, 32, 2019.

Greg Yang, Edward J. Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder,
Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large neural networks
via zero-shot hyperparameter transfer. arXiv preprint arXiv: 2203.03466, 2022.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. arXiv preprint arXiv:2309.12284, 2023.

Shixing Yu, Tianlong Chen, Jiayi Shen, Huan Yuan, Jianchao Tan, Sen Yang, Ji Liu, and Zhangyang
Wang. Unified visual transformer compression. International Conference on Learning Representa-
tions, 2022. doi: 10.48550/arXiv.2203.08243.

Li Yuan, Francis EH Tay, Guilin Li, Tao Wang, and Jiashi Feng. Revisiting knowledge distillation via
label smoothing regularization. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 3903–3911, 2020.

15

https://proceedings.mlr.press/v139/touvron21a.html

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653, 2023.

Haoyu Zhao, A. Panigrahi, Rong Ge, and Sanjeev Arora. Do transformers parse while predicting the
masked word? Conference on Empirical Methods in Natural Language Processing, 2023. doi:
10.48550/arXiv.2303.08117.

Kaixiang Zheng and En-Hui Yang. Knowledge distillation based on transformed teacher matching.
arXiv preprint arXiv: 2402.11148, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023.

Helong Zhou, Liangchen Song, Jiajie Chen, Ye Zhou, Guoli Wang, Junsong Yuan, and Qian Zhang.
Rethinking soft labels for knowledge distillation: A bias–variance tradeoff perspective. In Interna-
tional Conference on Learning Representations, 2020.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Appendix

Table of Contents
A Overview of the appendix 17

A.1 Additional related works . 18

B Proofs of results in Section 3.2 19
B.1 Analysis for the teacher . 20
B.2 Analysis for the student . 26

C Results on sparse parity and its generalization 28
C.1 Additional results on sparse parity with MLP 28
C.2 Learning with Transformers: parallel search with attention heads 29
C.3 A hierarchical generalization of sparse parity 34

D Extensive study on PCFGs 37
D.1 A formal description of PCFGs . 37
D.2 Variants of progressive distillation . 37
D.3 Details on Non-terminal prediction with Multi-head linear probing 38
D.4 Details on the synthetic PCFGs . 38
D.5 Extensive experiments on BERT . 39
D.6 Hyperparameter details . 40
D.7 Additional Curriculum probing on the teacher’s checkpoints 41
D.8 Ablations with hyperparameters . 41

E Autoregressive training with GPT2 44
E.1 Observations . 45

F Details on Wikipedia + Books experiments 46

A OVERVIEW OF THE APPENDIX

The appendix provides omitted proofs and additional empirical explorations, which we outline below.

Omitted proofs We will start with the proof of Theorem 3.2 in Appendix B. The main idea is to
show that the teacher can develop stronger correlation to in-support variables than to off-support
variables, which can then be utilized by the students to reduce sample complexity.

Additional empirical results on sparse parity We present more experiments with MLP (Ap-
pendix C.1) and Transformers (Appendix C.2), as well as results on learning a hierarchical extension
of sparse parity (Appendix C.3). For Transformer experiments, we study how scaling along different
dimensions of the architecture, such as MLP width and number of attention heads, affects the search
of support for sparse parity. We discuss the effect of temperature in Figure 14. For the hierarchical
extension of sparse parity, we show that the implicit curriculum occurs in different phases, which
suggests a natural choice for number of intermediate checkpoints used in progressive distillation.

Masked prediction on PCFGs In Appendix D.5, we provide a formal definition of probablistic
context-free grammar (PCFG) and introduce the PCFGs that we use from Allen-Zhu & Li (2023b).
We then provide details of our experimental setup and conduct extensive ablation studies on training
a BERT model using the masked prediction task with PCFG data. We experiment with variants of
progressive distillation and confirm that they lead to improved performance on PCFGs, as measured

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

by accuracy and the three progress measures introduced in Section 4.1.1. Furthermore, we investigate
the effect of temperature, masking rate, and PCFG variation in Appendix D.8.

Next-token prediction on PCFGs In Appendix E, we conduct next-token prediction experiments
using GPT-2 models on PCFG “cfg3f”, i.e. the most complex PCFG in Allen-Zhu & Li (2023a). We
characterize conditions under which progressive distillation provides significant gains.

A.1 ADDITIONAL RELATED WORKS

Understanding knowledge distillation There have been many works dedicated to understanding
the effectiveness of knowledge distillation (Hinton et al., 2015; Mobahi et al., 2020; Menon et al.,
2021; Dao et al., 2021; Nagarajan et al., 2024). For classification tasks, which are the focus of
most knowledge distillation works, one intuitive explanation is that the teacher output provides a
distribution over the class labels, which is more informative than the one-hot data labels. Menon et al.
(2021) formalizes this intuition and shows that a teacher that provides the Bayes class probabilities
leads to a tighter generalization gap. Motivated by their result and the observation that a high-accuracy
teacher can be poorly calibrated, Ren et al. (2022) proposes to supervise the student using a moving
average of the teacher across the training trajectory. While Ren et al. (2022) uses information of
trajectory, their student learns from a fixed target throughout training, which is a major difference
from progressive distillation. The teacher supervision also provides regularization benefits, such as
controlling the bias-variance tradeoff (Zhou et al., 2020), encouraging sparsity (Mobahi et al., 2020),
or as a form of label smoothing (Yuan et al., 2020).

Learning sparse parity There are well established hardness results for learning sparse parity.
When given access to labels only, learning (d, k)-sparse parity with gradients from finite samples
is an example of learning with statistical queries (SQ) (Kearns, 1998), for which a Ω(dk) SQ
computational lower bound applies (Edelman et al., 2023). When learning with a fully-connected
network (MLP), these parallel queries correspond to a combination of model width (i.e. neurons) and
training steps, 11 and hence the SQ lower bound implies a fundamental trade-off between the width,
the number of training steps, and the number of samples (Edelman et al., 2023). In particular, given
the same number of training steps, narrower models require more samples to learn parity.

Feature learning In this work, we use feature learning to refer to a learning process that recovers a
low-dimensional “feature” which helps reduce sample complexity. Sparse parity is a task that can
benefit from feature learning, where the feature is the support. For the special case of k = 2, Glasgow
(2024) shows that feature learning using a jointly-optimized 2-layer neural network can reduce the
sample complexity from Θ(d2) (corresponding to learning with NTK (Wei et al., 2019; Ghorbani
et al., 2019)) to O(dpoly log d). Sparse parity is an example of a single-/multi-index function, where
the label is determined by a 1-dimensional/low-dimensional projection of the data. These functions
have also been studied on Gaussian inputs (Nichani et al., 2022; Abbe et al., 2022; 2023; Damian
et al., 2024a;b) and have known separation between neural networks (Abbe et al., 2022; 2023) and
non-feature-learning kernel methods (Hsu, 2021).

Benefit of width in optimization Prior work has shown that width plays an important role in the
optimization difficulty, where wider networks are more optimized easily. Du & Hu (2019) shows
that sufficient width is necessary for the optimization on deep linear networks. Multiple works
show that overparameterization leads to favorable optimization landscape, such as fewer sub-optimal
local minima (Soudry & Hoffer, 2017; Soltanolkotabi et al., 2018) or guaranteed convergence at the
limit (Chizat & Bach, 2018; 2020). Wider models also exhibit faster decaying loss empirically (Yang
et al., 2022; Bordelon et al., 2024a). Most related to our focus on learning sparse parity, Edelman
et al. (2023) relates the width to the number of parallel statistical queries (SQs). Combined with
sparse parity’s SQ lower bound, their result implies a trade-off where a larger width requires fewer
optimization steps. Our work also acknowledges the benefit of width in optimization, but takes a
different perspective by demonstrating that a smaller student can inherit the optimization benefit when
learning from a higher-width teacher. Moreover, we consider the number of attention heads as another

11More precisely, it is a combination of width and steps, as well as the batch size which affects the precision
of the stochastic gradient. We omit the impact of batch size here since we keep the batch size unchanged in the
experiments.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 1 2-stage training

Require: Stage lengths: T1, T2, learning rates η1, η2, batch size B1, B2, weight decay λ1, λ2.
for t ∈ [0, T1] and all i ∈ [m] do

Sample B1-samples {(x(j), y(j))}B1
j=1.

Update the weights wi as w(t)
i ← w

(t−1)
i −η1E(x,y)∈{(x(j),y(j))}B1

j=1
∇wi

(
Lθ(t)(x, y) + λ1 ∥wi∥2

)
.

end for
for t ∈ [0, T2] and all i ∈ [m] do

Sample B2-samples {(x(j), y(j))}B2
j=1.

Update the outer layer weights ai as a
(t+T1)
i ← a

(t+T1−1)
i −

η2E(x,y)∈{(x(i),y(i))}B2
j=1
∇ai

(
Lθ(t+T1−1)(x, y) + λ2a

2
i

)
.

end for

scaling dimension for Transformers, where the intuition is similar to having more “paths” (Dong
et al., 2021). There have been results on studying the limiting output distribution as the number of
attention heads goes to infinity (Hron et al., 2020; Bordelon et al., 2024b), though to our knowledge,
there are no quantitative descriptions for finite number of heads.

B PROOFS OF RESULTS IN SECTION 3.2

We provide the formal version of Theorem 3.2 in this section.

Recall that the teacher model is defined as

fT (x) =

m∑
i=1

aiσ (⟨wi,x⟩+ bi) .

The student model is similarly defined as

fS(x) =

m̃∑
i=1

ãiσ
(
⟨w̃i,x⟩+ b̃i

)
.

Setup We assume the data points are sampled at random from U({±1}d). Without loss of generality,
let the target k-sparse parity function be y = x1x2 · · ·xk. Symmetric initialization: Following (Barak
et al., 2022), we use the following symmetric initialization: for each 1 ≤ i ≤ m/2,

wi ∼ U({±1}d), bi ∼ U({−1 + k−1, · · · , 1− k−1}), ai ∼ U({±1/m}),
wi+m/2 = wi, bi+m/2 = bi, ai+m/2 = −ai.

Two-stage training: Following prior work (Barak et al., 2022; Abbe et al., 2023; 2024), we adopt a
two-stage batch gradient descent training, where we first train the first-layer weights {w1, · · · ,wm},
keeping the output weights {ai}mi=1 fixed. In the second stage of training, we fit the output weights
{ai}mi=1 while keeping others fixed. We keep the biases {bi}mi=1 fixed throughout training. Similar
strategy for training the student model as well. The teacher is trained with hinge loss, given
by ℓ(x, y) = max(0, 1 − fT (x)y). The student is trained with ℓDL(x, y; fS , fT) = max(0, 1 −
fS(x)fT (x)).

The training process is summarized in Algorithm 1.

Sample complexity benefits with progressive distillation for the student Our result is that
progressive distillation provably reduces the sample complexity compared to (one-shot) distillation
or no distillation. The key is to establish a separation between the correlations with in-support and
off-support variables, which happens with high probability as formalized in Corollary B.6. Under
such event, we show:
Theorem B.1 (Sample complexity benefits with progressive distillation). Suppose the teacher model
has been trained with 2-stage training in Algorithm 1, which satisfies the conditions in Corollary B.6

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Corollary B.6: conditions satisfied by the teacher after first phase
W.h.p. the output of the teacher after the first phase satisfies the following condition for all i.∣∣∣Ex,yf

(1)
T (x) ·Maj(x)xi

∣∣∣ ≥ Ω(k−1), if i ∈ [k],∣∣∣Ex,yf
(1)
T (x) ·Maj(x)xi

∣∣∣ ≤ o(k−1), if i /∈ [k].

at the end of first stage and achieves loss O(d−c) for some constant c ≥ 1 at the end of the second
stage. Suppose we train a student model fS of size m̃ = Θ̃(2kk) using the following two strategies:

1. Progressive distillation: Train for the first T1 = 1 steps w.r.t. the teacher’s logits at T1

checkpoint. Then, train with the final teacher checkpoint in the second stage.

2. Distillation: Train with the final teacher checkpoint throughout training.

Then,

1. Under progressive distillation, the total sample complexity to reach a loss of ϵ with probabil-
ity 1− δ is

Θ(k2 log(dm̃/δ) + 2kd2k4ϵ−2 log(k/δ)).

2. The necessary sample complexity under distillation is at least Ω(dmin(2c,k−1)).

The proof consists of two parts: 1) showing that the teacher develops strong correlation with the
in-support variables after the first stage of training (Lemma B.2, Corollary B.6), and 2) showing that
given the support, the second phase of training converges quickly (Corollary B.8). These two helper
lemmas are proven in Appendix B.1.1 (first stage) and Appendix B.1.2 (second stage). The proof of
Theorem B.1 is given in Appendix B.2.

Notations Before stating the proofs, we provide a list of necessary notations.

• At any training step t, f (t)
T will refer to the teacher’s output at that step. Its parameters are referred

to as θ(t) = {a(t)i ,w
(t)
i , b

(t)
i }mi=1. The loss for f (t)

T is denoted by L(f
(t)
T) or Lθ(t) . Notations for

the student fS are defined similarly.
• Given a set S̃, χS̃ denotes the Fourier function on S̃, where χS̃(x) =

∏
i∈S̃ xi. We are particularly

interested in S̃ = S, i.e. the support of the sparse parity.
• Maj : {±1}d → ±1 represents the majority function. On any x, Maj returns the sign of

∑d
i=1 xi.

ζi for i ≥ 1 represents its ith fourier coefficient, i.e. ζi = Ex,yMaj(x)χS(x) for any S ∈ {0, 1}d
with |S| = i. ζi = 0 when i is even, and ζi = Θ(i−1/3/

(
d
i

)
) when i is odd (O’Donnell, 2014).

• τg denotes the error tolerance in the gradient estimate due to mini-batch gradient estimation: let g
be the population gradient and ĝ be the estimated gradient with a few examples, τg is defined such
that ∥ĝ − g∥∞ ≤ τg . A τg-error gradient estimate can be obtained using a batch size of Ω̃(1/τ2g).

B.1 ANALYSIS FOR THE TEACHER

B.1.1 FIRST STAGE ANALYSIS FOR THE TEACHER

First, we show that with an appropriate learning rate, the magnitude of the weights wij on coordinates
i ∈ S increases to 1

2k , while the coordinates i ̸∈ S stay O
(

1
kd

)
small.

Lemma B.2 (Single step gradient descent, adapted from Claims 1, 2 in Barak et al. (2022)). Fix
τg, δ > 0. Set T1 as 1. Suppose the batch size B1 ≥ Ω(τ−2

g log(md/δ)). For learning rate
η1 = m

k|ζk−1| and λ1 = 1, the following conditions hold true for all neurons i ∈ [m] at the end of
first stage of training w.p. at least 1− δ.

1.
∣∣∣∣w(1)

ij −
sign(a

(0)
i ζk−1) sign(χ[k]\{j}(w

(0)
i))

2k

∣∣∣∣ ≤ τg
|ζk−1| , for all j ∈ [k].

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

2.
∣∣∣∣w(1)

ij −
ζk+1

|ζk−1|
sign(a

(0)
i) sign(χ[k]∪{j}(w

(0)
i))

2k

∣∣∣∣ ≤ τg
|kζk−1| , for all j > k.

Proof. The proof follows that of (Barak et al., 2022), which we outline here for completeness. The
proof has two major components: First, the magnitude of the population gradient at initialization
reveals the support of the sparse parity. Second, the batch gradient and the population gradient can be
made sufficiently close given a sufficiently large batch size. We will explain each step below.

Claim B.3. At initialization, the population gradient of the weight vector in neuron i is given by
Ex,y∇wij ℓ(x, y; f

(0)
T) = −Ex,y∇wijf

(0)
T (x)y, which can be split across the coordinates as

Ex,y∇wijf
(0)
T (x)y = −1

2
a
(0)
i ζk−1χ[k]\{j}(w

(0)), for all j ∈ S

Ex,y∇wij
f
(0)
T (x)y = −1

2
a
(0)
i ζk+1χ[k]∪{j}(w

(0)), for all j ̸∈ S

Thus, the gradient of the weight coordinates wij for any neuron i and j ∈ S has magnitude |ζk−1|,
while the gradients of the weight coordinates wij for any neuron i and j /∈ S has magnitude
|ζk+1|. The gap between the gradient in support and out of support is given by |ζk−1| − |ζk+1| ≥
0.03((d− 1)−(k−1)/2) (Lemma 2 in Barak et al. (2022)).

The second component involves applying a hoeffding’s inequality to show the gap between sample
and population gradient.

Claim B.4. Fix δ, τg > 0. For all i, j, for a randomly sampled batch of size B1, {(xk, yk)}B1

k=1, with
probability at least 1− δ,∣∣∣Ex,y∼U({±}d)∇wij

f
(0)
T (x)− E{(xk,yk)}

B1
k=1

∇wij
f
(0)
T (x)

∣∣∣ ≤ τg,

provided B1 ≥ Ω(τ−2
g log(md/δ)).

Because we want the noise τg to be smaller than the magnitude of the true gradients for the coordinates
in the support S, we want τg to be smaller than |ζk−1|. We set this to get favorable condition for
second phase of training (see Lemma B.7).

On the other hand, we show that after the first phase, the output of the network has positive correlations
to the individual variables in the support of the label function, and thus the checkpoint after the first
phase can be used to speed up training of future models.
Lemma B.5 (Correlation with in-support variables). Under the event that the conditions in Lemma B.2
are satisfied by each neuron, which occurs with probability at least 1 − δ w.r.t. the randomness
of initialization and sampling, the output of the model after the first phase satisfies the following
conditions:

1. Ex,yf
(1)
T (x)xi ≥ 1

8k +O(τgd |ζk−1|−1
) +O(m−1/2) for all i ∈ S.

2. Ex,yf
(1)
T (x)xi ≤ O((kd)−1) for all i /∈ S.

3. Ex,yf
(1)
T (x)χS(x) ≤ O(τgd |ζk−1|−1

) for all S with even |S|.

4.
∥∥∥f (1)

T

∥∥∥2
2
= Ex,y[f

(1)
T (x)]2 ≤ O(d/k).

Proof. Consider a neuron i ∈ [m/2] and its symmetric counterpart i+m/2. W.L.O.G., we assume
sign(w

(0)
ij) = sign(a

(0)
i ζk−1) for all j ∈ [k], and sign(a

(0)
i) = 1. Recall that k is assumed to be even,

hence sign(χ[k](w
(0)
i)) = 1. Then, the condition in Lemma B.2 can be simplified as

w
(1)
ij =

1

2k
+ vij , w

(1)
i+m/2,j = −

1

2k
− vij , for all j ∈ [k],

w
(1)
ij =

1

2k

ζk+1

|ζk−1|
sign(w

(0)
ij) + vij , w

(1)
i+m/2,j = −

1

2k

ζk+1

|ζk−1|
sign(w

(0)
ij) + vij , for all j ≥ k,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

where vij satisfies the following conditions.

|vij | ≤
τg
|ζk−1|

, for all j ∈ [k],

|vij | ≤
τg

|kζk−1|
, for all j ≥ k.

Then, the sum of the output of the neurons i and i+m/2 on an input x (ignoring the magnitude of
ai) is given by

(f
(1)
T)i(x) = σ

 1

2k

k∑
j=1

xj +
1

2k

ζk+1

|ζk−1|

d∑
j=k+1

sign(w
(0)
ij)xj + ⟨vi,x⟩+ bi

− σ

− 1

2k

k∑
j=1

xj −
1

2k

ζk+1

|ζk−1|

d∑
j=k+1

sign(w
(0)
ij)xj + ⟨vi,x⟩+ bi

 ,

and

f
(1)
T (x) =

m/2∑
i=1

ai(f
(1)
T)i(x) =

1

m

m/2∑
i=1

(f
(1)
T)i(x).

1. In-support correlations: We are interested in the correlation of this function to a variable xu

for u ∈ S. We argue for u = 1, as the similar argument applies for others. Thus, we are interested in

Ex,y(f
(1)
T)i(x)x1 = Ex,yσ

 1

2k

k∑
j=1

xj +
1

2k

ζk+1

|ζk−1|

d∑
j=k+1

sign(w
(0)
ij)xj + ⟨vi,x⟩+ bi

x1

− σ

− 1

2k

k∑
j=1

xj −
1

2k

ζk+1

|ζk−1|

d∑
j=k+1

sign(w
(0)
ij)xj + ⟨vi,x⟩+ bi

x1.

(7)

We focus on the first term; argument for the second term is similar. First of all, we can ignore ⟨vi,x⟩
incurring an error of O(τgd |ζk−1|−1

).

Ex,yσ

 1

2k

k∑
j=1

xj +
1

2k

ζk+1

|ζk−1|

d∑
j=k+1

sign(w
(0)
ij)xj + bi

x1

= Ex,y:x1=+1σ

 1

2k
+

1

2k

k∑
j=2

xj +
1

2k

ζk+1

|ζk−1|

d∑
j=k+1

sign(w
(0)
ij)xj + bi

− Ex,y:x1=−1σ

− 1

2k
+

1

2k

k∑
j=2

xj +
1

2k

ζk+1

|ζk−1|

d∑
j=k+1

sign(w
(0)
ij)xj + bi

≥ 1

2k
Ex,yI

 1

2k

k∑
j=2

xj +
1

2k

ζk+1

|ζk−1|

d∑
j=k+1

sign(w
(0)
ij)xj + bi ≥ 0

 .

The final step follows from the observation that the argument of σ in the first term is 1
k higher than

the argument of σ in the second term. This implies that when the first term is non-zero, it’s at least
1
2k higher than the second term. Hence, we lower bound by considering one scenario where the first
term is non-zero.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Continuing, we can further split the indicator function into cases when each term in the argument of
the indicator function is positive.

Ex,yσ

 1

2k

k∑
j=1

xj +
1

2k

ζk+1

|ζk−1|

d∑
j=k+1

sign(w
(0)
ij)xj + bi

x1

≥ 1

2k
Ex,yI

 1

2k

k∑
j=2

xj +
1

2k

ζk+1

|ζk−1|

d∑
j=k+1

sign(w
(0)
ij)xj + bi ≥ 0

≥ 1

2k
Ex,yI

 k∑
j=2

xj ≥ 0

 I

 d∑
j=k+1

xj ≥ 0

 I (bi ≥ 0)

≥ 1

8k
I (bi ≥ 0) .

From Equation (7), we then have

Ex,y(f
(1)
T)i(x)x1 ≥

1

4k
I (bi ≥ 0) +O(τgd |ζk−1|−1

).

As bi has been kept at random initialization and thus is a random variable selected from the set
{−1 + 1

k , · · · , 1−
1
k}, with probability 1

2 , I (bi ≥ 0). This implies, w.p. atleast 1/2 w.r.t. a neuron’s
bias initialization, Ex,y(f

(1)
T)i(x)x1 ≥ 1

4k +O(τgd |ζk−1|−1
). The final bound comes from the fact

that Ex,yfT (x)x1 = Ex,y
1
m

∑m
i=1(f

(1)
T)i(x)x1 ≥ 1

8k +O(τgd |ζk−1|−1
) +O(m−1/2), where the

error term is bounded using Hoeffding’s inequality.

2. Out-of-support correlations: Similar to the Equation (7), we have for u /∈ S,

Ex,y(f
(1)
T)i(x)xu = Ex,yσ

 1

2k

k∑
j=1

xj +
1

2k

ζk+1

|ζk−1|

d∑
j=k+1

sign(w
(0)
ij)xj + ⟨vi,x⟩+ bi

xu

− σ

− 1

2k

k∑
j=1

xj −
1

2k

ζk+1

|ζk−1|

d∑
j=k+1

sign(w
(0)
ij)xj + ⟨vi,x⟩+ bi

xu.

(8)

However, we observe that the influence of xu in each of the terms is bounded by 1
k

ζk+1

|ζk−1| . Consider
the first term; the argument for the second term is similar. We can again ignore ⟨vi,x⟩ incurring an
error of O(τgd |ζk−1|−1

).

Ex,yσ

 1

2k

k∑
j=1

xj +
1

2k

ζk+1

|ζk−1|

d∑
j=k+1

sign(w
(0)
ij)xj + bi

xu

= Ex,y:xu=+1σ

 1

2k

ζk+1

|ζk−1|
sign(w

(0)
iu) +

1

2k

k∑
j=1

xj +
1

2k

ζk+1

|ζk−1|
∑

j=k+1→d;j ̸=u

sign(w
(0)
ij)xj + bi

− Ex,y:xu=−1σ

− 1

2k

ζk+1

|ζk−1|
sign(w

(0)
iu) +

1

2k

k∑
j=1

xj +
1

2k

ζk+1

|ζk−1|
∑

j=k+1→d;j ̸=u

sign(w
(0)
ij)xj + bi

= Ex,y

C(x)

k

ζk+1

|ζk−1|
sign(w

(0)
iu)I

 1

2k

k∑
j=1

xj +
1

2k

ζk+1

|ζk−1|
∑

j=k+1→d;j ̸=u

sign(w
(0)
ij)xj + bi ≥ 0

 ,

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

where C(x) ∈ {1, 2} denotes a function that depends on x. The final step follows from a first order
taylor expansion of σ. The magnitude can hence be bounded by 1

k
|ζk+1|
|ζk−1| . This can be bounded

by 1
kd (section 5.3, O’Donnell (2014)). The final bound comes from the fact that Ex,yfT (x)xu =

Ex,y
1
m

∑m
i=1(f

(1)
T)i(x)xu ≤ O((kd)−1).

3. Correlations to support of an even size: The function (f
(1)
T)i is given by

(f
(1)
T)i(x) =σ

 1

2k

k∑
j=1

xj +
1

2k

ζk+1

|ζk−1|

d∑
j=k+1

sign(w
(0)
ij)xj + ⟨vi,x⟩+ bi

− σ

− 1

2k

k∑
j=1

xj −
1

2k

ζk+1

|ζk−1|

d∑
j=k+1

sign(w
(0)
ij)xj + ⟨vi,x⟩+ bi

=σ

 1

2k

k∑
j=1

xj +
1

2k

ζk+1

|ζk−1|

d∑
j=k+1

sign(w
(0)
ij)xj + bi

− σ

− 1

2k

k∑
j=1

xj −
1

2k

ζk+1

|ζk−1|

d∑
j=k+1

sign(w
(0)
ij)xj + bi

+O(τgd |ζk−1|−1
)

:=g(x) +O(τgd |ζk−1|−1
).

One can observe that g(x) is a symmetric function and so an odd function. Thus, Ex,yg(x)χS(x) = 0

(exercise 1.8, O’Donnell (2014)) and so, Ex,y(f
(1)
T)i(x)χS(x) = O(τgd |ζk−1|−1

).

4. Output norm: Focusing on function (f
(1)
fT

)i:∥∥∥(f (1)
T)i

∥∥∥2
2
= Ex,y(f

(1)
T)i(x)

2

= Ex,y

(
σ(⟨w(1)

ij ,x⟩+ bi)− σ(⟨w(1)
i+m/2,j ,x⟩+ bi)

)2
≤ Ex,y min

(∥∥∥w(1)
i

∥∥∥2
2
+ b2i ,

∥∥∥w(1)
i+m/2

∥∥∥2
2
+ b2i

)
∥x∥22 = O

(
1

k

)
· d.

The intermediate step uses Cauchy-Schwartz inequality, and the final step uses the values of

w
(1)
ij , w

(1)
i+m/2,j . As f

(1)
T (x) = 1

m

∑m/2
i=1 (f

(1)
T)i(x), we have

∥∥∥(f (1)
T)
∥∥∥2
2
≤ 2

m

∑m/2
i=1

∥∥∥(f (1)
T)i

∥∥∥2
2
=

O
(
d
k

)
.

Corollary B.6. Under the event that the conditions in Lemma B.2 are satisfied by each neuron, which
occurs with probability at least 1− δ w.r.t. the randomness of initialization and sampling, the output
of the model after the first phase can be given as:

f
(1)
T (x) =

k∑
j=1

cjxj +

d∑
j=k+1

cjxj +
∑

S⊆[d]:|S|%2=1,|S|≥3

cSχS(x) +
∑

S⊆[d]:|S|%2=0

cSχS(x),

where

|cj | ≥ Ω(k−1), for all 1 ≤ j ≤ k,

|cj | ≤ O((kd)−1), for all j > k,

|cS | ≤ O(τgd |ζk−1|−1
), for all S ⊆ [d] with |S|%2 = 0,

|cS | ≤ O(d/k), for all S ⊆ [d] with |S|%2 = 1.

As such, the following correlations hold true for all i.

Ex,yf
(1)
T (x) ·Maj(x)xi =

1

2
ci +O(τgd5/3 |ζk−1|−1

).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

If batch size B1 is set ≥ Ω(k2d10/3ζ−2
k−1), such that τg ≤ O(k−1d−5/3 |ζk−1|), then the following

holds for all i. ∣∣∣Ex,yf
(1)
T (x) ·Maj(x)xi

∣∣∣ ≥ Ω(k−1), if i ∈ [k],∣∣∣Ex,yf
(1)
T (x) ·Maj(x)xi

∣∣∣ ≤ o(k−1), if i /∈ [k],

Proof. The form of f (1)
T follows from the fourier coefficient analysis in Lemma B.5.

Now, we can use the formulation to derive

Ex,yf
(1)
T (x) ·Maj(x)xi

=Ex,y

d∑
j=1

cjxj ·Maj(x) · xi + Ex,y

∑
S⊆[d]:|S|%2=1,|S|≥3

cSMaj(x)χS(x) · xi

+ Ex,y

∑
S⊆[d]:|S|%2=0

cSχS(x) ·Maj(x)xi

=Ex,y

d∑
j=1

cjxj ·Maj(x) · xi + Ex,y

∑
S⊆[d]:|S|%2=0

cSMaj(x)χS(x) · xj

=ciEx,yMaj(x) + Ex,y

∑
j,j ̸=k

cjMaj(x)xjxi + Ex,y

∑
S⊆[d]:|S|%2=0

cSMaj(x)χS(x) · xi

=
1

2
ci + Ex,y

∑
S⊆[d]:|S|%2=0

cSMaj(x)χS(x) · xi.

The second step removes Ex,y

∑
S⊆[d]:|S|%2=0 cSχS(x) · Maj(x)xi because Maj(x) is an odd

function, and so Ex,yMaj(x)χS(x)xi will be 0 for odd sized S. Similar argument holds
for removing Ex,y

∑
j,j ̸=i cjMaj(x)xjxi in the final step. We finish the proof by bounding

Ex,y

∑
S⊆[d]:|S|%2=0 cSMaj(x)χS(x) · xi.

As |cS | ≤ O(τgd |ζk−1|−1
) for all S with |S|%2 = 0, we can bound it as∣∣∣∣∣∣Ex,y

∑
S⊆[d]:|S|%2=0

cSMaj(x)χS(x) · xi

∣∣∣∣∣∣
≤O(τgd |ζk−1|−1

) ·

 ∑
S⊆[d]:|S|%2=0

|Ex,yMaj(x)χS(x)xi|

≤O(τgd |ζk−1|−1

) ·

∑
S⊆[d]

|Ex,yMaj(x)χS(x)|

≤O(τgd |ζk−1|−1

) ·

∑
S⊆[d]

|Ex,yMaj(x)χS(x)|

=O(τgd |ζk−1|−1

) ·
∑
S⊆[d]

Θ

(
|S|−1/3(

d
|S|
))

=O(τgd5/3 |ζk−1|−1
).

Here the pre-final step follows from the bounds on the Fourier coefficients of Maj outlined in
Appendix B. Finally, we set B1 ≥ Ω(τ−2

g) is set such that τg ≤ O(k−1d−5/3ζk−1). This makes
O(τgd5/3 |ζk−1|−1

) = o(1/k). Hence, with appropriate batch size B1,

Ex,yf
(1)
T (x) ·Maj(x)xi =

1

2
ci + o(1/k).

The proof follows from the magnitude of ci derived above.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

B.1.2 SECOND STAGE ANALYSIS FOR THE TEACHER

Lemma B.7 (Second stage Training, cf. Theorem 4 in (Barak et al., 2022)). Fix ϵ, δ >
0. Suppose m ≥ Ω(2kk log(k/δ)), d ≥ Ω

(
k4 log(kd/ϵ)

)
. Furthermore, suppose B1 ≥

Ω(|ζk−1|2 k2 log(kd/ϵ)) s.t. the weights satisfy the conditions in Lemma B.2 with τg =
O(|ζk−1| k−1) after the first phase. Then after T2 = Ω(md2k3/ϵ2) steps of training with batch size
B2 = 1, learning rate η2 = 4k1.5/(d

√
m(T2 − 1)) and decay λ2 = 0, we have with expectation

over the randomness of the initialization and the sampling of the batches:

min
t∈[T2]

E [Lθ(t)(x, y)] ≤ ϵ.

Thus, the minimal sample complexity to reach a loss of ϵ is given by

T1 ×B1 + T2 ×B2 = Θ(|ζk−1|2 k2 log(kd/ϵ)) + Θ(md2k3/ϵ2)

= Θ(dk−1k2 log(dk/ϵ) + 2kd2k4ϵ−2 log(k/δ)).

Corollary B.8. Under the conditions outlined in Lemma B.7, after T2 steps of training in the
second phase, if t† denote the time step at which the model achieves the minimum loss, i.e. t† :=
argmint∈[T2] E [Lθ(t)(x, y)], then

E
[
f
(t†)
T (x)xi

]
≤ ϵ, for all i ∈ [d].

The proof follows from the fact that if the correlation along y =
∏

i∈S xi is large (≥ 1− ϵ as hinge
loss is below ϵ), the correlations along other Fourier basis functions will be small. Hence, depending
on how saturated the model is, the signal along the support elements are small.

We will use a slightly modified version of Lemma B.7 with higher sample complexity in the first
phase, to ensure the stronger conditions of Corollary B.6 hold true as well. This will be necessary to
get improved signal to teach a smaller student.12

Corollary B.9 (Modified Version of Lemma B.7). Fix ϵ, δ > 0. Suppose m ≥ Ω(2kk log(k/δ)), d ≥
Ω
(
k4 log(kd/ϵ)

)
. Furthermore, suppose B1 ≥ Ω(|ζk−1|2 k2d10/3 log(kd/ϵ)) s.t. the weights satisfy

the conditions in Corollary B.6 with τg = O(|ζk−1| k−1d−5/3) after the first phase. Then after T2 =

Ω(md2k3/ϵ2) steps of training with batch size B2 = 1, learning rate η2 = 4k1.5/(d
√

m(T2 − 1))
and decay λ2 = 0, we have with expectation over the randomness of the initialization and the
sampling of the batches:

min
t∈[T2]

E [Lθ(t)(x, y)] ≤ ϵ.

Thus, the minimal sample complexity to reach a loss of ϵ is given by

T1 ×B1 + T2 ×B2 = Θ(|ζk−1|2 d10/3k2 log(kd/ϵ)) + Θ(md2k3/ϵ2)

= Θ(dk+7/3k2 log(dk/ϵ) + 2kd2k4ϵ−2 log(k/δ)).

B.2 ANALYSIS FOR THE STUDENT

Proof of Theorem B.1. We will first prove the sample complexity upper bound for progressive distil-
lation, followed by a sample complexity lower bound for distillation.

Sample complexity for Progressive distillation: Under progressive distillation, the label is given by
f
(T1)
T for the first T1 steps. We will follow similar steps as Lemma B.2, where the label is replaced

by f
(T1)
T . Claim B.3 changes, while Claim B.4 stays the same. We will showcase the change in

Claim B.3 here.

12We haven’t optimized the error bounds in Corollary B.6. Our sample complexity bounds are likely loose in
Corollary B.9

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Figure 7: Larger models learn sparse parity faster. A larger model has more width (MLP, left)
or more attention heads (Transformers, right). The results are for (100, 6)-parity, aggregated over 5
runs for each setup.

At initialization, the population gradient of the weight vector in neuron i at coordinate j is given by

Ex,y∇w̃
(0)
ij

ℓDL(x, y; f
(0)
S , fT)

= −Ex,y∇w̃
(0)
ij

f
(0)
S (x)f

(T1)
T (x)

= −aiEx,yI
[
⟨w̃(0)

i ,x⟩+ b̃i ≥ 0
]
f
(T1)
T (x)xj

= −aiEx,y

(
1

2
+

1

2
Maj(w̃(0)

i ,x)

)
f
(T1)
T (x)xj

= −ai
1

2
Ex,yf

(T1)
T (x)xj − ai

1

2
Ex,yMaj(w̃(0)

i ,x)f
(T1)
T (x)xj ,

where the relation between I
[
⟨w̃(0)

i ,x⟩+ b̃i ≥ 0
]

and Maj(w̃(0)
i ,x) follows because of

∣∣∣b̃i∣∣∣ < 1 at
initialization. From Corollary B.6,∣∣∣Ex,y∇w̃

(0)
ij

ℓDL(x, y; f
(0)
S , fT)

∣∣∣ ≥ Ω(k−1), if j ∈ [k],∣∣∣Ex,y∇w̃
(0)
ij

ℓDL(x, y; f
(0)
S , fT)

∣∣∣ ≤ o(k−1), if j /∈ [k].

Thus, a fourier gap exists between the population gradients on in-support and out-of-support
coordinates in the gradients. We can then apply Claim B.4 to show that a finite batch size of
B1 ≥ Ω(k2 log(dm̃/δ)) is sufficient to maintain this gap between the coordinates in support and out
of support. Thus, the change in the necessary sample complexity comes from the reduced sample
complexity in the first phase. The proof for the second phase training is exactly equal to the proof for
the teacher in Theorem B.1.

Sample complexity for Distillation: On the other hand, for the teacher checkpoint with lossO(d−c),
the correlation to the monomial terms in the support is bounded by O(d(−c)) (by Corollary B.8). If
we want to learn from the correlations to the support, we need the number of samples to be at least
Ω(d2c) as the gradient noise needs to be lower than O(d−c) (by Claim B.4). To learn the support
from the true label, we need the number of samples to be at least Ω(dk−1), by the following result:

Lemma B.10 (Width-optimization trade-off, cf. Proposition 3 in (Edelman et al., 2023)). For δ > 0,

gradient noise τg > 0, and model width m > 0, if T ≤ 1
2

(
d
k

) δτ2
g

m , then there exists a (d, k)-sparse
parity such that w.p. at least 1 − δ over the randomness of initialization and samples, the loss is
lower bounded as L(f (t)

T) ≥ 1− τg for all t ∈ {1 · · ·T}.

This result implies that for a fixed batch size (and hence a fixed τg), we either require a bigger width,
or more number of gradient steps (which translates to sample complexity since we are using fresh
samples each batch). Hence, for the model to learn the support from a combination of the two
components, it needs a sample complexity at least Ω(dmin(2c,k−1)/m̃).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

C RESULTS ON SPARSE PARITY AND ITS GENERALIZATION

C.1 ADDITIONAL RESULTS ON SPARSE PARITY WITH MLP

We take both the teacher and student models to be 1-hidden-layer MLPs with ReLU activations. The
teacher has a hidden width of 5 × 104, and the students are of widths 102 or 103. All models are
trained using SGD with batch size 1 for 20M steps on sparse parity data with n = 100 and k = 6
(Definition 3.1). The support is set to be the first 6 coordinates of the input vector without loss of
generality. The learning rate is searched over {10−2, 5 × 10−3, 10−3}. Evaluation is based on a
held-out set consisting of 4096 examples, and we report the average across 3 different training seeds.
For one-shot distillation, we use the teacher checkpoint at the end of training (20M checkpoint), at
which point the teacher has fully saturated. For progressive distillation, we use N = 200 equally
spaced teacher checkpoints that are 0.1M steps apart.

0.95 1.00 1.05 1.10
Training Steps 1e7

0.6

0.8

1.0

Ac
cu

ra
cy

1
2

3

Teacher's accuracy behavior

0.95 1.00 1.05 1.10
Training Steps 1e7

0.00

0.05

0.10

Ab
so

lu
te

 C
or

re
la

tio
n

1 2 3

Corr. to degree-1 monomials

1-6
Rest

0 1 2
Training Steps 1e6

0.6

0.8

1.0

Ac
cu

ra
cy

(2, 1M)-progressive

candidate 1
candidate 2
candidate 3

Figure 8: Repeated experiments from Figure 2 for a student of width 1000.

5 6 7 8
Training Steps 1e6

0.50

0.75

1.00

Ac
cu

ra
cy

1
2

3

Teacher's accuracy behavior

0 2 4
Steps 1e6

0.6

0.8

1.0

Ac
cu

ra
cy

(2, 0.1M)-progressive

candidate 1
candidate 2
candidate 3
one-shot

6 7
Training Steps 1e6

0.00

0.02

0.04

Ab
so

lu
te

 C
or

re
la

tio
n

1 2 3
Corr. to degree-1 monomials

1-6
Rest

6 7
Training Steps 1e6

0.00

0.02

0.04

Ab
so

lu
te

 C
or

re
la

tio
n

1 2 3
Corr. to degree-2 monomials

1-6
Rest

6 7
Training Steps 1e6

0.00

0.02

0.04

Ab
so

lu
te

 C
or

re
la

tio
n

1 2 3
Corr. to degree-3 monomials

1-6
Rest

Figure 9: Repeated experiments from Figure 2 but for a different teacher. For (2, 0.1M) progressive
distillation, the checkpoint that lies in the middle of the second phase accelerates training the most.
In Figure 2, we used a teacher that was trained with learning rate 5 × 10−3. The correlation plot
for the teacher to degree-1 monomials had a clear gap for degree-1 monomials in-support and
out-of-support at the middle of the second phase (indicated by candidate 2). However, for a teacher
that is trained with a higher learning rate 10−2, we didn’t find such a clean gap in correlations for
degree-1 monomials. On the other hand, correlations to degree-2 and degree-3 monomials showed
a clean gap between in-support and off-support variables at the middle of the phase transition. Hence,
the student needn’t learn only from degree-1 monomials to get training acceleration, any low degree
monomials suffice to teach the student about the support. Rest for degree-2 monomials refers to all
monomials of the form xixj where atleast one of i, j /∈ S. Similar definition for degree-3 monomials.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

C.2 LEARNING WITH TRANSFORMERS: PARALLEL SEARCH WITH ATTENTION HEADS

The benefit of progressive distillation and the implicit curriculum is not specific to MLP. This section
presents similar results with Transformers (Vaswani et al., 2017). The d-dimensional input vector is
now treated as a length-d sequence, and the label is predicted using the last token’s output. We fix the
support S to be the first 6 coordinates of the sequence. Note that unlike MLP, Transformer’s learning
is not permutation-invariant to the location of S due to the causal mask. Nevertheless, given the same
S, the comparison on learning speed is still meaningful.

For Transformers, the parallel queries come from both the MLP width and also the number of attention
heads. To illustrate this, consider the following two solutions (which we formalize in Appendix C.2.1)
to sparse parity: The first solution uses attention to locate the support and then uses MLP to compute
the product of the in-support variables. The second solution copies over all variables to the final
position, whose MLP is then responsible for both identifying the support and computing the product.
The second solution is less interesting as it reduces to an MLP, so we focus on the first solution in the
following, which utilizes the attention mechanism unique to Transformers.

(R6) More attention heads helps with the search for support Our experiments are based on 2-layer
Transformers 13 with 8 dimensions per attention head. As shown in Figure 7 (right), increasing the
number of heads makes learning faster. There are clear phase transitions similar to the MLP case.

Ablation with other ways to vary the model size Most Transformer experiments in this work
keep the per-head dimension to be fixed and vary the number of attention heads between the teacher
and the student. The MLP input dimension is the sum of the attention head dimensions, so a
student with fewer heads will have a smaller MLP than the teacher, which is preferable in terms of
efficiency. Fixing the per-head dimension is a widely adopted setup in practice, such as in the Llama
series (Touvron et al., 2023). We now additionally consider two other ways to vary the model size. In
particular, we vary the number of heads, while 1) fixing the hidden dimension (i.e. the total dimension
of all heads concatenated) to be 256, or 2) fixing the dimension of each head to be 256 and averaging
the output from each head, in which case the hidden dimension is also 256. These two setups are less
common in practice but nevertheless serves as complementary evidence: the performance difference
comes solely from the number of attention heads, as the MLP dimension is kept the same. As shown
in Figure 10 (b,c), increasing the number of attention also increases the training speed in these two
setups.

(a) Per-head dimension = 8 (b) Hidden dimension = 256 (c) Dimension 256, averaging heads
Figure 10: Increasing the number of attention heads speeds up training. Each plot compares the
accuracy throughout training for 2-layer models with various heads, while fixing: (a) the per-head
dimension to 8; (b) the MLP hidden dimension to 256; (c) both the per-head and MLP hidden
dimension to 256, by averaging (rather than concatenating) the heads. We report runs with the
learning rate that has the highest mean accuracy and break tie with training speeds. The shadows
show the variances of the runs.

Ablation with 2-shot distillation We repeat the 2-shot distillation ablation for MLP. We first
confirm that the low-degree curriculum described in Section 3.1 is also observed in Transformers. As
shown in Figure 12, the 2-layer 32-head teacher model exhibits significantly higher correlation with
the in-support monomials (i.e. {xi}i∈S than with off-support monomials during the phase transition.

13We use 2 layers since 1-layer Transformers are hard to train empirically, despite being representationally
sufficient to solve sparse parity.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Figure 11: In-support attention growth co-occurs with accuracy increase Attention on individual
coordinates on or off the support of the sparse parity, taking the median of 1024 random binary input
sequences. The shade highlights the teacher’s phase transition period. The model accuracy is marked
by the gray dashed line, with scale adjusted for better display. The two subfigures show the same
type of results but with different randomness seeds.

Figure 12: Low-degree curriculum in Transformers on (100, 6)-sparse parity. The x-axis shows
the training steps, and y-axis shows the 2-layer 32-head teacher’s correlation with in-support (orange
lines) vs off-support (blue lines, aggregated into mean and standard deviation) degree-1 monomials.
The black dotted lines mark the accuracy, scaled for better display. The correlation values are
calculated using 100k randomly drawn sequences. The 4 subplots correspond to models trained using
4 random seeds.

14 Then, we show in Figure 13 that using as few as 1 intermediate checkpoint suffices to significantly
speeds up the training of the student.

Ablation with various temperatures As mentioned in Section 2, our progressive distillation results
use a low temperature in order to remove potential favorable regularization effects from soft labels.
We chose a temperature of τ = 10−4 for sparse parity, where the output dimension is 2. In Figure 14,
we empirically confirm that setting the temperature to be below 0.01 is sufficient to get results that
are qualitatively similar to using τ = 0 (i.e. taking the argmax). Note that using a higher temperature
such as τ = 1 can make learning slower despite potentially having more regularization effects from
softer labels. We leave understanding the exact effect of temperature to future work.

14Note that the upper right subplot in Figure 12 has a second correlation spike with the in-support variables.
However, supervising with this second checkpoint does not provide acceleration. This suggests that there might
be mechanisms other than the low-degree curriculum at play.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Figure 13: 2-shot progressive distillation with Transformers: Compared to cross-entropy training
or one-shot distillation, transformers learn faster with progressive distillation, where the intermediate
checkpoints are taken either at regular 10k intervals (“progressive”), or during the phase transition
(“progressive (2-shot)”). The two vertical lines show the teacher training steps at which the two
checkpoints for 2-shot distillation are chosen. We set the teacher temperature to be τ = 10−4 for
progressive distillation, and τ = 1 for one-shot distillation.

Figure 14: The benefit of progressive distillation holds with hard labels, as shown by comparing
2-shot progressive distillation with different temperatures. The two gray vertical lines mark the
training steps at which the teacher checkpoints are taken.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

C.2.1 TWO TRANSFORMER SOLUTIONS FOR SPARSE PARITY (PROPOSITION C.1 AND
PROPOSITION C.3)

We consider a simplified version of a Transformer block, without the residual connection or the
layernorm:

fblock = f
(L)
mlp ◦ fattn,

where
fattn(X;WQ,WK ,WV) := CausalAttn(XWQW

⊤
KX⊤)XWV ,

with WQ,WK ,WV being the query, key, value matrices, and f
(L)
mlp(x; {Wl, bl}l∈[L]) is a L-layer MLP

that recursively apply f
(l+1)
mlp (x) = σ(Wl+1f

(l)
mlp(x) + bl+1) position-wise. σ is the relu function for

l ∈ [L− 1], and is the identity function for l = L.
Proposition C.1 (Attention support selection). (d, k)-sparse parity can be solved by a 1-layer
Transformer with a 2-layer MLP, whose attention weights satisfy αi,d ∝ exp(c1[i ∈ S]) for some
large constant c > 0. The MLP has hidden dimension 4(k + 1), L∞ norm bounded by 4k(k + 1).

Proof. The idea is that the attention selects the k in-support variables, and the MLP computes the
product of these variables.

To select the in-support variables, we want the attention weight αi,d ∝ exp(c1[i ∈ S]), for some
large constant c. This can be achieved by having the projection matrices WQ,WK focus only on the
position and ignore the tokens. In particular, let z denote the input sequence, and let the embedding
of a token be xi = vzi + pi, where {v0,v1} are embeddings for the binary token 0 or 1, and pi is the
position encoding for position i. Take {v0,v1}, {pi}i such that vzi⊥pi. Let c > 0 be a large enough
constant. Choose WQ,WK such that for any i ∈ [d], x⊤

i W
⊤
QWKxd = p⊤i W

⊤
QWKpd = c · 1[i ∈ S].

This ensures that αi,d ∝ exp(c1[i ∈ S]).

Then, the role of attention is to average over the in-support tokens. For simplicity of exposition, let’s
take c→∞ for now (i.e. using saturated attention (Merrill et al., 2022)), so that αi,n → 1[i∈S]

k ; that
is, the attention weights at the last position average over the in-support variables. Take WV to be a
vector, such that WV ignores the positional information and the input token 0, and only preserves the
input token 1, i.e. WV pi = 0, ∀i ∈ [d], WV v0 = 0, and WV v1 = 1.

Next, the MLP needs to compute the parity function over the k in-support variables. The input to
the MLP is hence proportional to (

∑
i∈S I[zi = 1])v1, and the size of the set of inputs is k + 1. To

determine the size of the MLP, we use the following lemma:

Lemma C.2 (1D discrete function interpolation with an MLP (Lemma 1 in Liu et al. (2022))). Let X
be a finite subset of R, such that |x| ≤ Bx for all x ∈ X , and |x− x′| ≥ ∆ for all x ̸= x′ ∈ X . Let
f : X → Rd be such that ∥f(x)∥∞ ≤ By for all x ∈ X . Then, there is a 2-layer ReLU network for
which

fmlp(x+ ξ; θmlp) = f(x) ∀x ∈ X , |ξ| ≤ ∆/4.

The inner dimension is d′ = 4|X |, and the weights satisfy

∥W1∥∞ ≤
4

∆
, ∥b1∥∞ ≤

4Bx

∆
+ 2, ∥W2∥∞ ≤ By, b2 = 0.

Setting Bx = 1, By = 1, and ∆ = 1
|S| , the parity function over these k + 1 input values can be

approximated by a 2-layer MLP with inner dimension 4(k + 1), with norm bounded by 4k(k + 1).

As a concrete example, one way to satisfy the requirements above is to set the attention weights to
v1 = WV = e1 := [1, 0, 0, 0], v0 = e2 := [0, 1, 0, 0]. Set pi = pn = e3 for i ∈ S, and pi = e4 for

i ̸∈ S. Set WQ = WK = c

[
0 0 1 0
0 0 0 0

]
for some sufficiently large c > 0.

Proposition C.3 (No attention selection). There exists a 1-layer Transformer with 3-layer MLP
that computes k-sparse parity, whose attention weights satisfy αi,d = 1

d . Consequently, the MLP
computes the sparse parity function given the full set of variables.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Proof. The idea is for the uniform attention to copy all tokens to the last position. However, unlike in
Proposition C.1, the attention needs to copy the tokens into a length-d embedding vector, as we need
to preserve the position information in this embedding vector. We need to generalize Lemma C.2
accordingly to handle multi-dimensional inputs:

Lemma C.4 (General discrete function interpolation with an MLP; (Lemma 2 in Liu et al. (2022))).
Let X be a finite subset of Rdin , such that ∥x∥∞ ≤ Bx for all x ∈ X , and ∥x− x′∥∞ ≥ ∆ for all
x ̸= x′ ∈ X . Let f : X → Rdout be such that ∥f(x)∥∞ ≤ By for all x ∈ X . Then, there is a 3-layer
ReLU network for which

fmlp(x+ ξ; θmlp) = f(x) ∀x ∈ X , |ξ| ≤ ∆/4.

Letting Xi denote the set of unique values in coordinate i, the inner MLP dimensions are as follows:

d1 = 4
∑

i∈[din]

|Xi|, d2 = |X |.

The weights satisfy

∥W1∥∞ ≤
4

∆
, ∥b1∥∞ ≤

4Bx

∆
+2, ∥W2∥∞ ≤ 1, ∥b2∥∞ ≤ din, ∥W3∥∞ ≤ By, b3 = 0.

Then, the MLP at the last position computes the sparse parity over the k coordinates while ignoring
the others. Hence the effective input set is |X | = 2k. Setting Bx = 1, By = 1, and ∆ = 1, there
exists a 3-layer MLP with width 2k and norm bound 2k+2 by Lemma C.4.

Preliminary interpretability analysis: Transformer does utilize attention in practice We
observe that the model focuses attention on relevant tokens and that the amount of attention weights
put on the support is tightly correlated with the accuracy, which suggests that the model indeed
utilizes the attention mechanism in learning sparse parity.

Specifically, Figure 11 shows the results on 2-layer 16-head GPT-2 models. The attention weights
are for the final position, whose logits are used for computing the binary parity label for the entire
sequence. We track the attention weights along length-2 paths from the first and the second layer.
For example, for a single-head model, let a(l)i ∈ ∆d−1 denote the lth-layer attention vector at the
ith position; then, the on-support attention for a given sample is computed as ⟨a(2)d),v

(1)
T ⟩, where

[v
(1)
T]i :=

∑
j∈T a

(1)
i [j] is the total amount of first-layer attention weights that the ith position puts

on the support T . For multi-head models, a(l)i ∈ ∆d−1 is defined as the sum of attention vectors
from all heads, and the rest is computed similarly.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

0 1 2
Training Steps 1e7

0.5

1.0

Ac
cu

ra
cy

CE
progressive
one-shot
teacher

(a) Width-100 student.

0 1 2
Training Steps 1e7

0.5

1.0

Ac
cu

ra
cy

CE
progressive
one-shot
teacher

(b) Width-1000 student.
Figure 15: 8-way classification using a hierarchical decision tree of depth 3, with each node repre-
sented by 5-sparse parity. Progressive distillation helps student learn faster from a width-50k teacher,
compared to one-shot distillation from the final checkpoint.

1 2 3 4 5 6 7 8

Level 1

Level 2

Level 3

Figure 16: An illustration of hierarchical data generation, for a 3-level tree with 3 variables per
feature. A feature corresponds to a tree node, each marked by a rectangle. The product of the binary
variables in a feature determines which child to take: the left child is chosen if the product evaluates
to −1, and the right child is chosen if the product is +1. The final label for an example is decided
based on the tree leaf reached.

C.3 A HIERARCHICAL GENERALIZATION OF SPARSE PARITY

This section considers an extension of sparse parity, where the labels are given by a decision tree.
Sparse parity can be considered as a special case with tree depth 1.

Definition: The input x is a boolean vector picked uniformly at random from the d-dimensional
hypercube {±1}d, and the label y ∈ [K] where K := 2D for some fixed D ∈ N. The underlying
labeling function for y follows a binary decision tree of depth D, whose leaves correspond to class
labels. The branching at a node depends on a sparse parity problem. An example visualization is
provided in Figure 16.

More formally, the nodes in the decision tree are represented by a set of sparse parity problems
S = {T1, T2, · · · , TK−1}, where Tj is determined by product of a subset of size k variables selected
from the dimensions of the input x (e.g. x1x2 · · ·x5 for k = 5). An input x belongs to the class
i ∈ [K] iff

[

D∏
j=1

I
[
c(i, j)T

v
(i)
j
(x) > 0

]
> 0, where

c(i, j) =

{
1, if i ≥ 2D−j

−1, otherwise

Here, v(i)1 , · · · v(i)D denote the features in S that lie on the path joining the root of the decision tree to
the leaf representing the label i. An example is given in Figure 16.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

0 2 4 6
1e6

0.00

0.01

0.02

0.03

Ab
so

lu
te

 C
or

re
la

tio
n Corr. to degree-1 monomials

1-5
Rest

0 2 4 6
Training Steps 1e6

0.00

0.01

0.02

0.03
Corr. to degree-1 monomials

6-10
Rest

0 2 4 6
1e6

0.00

0.01

0.02
Corr. to degree-1 monomials

16-20
Rest

0 2 4 6
1e6

0.00

0.01

0.02

Ab
so

lu
te

 C
or

re
la

tio
n Corr. to degree-2 monomials

1-5
Rest

0 2 4 6
Training Steps 1e6

0.00

0.01

0.02
Corr. to degree-2 monomials

6-10
Rest

0 2 4 6
1e6

0.000

0.005

0.010

0.015
Corr. to degree-2 monomials

16-20
Rest

Figure 17: Setting: 8-way classification using a hierarchical decision tree of depth 3, with
each node represented by 5-sparse parity. The relevant features for class y = 1 are
x1 · · ·x5, x6 · · ·x10, x16 · · ·x20 at tree levels 3, 2, and 1 respectively (Figure 16). The irrele-
vant features are x36, · · · , x100. Here we plot the magnitude of correlation to degree-1 monomials
Ex,y[pT (x)]1xi for each i in the relevant feature groups for class 0. Because the degree-1 monomials
show noisy correlations, we also report the magnitude of correlation to degree-2 monomials
Ex,y[pT (x)]1xixj for each i, j in the relevant feature groups for class 1. For degree-2 monomials,
rest refers to correlation to monomials of the form xixj where atleast one variable is outside support
variables (x36, · · · , x100). The correlations to degree-1 (or 2) monomials on the relevant features
spike at different training steps.

3 5 10
Training Steps(×106)

0.5

1.0

Ac
cu

ra
cy

1

2

3
4

5 6

Teacher behavior

Candidates
 for (3, T)-
progressive

0 2 4
Steps 1e6

0.5

1.0

Ac
cu

ra
cy

(3, 2M)-progressive(= 1)

3.5M(3)-6.0M(6)
2.5M(1)-6.0M(6)
3.5M(3)-4.5M(5)
3.5M(3)-4.0M(4) 0 2 4

Steps 1e6

0.5

1.0

Ac
cu

ra
cy

(3, 2M)-progressive(= 10 4)

3.5M(3)-4.5M(5)
4.0M(4)-4.5M(5)
one-shot

Figure 18: Setting: 8-way classification using a hierarchical decision tree of depth 3, with each node
represented by 5-sparse parity. (3, 2M)-progressive distillation from 3 checkpoints on a 1000 width
student; 2 intermediate teacher checkpoints are used each for 2M steps, and then the final checkpoint
is used till end of training. Observations: (a) Teacher shows a phase transition in accuracy during
training. 6 candidate checkpoints for (3, 2M)-progressive distillation have been marked, out of
which 2 are selected in each setting. The checkpoint at 6M lies outside the phase transition of the
teacher. (b): We show the behavior of a few representative settings. Two main observations: (1)
Selecting only a single checkpoint during the phase transition of the teacher is sub-optimal, as shown
by plots that contain 6M checkpoint as an intermediate checkpoint, (2) 2 checkpoints during the
stage transition suffice to train the student to 100% accuracy, however the performance can heavily
depend on their selection. Figure 17 shows that the teacher learns the low-level features at 4.5M
checkpoint, making it crucial for distillation. (c): Even with extremely low temperature, the benefit of
the phase transition checkpoint persists, suggesting that the monomial curriculum, not regularization,
is the key to the success of progressive distillation.

Experiment Setup: In this section, we focus on 8-way classification, where the data is generated
by a tree of depth 3. Each feature in S is given by a product of 5 variables. We keep the variables
distinct in each feature, i.e., T1 = x1x2 · · ·x5, T2 = x6x7 · · ·x10 and so on.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

3 5 10
Training Steps(×106)

0.5

1.0

Ac
cu

ra
cy

1

2

3
4

5 6

Teacher behavior

Candidates
 for (3, T)-
progressive

0 2 4
Steps 1e6

0.5

1.0

Ac
cu

ra
cy

(3, 2M)-progressive(= 1)

3.5M(3)-6.0M(6)
2.5M(1)-6.0M(6)
3.5M(3)-4.5M(5)
3.5M(3)-4.0M(4) 0 2 4

Steps 1e6

0.5

1.0

Ac
cu

ra
cy

(3, 2M)-progressive(= 10 4)

3.5M(3)-4.5M(5)
4.0M(4)-4.5M(5)
one-shot

Figure 19: Same experiments as Figure 18 for a width-100 student.

Experiments and Observations: We conduct similar experiments as our sparse parity experiments.
In Figure 15, we show that progressive distillation helps train a smaller student as fast as the teacher,
and even reach 100% accuracy.

Low-degree curriculum: We show the correlations of the teacher’s logits for a particular label and
its relevant features in Figure 17. We observe similar spikes in the degree-1 monomials involving
the support of the features. However, because there are multiple features defining a label class, with
features at level 1 being shared among multiple labels, we see a difference in the time-frames at which
the spikes appear in the degree-1 monomials of the features. As such, a single teacher checkpoint
won’t give information of entire support to a student to learn from.

Effectiveness of (3, T)-progressive distillation: We consider progressive distillation with 3 check-
points, where the student only uses 2 intermediate teacher checkpoint in addition to the final one. We
show in Figure 18 that there exists a (3, 2M)-progressive distillation that can help train a student
successfully. Furthermore, we demonstrate that these two intermediate checkpoints must be posi-
tioned within the phase transition to achieve 100% accuracy in training the student. This supports the
hypothesis that a low-degree curriculum is crucial for progressive distillation since the correlations
with degree-1 monomials are high only during the phase transition period. Additionally, we find that a
distillation strategy with only a single intermediate checkpoint and the final checkpoint is insufficient
for the student to achieve 100% accuracy, which aligns with our observation that degree-1 monomials
for different features emerge at different steps. However, we also note that even within the phase
transition, the optimal selection of the two checkpoints can significantly impact the student model’s
performance.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

D EXTENSIVE STUDY ON PCFGS

D.1 A FORMAL DESCRIPTION OF PCFGS

We study progressive distillation using probabilistic context free grammar (PCFG). Compared to
sparse parity and hierarchical data, PCFG is a more realistic proxy for natural languages and has
been commonly used as a sandbox for mechanistically understanding the training of language models
(Zhao et al., 2023; Allen-Zhu & Li, 2023b). A PCFG consists of a set of non-terminals (NTs) and
grammar rules involving the non-terminals that specify the generation process of a sentence. For
example, for the sentence The cat ran away, the grammatical structure dictates words the, cat, ran,
away as determinant, noun, verb, and adverb. ran and away together represent a verb
phrase, and the, cat together represent a noun phrase (see Figure 3). For a language model to
generate grammatically correct sentences, it needs to learn the underlying grammatical rules.

A probabilistic context-free grammar (PCFG) is defined as a 4-tuple G = (N , v,R,P), where

• N is the set of non-terminals, which can be considered as internal nodes of a parse tree. There is a
special non-terminal S, known as the start symbol.

• [v] is the set of all possible words, corresponding to parse tree leaves.
• R denotes a set of rules. For all A,B,C ∈ N , there is a rule A→ BC inR. Furthermore, there

are rules A→ w for all A ∈ N , w ∈ [v].
• P specifies the probability of each rule to be used in the generation process. For a rule r ∈ R,

if P[r] = 0, then the rule is an invalid rule under the generation process. Furthermore, for each
non-terminal A ∈ N , on all rules r ∈ R of the form A→ ·,

∑
r∈R:r=A→· P(r) = 1. We denote

R(A) as the set of all non-zero rules from A.

A concrete example of PCFGs is to model grammars of natural languages (Jurafsky, 2000). In this
case, language tokens form the vocabulary of PCFG, while parts of speech such as nouns, verbs or
noun phrases, verb phrases form the non-terminals. Rules like noun phrases being composed of a
determinant and a noun form the core of such PCFG, while the probability of each rule is determined
by their occurrences across sentences in the language.

Data generation from PCFG Given a PCFG G = (N , v,R,P), a string is generated in a recursive
fashion as follows: we start with s1 = ROOT at step 1, and maintain a string st ∈ ([v] ∪ N)∗ at
step t. At step t, if all characters in st belong to [v], the generation process terminates, and st is the
resulting string. Otherwise, for each character A ∈ st, if A ∈ N , we sample a rule r ∈ R of the form
A→ · with probability P(r) and replace A by characters given by r(A).

Tracking n-grams As outlined in Section 4, we track the behavior of trained models by measuring
the behavior of their output on the neighboring n-gram context. In the context of PCFGs and
masked language modeling for BERT, Zhao et al. (2023) theoretically demonstrate that one of the
optimal algorithms for predicting masked tokens is a dynamic programming algorithm based on the
inside-outside algorithm (textbook reference: Jurafsky (2000)). This algorithm computes “inside
probabilities” for spans of tokens of various lengths, representing pairwise token dependencies
within those spans. For example, in the setting of Figure 3, the inside probability for the span “The
cat” indicates the likelihood that these two tokens co-occur. The dynamic programming approach
calculates these inside probabilities hierarchically, with smaller spans forming the basis for larger
spans. The model’s performance ultimately depends on how accurately it represents span probabilities
across different lengths. For instance, if the token “cat” is masked in the sentence “The cat ran away”,
the success of the model depends on the representation of the likelihood of the spans “The cat”, “cat
ran”, “The cat ran”, and “The cat ran away”. We denote the neighboring tokens in the n-gram window
span of a token as its n-gram context.

D.2 VARIANTS OF PROGRESSIVE DISTILLATION

Comparisons at different lengths We follow common practices for training self-attention models
for both one-shot distillation and progressive distillation. We use Adam optimizer (Kingma & Ba,
2014), 512 batch size training (to imitate large batch training), and a cosine learning rate schedule

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

(Loshchilov & Hutter, 2016) which is generally used to train large language models. As cosine
learning rate depends on the total training horizon, in order to show that progressive distillation
converges faster than one-shot distillation, we compare the two algorithms by varying the number of
training samples for the student. That is, we train the teacher model with 4× 106 training samples
(equal to 8000 steps), and compare the two algorithms for a student model at {1, 2, 4, 8} × 106

training samples (equal to {2000, 4000, 8000, 16000} steps).

Progressive Distillation choices Because we are considering comparisons at different training lengths
for the student, we have to consider a more general version of progressive distillation introduced in
Definition 2.2. In Definition 2.2, progressive distillation is defined by two parameters, (a) number
of teacher checkpoints (N) for supervision, and (b) training steps per checkpoint. We define our
selection criteria for the N checkpoints later. However, after selecting the N checkpoints, we have
the following two variants of progressive distillation.

1. N -shot Equal-split distillation: Here, we simply split the entire student’s training length into
N equal intervals, where the student is supervised by the ith teacher checkpoint in interval
i ∈ [N].

2. N -shot κT0-Equal-split distillation: Here κ ∈ (0, 1], and T0 refers to the total training
length of the teacher. The idea is to decide the allocation on the basis of the training length
of the teacher, instead of the training length for the student. We train the student under the
supervision of each checkpoint for κT0/N training steps. Teacher checkpoints that fail to
fit into the student’s supervision schedule are ignored (corresponding to a large κ), and the
final checkpoint is kept till the end of training if the student is trained for longer than κT0.
We can view 1

κ as the amount of “speed up”; for instance, we recover one-shot distillation
with κ→ 0. Our experiments (Appendix D.2) suggest that κ = 1/2 is a reasonable rule of
thumb that can help the student learn faster than the teacher at any given training length.

In the main paper, in Figures 1, 5 and 6, we have reported performance on PCFG and Wikipedia for
N -shot T0-Equal-split distillation as progressive distillation. We conduct more ablation studies on κ
in Appendix D.2. We keep the exploration of optimal strategies of progressive distillation to future
work.

Selection criteria for N teacher checkpoints: While there are multiple ways in which one can pick
the reference checkpoints to train the student model, we use a simple strategy which is sufficient to
demonstrate the benefit of progressive distillation. Similar to our observation of transition phase for
parity in Section 3, we search for transition phases in the loss behavior of the teacher and select the
first teacher checkpoint roughly in the middle of the transition phase. The rest are picked at multiples
of this initial checkpoint.

D.3 DETAILS ON NON-TERMINAL PREDICTION WITH MULTI-HEAD LINEAR PROBING

Following Allen-Zhu & Li (2023b), we train a position-based linear attention on the model’s em-
beddings to predict the non-terminals at each level of underlying PCFG. We consider a set of linear
functions fr : Rd → R|N |, where r ∈ [H] and H is the number of “heads” in the linear attention
model. If e1, · · · , eL denote the model’s output embeddings for a sequence x1, · · · ,xL, then the
prediction of the model at each index i ∈ [L] is given by

Gi(x) =
∑

r∈[H],k∈[L]

wr,i→kfr(ek),

wr,i→k =
exp(⟨Pi,r, Pk,r⟩)∑

k′∈[L] exp(⟨Pi,r, Pk′,r⟩)
,

for trainable parameters Pi,r ∈ Rd. We train the parameters with logistic regression on 51200
examples and test on a validation set of 1024 examples.

D.4 DETAILS ON THE SYNTHETIC PCFGS

We use 5 synthetic PCFGs considered by Allen-Zhu & Li (2023a) (please see Figure 20 for the
rules involved in the PCFGs). These 5 PCFGs differ in difficulty, based on the number of rules

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

per non-terminal and the ambiguities in the rules per non-terminal. Under a PCFG, each string is
generated by generation trees of depth 7. We give differences in the PCFGs, as outlined by Allen-Zhu
& Li (2023a) below.

• In cfg3b, the PCFG is constructed such that the degree |R(A)| = 2 for every non-terminal
A. In any generation rule, consecutive pairs of symbols on the generated symbols are
distinct. The 25%, 50%, 75%, and 95% percentile string lengths generated by the PCFG are
251, 278, 308, 342 respectively.

• In cfg3i, |R(A)| = 2 for every non-terminal A. However, the consecutive pairs of symbols
needn’t be distinct in generation rules. he 25%, 50%, 75%, and 95% percentile string lengths
generated by the PCFG are 276, 307, 340, 386 respectively.

• In cfg3h, |R(A)| ∈ {2, 3} for every non-terminal A. he 25%, 50%, 75%, and 95% percentile
string lengths generated by the PCFG are 202, 238, 270, 300 respectively.

• In cfg3g, |R(A)| = 3 for every non-terminal A. he 25%, 50%, 75%, and 95% percentile
string lengths generated by the PCFG are 212, 258, 294, 341 respectively.

• In cfg3f, |R(A)| ∈ {3, 4} for every non-terminal A. he 25%, 50%, 75%, and 95% percentile
string lengths generated by the PCFG are 191, 247, 302, 364 respectively.

22|->20 21
22|->20 19 21
22|->21 19 19
22|->20 20
 19|->18 16 18
 19|->17 18
 19|->18 18
 20|->16 16
 20|->16 17
 20|->17 16 18
 21|->18 17
 21|->17 16
 21|->16 17 18
 21|->16 18
 16|->15 15
 16|->13 15 13
 16|->14 13
 16|->14 14
 17|->15 14 13
 17|->14 15
 17|->15 14
 18|->14 15 13
 18|->15 13 13
 18|->13 15
 13|->11 12
 13|->12 11 12
 13|->10 12 11
 14|->10 12
 14|->12 10 12
 14|->12 11
 14|->10 12 12
 15|->10 11 11
 15|->11 11 10
 15|->10 10
 15|->12 12 11
 10|->8 9 9
 10|->9 7 9
 10|->7 9 9
 11|->8 8
 11|->9 7
 11|->9 7 7
 12|->7 9 7
 12|->9 8
 12|->8 8 9
 7|->2 2 1
 7|->3 2 2
 7|->3 1 2
 7|->3 2
 8|->3 1 1
 8|->1 2
 8|->3 3 1
 9|->1 2 1
 9|->3 3
 9|->1 1

22|->21 20
22|->20 19
 19|->16 17 18
 19|->17 18 16
 20|->17 16 18
 20|->16 17
 21|->18 16
 21|->16 18 17
 16|->15 13
 16|->13 15 14
 17|->14 13 15
 17|->15 13 14
 18|->15 14 13
 18|->14 13
 13|->11 12
 13|->12 11
 14|->11 10 12
 14|->10 11 12
 15|->12 11 10
 15|->11 12 10
 10|->7 9 8
 10|->9 8 7
 11|->8 7 9
 11|->7 8 9
 12|->8 9 7
 12|->9 7 8
 7|->3 1
 7|->1 2 3
 8|->3 2
 8|->3 1 2
 9|->3 2 1
 9|->2 1

22|->19 19 20
22|->21 20 19
 19|->18 16 18
 19|->16 16
 20|->17 16 17
 20|->18 18
 21|->16 16 18
 21|->18 17
 16|->13 13
 16|->14 14
 17|->15 15
 17|->15 14
 18|->14 15 13
 18|->14 15
 13|->12 11
 13|->10 12 11
 14|->10 10 10
 14|->10 10
 15|->11 11 10
 15|->11 10 12
 10|->8 7 7
 10|->9 9
 11|->7 7 7
 11|->7 7 8
 12|->7 9 9
 12|->8 7
 7|->3 1 2
 7|->2 3 1
 8|->1 1
 8|->2 2
 9|->1 1 3
 9|->1 2

22|->20 20 21
22|->19 21
 19|->16 17
 19|->18 17
 20|->18 16
 20|->17 16
 21|->17 17 18
 21|->17 18 17
 16|->14 13
 16|->15 13
 17|->13 14
 17|->15 13 15
 18|->15 13 13
 18|->15 14 14
 18|->14 15 15
 13|->12 11
 13|->11 10
 14|->10 12 12
 14|->10 10
 14|->12 12 10
 15|->10 12
 15|->11 11 10
 10|->8 7 9
 10|->9 7
 10|->8 8
 11|->8 7 7
 11|->7 7
 11|->7 9 9
 12|->7 9
 12|->8 7
 12|->9 8
 7|->2 3 2
 7|->1 2 3
 7|->1 3 1
 8|->1 2
 8|->3 3 1
 8|->1 3
 9|->2 1 3
 9|->1 3 3

22|->19 20
22|->20 20 19
22|->20 19 21
 19|->17 17 16
 19|->18 17 16
 19|->18 16 17
 20|->16 17
 20|->18 18
 20|->16 17 17
 21|->16 16
 21|->16 16 18
 21|->18 16
 16|->14 13 13
 16|->13 14
 16|->13 13
 17|->14 13 14
 17|->14 15 13
 17|->15 14
 18|->15 13
 18|->15 15
 18|->14 13 15
 13|->10 12
 13|->11 11 11
 13|->11 11
 14|->11 12
 14|->10 11 10
 14|->10 10
 15|->10 11
 15|->12 10 10
 15|->12 11
 10|->8 8 8
 10|->7 7 7
 10|->7 7
 11|->8 8 9
 11|->9 7
 11|->8 9 7
 12|->7 9
 12|->7 8
 12|->9 9 9
 7|->2 3 1
 7|->1 1
 7|->2 2
 8|->1 3 2
 8|->1 3
 8|->3 3 1
 9|->2 3 3
 9|->2 3
 9|->2 1

cfg3b cfg3i

cfg3h

cfg3g

cfg3f

332213123312113123211322312312111213211322311311

322333123121112131133112132121333331232212131232

221111213322131131131131111113231233133133311331

333332231211311121221111211233312331121113313333

331123333131111333312113211312121133333212111121

213223223322133221113221132323313111213223223221

211133331121322221332211212133121331332212213221

211213331232233312

231221122132232312311233223313313313313312122221

123322331331132132233222123113233113233123231132

331123112311111222312312233121111123122112332321

231221111231331132212223321232133133133133113132

311122211322322113311323312313223323133133113231

222332123132132211313231123331132331112223311232

21123123111132

131231331311332131323223212232123121313121321313

113313333113123232131323213113131232121231332132

322321333311231331231332321312131133131231231311

312133311312321331232131313312131231311212312312

232213131131331133313312322132131312133312131212

1231311232131331313133123232213

113113121222312312113113121222312231112313121212

222312311131212113113123123123123123122313121212

312312312231312231112312311131211231231112312312

231231211231312112313121212231231231231231111212

312231231231312111131131131222312231223123123123

123122313121111231312312113122313121111312231231

221131231212122312313123123121112113

312312132132123323213132112332321233213123213132

313211232131221123312321232121123312313221213212

331312321213212332321123323121313213123221123323

132121313122112332312123213213231312123213232131

123213123132321321313221313232313212112331231322

112321312321313123132213121321233122132131231321

313123132213213132

a sample from cfg3b:

a sample from cfg3i:

a sample from cfg3h:

a sample from cfg3g:

a sample from cfg3f:

Figure 20: The synthetic PCFGs considered from Allen-Zhu & Li (2023b). Vocabulary is {1, 2, 3}
in each setting. More details on the differences between the PCFGs are in Appendix D.4.

D.5 EXTENSIVE EXPERIMENTS ON BERT

We first give some details on the architecture of BERT and its pre-training loss function.

D.5.1 A PRIMER ON BERT

BERT (Devlin et al., 2018) is an encoder-only transformer that is trained with masked language
modeling (MLM) (Figure 21). In encoder-only architecture, the contextual information are shared
across the tokens using bidirectional self-attention layers. During pre-training, the model is trained
with MLM loss, that perturbs certain fraction of the tokens in the input at random and the model is

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

trained to predict the original tokens at positions of the perturbed tokens. The pre-training recipe
follows a 80-10-10 principle, where tokens at 80% of the perturbed positions are replaced by a special
⟨mask⟩ token, while tokens at 10% of the perturbed positions are replaced by random tokens from
the vocabulary, while remaining positions are filled with the original tokens themselves. We stick to
this principle, while creating data for training from different PCFGs.

Model architecture considered: We train depth-4 BERT models with {8, 16, 32} attention heads,
each of which operates on 8 dimensions, using a 30% masking rate. The head dimension is fixed to 8,
with the corresponding width of the 4 models being {64, 128, 256} respectively.

The cat <mask> away

ran 0.4
danced 0.1
cried 0.01

BERT

Bi-directional attention

Figure 21: An informal representation of BERT (Devlin et al., 2018). The model uses bidirectional
attention layers to share contextual information across the tokens. During pre-training, few of input to-
kens are replaced by special < mask > tokens, and the model is trained to predict the masked tokens.

D.5.2 DATA GENERATIONS

Data for masked language modeling: We generate 8 × 106 random sequences for each PCFG.
We follow Devlin et al. (2018) to create masked input sequences and output labels, i.e. for each
sampled sequence we mask p% of tokens for input and the labels are given by the tokens in the
masked positions of the original sequence. We also follow the 80-10-10 principle, where for input,
the tokens in 80% of the masked positions are represented by a special mask token [mask], while
10% of the masked positions are represented by a randomly sampled token from the vocabulary and
the remaining 10% are represented by tokens from the original sequence.

D.6 HYPERPARAMETER DETAILS

We use a batch size of 512 in each setting. We use Adam (Kingma & Ba, 2014) optimizer with
0 weight decay, β1, β2 = (0.9, 0.95). We use cosine decay learning rate. We extensively tune the
learning rate in the grid {10−2, 7.5× 10−3, 5× 10−3, 2.5× 10−3, 10−3} in each setting. We train
the teacher on 4× 106 training samples (equal to 8× 103 steps).

Distillation experiments at different training horizons: To thoroughly compare the sample
complexity requirements of one-shot and progressive distillation, we evaluate both algorithms using
a smaller student model across various training sample sizes. The smaller student is trained with
{1, 2, 4, 8}×106 training samples (equal to {2×103, 4×103, 8×103, 16×103} training steps) and
the performance is compared in each horizon. For example, Figure 1 (right) plot contains 4 distinct
points for each method which represents the performance of the smaller model under the 4 different
training steps (sample sizes).

Training split for (2, T)-progressive distillation for PCFGs: We report the performance in
Figure 4 for 4000 training steps. We find the best training time split T between the intermediate
checkpoint and the final checkpoint in the grid {500, 1000, 15000, 2000}, i.e. the student is trained

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

0.6 1 2 4 8
Steps of Training(×103) (log-scale)

10 3

10 1

M
ed

ia
n

(o
ve

r x
,i)

Mclose for n-grams

n
3
5

7
9

0.6 1 2 4 8
Steps of Training(×103) (log-scale)

60

80

100

Ac
cu

ra
cy

NT prediction at different levels

4
3

2
1

Figure 22: We conduct additional probing experiments on the teacher’s (4 layer, 32 attention head
BERT) logits during training to indicate curriculum learning. (left) TV distance between model’s
predictions with full context and context with only n-gram tokens (Mclose). We observe that the
teacher’s logits get closer to higher n-gram context predictions, and the inflection appears at the middle
of the second phase (our first selected checkpoint for progressive distillation) (right) Performance of
linear classifier probe on teacher’s intermediate checkpoints to predict the non-terminals at different
levels of the PCFG generation tree. We observe that the probe’s performance is > 95% of the final
probe performance by the middle of the second phase, indicating the model has almost learned the
underlying PCFG features by this time.

with the logits of the first intermediate teacher checkpoint till step T and then the teacher is switched
to the final teacher checkpoint.

Low-temperature distillation: We focus on distillation with a small temperature of τ = 10−4 (in
Equation (1)), for the following reasons. First, as discussed in Section 3, it removes any potential
regularization effects induced by soft labels. Moreover, using such a small temperature corresponds
to training with the top-1 predictions of the teacher model, which is more memory-efficient compared
to training with the full teacher logits, especially when the vocabulary size is large.

D.7 ADDITIONAL CURRICULUM PROBING ON THE TEACHER’S CHECKPOINTS

In this section, we study the performance of different progressive distillation variants and compare
them to one-shot distillation. As per our experiments in Figure 4, we use the 8 teacher checkpoints
selected for supervision. In Figure 24, we compare one-shot distillation to the two variants of
progressive distillation, i.e. 8-shot Equal-split and 8-shot T0

2 -Equal-split distillation. We observe that
both variants of progressive distillation help the student learn faster than one-shot distillation, and the
gap diminishes as the students are trained for longer. The optimal strategy for progressive distillation
depends on the training budget for the student. For training steps lower than the teacher’s T0 budget,
T0

2 -Equal-split distillation slightly performs better than T0-Equal-split distillation, which changes as
we train longer. To keep things simple, we focus on T0

2 -Equal-split progressive distillation in all
of our subsequent experiments.

D.8 ABLATIONS WITH HYPERPARAMETERS

Ablation with temperature Here, we compare progressive distillation and one-shot distillation at
temperature 1 and temperature 10−4 (representing hard label supervision) (Figure 25). We observe
that progressive distillation at temperature 10−4 performs better than one-shot distillation at both
temperatures. However, progressive distillation at temperature 1 can perform worse than one-shot
distillation for a stronger student. We keep explorations on the effect of temperature on the algorithms
as future work.

Ablation with mask rate In Figure 26, we compare progressive distillation with one-shot distilla-
tion at different masking rates. We observe that at all masking rates, progressive distillation performs
better than one-shot distillation.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

100 1000 8000
Training Steps

0.0

0.5

1.0
Va

lid
at

io
n

Lo
ss

80%
4
8
16
32

100 1000 8000
Training Steps

0.4

0.6

0.8

1.0

To
p-

1
Ac

cu
ra

cy

80%

4
8
16
32

Figure 23: Comparison of BERT’s training behavior on cfg3b with varying numbers of attention
heads (where the embedding dimension scales linearly with the number of attention heads) over
8× 103 training steps. The x-axis represents the number of training steps and is in log scale. Larger
BERT models show an earlier and more pronounced drop in loss/increase in accuracy compared to
smaller models. For reference, each training curve is annotated at the point where the model reaches
80% of its performance at the final step.

5000 10000 15000
Number of Training Steps

80

85

90

95

To
p-

1
Ac

cu
ra

cy

T0

T0 Equal-split progressive
T0
2 Equal-split progressive
Equal-split progressive

5000 10000 15000
Number of Training Steps

0.1

0.2

0.3

0.4

0.5

Lo
ss

T0

T0 Equal-split progressive
T0
2 Equal-split progressive
Equal-split progressive

5000 10000 15000
Number of Training Steps

80

85

90

95

To
p-

1
Ac

cu
ra

cy T0

T0 Equal-split progressive
T0
2 Equal-split progressive
Equal-split progressive

5000 10000 15000
Number of Training Steps

0.1

0.2

0.3

0.4

Lo
ss

T0

T0 Equal-split progressive
T0
2 Equal-split progressive
Equal-split progressive

Figure 24: Experiments on BERT (Left to right/top to bottom): (a), (b) show the comparisons for an
8-attention head student, (c), (d) show the comparisons for a 16-attention head student. We observe
differences between the different variants of progressive distillation at different training steps. For
training steps lower than the teacher’s (marked by T0), T0/2-Equal-split progressive distillation is
better, implying that for shorter training, we shouldn’t try to fit all the teacher’s checkpoints. The
trend reverses as the training sample budget approaches T0 and beyond.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

2000 4000 6000 8000
Number of Training Steps

70

80

90

To
p-

1
Ac

cu
ra

cy

one-shot (= 1.0)
one-shot (= 10 4)
Progressive (= 1.0)
Progressive (= 10 4)

(a) Number of heads=8

2000 4000 6000 8000
Number of Training Steps

70

80

90

To
p-

1
Ac

cu
ra

cy

one-shot (= 1.0)
one-shot (= 10 4)
Progressive (= 1.0)
Progressive (= 10 4)

(b) Number of heads=16
Figure 25: The experiments above compare progressive distillation and one-shot distillation at
temperature 1 and 10−4 (representing hard label supervision) for PCFGs cfg3b at masking rate
30% using a BERT model with 8 attention heads (left)/ 16 attention heads (right), per head dimension
8, and 4 layers. We observe that progressive distillation with hard labels performs better than
one-shot distillation at temperatures 1 and 10−4. However, progressive distillation at temperature 1
can perform worse than one-shot distillation for stronger student. We keep explorations on the effect
of temperature on the algorithms as future work. Here, we use T0

2 -Equal-split progressive distillation
as progressive distillation, where T0 = 8000 is the total number steps used for teacher training.

0.15 0.3 0.5
60

80

100

To
p-

1
Ac

cu
ra

cy 12.7%
7.8%

11.6%

Steps = 2000

0.15 0.3 0.5
Mask rate

3.5% 4.8%

4.6%

Steps = 4000

0.15 0.3 0.5

0.6%
2.0%

1.2%

Steps = 8000

one-shot
Progressive

Figure 26: The experiments above compare progressive distillation and one-shot distillation for
PCFGs cfg3b at different masking rates using a BERT model with 8 attention heads, per head
dimension 8, and 4 layers. The relative gap between the performance of progressive distillation and
one-shot distillation have been reported on the bar plots. We observe that progressive distillation
performs better than one-shot distillation at all masking rates, with the gap diminishing with
the number of training steps. Here, we use T0

2 -Equal-split progressive distillation as progressive
distillation, where T0 = 8000 is the total number steps used for teacher training.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Ablation with difficulty of PCFG In Figure 27, we compare progressive distillation with one-shot
distillation with increasing difficulty of the underlying PCFG. The benefit of progressive distillation
over one-shot distillation is influenced by the model’s capacity and the specific PCFG being trained.

cfg3b cfg3i cfg3h
60

80

To
p-

1
Ac

cu
ra

cy

7.8% 5.2%

3.8%

Steps = 2000

cfg3b cfg3i cfg3h
PCFG

4.8%
0.9%

1.7%

Steps = 4000

cfg3b cfg3i cfg3h

2.0%
0.0%

-0.3%

Steps = 8000

one-shot
Progressive

(a) Number of attention heads=8

cfg3b cfg3i cfg3h
60

80

100

To
p-

1
Ac

cu
ra

cy 5.6%
1.0%

2.7%

Steps = 2000

cfg3b cfg3i cfg3h
PCFG

4.0%
1.9%

1.0%

Steps = 4000

cfg3b cfg3i cfg3h

0.4%
0.4%

0.1%

Steps = 8000

one-shot
Progressive

(b) Number of attention heads=16
Figure 27: The experiments above compare progressive distillation and one-shot distillation for
PCFGs cfg3b, cfg3h, and cfg3i at masking rate 30% using BERT models with 8/16 attention
heads, per head dimension 8, and 4 layers. The relative gap between the performance of progressive
distillation and one-shot distillation have been reported on the bar plots. The benefit of progressive
distillation over one-shot distillation is influenced by the model’s capacity and the specific PCFG
being trained. For instance, on cfg3i, the student model can only achieve a top-1 accuracy of
75%. Progressive distillation reaches this within 2000 steps but fails to improve further, resulting
in minimal gains over one-shot distillation when compared with cfg3b. The comparisons are
at temperature τ = 10−4. Here, we use T0

2 -Equal-Split Progressive Distillation as Progressive
Distillation, where T0 = 8000 is the total number steps used for teacher training. Our teacher is
a BERT model with 32 attention heads, per head dimension 8, and 4 layers, which doesn’t train on
cfg3g and cfg3f, hence we don’t report the performance of the student on these PCFGs.

E AUTOREGRESSIVE TRAINING WITH GPT2

Setting: Similar to experiments on BERT, we train GPT2 models of depth 4 with {8, 16, 32} attention
heads, while keeping the dimension per attention head fixed at 8.

A brief introduction into GPT models: GPT models are trained with the auto-regressive loss.
The teacher and student models operate on sequences of input domain fT : X h → RC and
fS : X h → RC , where the input sequence length h can be arbitrary. Denote the length-h input
sequence as x := [x1, · · · , xh], and denote xi:j as the subsequence [xi, · · · , xj] (i.e. the indexing is
inclusive on both ends). The cross entropy loss for next-token prediction training on x is given by

1

h

h∑
i=1

KL(exi∥pS(x1:i−1))),

where exi
denotes a one-hot vector with 1 in xith coordinate. We take a different approach, where we

compare the algorithms at different difficult levels, by training on a subset of tokens in each sequence.
The subsets that we consider are the boundary tokens at different levels of PCFG generation (recall
Figure 3).

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

Formally, if C(ℓ)(x) represents the set of level-ℓ boundary tokens, then we define the cross entropy
loss and the distillation loss corresponding to boundary tokens at any level ℓ of the PCFG as

ℓ(ℓ)(x; fS) =
1∣∣C(ℓ)(x)∣∣ ∑

i:xi∈C(ℓ)(x)

KL(exi
∥pS(x1:i−1)); (9)

ℓ
(ℓ)
DL(x; fS , fT) =

1∣∣C(ℓ)(x)∣∣ ∑
i:xi∈C(ℓ)(x)

KL(pT (x1:i−1; τ)∥pS(x1:i−1)). (10)

There are a few remarks that need to be made about the above loss function. First, note that the
subsets satisfy the condition C(ℓ1)(x) ⊆ C(ℓ2)(x) for all ℓ1 ≥ ℓ2. Hence, the loss L(ℓ2) includes loss
L(ℓ1) for all ℓ1 ≥ ℓ2 and losses L ∈ {ℓ, ℓDL}. Second, L(1) will average the losses at all tokens,
which is the standard auto-regressive loss used in practice to train large language models.

We focus on cfg3f that has 6 levels in the generation process, and we report the behavior of the
models when trained with losses L(2), L(3), L(4), with L ∈ {ℓ, ℓDL}. We focus on T0

2 -Equal-split
progressive distillation.

Definitions for Mrobust and Mclose. Similar to our experiments on BERT, we track the change in
the model’s predictions with and without the n-gram context tokens. However, as the model is trained
autoregressively, we need to change our definitions of Mrobust and Mclose from Equations (5) and (6),
as well as the definition of n-grams.

For a h length sentence x ∈ vh and for i ∈ [h], we define the n-gram neighboring context around the
ith token as the set of tokens at positions within n− 1 distance to the left from i, i.e. the set {xj} for
i− n < j < i.

For Mclose on a teacher fT and ngram length n, we measure the TV distance between the model’s
probability distributions of the model at any position i when all the tokens at positions 1, 2, · · · , i− 1
are available, and when only the tokens in the neighboring n-gram context window are available (i.e.
at positions i− n+ 2, · · · , i− 1)15

Mclose(fT ,x, i, n) = TV(pT (x1:i−1), pT (xi−n+1:i−1)). (11)

For Mrobust on a teacher fT and an n-gram length n, we measure the total variation (TV) distance
between the model’s probability distributions at any position i, considering two scenarios: one where
all tokens at positions 1, 2, . . . , i− 1 are available, and another where the tokens within the n-gram
context window are masked. However, since the attention mechanism in GPT requires a token at
position i− 1 before it can predict xi and we don’t have a special token to replace the masked tokens,
we cannot remove that specific token from the context. Therefore, we keep the token at position i− 1
intact while masking the other tokens within the n-gram context window. We refer to this modified
approach as “skip n-gram.”

Mrobust(fT ,x, i, n) = TV(pT (x1:i)), pT (x{1,··· ,i−n+1,i}))). (12)

E.1 OBSERVATIONS

Teacher’s behavior during training Figure 29 shows the loss behavior of a teacher run. We observe
2 distinct phases of training: a rapid loss drop phase in the first 10% of training, and a final phase
of slow loss drop till end of training. In Figure 28, we compare the training accuracy behavior
across models of different sizes. At log scale, we observe a very small dormant phase in the training
behavior at the start of training. Larger models transition to the rapid loss drop phase faster than
smaller models and also show a more prominent change in this phase.

Teacher’s checkpoint selection for progressive distillation As outlined in the previous section,
we select the first supervision checkpoint at roughly the middle of the first phase (1/20th fraction of
training), and the other checkpoints are selected at {i/20}20i=2 fractions of training.

Similar inflection points in loss as BERT and an implicit curriculum:

15others are simply masked out during attention score computation to avoid shifts in position embeddings.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

100 1000 8000

0.6

0.8

To
p-

1
Ac

cu
ra

cy
80%

100 1000 8000
Steps of Training

0.6

0.8
80%

100 1000 8000
0.6

0.7

0.8
80%

4
8
16
32

Figure 28: (left to right) Models are trained with the cross entropy loss ℓ(4), ℓ(3), ℓ(2) respectively.
Here, we compare GPT’s training behavior with cross entropy loss on cfg3f with varying numbers
of attention heads (where the embedding dimension scales linearly with the number of attention
heads) over 8 × 103 training steps. Larger models show an earlier and more pronounced increase
in performance compared to smaller models. For reference, each training curve is annotated at the
point where the model reaches 80% of its performance at the final step.

102 103
Fraction of Training

0.0

0.2

0.4

0.6

Ev
al

 L
os

s

C1

2

3

(a) Loss behavior of teacher model

103
Steps of Training

10 3

10 2

10 1

M
ed

ia
n

ov
er

 ((
x,

i)) Mclose for n-grams

3
5

7
9

(b) Median of Mclose(fT ,x, i, n)
over x, i for different n

103
Fraction of Training

10 1

M
ed

ia
n

(o
ve

r (
x,

i)) Mrobust for skip n-grams

3
5

(c) Median of Mrobust(fT ,x, i, n)
over x, i for different n

Figure 29: Experiments on GPT: Behavior of teacher model when trained on cfg3f with cross
entropy loss: ℓ(3). We observe two distinct phases; (2) a rapid drop in loss phase, and (3) slow drop
in loss till end of training. The rapid loss drop phase signifies a transition phase for the model, similar
to one we observed for hierarchical boolean data (Section 3). All selected checkpoints for progressive
distillation are marked by triangles. The first teacher checkpoint is roughly picked at the center of the
second phase. The rest of the checkpoints are picked at training steps that are multiples of the first
one. (b) and (c) show inflection points in the teacher’s predictions with full context and with/without
n-gram contexts at the selected checkpoint.

We observe inflection points in the model’s behaviors at the first selected checkpoint. Similar to our
observations on BERT, we observe a curriculum on the reliance of the model’s predictions on 3-gram
predictions (Figure 29). Hence, we check whether progressive distillation can help train a smaller
model faser.

(R7) Progressive distillation helps train smaller model faster In Figures 30 and 31, we compare
one-shot distillation to T0

2 -Equal-split progressive distillation. We observe that progressive distillation
help the student learn faster than one-shot distillation, and the gap diminishes as the students are
trained for longer. However, the gap between progressive distillation and distillation decreases as
more tokens are involved in the loss function i.e. the gap is smaller for loss L(2)

0 compared to loss L(4)
0 .

We conjecture that auto-regressive training with all tokens involved provides a strong curriculum for
the model to learn the structure of the language. We keep a thorough study of this analysis to future
work.

F DETAILS ON WIKIPEDIA + BOOKS EXPERIMENTS

We use the same hyperparameters for Adam training as our experiments on BERT and PCFG in
Appendix D.6. However, we fix the peak learning rate to 10−4 (Devlin et al., 2018) in each case to
minimize computation costs.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

2000 4000 6000 8000
Number of Training steps

80

85

90

95

To
p-

1
Ac

cu
ra

cy

one-shot
progressive

(a) Loss: ℓ(4)DL

2000 4000 6000 8000
Number of Training steps

85

90

To
p-

1
Ac

cu
ra

cy

Name
one-shot
progressive

(b) Loss: ℓ(3)DL

2000 4000 6000 8000
Number of Training steps

80

82

84

To
p-

1
Ac

cu
ra

cy

one-shot
progressive

(c) Loss: ℓ(2)DL
Figure 30: Experiments on GPT (Left to right) for an 8- attention head model at different losses.
Here, progressive distillation refers to T0

2 -Equal-split progressive distillation. We observe that
progressive distillation outperforms one-shot distillation at all training sample budgets, with the gap
diminishing with increasing training sample budget. The gap between progressive distillation and
distillation decreases as the number of tokens involved in the loss function increases i.e. the gap
is smaller for loss L(2)

0 compared to loss L(4)
0 .

2000 4000 6000 8000
Number of Training steps

80

85

90

95

To
p-

1
Ac

cu
ra

cy

one-shot
progressive

(a) Loss: ℓ(4)DL

2000 4000 6000 8000
Number of Training steps

86

88

90

92

To
p-

1
Ac

cu
ra

cy

Name
one-shot
progressive

(b) Loss: ℓ(3)DL

2000 4000 6000 8000
Number of Training steps

82

83

84

85

To
p-

1
Ac

cu
ra

cy

one-shot
progressive

(c) Loss: ℓ(2)DL
Figure 31: Experiments on GPT (Left to right) for a 16-attention head model at different losses. Here,
progressive distillation refers to T0

2 -Equal-split progressive distillation. We observe that progressive
distillation outperforms one-shot distillation at all training sample budgets, with the gap diminishing
with increasing training sample budget. The gap between progressive distillation and distillation
decreases as the number of tokens involved in the loss function increases i.e. the gap is smaller for
loss L(2)

0 compared to loss L(4)
0 .

cfg3h cfg3g cfg3f
PCFG

60

80

To
p-

1
Ac

cu
ra

cy

2.4% 0.4%

1.3%

Steps = 500

cfg3h cfg3g cfg3f
PCFG

1.2% -0.2% 4.4%
Steps = 1000

cfg3h cfg3g cfg3f
PCFG

-0.0% -0.3%
3.4%Steps = 2000

CE
one-shot
progressive

Figure 32: The experiments above compare progressive distillation and one-shot distillation for
PCFGs cfg3h, cfg3g, and cfg3f on GPT models with 8 attention heads (each head having a
dimension of 8) and 4 layers. The models were trained using the distillation loss L(3)

0 . The relative
performance gap between progressive and one-shot distillation is presented in the bar plots. Notably,
the advantage of progressive distillation over one-shot distillation depends on the specific PCFG
being trained. For example, with cfg3f, the student model can achieve beyond 90% top-1 accuracy,
and progressive distillation allows it to reach this more quickly. In contrast, for cfg3g, the student
model’s top-1 accuracy plateaus at 84%, and after 500 steps, progressive distillation shows only
marginal gains over one-shot distillation. All comparisons were made at a temperature τ = 10−4.
Here, progressive distillation refers to T0

2 -Equal-split progressive distillation, where T0 = 8000
denotes the total number of steps for teacher training. The teacher model is a GPT with 32 attention
heads, each with a dimension of 8, and 4 layers.

47

	
	Introduction
	Preliminaries
	The implicit curriculum: a case study with sparse parity
	Accelerating learning with the implicit degree curriculum
	The low-degree curriculum reduces sample complexity

	Implicit curriculum with PCFGs and Natural language
	n-gram curriculum in PCFGs
	Progress measures of implicit curriculum
	Empirical verification of the n-gram curriculum

	Beyond synthetic setups: implicit curriculum in natural languages

	Discussions
	Appendix

	 Appendix
	Overview of the appendix
	Additional related works

	Proofs of results in sec:theory
	Analysis for the teacher
	First stage analysis for the teacher
	Second stage analysis for the teacher

	Analysis for the student

	Results on sparse parity and its generalization
	Additional results on sparse parity with MLP
	Learning with Transformers: parallel search with attention heads
	Two Transformer solutions for sparse parity (prop:solattn and prop:solmlp)

	A hierarchical generalization of sparse parity

	Extensive study on PCFGs
	A formal description of PCFGs
	Variants of progressive distillation
	Details on Non-terminal prediction with Multi-head linear probing
	Details on the synthetic PCFGs
	Extensive experiments on BERT
	A primer on BERT
	Data Generations

	Hyperparameter details
	Additional Curriculum probing on the teacher's checkpoints
	Ablations with hyperparameters

	Autoregressive training with GPT2
	Observations

	Details on Wikipedia + Books experiments

