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LAMDA: TWO-PHASE MULTI-FIDELITY HPO VIA
LEARNING PROMISING REGIONS FROM DATA

ABSTRACT

Multi-fidelity hyperparameter optimization (HPO) combines data from both high-
fidelity (HF) and low-fidelity (LF) problems during the optimization process, aid-
ing in effective sampling and preliminary screening. To enhance its performance,
approaches that incorporate expert knowledge or transfer ability into the HPO
algorithm have demonstrated their superiority, while such domain knowledge or
abundant data from multiple similar tasks may not always be accessible. Observ-
ing that high-quality solutions in HPO exhibit some overlap between high- and
low-fidelity problems, we propose a two-phase framework Lamda to streamline
the multi-fidelity HPO. Specifically, in the first phase, it searches in the LF land-
scape to identify the promising regions of LF problem. In the second phase, we
leverage such promising regions to construct reliable priors to navigate the HPO.
We showcase how the Lamda framework can be integrated with various HPO
algorithms to boost their performance, and further conduct theoretical analysis
towards the integrated Bayesian optimization and bandit-based Hyperband. We
demonstrate the effectiveness of our framework across 56 HPO tasks.

1. INTRODUCTION
The performance of machine learning models is highly dependent on their hyperparameters (Bischl
et al., 2023), while hyperparameter optimization (HPO) has become a popular research area in both
academia and industry (Li et al., 2022a). In practice, the cost of an HPO task can be prohibitively
high when dealing with large models or datasets. For instance, the training time of a specified model
on large datasets can take several hours or even days (Krizhevsky et al., 2012). Various HPO methods
have been developed, ranging from the well-established random search (RS) (Bergstra & Bengio,
2012) to more data-efficient Bayesian optimization (BO) (Kandasamy et al., 2018; Bergstra et al.,
2011; McLeod et al., 2017). Many of these methods find solutions from a uniform global perspective
as shown in Figure 1(a). To avoid directionless search with potentially low returns, variants based on
localized search strategies such as the trust region Bayesian optimization (TuRBO) (Eriksson et al.,
2019) have been proposed with more focused search regions illustrated in Figure 1(b). Nevertheless,
all of these methods do not scale satisfactorily with the increasingly complex and costly HPO tasks.
In this context, especially with deep models and large-scale datasets, fidelity management becomes
more important given limited budget.

Based on the hypothesis that low-fidelity (LF) evaluation reveals a reasonable approximation of the
high-fidelity (HF) performance while consuming less budget, multi-fidelity HPO methods employ
various techniques to actively manipulate the evaluation fidelity, such as using subsets of dataset,
reducing feature space, and decreasing the number of training epochs (Klein et al., 2017; Falkner
et al., 2018). The multi-fidelity Bayesian optimization (MFBO) (Swersky et al., 2013) and bandit-
based methods (Li et al., 2017) are two representative multi-fidelity HPO methods. For MFBO,
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Figure 1: A conceptual demonstration of how different HPO methods explore the search space.
The red and blue areas represents regions of high-quality solutions for an HF and LF problem,
respectively, while the yellow stars denote the optimal solution for the HPO task. The dashed lines
in panel (a) show the locations of sampled points at each iteration and represent the search space of
the sampling function depicted in panels (b) through (d). t represents the iteration number.
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existing work primarily constructs an integrated surrogate model accommodating multi-fidelity eval-
uations for better acquiring candidate configurations (Poloczek et al., 2017; Kandasamy et al., 2019;
Mikkola et al., 2022; Li et al., 2020b). Bandit-based methods, on the other hand, utilize data from
LF problems to filter potentially good configurations for HF problems (Falkner et al., 2018; Li et al.,
2022b; Awad et al., 2021). As both MFBO and bandit-based methods follow within the Bayesian
framework, previous work unintentionally downplayed the role of priors. The random sampling
strategy in bandit algorithms and uniform acquisition horizon of MFBO were consistently adopted
for all HPO tasks, leading to uninformative priors leaving limited space to prevent performance
degradation or further improve efficiency. Their trajectory routine is presented in Figure 1(c).

With the growth of data analysis techniques and the accumulation of more and more in-depth expe-
rience in HPO tasks, increasing effort has been put into the heuristics for better guidance of a single
HPO task, functionally equivalent to proactively replacing the uninformative priors. The strategic
search of recent HPO research has been proposed, either relying on the domain expert knowledge
towards the incumbent HPO task, such as Priorband and BO with crafted prior (Souza et al., 2021;
Mallik et al., 2023), or requiring the transfer similarity from multiple HPO tasks (Watanabe et al.,
2023). As shown in Figure 1(d), these methods guide the search towards prior-determined promis-
ing areas to reduce budget consumption. Unfortunately, acquiring the correct expert knowledge
for a specific HPO task is not often easy-to-play, and the transfer quality heavily relies on the hy-
pothesis of task similarity and abundant meta sources. Although some work has demonstrated the
optimization robustness regarding potentially misleading priors (Hvarfner et al., 2022), the addi-
tional cost for crafting the priors and unpredictable budget consumption discouraging practitioners
from exhaustively determining a good prior by leveraging knowledge or transfer for their own HPO
tasks.

In this paper, we endeavor to design priors for HPO algorithms with competitive heuristics and
consistent budget management, without external cost or budget such as the expert cognitive load
and other HPO task evaluation. This is achieved by further exploiting the relation between LF and
HF landscapes of HPO tasks. We observe that in many HPO scenarios, promising regions containing
good LF and HF solutions overlap to some extent (Sections E and F.3). This motivates us to construct
a reasonable reliable prior from the LF evaluations. Our idea is orthogonal to that in the multi-
fidelity HPO literature for two reasons. Strategically, we aim to identify the promising regions of LF
landscape irrespective of the HF performance. Functionally, the identified LF regions will be used as
prior for underlining HPO methods, including the multi-fidelity HPO ones. An additional advantage
of our design is that budget for specifying prior can be explicitly integrated to the overall budget in
multi-fidelity HPO. Table 1 shows the comparison of HPO methods in terms of budget management
and search strategies. A preliminary HPO example is presented in Figure 2 considering two HPO

(b)  Identify promising regions through LF, followed by using BOHB.(a) Using BOHB for HPO. (c) BOHB’s validation loss before and 
after using the promising region.

(e)  Identify promising regions through LF, followed by using BO.(d) Using BO for HPO. (f) BO’s validation loss before and 
after using the promising region.

HF HFLF

HF HFLF

Figure 2: Using BOHB and BO for hyperparameter optimization of a WideResNet on CIFAR-100,
before and after employing promising regions (denoted as with or without Lamda). The pentagrams
mark the optimal solutions. In (a) and (b), the points represent sampled solutions by BOHB, while
in (d) and (e), they represent sampled solutions by BO. The color gradient from yellow to green
indicates the progression of sampling over time. The points represent samples from BOHB in (a)
and (b), and from BO in (d) and (e), with colors transitioning from yellow to green indicating the
progression of sampling over time.
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Table 1: Existing methods in addressing the challenges of HPO. Methods that successfully address
a challenge are marked with a checkmark (✓), while those that do not are marked with a cross (✕).

Challenges RS BO TuRBO MFBO Bandit-based BO with prior Transfer search space Priorband Ours

Strategic Search ✕ ✕ ✓ ✕ ✕ Use expert prior Use similar tasks Use expert prior Use LF
Fidelity management ✕ ✕ ✕ ✓ ✓ ✕ ✕ ✓ ✓

Consistent budget ✓ ✓ ✓ ✓ ✓ ✕ ✕ ✕ ✓

methods, BOHB (Falkner et al., 2018) and BO (Bergstra et al., 2011) with noninformative priors and
LF-guided priors. In this case, the promising regions for both high- and low-fidelity problems were
primarily concentrated within regions bounded by momentum values between [0, 0.5] and learning
rate decay values between [0.2, 0.8], as shown in Figure 2(b) and (e). Algorithms with LF-guided
prior can quickly explore the real promising regions (right panel of Figure 2(b) and (e)). Moreover,
in Figure 2(c) and (f), while identifying the LF-guided prior consumes a certain amount of budget,
the overall efficiency is significantly improved, which highlights our motivations.

Overall, we propose a two-phase multi-fidelity HPO framework, named Lamda (Learning
promising regions from data), which is algorithm-agnostic and serves as a booster for existing HPO
algorithms within the Bayesian routine. The contributions are threefold:

• Building on the overlapping promising regions between LF and HF landscapes, we de-
velop a framework that first introduces LF evaluations to identify the promising regions
of LF problems, constructing a reasonably reliable prior for underlining HPO algorithms,
and then leverages this prior to enhance the HPO algorithms. In addition, an overlapping
coefficient is introduced to quantitatively measure the extent of overlapping.

• We integrate the learned prior with various existing HPO algorithms, ranging from prior-
and bandit-based methods, as well as multi-fidelity BO, to augment their performance. The
rational of this augmentation was demonstrated by showcasing theoretical analysis towards
the prior-based Bayesian optimization and bandit-based Hyperband.

• We validate the competitiveness of our methods across diverse hyperparameter optimiza-
tion tasks, including fully connected networks, transformers, ResNet, neural architecture
search benchmarks, joint architecture and hyperparameter search cases, as well as fine-
tuning pretrained image classification models.

2. MULTI-FIDELITY HPO BY LEARNING PROMISING REGIONS FROM DATA
The HPO problem is formulated as minimizing an expensive-to-evaluate objective function f : X →
R, where the goal is to find

x∗ ∈ argmin
x∈X

f(x). (1)

The configuration x is selected from a search space X that may include any combination of con-
tinuous, discrete, and categorical variables. In the context of HPO, f(x) represents the training or
validation performance of a machine learning model given the hyperparameters defined by x. In
multi-fidelity HPO, fz(·) with z ∈ {ℓ, ℓ+ 1, . . . , h} is introduced to denote a computation of f(·)
at the fidelity level z, e.g., the validation loss of a model trained for z epochs. Define fh and fℓ with
ℓ < h as the HF and LF objectives, respectively. Algorithm 1: Pseudocode for Lamda

Input: Total budget Λ, maximum first-phase
budget B, configuration parameters l.

1 (φpro(x), S,Λl)← Lamda-1 (B, l);
2 Λ← Λ− Λl;
3 x∗ ← Lamda-2 (φpro(x),Λr);
4 return x∗

In this paper, we propose a multi-fidelity HPO
framework by exploiting promising regions
from data (dubbed Lamda). It comprises a
two-phase search strategy (as depicted in Algo-
rithm 1): ▶ the first-phase search initially iden-
tifies promising regions in the LF landscape
(Lamda-1 in Algorithm 2); ▶ the second-
phase search leverages the learned information to guide the search in the HF landscape (Lamda-2
showcased in Appendix G). We will introduce the search strategies in different phases by addressing
two key questions.
2.1 HOW TO IDENTIFY THE PROMISING REGIONS IN THE LOW-FIDELITY LANDSCAPE?
Our basic idea of the first-phase search is to divide the LF landscape into two parts: one consists
of the promising regions while the other represents the inferior ones. This can be implemented as
a binary classification problem. To train such classifier, we leverage the configurations visited so
far during the HPO process in the LF landscape, denoted as S = {⟨xi, fℓ(x

i)⟩}ti=1 where fℓ(·)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

is the LF objective function and t is the current number of function evaluations. In particular,
this paper adopts the classic tree-structured Parzen estimator (TPE) method (Bergstra et al., 2011;
Gramacki, 2018) as the classifier, given the scalability and supports for both mixed continuous and
discrete spaces. It uses the quantile of {fℓ(x)|x ∈ S} to determine the classification boundary.
Specifically, we divide S into: Spro = {x | fℓ(x) ≤ y∗,x ∈ S} containing promising solutions,
and Sinf = {x | fℓ(x) > y∗,x ∈ S} containing inferior solutions, where y∗ is determined from
α = Pr(fℓ(x) < y∗) quantile of {fℓ(x)|∀x ∈ S}. Then we denote

φpro (x) = p (x | Spro) , φinf(x) = p (x | Sinf) , (2)

Algorithm 2: Pseudocode for Lamda-1
Input: Maximum first-phase budget B,

threshold y∗, ∆, γ, fidelity level
l, budget function λz .

1 Initialize S ← ∅, Λl ← 0, t← 0,
isStable← False;

2 while Λl < B and not isStable do
3 xt ← argmaxx∈X AF(x,S) ;
4 yt ← fℓ(x

t) + ϵ;
5 S ← S ∪ {(xt, yt)};
6 Update Spro, Sinf, φt

pro(x), φ
t
inf(x);

7 if 1− ρ
(
φt
pro(x), φ

t+△
pro (x)

)
≤ γ

then
8 isStable←True;

9 Λl ← Λl + λz(x
t, l), t← t+ 1;

10 φpro(x)← φt
pro(x);

11 return (φpro(x), S,Λl)

where φpro(x) is the probability density function
(PDF) of the promising solutions, and φinf(x) is the
PDF of the inferior solutions. We will adopt the ker-
nel density estimation for φpro(x) and φinf(x), given
its non-parametric nature and applicability to com-
plicated distributions (Chen, 2017).

Instead of searching for the optimal configurations
in the LF landscape, the purpose of the first-phase
search is to identify the promising regions. In prac-
tice, the targeted regions are relatively scattered at
the beginning and will gradually become focused
around the regions that potentially cover the optima
(see an illustrative example in Figure 3). Based on
this observation, we hypothesize that the first-phase
search can be terminated when the distribution of
promising regions becomes stable. To keep track
of the progression of such distribution, we propose
to use the overlapping coefficient (OVL) (Anderson
et al., 2012) as a metric to quantify the similarity be-
tween two distributions.

Figure 3: This figure shows the progression of PDFs for promising regions during hyperparameter
optimization on a transformer model for the LM1B dataset, focusing on the LF problem. We display
PDFs for two out of four hyperparameters, with colors changing from yellow to green to indicate
iteration progress. The red line represents the true PDF of the promising solutions in the LF problem.

Definition 1 (Overlapping coefficient). Let φ1(x) and φ2(x) be two PDFs on the search space X .
The overlapping coefficient ρ of the two functions is defined as:

ρ (φ1(x), φ2(x)) =

∫
x∈X

min {φ1(x), φ2(x)} dx. (3)

Note that ρ (φ1(x), φ2(x)) ranges from 0 to 1, where ρ = 1 if and only if the two distributions
are fully overlapped, and ρ = 0 if there is no intersection at all. The first-phase search is termi-
nated either if the allocated computational budget is exhausted or the OVL of estimated distributions
between ∆ ∈ N iterations is close enough:

1− ρ
(
φt
pro(x), φ

t+△
pro (x)

)
≤ γ, (4)
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where γ denotes the threshold. The calculation of ρ involves a multidimensional integral, which can
be numerically intractable. In practice, we employ the Monte Carlo method to estimate ρ as

ρ (φ1(x), φ2(x)) =

∫
x∈X

min {φ1(x), φ2(x)} dx =

∫
x∈X

min

{
1,

φ2(x)

φ1(x)

}
φ1(x)dx

= E
[
min

{
1,

φ2(x)

φ1(x)

}]
≈ 1

N

N∑
i=1

min

{
1,

φ̂2(x)

φ̂1(x)

}
,

(5)

where N is the number of samples used in the Markov Chain Monte Carlo sampling, and φ̂(·) is an
approximation of φ(·) such as using the kernel density estimation.
2.2 HOW TO LEVERAGE LF PROMISING REGIONS IN THE HIGH-FIDELITY LANDSCAPE?

Figure 4: Conceptual visualization of leverag-
ing promising regions: φ(x), φpro(x), φ̃pro(x),
and φ∗(x) represent the original sampling distri-
bution, the density function of the promising re-
gions, the modified density function incorporating
the promising regions with a weight of w = 0.8,
and the density function of the real optimum.

With the identified promising regions in the LF
landscape, we hypothesize that such informa-
tion can be used to define the promising re-
gions in the HF landscape. Instead of search-
ing among the entire search space, the second-
phase search is more focused within the regions
defined below:

φ̃pro(x) = (1−w) · φ(x) +w · φpro(x), (6)

where φ(x) is the probability distribution used
to guide the HPO process in the HF land-
scape, φpro(x) is the probability distribution
of the promising regions identified from the
first-phase search in the LF landscape, and
w ∈ [0, 1) with is a hyperparameter that con-
trols the trade-off between the importance of
φ(x) learned on-the-fly and φpro(x) learned in
the first-phase search. Figure 4 provides a con-
ceptual visualization of leveraging equation (6)
during the second-phase search. The redefined
promising regions will be closer to the true optimal solution if the promising regions learned in the
first phase are closer to the optimum than those before the redefinition, as proven in Proposition 1.
Note that since φ(x) is progressively updated during the HPO process with new configurations eval-
uated and added to the dataset, it is expected that φ̃pro(x) will experience a similar trend as φpro(x)
in the first-phase search.
2.3 INTEGRATION AND COMPARISON WITH CURRENT MULTI-FIDELITY HPO METHODS
Instead of a standalone algorithm, Lamda plays as a booster that can be integrated with any existing
multi-fidelity HPO methods with minor adaptation and thus augmenting the performance of the
baseline optimizer. In a nutshell, we only need to replace the sampling strategies of the baseline
optimizer with φ̃pro(x). We justify this by comparing with current multi-fidelity HPO methods.

• Prior-Based Methods: By using Lamda, φ̃pro(x) serves as a priori knowledge that rep-
resents a reasonable estimation of promising regions in the second-phase search. Unlike
prior-based methods, which depend on prescribed knowledge or experience from domain
experts, φ̃pro(x) is adaptively learned from data during the first-phase search through the
HPO process in the LF landscape. As a result, our approach is resilient to ‘pathological
priors’—whether misleading, lacking in informative values, or potentially adversarial—
which are not uncommon when tackling new, unseen real-life black-box applications. Ad-
ditionally, we expect a scenario between our data-driven priors with those elicited from
experts can offer consolidated performance enhancement.

• Bandit-Based Methods: By using Lamda, φ̃pro(x) serves as an effective alternative to
the sampling distributions used in bandit-based methods. This restricts the HPO process
to focus exclusively on the learned promising regions. In contrast, bandit-based methods
begin with LF assessments to identify candidates for HF evaluation and then gradually shift
the search focus towards these identified areas. This process, which alternates between
exploration and exploitation throughout the entire search space, often leads to inefficient
use of computational resources by exploring less promising regions.
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• MFBO Methods: Similar to bandit-based methods, MFBO methods use an acquisition
function learned from data collected across multiple fidelities to explore the entire search
space. This can lead to unnecessary exploration of less promising regions. By using
Lamda, φ̃pro(x) restricts the search space within the learned promising regions. Note
that this strategy can be applied to the other BO variants.

For proof-of-concept purposes, we choose PriorBand, BOHB, MUMBO as representatives of the
prior-, bandit-based and MFBO methods, respectively. By augmenting with Lamda, we have
Lamda+PriorBand, Lamda+BOHB, and Lamda+MUMBO. In addition, it is also interesting to see
whether Lamda can be useful for vanilla BO and even random search. To this end, we derive two
other variants Lamda+BO and Lamda+RS. We provide multiple pseudocode to demonstrate how
Lamda-2 can be adapted to various algorithms, including PriorBand, BOHB, MUMBO, vanilla
BO, and random search. The details for each integration are in Appendix G. Furthermore, we
provide theoretical analysis under both the prior-based BO framework and bandit-based Hyper-
band framework, indicating the rational of this augmentation. For Lamda+BO, it incorporates prior
knowledge in the acquisition function:

xn+1 = argmax φ̃pro(x)AF(x,D), (7)
where AF is the acquisition function in vanilla BO such as the expected improvement (EI) consid-
ered in this paper. D = {⟨xi, fh(x

i)⟩}ni=1 where fh(·) is the HF objective function. The Gaussian
process regression is employed as the surrogate model of fh(·). For a solution x̃, the predicted mean
and variance of the value distribution of fh(x̃) are µf (x̃) and σ2

f (x̃).

In Lamda+BO, we apply the widely used EI as the acquisition function in equation (7) given as
EI(x̃|D) = σf (x̃)

(
zΦf (z) + ϕf (z)

)
, (8)

where z =
f∗
D−µf (x̃)
σf (x̃)

, f∗
D = min

⟨x,fh(x)⟩∈D
fh(x), Φf and ϕf denote the cumulative distribution func-

tion and probability density function, respectively.
Theorem 1. Given Dn, φ̃pro(x), and applying the EI into equation (7), assume the GP mod-
els are non-degenerated. Let D be the collected observations with ⟨x1, fh(x

1)⟩ fixed while{
⟨xi, fh(x

i)
〉
}ni=2 are sequentially chosen by

xn+1 = argmax φ̃pro(x)EI(x̃|D). (9)
Then, as n → ∞, almost surely: the acquisition function converges to zero; and the evaluated best
objective f∗

D → f∗
h , where f∗

h represents the global optimum of fh(·).

The proof is given in Appendix 11A.2. Unlike the theory in (Hvarfner et al., 2022), the convergence
property of equation (9) does not need a decaying factor to force exponentially decreasing of the
priors of promising LF regions. Based on the dynamic update of φ̃pro(x), it is sufficient to capture
the promising regions in the HF landscape according to the overlap.

For bandit-based method, we study the Lamda+PriorBand in the theoretical routine of Hyper-
band. The algorithm involves two loops. In the outer loop, at the k-th round, the algorithm allocates
Bk,s = 2k + poly(k) budgets and nk,s = 2s configurations randomly sampled from φ̃pro(x), for
s = 0, 1, . . . , smax, subject to smax + log2(smax) < k, where poly(k) is some polynomial function
w.r.t k. In the inner loop, the successive halving algorithm is leveraged to find the best arm among
the nk,s arms with Bk,s budget. In the context of multi-arm bandits, each configuration xi corre-
sponds to an independent arm to pull, whose reward with the j-th pull is denoted by li,j = fj(x

i).
We assume there exists limk→∞ li,k = νi for all xi ∈ X , and denote ν∗ = infx∈X νi. Denote also
that the distribution of v as F satisfying P (ν− ν∗ ≤ ϵ) = F (ν∗+ ϵ) for any ϵ. The inverse function
is defined by F−1(y) = inf{x : F (x) ≤ y}. In addition, there exists a monotonically decreasing
function γ(t) : N → R satisfying supi |li,t − νi| ≤ γ(t).
Theorem 2. For fixed δ ∈ (0, 1). Let ν̂B be the empirically best-performing arm output from
successive halving of round kB = log2(B) of the outer loop, and let sB < kB . Then, there is:

ν̂B − ν∗ ≤ 3

(
F−1

(
log(4k3B/δ)

2sB
− ν∗

)
+ γ

(
2kB−1

kB

))
, (10)

where sB satisfies 2kB + poly(kB) > 4sBH(F, γ, 2sB , 2k3B/γ) with H(F, γ, n, δ) =

2n
∫ 1

pn
γ−1(F

−1(t)−ν∗

4 )dt+ 10
3 log(2/δ)γ−1

(
F−1(pn)−ν∗

4

)
and pn = log2(2/δ)

n .
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Since all configurations for successive halving tasks are sampled randomly from a probability distri-
bution described by φ̃pro, the theoretical results, specifically Corollary 3 in (Li et al., 2017), still hold
in this case. Different from Hyperband that relied on non-adaptive grid search exhausting c log2(B)
overall budgets with some constant c, we sample configurations and allocate budget through both
grid search and adaptive design based on φ̃pro(x). Theoretically, this requires the same order of
budgets as Hyperband. It will be a quite interesting question to ask how the fact of overlapping can
help avoiding the grid search of Hyperband, which will be our future work.

3. EXPERIMENT SETUP
3.1 BENCHMARK SUITES
Our experiments consider 56 benchmarks that cover various search spaces including mixed types and
log-scaled hyperparameters. Further, they involve a wide range of downstream tasks including image
classification, language modeling, tabular data processing, medical applications, and translation.

They are selected from four sources. ① Tabular benchmarks include ▶ four cases from FCNet (Pfis-
terer et al., 2022), each with 6 hyperparameters; ▶ one from NAS-Bench-301 with 34 hyper-
parameters (Pfisterer et al., 2022); ▶ three from NAS-Bench-201, each with 6 hyperparame-
ters (Eggensperger et al., 2021); and ▶ twenty benchmarks from rpart on decision tree, glmnet
on elastic net, ranger on random forest, and XGBoost (Eggensperger et al., 2021). ② Surrogate
benchmarks include ▶ four problems from PD1 benchmarks with 4 hyperparameters (Mallik
et al., 2023; Wang et al., 2021); ▶ three problems from JAHSBench (Mallik et al., 2023; Bansal
et al., 2022) with 14 mixed-type hyperparameters for tuning both the neural networks architecture
and training hyperparameters. ③ Training two deep neural networks include LeNet on CIFAR-10,
and ResNet-18 on CIFAR-10 and CIFAR-100 with 5 hyperparameters. ④ Two synthetic Hartmann
functions (Mallik et al., 2023) with three and six variables respectively. ⑤ 20 tasks for fine-tuning
pretrained image classification models (Pineda-Arango et al., 2024).

For the tabular and surrogate benchmarks, we use the number of epochs as the parameter to set
the fidelity level. As for the training of deep neural networks, the size of the dataset is used as
the parameter to control the fidelity level, as shown in Table 5. Our experiments have considered
different scenarios where the promising regions of LF and HF landscape have varying levels of
overlaps (Table 5 in Appendix C.4 provides statistics of the overlapping rates). Further detail about
all benchmarks are provided in Appendix C.
3.2 PEER ALGORITHMS
We choose nine peer algorithms as the baselines to validate the effectiveness of proposed approach.
They are ▶ PriorBand (Mallik et al., 2023) and PFNs4BO (Müller et al., 2023) as prior-based
methods; ▶ HyperBand (Li et al., 2017), BOHB (Falkner et al., 2018), and Hyper-Tune (Li
et al., 2022b) as bandit-based methods; ▶ MUMBO (Li et al., 2021a) and DPL (Kadra et al., 2023)
as MFBO methods; and ▶ random search (RS), BO and TuRBO (Eriksson et al., 2019) as other
popular HPO methods. During our experiments, we used the default values for these algorithms.
For our algorithm, the parameter settings are as follows: γ = 0.1, ∆ = 5, α = 15 and w = 0.5.
Additionally, we allocate a computational budget of B = 5D high-fidelity resources in the first-
phase search, where D denotes the problem’s dimensionality.

4. EXPERIMENTAL RESULTS
4.1 EFFECTIVE OF USING PROMISING REGIONS
Results on tabular, surrogate and synthetic benchmarks: This experiment demonstrates how our
algorithm framework improves five commonly used optimizers: PriorBand, BOHB, MUMBO, BO
and RS. For BOHB, MUMBO, BO and RS, 33 tasks from the above tabular, surrogate and synthetic
benchmarks are used. For PriorBand, the evaluation included eight tasks: four from the original
paper (PD1-LM1B, PD1-WMT, MFH3, and MFH6) and four additional tasks in FCNet. In addi-
tion, good prior are used at PriorBand for PD1-LM1B, PD1-WMT, MFH3, and MFH6. Table 2
presents the numbers of win/lose/tie obtained by using the Wilcoxon signed-rank test and Figure 5
shows the average rank over the HPO tasks. According to Figure 5, it can seen that using the strat-
egy of promising regions can obtain better results on all the five algorithms. The results of the
Wilcoxon signed-rank test in Table 2 also validate the efficiency of using promising regions. Us-
ing promising regions can achieve significantly better results than the baseline in more than half
of the tasks. For the remaining problems, they obtain results equal to those of the baseline. Re-
garding PriorBand, for the four tasks with prior information, Lamda+PriorBand achieves
results comparable to those of PriorBand. However, for the four tasks without prior information,
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Lamda+PriorBand achieves better results. For BOHB, using the strategy of promising regions
improves in rank as the consumed resources grow. The main reason for such slow-starting may
caused by the resources needed for finding promising regions. However, it quickly takes the top
rank after using about 15 HF resources. MUMBO, BO and RS present similar performances in the
condition of using promising regions.
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Figure 5: Comparing average relative ranks of PriorBand, BOHB, MUMBO, BO and RS under the
proposed framework across 33 HPO tasks.

Table 2: Performance comparison (Win/Lose/Tie) of Lamda+PriorBand, Lamda+BOHB,
Lamda+MUMBO, Lamda+BO and Lamda+RS against their baselines over 100 HF evaluations.

Lamda+BOHB Lamda+MUMBO Lamda+BO Lamda+RS Lamda+PriorBand
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Figure 6: Validation error observed in tuning 8 HPO tasks, using PriorBand as the baseline.

Figure 6 and Figure 18 to Figure 25 shows the performance curves for each benchmark under the
framework of Priorband, BOHB, MUMBO, BO and RS. Within the framework of Priorband,
Lamda+Priorband converge faster on all the 8 tasks as shown in Figure 6. For other four algo-
rithms, using the promising regions accelerates the discovery of effective solutions compared to the
baseline on most of the tasks. In particular, we would like highlight the results on JAHS-CIFAR-10,
JAHS-Colorectal-Histology, and JAHS-Fashion-MNIST, whose overlaps are low. Lamda consis-
tently enhance the baseline algorithms.

To better understand the results, we sample 10, 000 hyperparameter configurations for each bench-
mark and evaluate their performance at high and low fidelities. The configurations are mapped into
2D space. We visualize the good solutions ( Figure 14 to Figure 17) and landscape (Figure 33
to Figure 36) of the benchmarks at low and high fidelities. For FCNet, PD1, and NAS-Bench-201,
the gap between Lamda+BOHB and the naıve BOHB is caused by the great overlapping between
the high and low fidelities as shown in Figure 14. Additionally, Figure 12 and Figure 13 shows the
found good solutions by the LF. It can be seen that these solutions are close to the good solutions
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(d) Lamda+BOHB(c) BOHB (b) Lamda+BOHB(a) BOHB

FCNet-Naval-Propulsion PD1-ImageNet

Figure 7: 2D visualization of the sampling points during the optimization process of Lamda+BOHB
and BOHB on FCNet-Naval-Propulsion and PD1-ImageNet. The contour represents the
dimensionality-reduced landscape of the HF problem, while the points indicate the HF samples
collected during optimization. The color gradient from green to yellow indicates the order of sam-
pling, with yellow representing later sampling stages.

of HF. Additionally, we provide a 2D visualization of the sampling points during the optimization
process of Lamda+BOHB, BOHB, Lamda+MUMBO, and MUMBO on FCNet-Naval-Propulsion and
PD1-ImageNet, as shown in Figure 7 and Figure 37. It can be observed that Lamda-based methods
tend to focus sampling in regions with better fitness values, whereas BOHB and MUMBO allocate
relatively more resources to exploring areas with moderate fitness values.

Results on raw problems: In this part, we evaluate BOHB and Lamda+BOHB on three raw HPO
tasks. Figure 8 shows the the performance curves on three vision problems. We observe that the
performance of Lamda+BOHB is worse than BOHB at the initial iteration. However, it quickly
outperforms BOHB after some resources. The main reason is that the promising regions at the high
and low fidelity have great overlapping as shown Figure 9.
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Figure 8: Validation error observed in tuning raw problems.

CIFAR-10  LF CIFAR-10  HF CIFAR-100  LF CIFAR-100  HF

Figure 9: Visualizing the top 30% of solutions (represented by blue regions) in both high and low
fidelity while optimizing the hyperparameters of ResNet-18 on CIFAR-10 and CIFAR-100 datasets.

4.2 PEER COMPARISON
Results on tabular and surrogate benchmarks: This experiment demonstrates how the perfor-
mance of the proposed algorithm framework compared to the other methods over the number of
evaluations. Figure 10 shows the average rank over the 33 tasks. According to Figure 10, we ob-
serve that Lamda+BO and Lamda+MUMBO consistently quickly take the top and keep the rank until
the end. It also can be seen that Hyperband and RS are the two worst algorithms, which may be
due to the random sampling strategy.

We have conducted 20 HPO tasks for fine-tuning pretrained image classification models. Exper-
imental results (see Appendix F.4) have also demonstrated that Lamda consistently enhance the
baseline algorithms.

4.3 PARAMETER ANALYSIS
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Figure 10: Comparing average relative ranks of peer
algorithms across 33 HPO tasks.

We investigate the impact of parameters in
Lamda within the BOHB framework, in-
cluding different budgets (B) and thresh-
olds (γ) for stopping the first phase, the
interval for calculating the overlapping co-
efficient (∆), the quantile (α) used in the
TPE, and the initial weight (w0). Four
tasks at the XGBoost benchmark, each in-
volving a 10-dimensional hyperparameter
optimization problem, are used for the ex-
periments. The budgets are varied as B =
D, 4D, 8D, 10D, and 20D, and γ values
are tested at 0.5, 0.2, and 0.1. As shown
in Figure 28, the choice of B influences algorithm performance, where too high a budget (B > 8D)
leads to excessive resource consumption in the first phase. The impact of γ on the algorithm is rel-
atively minor as shown in Figure 29, likely due to the constraints imposed by the maximum budget
B. Additionally, we investigate the influence of the parameter ∆ on the algorithm’s performance,
as illustrated in Figure 30. The settings for ∆ are 3, 5, 15, 35, and 50. The results indicate that both
excessively large and excessively small values of ∆ slightly affect the algorithm’s performance.
Specifically, values of ∆ that are too low may cause the algorithm to erroneously determine that
promising regions have stabilized, whereas excessively high values of ∆ can lead to considerable
delays in the algorithm’s capacity to verify the stability of these regions. We also analyze the influ-
ence of parameter α using the values 5, 15, and 25. The results in Figure 31 indicate no significant
impact on the algorithm’s performance.

Regarding the initial weight w0, we examine settings of 1, 0.8, 0.5, 0.3, and 0.1. The results, illus-
trated in Figure 32, suggest that while the optimal w0 slightly vary across tasks, its overall impact on
the algorithm’s performance is minimal. In addition, values above 0.1 consistently outperform the
original BOHB. Further analysis of rankings show that settings with w > 0.1 achieve better results
compared to w = 0.1. Notably, a setting of w = 1 shows superior performance during the early
stages of the optimization. These results also indicate the efficiency of using the promising regions.

5. LIMITATIONS AND FUTURE WORK
In this work, we only consider two fidelities for a proof-of-concept purpose. Our next step is to
extend the current Lamda framework for tackling multiple fidelity levels. In addition, there is a gap
on theoretical underpinnings about how the involved parameters, such as the quantile threshold in
LF problems and the overlapping coefficient between LF and HF landscape, impact the convergence
rate or regret of the HBO methods augmented with Lamda. Last but not the least, this paper is
mainly designed for multi-fidelity hyperparameter optimization. It will be interesting to explore its
applications to a broader range of black-box optimization problems where multi-fidelity experiments
and data are prevalent (e.g., computational fluid dynamics optimization in engineering design (Bar-
rett et al., 2006; Liu et al., 2017), and new material (Goldfeld et al., 2005; Khatamsaz et al., 2021),
or drug design (Fare et al., 2022; Greenman et al., 2021) in scientific discovery).

6. CONCLUSIONS
This paper highlights a common limitation in existing HPO algorithms, which often searches across
the whole search space. While some methods leverage prior knowledge to constrain the search
space, accessibility to the knowledge is not always guaranteed. To address this challenge, we have
developed an algorithmic framework that enables algorithms to autonomously identify promising
regions from the LF to accelerate the HPO process, based on the the potential overlap of promising
regions between high- and low-fidelity HPO landscape. This framework is integrated with a variety
of existing HPO techniques, including prior- and bandit-based methods, as well as multi-fidelity
BO, to enhance their efficacy. We support the rationale behind this augmentation through theoretical
analysis focused on prior-based Bayesian optimization and bandit-based Hyperband. Our empirical
evaluations across diverse hyperparameter optimization tasks—such as fully connected networks,
transformers, ResNets, and neural architecture search benchmarks, including joint architecture and
hyperparameter searches—demonstrate the competitiveness of our methods.
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Neural architecture search with Bayesian optimisation and optimal transport. In NeurIPS’18:
Advances in Neural Information Processing Systems 31, pp. 2020–2029, 2018.

Kirthevasan Kandasamy, Gautam Dasarathy, Junier B. Oliva, Jeff G. Schneider, and Barnabás
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A. THEORETICAL ANALYSIS

Proposition 1. Assume the OVL between φ(x) and the PDF of the true promising solutions φ∗(x)
is less than the overlapping between the PDF of promising region φpro(x) and φ∗(x). Then, the
modified sampling function φ̃pro(x) = w1 · φ(x) + w2 · φpro(x) , where w1 + w2 = 1, will have a
greater or equal overlapping with φ∗(x) compared to the overlapping of φ(x) with φ∗(x).

Proposition 1 suggests that incorporating the promising regions into the sampling distribution en-
hances its alignment with the distribution of the real optimal solutions.

Proof. Using the definition of ρ (φ1, φ2) in equation (3), the OVL between φ(x), φpro(x), φ̃pro(x)
and φ∗(x) are computed as follows:

ρ (φ(x), φ∗(x)) = 1− 1

2

∫
x∈X
|φ(x)− φ∗(x)| dx,

ρ (φpro(x), φ∗(x)) = 1− 1

2

∫
x∈X
|φpro(x)− φ∗(x)| dx,

ρ (φ̃pro(x), φ∗(x)) = 1− 1

2

∫
x∈X
|φ̃pro(x)− φ∗(x)| dx.

(11)

where

ρ (φ1(x), φ2(x)) =

∫
x∈X

min {φ1(x), φ2(x)} dx = 1− 1

2

∫
x∈X
|φ1(x)− φ2(x)| dx. (12)

Given that thus φ(x) has a smaller overlap with φ∗(x) than φpro(x), it follows that:

ρ (φ(x), φ∗(x))− ρ (φpro(x), φ∗(x))

= 1− 1

2

∫
x∈X
|φ(x)− φ∗(x)| dx−

(
1− 1

2

∫
x∈X
|φpro(x)− φ∗(x)| dx

)
=

1

2

∫
x∈X
|φpro(x)− φ∗(x)| dx−

1

2

∫
x∈X
|φ(x)− φ∗(x)| dx

=
1

2

∫
x∈X
|φpro(x)− φ∗(x)| − |φ(x)− φ∗(x)| dx ≤ 0

(13)

Given the above, if ρ (φ(x), φ∗(x)) < ρ (φ̃pro(x), φ∗(x)), it implies that φ(x) has a smaller overlap
with φ∗(x) than φ̃pro(x). This can be further analyzed as:

ρ (φ(x), φ∗(x))− ρ (φ̃pro(x), φ∗(x))

= 1− 1

2

∫
x∈X
|φ(x)− φ∗(x)| dx−

(
1− 1

2

∫
x∈X
|w1 · φ(x) + w2 · φpro(x)− φ∗(x)| dx

)
=

1

2

∫
x∈X
|w1 · φ(x) + w2 · φpro(x)− φ∗(x)| dx−

1

2

∫
x∈X
|φ(x)− φ∗(x)| dx

≤ 1

2

∫
x∈X

w1 · |φ(x)− φ∗(x)|+ w2 · |φpro(x)− φ∗(x)| − |φ(x)− φ∗(x)| dx

=
1

2

∫
x∈X

w2 · |φpro(x)− φ∗(x)| − w2 · |φ(x)− φ∗(x)| dx

=
w2

2

∫
x∈X
|φpro(x)− φ∗(x)| − |φ(x)− φ∗(x)| dx ≤ 0

(14)
where the inequality is obtained with the following formula:

|w1 · φ(x) + w2 · φpro(x)− φ∗(x)|
= |w1 · φ(x)− w1 · φ∗(x) + w2 · φpro(x)− w2 · φ∗(x)|
≤ w1 · |φ(x)− φ∗(x)|+ w2 · |φpro(x)− φ∗(x)|

(15)

This implies that φ̃pro(x) has a greater overlap with φ∗(x) than φ(x) does.
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A.2 PROOFS OF THEOREM 1

In the context of sequential design, let FN denote the σ-algebra generated by the random variables
x1, Z1, . . . , xN , ZN where Zi is the observation of fl(xi). Additionally, let FN,x̃ be the σ-algebra
generated by x1, Z1, . . . , xN , ZN , x̃, Z̃ with Z̃ the observation of fh(x̃). Then, the EI-based
sequential design of Lamda+BO takes the following form:

xN+1 = argmax
x̃∈Ω

EN

[
M0

N −Mρ
N,x̃

]
, (16)

in which y∗h is the threshold of promising solutions in HF problems lower bounded by the α quantile
of {fℓ(x)|∀x ∈ S} due to the overlapping between HF and LF landscape, and

Mρ
N,x̃ = min

x∈X , P(fh(x)<y∗
h)|FN,x̃)=1, σf (x|FN,x̃)=0

f̃(x), (17)

M0
N = min

x∈X , P(fh(x)<y∗
h|F)=1, σf (x|FN )=0

f̃(x). (18)

When GPs are non-degenerate, i.e., σf = 0 only if x ∈ D equation (16) becomes equivalent
to equation (9). Specifically, M0

N will be equal to f∗
D in equation (8), while Mρ

N,x̃ will be the
predicted promising HF objective value under threshold y∗h implicitly defined by equation (6). Next,
we present the criteria for asymptotic convergence of Lamda+BO. The proof of the first statement,
i.e., the convergence of the acquisition function, compromises three steps.

Step 1. Lamda+BO serves as a stepwise uncertainty reduction (SUR) sequential design. For
N ≥ 2, a minimization version of equation (16) can be given as

xN+1 = argmin
x̃∈X

EN [HN,x̃] , (19)

in which

HN,x̃ =Mρ
N,x̃ −M0

N = EN,x̃

[
Mρ

N,x̃ − min
x∈X , P(fh(x)<y∗

h)
f̃(x)

]
.

The above equation holds since: i) M0
N is independent from x̃, and ii) EN,x̃

[
Mρ

N,x̃

]
= Mρ

N,x̃ for
minimum operation. Therefore this strategy can be transformed into an equivalent SUR sequential
design strategy for HN,x̃. Likewise, we define

HN = EN

[
Mρ

N − min
x∈X , fh(x)<y∗

h

f̃(x)

]
. (20)

Step 2. (HN ) is a supermartingale. For well-structured GP models and well-defined smooth
functions ρi, we have: i) σf (x|FN+1) ≤ σf (x|FN ) (based on the definition of GP predicted
variance), and ii) P(fh(x) < y∗h(x)|FN ) = 1 is sufficient for P(fh(x) < y∗h(x)|FN+1) = 1 based
on the non-increasing property of density estimation on an evaluated solution xN . Therefore, the
following inequality holds:

HN − EN [HN+1] = EN

[
Mρ

N −Mρ
N+1

]
≥ 0, (21)

which implies that (HN )N∈N is a supermartingale. Consequently, there is HN − EN [HN+1] → 0
as N →∞, and also

sup
x̃∈X

[
HN − EN [HN,x̃]

]
→ 0. (22)

Step 3. The acquisition function of Lamda+BO converges to zero almost surely. Due to the lower
bound, according to equation (21), as evaluations of HF objective increase, φ̃pro tends to converge
to φ. Note that for N →∞, Mρ

N = M0
N as this convergence appears. Additionally, we also have

sup
x̃∈X

EN

[
Mρ

N −Mρ
N,x̃

]
≥ sup

x̃∈X
EN

[
M0

N −Mρ
N,x̃

]
≥ sup

x̃∈X
φ̃pro(x)EI(x̃|D). (23)

Therefore, with the same proof as that of Proposition 2.9 (Bect et al., 2019), for N →∞, equation 22
and equation 23 yield φ̃pro(x)EI(x̃|D)→ 0. This completes the proof for the first statement.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

The second statement stands according to the global search ability of EI and corresponding
dense evaluated solutions in X . We complete the proof by providing the following facts: i)
φ̃pro(x)σf (x̃) → 0 holds from the first statement; ii) the lower bound y∗h will be tight when
N → ∞; and iii) σf (z|FN ) → 0 for all sequences accordingly. Based on these facts, the se-
quence is almost surely dense in X . As a result, f∗

D from any sequence converges to f∗
χ almost

surely when N →∞.

B. RELATED WORKS

B.1 MULTI-FIDELITY BAYESIAN OPTIMIZATION

In the realm of MFBO, previous research primarily leverages LF to construct an accurate MF model
for guiding the sampling process (Swersky et al., 2013; Poloczek et al., 2017; Kandasamy et al.,
2019; Mikkola et al., 2022; Li et al., 2020b). One challenge in these methods is to model perfor-
mance using data from various fidelities. Solutions include employing Gaussian process regression
(GPR) models tailored to each fidelity level (Kandasamy et al., 2019), multi-task GPR models for
discrete fidelity levels (Swersky et al., 2013; Poloczek et al., 2017; Mikkola et al., 2022; Li et al.,
2020b), and GPR models for a continuous fidelity space (Klein et al., 2017; Kandasamy et al., 2017).
While Gaussian processes are commonly used for modelling the surrogate function, Li et al. (Li
et al., 2020b; 2021a) have implemented deep neural networks to represent the relationships across
different fidelities. In terms of sampling, entropy search methods (Swersky et al., 2013; Poloczek
et al., 2017; Takeno et al., 2020) are utilized, which take into account both the information gain and
the associated costs of each fidelity level. These techniques enable the sampling of new solutions at
either low or high fidelity levels, gradually leading to improved hyperparameters in the HF space.

B.2 BANDIT BASED METHOD

Bandit-based methods employ LF for identifying promising solutions for HF evaluations (Falkner
et al., 2018; Li et al., 2022b; Awad et al., 2021). In pioneering work in the field, Li et al. (2017)
introduced Hyperband, a method that improves upon the Successive Halving (SH) algorithm by in-
tegrating various early stopping strategies across multiple SH brackets. Each bracket starts with a
different number of solutions at varied fidelity levels. However, Hyperband’s approach of randomly
sampling solutions doesn’t utilize previous sample information (Falkner et al., 2018). To enhance
this, Falkner et al. (2018) developed BOHB, which combines BO with Hyperband, using the tree
Parzen estimator (TPE) (Bergstra et al., 2011) to build surrogate models for each fidelity level. While
BOHB is effective, it struggles with discrete dimensions and scaling to high-dimensional problems.
Addressing these challenges, Awad et al. (2021) enhanced BOHB with differential evolution for
better candidate sampling. Additionally, Li et al. (2021b) developed an MF ensemble model that
integrates information from all fidelity levels to more accurately estimate the highest fidelity. Nev-
ertheless, despite their utilization of LF data, these approaches still demand extensive exploration
throughout the entire search space.

B.3 USING PRIORS FOR OPTIMIZATION

These methods concentrate on promising regions to reduce the consumed resources by leveraging
prior information. A line of work uses prior information about locations of optimal solutions to ac-
celerate the process of HPO. For instance to reduce evaluations on bad regions, Souza et al. (2021)
injected priors about which parts of the input space will yield the best performance into BO’s stan-
dard probabilistic model to form a pseudo-posterior, which was shown to be more sample-efficient
than BO baselines. Further, Li et al. (2020a) incorporated Gaussian distributions of optimal solu-
tions into the posterior distribution of observed data and used Thompson sampling to obtain the next
solution. Ramachandran et al. (2020) used the prior distribution of optimal solutions to warp the
search space, expanding around high-probability regions of optimal solutions and shrinking around
low-probability regions. Truncated normal and gamma distributions were used to form the prior
distributions. Additionally, Hvarfner et al. (2022) incorporated prior Gaussian distributions about
locations of optimal solutions into the acquisition function, achieving competitive results across a
wide range of benchmarks. Mallik et al. (2023) also integrated prior knowledge of optimal hyperpa-
rameters to enhance the efficiency of Hyperband. Although using prior distributions of locations of
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optimal solutions can accelerate optimization, accessing the prior for a specific task may not always
be accessible.

B.4 TRANSFER SEARCH SPACE

In addition to leveraging experts’ prior, this method used information from previous tasks to reduce
search space. For instance, Wistuba et al. (2015) pruned the bad regions of search space according
to the results from previous tasks. Perrone & Shen (2019) and Li et al. (2022a) utilized previous
tasks to design a sub-region of the entire search space for a new task. While these approaches
have demonstrated efficiency in using promising regions instead of the entire space, they require the
preparation of source tasks and the evaluation of task similarities to effectively select relevant tasks
for learning promising regions, which can be challenging (Perrone & Shen, 2019).

C. BENCHMARKS

C.1 TABULAR BENCHMARKS

FCNet: We utilized benchmarks for FCNet from Yahpo-Gym (Pfisterer et al., 2022), detailed in Ta-
ble 3. The selected tasks include FCNet-Naval-Propulsion, FCNet-Protein-Structure, FCNet-Slice-
Localization, and FCNet-Parkinsons-Telemonitoring.

NAS-Bench-301: Our NAS-Bench-301 benchmarks, also sourced from Yahpo-Gym (Pfisterer et al.,
2022), focus on CIFAR-10. For hyperparameter details, refer to (Pfisterer et al., 2022).

NAS-Bench-201: This benchmark encompasses 6 hyperparameters for neural architecture search.
It includes statistics from 15,625 CNN models across three datasets: CIFAR-10-valid, CIFAR-100,
and ImageNet16-120 (Eggensperger et al., 2021). We simplify their name as CIFAR-10, CIFAR-
100, and ImageNet in this paper.

Table 3: Hyperparameter ranges for FCNet.

Parameter Name Type Range

Fidelity epoch int [1, 100]

Hyperparameter

batch size int [8, 64] (log-scale)
initial learning rate con [5e − 04, 0.1] (log-scale)

dropout 1 con [0.0, 0.6]
dropout 2 con [0.0, 0.6]

number of units 1 int [16, 512]
number of units 2 int [16, 512]

C.2 SURROGATE BENCHMARKS

We utilized four problems from the PD1 benchmarks and three from the JAHSBench surrogate
benchmarks. Detailed information about these benchmarks is available in (Mallik et al., 2023).

C.3 RAW PROBLEMS

The hyperparameters for the deep neural networks, LeNet and ResNet-18, are detailed in Table 4.

Table 4: Hyperparameter ranges for LeNet and ResNet-18.

Parameter Name Type Range

Fidelity datasize con [0.3, 1]

Hyperparameter

batch size int [64, 512] (log-scale)
initial learning rate con [5e − 3, 0.1] (log-scale)

momentum con [0.5, 0.99]
weight decay con [1e − 5, 1e − 2]

nesterov cat {True, False}

18
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C.4 PARAMETERS OF LF PROBLEMS

Table 5 shows parameters of LF problems used in the first phase and the corresponding OVL between
high- and low-fidelity problems.

Table 5: Parameters of LF problems used in the first phase and the corresponding OVL between
high- and low-fidelity problems.

Tasks LF parameter OVL Tasks LF parameter OVL

MFH3 epoch=4 0.713 MFH6 epoch=4 0.728
XGBoost-40981 datasize=0.3 0.885 FCNet-Naval-Propulsion epoch=4 0.901
XGBoost-41146 datasize=0.3 0.933 FCNet-Protein-Structure epoch=4 0.694
XGBoost-1489 datasize=0.3 0.805 FCNet-Slice-Localization epoch=4 0.731
XGBoost-1067 datasize=0.3 0.883 FCNet-Parkinsons-Telemonitoring epoch=4 0.854

rpart-40981 datasize=0.3 0.167 NAS-Bench-301-CIFAR-10 epoch=20 0.712
rpart-41146 datasize=0.3 0.488 NAS-Bench-201-CIFAR-10 epoch=20 0.760
rpart-1089 datasize=0.3 0.89 NAS-Bench-201-CIFAR-100 epoch=20 0.727
rpart-1067 datasize=0.3 0.642 NAS-Bench-201-ImageNet epoch=20 0.696

ranger-40981 datasize=0.3 0.711 JAHS-CIFAR-10 epoch=4 0.574
ranger-41146 datasize=0.3 0.782 JAHS-Colorectal-Histology epoch=4 0.523
ranger-1489 datasize=0.3 0.77 JAHS-Fashion-MNIST epoch=4 0.532
ranger-1067 datasize=0.3 NAN PD1-LM1B epoch=30 0.934

glmnet-40981 datasize=0.3 0.294 PD1-WMT epoch=4 0.926
glmnet-41146 datasize=0.3 0.962 PD1-CIFAR-100 epoch=45 0.797
glmnet-1489 datasize=0.3 0.918 PD1-ImageNet epoch=20 0.727
glmnet-1067 datasize=0.3 0.648 NAN NAN NAN

D. OVL BETWEEN LOW AND HIGH FIDELITY

Figure 11 presents the overlapping coefficients between good solutions in high- and low-fidelity
settings across various HPO tasks. The overlapping coefficients are computed using equation (3)
and are visualized over epochs or datasets for different benchmarks. It can be observed that the
overlap generally increases with the number of iterations (e.g., epochs or dataset size), especially
for FCNet, NAS-Bench-201, and RecNet-18. However, for NAS-Bench-301 and JAHS, the overlap
exhibits a trend of decreasing in the middle stages before rising again. Specifically:

• FCNet and RecNet-18 show an overlap that is already close to or greater than 0.7 even
at smaller iteration parameters (e.g., fewer epochs or smaller datasets), indicating strong
LF-HF consistency and stability at earlier stages.

• For PD1 and NAS-Bench-201, the overlap reaches or exceeds 0.7 at specific points, such
as epoch = 10 for PD1 and epoch = 20 for NAS-Bench-201, suggesting that these tasks
achieve good LF-HF agreement relatively early in the optimization process.

• NAS-Bench-301 and JAHS, on the other hand, maintain relatively low overlap in the initial
and middle stages. The overlap only increases significantly as the settings approach the
HF level, indicating that these tasks require longer training or higher fidelity to achieve
substantial LF-HF alignment.

E. DISTRIBUTION OF SOLUTIONS IN THE HF AND LF.

In this section, we present the distribution of solutions in the HF and LF settings. Figure 12 and Fig-
ure 13 shows good solutions identified by Lamda+BOHB at the first phase for FCNet, NAS-Bench-
301 and JAHS. It can be observed that there is an overlap between the good solutions in the HF and
LF settings, and the good solutions found in the first phase are close to these overlapping regions.

Moreover, Figure 14, Figure 15, Figure 16 and Figure 17 show the distribution of good solutions
in the HF and LF. Across all 15 problems, a clear overlap is observed between the good solutions
identified in both fidelity levels.
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FCNet

JAHSNAS-Bench-301

NAS-Bench-201PD1

ResNet-18

Figure 11: The overlapping coefficient of the HPO tasks.

  Parkinsons-
TelemonitoringSlice-LocalizationProtein-StructureNaval-Propulsion

Figure 12: Visualization of good solutions identified by Lamda+BOHB at the first stage for FCNet.
The solutions were mapped to a 2D representation for clarity. The red and blue points are the
real top 10% high and low fidelity solutions from 10, 000 sampling points. Stars are obtained by
Lamda+BOHB, with a more yellow color indicating later sampling.

JAHS-CIFAR-10JAHS-Fashion-MNISTJAHS-Colorectal-HistologyNAS-Bench-301-CIFAR-10

Figure 13: Visualization of good solutions identified by Lamda+BOHB at the first phase for NAS-
Bench-301 and JAHS. The solutions were mapped to 2D. The red and blue points are the real
top 10% high and low fidelity solutions from 10, 000 sampling points. Stars are obtained by
Lamda+BOHB, with a more yellow color indicating later sampling.

F. EXPERIMENTAL RESULTS

F.1 CONVERGENCE CURVES

This section presents the convergence curves of the proposed algorithm and its peer methods. The
convergence performance of Lamda under different algorithms, including BOHB, MUMBO, BO, and
RS, is illustrated in Figure 18, Figure 19, Figure 20, Figure 21, Figure 22, Figure 23, Figure 24
and Figure 25. The experimental results demonstrated that using Lamda can enhance peformanc
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  Parkinsons-
TelemonitoringSlice-LocalizationProtein-StructureNaval-Propulsion

Figure 14: (Top) The visualization of 10, 000 hyperparameter configurations in the 2D space for
FCNet. (Bottom) The visualization of the top 10% solutions at the high and low fidelity, with high
fidelity solutions marked in red. In this case, LF is obtained by setting the epoch number as four.

LM1B ImageNetCIFAR-100WMT

Figure 15: (Top) The visualization of the 10, 000 hyperparameter configurations in the 2D space for
PD1. (Bottom) The visualization of the top 10% solutions at the high and low fidelity, with high
fidelity solutions marked in red. In this case, LF is obtained by setting the epoch number as 30, 4,
45, and 20 for the four tasks.

NAS-Bench-301
CIFAR-10

NAS-Bench-201
ImageNet

NAS-Bench-201
CIFAR-100

NAS-Bench
CIFAR-10

Figure 16: (Top) The visualization of 10, 000 hyperparameter configurations in the 2D space for
NAS-Bench-201 and NAS-Bench-301. (Bottom) The visualization of the top 10% solutions at the
high and low fidelity, with high fidelity solutions marked in red. In this case, LF is obtained by
setting the epoch number as 20.
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Figure 17: (Top) The visualization of 10, 000 hyperparameter configurations in the 2D space for
JASH. (Bottom) The visualization of the top 10% solutions at the high and low fidelity, with high
fidelity solutions marked in red. In this case, LF is obtained by setting the epoch number as 20.

of the baseline algorithms. The convergence curves of peer algorithms are presented in Figure 26
and Figure 27. Lamda also performs good compared with peer algorithms.

Figure 28, Figure 29, Figure 30, Figure 31 and Figure 32 depict the results of parameter analysis
including budget (B), thresholds (γ) for stopping the first phase, the interval for calculating the
overlapping coefficient (∆), the quantile (α) used in the TPE, and the initial weight (w0). These
results indicate that the algorithm’s performance is robust to the hyperparameter settings.

F.2 TABLE RESULTS OF PEER ALGORITHMS

Table 6 shows the peer algorithms’ final validation errors of the current incumbent at 100 HF evalu-
ations horizons.
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Figure 18: Validation error observed in tuning 15 HPO tasks, using BOHB as the baseline.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

glmnet-1067glmnet-1489glmnet-41146glmnet-40981

XGBoost-1067XGBoost-1489XGBoost-41146XGBoost-40981

rpart-1067rpart-1489rpart-41146rpart-40981

ranger-1067ranger-1489ranger-41146ranger-40981

MFH3 MFH6

Figure 19: Validation error observed in tuning 18 HPO tasks, using BOHB as the baseline.
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Figure 20: Validation error observed in tuning 15 HPO tasks, using MUMBO as the baseline.
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Figure 21: Validation error observed in tuning 18 HPO tasks, using MUMBO as the baseline.
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Figure 22: Validation error observed in tuning 15 HPO tasks, using BO as the baseline.
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Figure 23: Validation error observed in tuning 18 HPO tasks, using BO as the baseline.
.
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Figure 24: Validation error observed in tuning 15 HPO tasks, using RS as the baseline.
.
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Figure 25: Validation error observed in tuning 18 HPO tasks, using RS as the baseline.
.
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Figure 26: Validation error observed in tuning 15 HPO tasks, comparing peer algorithms.
.
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Figure 27: Validation error observed in tuning 18 HPO tasks, comparing peer algorithms.
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Figure 28: Validation errors of Lamda+BOHB under different parameters B used at the first phase.
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Figure 29: Validation error observed of Lamda+BOHB under different parameter γ at the first phase.
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Figure 30: Validation error observed of Lamda+BOHB under different parameter ∆ at the first phase.
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Figure 31: Validation error observed of Lamda+BOHB under different parameter α at the first phase.
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Figure 32: Validation error observed of Lamda+BOHB under different parameter w at the first phase.
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F.3 ANALYZING THE IMPACT OF PROMISING REGIONS OVERLAP IN LF AND HF
LANDSCAPES ON ALGORITHM PERFORMANCE

To better illustrate the solution distributions across low- and high-fidelity problems, we visualized
the distributions in a 2D space. We sampled 10, 000 hyperparameter configurations and computed
their fitness values under both low- and high-fidelity settings. The data was then compressed into 2D
using the UMAP McInnes & Healy (2018) algorithm. To further enhance interpretability, we applied
linear interpolation to generate a continuous landscape surface. Figure 33, Figure 34, Figure 35,
and Figure 36 present the landscapes of FCNet, PD1, NAS-Bench-201, NAS-Bench-301, and JAHS
under both high- and low-fidelity settings. The overlap between high- and low-fidelity problems is
also shown in the figures.

From these visualizations, we observe that FCNet and PD1 exhibit a high overlap (ranging from 0.7
to 0.9) in their promising regions across fidelity levels, with the promising regions being relatively
concentrated. In contrast, while NAS-Bench-201 and NAS-Bench-301 have moderate OVL values
(ranging from 0.67 to 0.76), their solution distributions are more dispersed. JAHS demonstrates
lower OVL values (ranging from 0.52 to 0.57) and also shows a more scattered solution distribution.

The results indicate that for problems where the promising regions of LF and HF landscape have
varying levels of overlaps, our method (Lamda) achieves better performance than the original algo-
rithms under the frameworks of BOHB, MUMBO, BO, and RS, as illustrated in the convergence curves
(Figure 18, Figure 20, Figure 22, and Figure 24). In particular, we would like highlight the results
on JAHS-CIFAR-10, JAHS-Colorectal-Histology, and JAHS-Fashion-MNIST, whose overlaps are
low. Lamda consistently enhance the baseline algorithms.

Slice-LocalizationProtein-Structure

ρ=0.731ρ=0.694ρ=0.901 ρ=0.854

  Parkinsons-
Telemonitoring

HF

LF

Naval-Propulsion

Figure 33: 2D visualization of landscapes of FCNet at high and low fideliteis.

F.4 PEER COMPARISON ON HYPERPARAMETER OPTIMIZATION FOR FINE-TUNING PRETRAINED
IMAGE CLASSIFICATION MODELS

In this section, we additionally adopt the hyperparameter optimization from (Pineda-Arango et al.,
2024) for fine-tuning pretrained image classification models on different datasets. A total of 20
problems are used to evaluate the performance of the algorithms, and the results are presented in
Table 7. It can be observed that textttLamda+BOHB achieves the best performance across all prob-
lems. The overall ranking of the algorithms during the optimization process is illustrated in the
Figure 38, showing that Lamda+BOHB consistently ranks first after consuming a portion of the re-
sources. The convergence curves in Figure 39 further highlight its superiority in the second phase,

35
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LM1B ImageNetCIFAR-100WMT

HF

LF

ρ=0.792ρ=0.926ρ=0.934 ρ=0.727

Figure 34: 2D visualization of landscapes of PD1 at high and low fideliteis.

NAS-Bench-301
CIFAR-10

NAS-Bench-201
ImageNet

NAS-Bench-201
CIFAR-100

NAS-Bench
CIFAR-10

HF

LF

ρ=0.696ρ=0.727ρ=0.760 ρ=0.712

Figure 35: 2D visualization of landscapes of NAS-Banch-201 and 301 at high and low fideliteis.

36



1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976

Under review as a conference paper at ICLR 2025

CIFAR-10Fashion-MNISTColorectal-Histology

HF

LF

ρ=0.574ρ=0.532 ρ=0.523 

Figure 36: 2D visualization of landscapes of JAHS at high and low fideliteis.

(d) Lamda+BOHB(c) BOHB (b) Lamda+BOHB(a) BOHB

FCNet-Naval-Propulsion PD1-ImageNet

Figure 37: 2D visualization of the sampling points during the optimization process of
Lamda+MUMBO and MUMBO on FCNet-Naval-Propulsion and PD1-ImageNet. The contour rep-
resents the dimensionality-reduced landscape of the HF problem, while the points indicate the HF
samples collected during optimization. The color gradient from green to yellow indicates the order
of sampling, with yellow representing later sampling stages.
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where it quickly identifies high-quality solutions and accelerates the optimization process. The ex-
perimental results further demonstrate that Lamda consistently enhances BOHB.
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Figure 38: Comparing average relative ranks of peer algorithms across 20 HPO tasks for fine-tuning
pretrained image classification models.
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Figure 39: Validation error observed in tuning 20 HPO tasks for fine-tuning pretrained image
classification models, comparing peer algorithms.
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G. ALGORITHM DETAILS

In this section, we outline the workflow of our Lamda framework, which operates in two phases:
the first-phase low-fidelity search (dubbed as Lamda-1) and the second-phase optimization (dubbed
as Lamda-2). The overall workflow is depicted in Algorithm 1.

The first phase, Lamda-1, focuses on identifying promising regions in the search space using LF
evaluations. The pseudocode for Lamda-1 is provided in Algorithm 2. In particular, the sampling
strategy in Lamda-1 is algorithm-agnostic and can be incorporated with most HPO algorithms.

The second phase, Lamda-2, allows the use of different algorithms to guide the search. We provide
multiple pseudocode to demonstrate how Lamda-2 can be adapted to various algorithms, including
PriorBand, BOHB, MUMBO, vanilla BO, and random search. The details for each integration
are outlined below, with modifications from the original algorithms highlighted in red:

• For PriorBand, Lamda-2 replaces the expert prior pπ(x) from (Mallik et al., 2023) with
the learned prior φpro(x) obtained in Lamda-1.

• For BOHB, Lamda-2 modifies the uniform sampling distribution in Steps 7 and 8 of Algo-
rithm 3 into the incumbent distribution determined by φ̃pro(x).

• For MUMBO and BO, Lamda-2 combines φ̃pro(x) with their acquisition functions. The
pseudocode for these adaptations is shown in Algorithm 4 and Algorithm 5, respectively.

• For Random Search, Lamda-2 replaces the uniform sampling strategy by the incum-
bent sampling strategy defined by φ̃pro(x), as illustrated in Algorithm 6.

Algorithm 3: Pseudocode for sampling in Lamda+BOHB
Input: Observations D, fraction of random runs ρ, percentile q, number of samples Ns,

minimum number of points Nmin to build GP models, and bandwidth factor bw
Output: next configuration to evaluate

1 Initilize b← argmax{Db : |Db| ≥ Nmin + 2}, ρ̃← Rand(0, 1);
2 if ρ̃ < ρ or b = ∅ then
3 return randomly sampled configuration;
4 else
5 Compute l(x) and g(x) as Eqs. (2) and (3) in Falkner et al. (2018);
6 Draw Ns configurations according to φ̃pro(x) in equation (6);
7 return configuration with highest ratio l(x)/g(x)
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Algorithm 4: Second-phase search with BO
Input: Input space X , φpro(x), w, N solution for the initial design of GPs, budget Λr, fidelity

level h, budget function λz .
Output: Optimized design x∗.
/* Initialization */;

1 Sample {xi}ni=1 from distribution given by φpro(x);
2 yi ← fh(x

i) + ϵi, where ϵi ∼ N (0, σ2); λi ← λz(x
i, h);

3 Λr ← Λr −
∑n

i=1 λ
i;

4 D ← {(xi, yi)}ni=1;
5 while Λr > 0 do
6 φ(x)← p(x|D);
7 φ̃pro(x)← (1− w) · φ(x) + w · φpro(x);
8 xn+1 ← argmaxx∈X φ̃pro(x)AF(x,D) ;
9 yn+1 ← fh(x

n+1) + ϵ;
10 Update D ← D ∪ {(xn+1, yn+1)};
11 Λr ← Λr − λz(x

n+1, h);
12 n← n+ 1;

13 return x∗ ← argmin(xi,yi)∈D yi

Algorithm 5: Second-phase search with MUMBO
Input: Input space X , prior obtianed in the first phase φpro(x), prior confidence parameter w,

size n of the initial design, budget for first phase Λr.
Output: Optimized design x∗.

1 Sample {xi}ni=1 ∼ φpro(x) and randomly assign fidelity levels {zi}ni=1 with
zi ∼ Uniform({ℓ, ℓ+ 1, . . . , h});

2 Compute yi ← fz(x
i, zi) + ϵi, where ϵi ∼ N (0, σ2); λi ← λz(x

i, zi);
3 Λr ← Λr −

∑n
i=1 λ

i;
4 Initialize D ← {(xi, zi), yi}ni=1;
5 while Λr > 0 do
6 Fit GP to the collected observations D, φ(x)← p(x|D);
7 Simulate N samples of g∗|D;
8 Prepare αMUMBO

n−1 (x, z) as given by Eq. (5) in Moss et al. (2020);
9 Update φ̃pro(x)← (1− w) · φ(x) + w · φpro(x);

10 Find the next point and fidelity to query

(xn+1, zn+1)← argmax
(x,z)

φ̃pro(x)
αMUMBO
n−1 (x, z)

λz(x, z)

11 Collect the new evaluation yn+1 ← fz(x
n+1, zn+1) + ϵn+1, ϵn+1 ∼ N (0, σ2);

12 Append new evaluation to observation set D ← D ∪ {(xn+1, zn+1), yn+1};
13 Update spent budget Λr ← Λr − λz(x

n+1, zn+1);

14 return x∗ ← argmin{((xi,zi),yi)∈D,zi=h} y
i

42



2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279

Under review as a conference paper at ICLR 2025

Algorithm 6: Second-phase search with Random Search
Input: Input space X , prior obtianed in the first phase φpro(x), prior confidence parameter w,

budget for first phase Λr, uniform distribution pU .
Output: Optimized design x∗.

1 φ(x)← pU (x);
2 while Λr > 0 do
3 φ̃pro(x)← (1− w) · φ(x) + w · φpro(x);
4 Sample xn+1 ∼ φ̃pro(x);
5 yn+1 ← fh(x

n+1) + ϵ;
6 Update D ← D ∪ {(xn+1, yn+1)};
7 Λr ← Λr − λz(x

n+1, h);

8 return x∗ ← argmin(xi,yi)∈D yi
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