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doScenes: An Autonomous Driving Dataset with Natural Language
Instruction for Human Interaction and Vision-Language Navigation
Parthib Roy, Srinivasa Perisetla, Shashank Shriram, Harsha Krishnaswamy, Aryan Keskar, Ross Greer

Abstract—Human-interactive robotic systems, particularly au-
tonomous vehicles (AVs), must effectively integrate human in-
structions into their motion planning. This paper introduces
doScenes, a novel dataset designed to facilitate research on
human-vehicle instruction interactions, focusing on short-term
directives that directly influence vehicle motion. By annotating
multimodal sensor data with natural language instructions and
referentiality tags, doScenes bridges the gap between instruction
and driving response, enabling context-aware and adaptive plan-
ning. Unlike existing datasets that focus on ranking or scene-
level reasoning, doScenes emphasizes actionable directives tied
to static and dynamic scene objects. This framework addresses
limitations in prior research, such as reliance on simulated data
or predefined action sets, by supporting nuanced and flexible
responses in real-world scenarios. This work lays the foundation
for developing learning strategies that seamlessly integrate hu-
man instructions into autonomous systems, advancing safe and
effective human-vehicle collaboration. We make our data publicly
available at https://www.github.com/rossgreer/doScenes

Index Terms—safe autonomous driving, human-robot interac-
tion, vision language action models, motion planning

I. INTRODUCTION

THERE is a growing need for robotic systems, especially
autonomous vehicles, to be human-interactive. In this

research, we particularly focus on human-vehicle instruction
interactions, where a human agent communicates a directive
to a vehicle that should influence the vehicle’s motion plan.
While many of the principles discussed in this research extend
more generally to human-robot instruction interactions; we
focus on autonomous vehicles as a special case of robot
whose motion plans exists in a particular scale of time and
velocity, necessitating but also benefiting from domain-specific
characterizations of instructions.

Existing interactions of humans and vehicles can be charac-
terized by a set of attributes such as source position [1], modal-
ity, referentiality, and temporality. Example options within
these attributes are summarized in Table I.

Instructions may be described by combinations of these
attributes, and options within an attribute are not always mutu-
ally exclusive and may be integrated in various combinations.
For example:

• A passenger may point to a curb cut and ask to be
dropped off there, using verbal and gesture-based interac-
tion from inside the vehicle, and providing a short-term
instruction which refers to a static object in the scene.

• A firefighter may ask a vehicle to move out of the
way, using verbal instruction from outside the vehicle,
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Fig. 1. Typical nuScenes data includes 3D bounding box annotations, LiDAR
point clouds, and driving area map feature layers. In the doScenes dataset, we
augment each clip of temporal data with an instruction and a tag to indicate
the instruction’s referentiality.

and providing a short-term instruction which refers to
dynamic scene objects.

• A police officer may use their whistle and hand-gestures
to get a driver’s attention and wave their vehicle through
while directing traffic, using a combination of pseudo-
verbal and gesture-based interaction from outside the
vehicle, and providing a short-term instruction which
does not refer to additional objects.

In these examples, and in this research, we focus on short-
term interactions, which anecdotally apply on the order of
less than 10 seconds of motion. More specifically, these
types of instructions contain all relevant information within a
viewable proximity (e.g. no relevant landmarks or information
beyond the horizon of the driver’s egocentric view). The
time itself is not a strictly-defined boundary. For example,
in the nuScenes dataset, samples have 12 seconds of motion;
sometimes, these 12 seconds stay within a visible horizon from
the temporal origin, and other times, the vehicle effectively
moves to an entirely new scene within 12 seconds1. Towards
the development of new learning strategies in autonomous
perception and planning, we introduce the doScenes dataset, a
novel dataset which pairs sensor feeds, vehicle trajectories, and
map information with human-interactive instructions and refer-
entiality tags. doScenes draws its name from Judea Pearl’s do-
calculus [2], developed to identify causal effects; accordingly,
the human instructions provided in this dataset are intended

1This point is discussed further in the section of the paper Considerations
for Application and Evaluation.
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TABLE I
ATTRIBUTES OF HUMAN-VEHICLE INSTRUCTION INTERACTIONS

Source Position Inside Vehicle, Outside Vehicle
Modality Voice, Gesture

Referentiality None, Static Objects, Dynamic Objects
Temporality Short-Term, Medium-Term, Long-Term

to emulate commands that would cause the resulting sequence
of actions taken by the driver.

II. RELATED RESEARCH

A. Datasets for Human-Robot Instruction

Before discussing datasets specific to autonomous driving,
we first present related research in the more general field of
Human-Robot Interaction (HRI), and specifically instruction-
style interaction for real-world scenarios. One such dataset is
NatSGD [3], a multimodal dataset designed to emulate natural
human communications through speech and gestures. NatSGD
is primarily designed to enable robots to understand and
execute real-world tasks in a natural manner, including those
requiring nuanced household robotics actions like cooking
and cleaning. It stands out as one of the first datasets to
encompass speech, gestures, and demonstration trajectories. In
the NatSGD framework, robot behaviors were developed by
creating a photorealistic simulated environment using Unity3D
in conjunction with a customized Robot Operating System
(ROS) plugin. Additionally, real-time inverse kinematics for
the robot’s head movement and arms were implemented using
BioIK. During tasks, the robot maintained eye contact with
the target and returned its gaze to the participant when ready
for the next interaction.

Another high-volume and diverse dataset is BridgeData V2
[4]. BridgeData V2 distinguishes itself by offering coverage
across numerous tasks and domains in robotic learning re-
search, including support for task conditioning through goal
images or natural language instructions. The dataset includes
over 60,000 trajectories (50,365 expert demonstrations and
9,731 from a randomized scripted policy) collected across
24 environments. Data collection used an accessible, low-
cost robot platform, making BridgeData V2 appealing for
academic research. The robot setup consisted of a WidowX
250 robot arm (fixed-based) and numerous cameras, including
one RGBD camera for sensing, two RGB cameras with
randomized poses during data collection, and one RGB camera
attached to the robot’s wrist. In addition, the robot was
controlled via a VR controller. Data collection occurred in
indoor environments, with the majority being in toy kitchens.
However, despite its scale and variety of tasks, the dataset
is limited to low-precision and non-real-time activities, quite
different from the requirements of autonomous driving.

The HandMeThat [5] benchmark assesses instruction under-
standing and task execution within physical and social con-
texts, emphasizing situations and instructions with ambiguity.
Each episode of the text-based dataset contains a sequence
of steps taken by the human, followed by an instruction. The
authors propose two stages for modeling robot responses. In
the first stage, a robot agent observes a human agent and its

actions and attempts to infer their end goal; in the second
stage, the human provides a language-based instruction to the
robot, and the robot acts within the environment to complete
its tasks. The robot agent needs to consider both the human’s
historical actions as well as the subgoal specific to human
utterance. It is important to note that the benchmark lies within
its operation of a text-only environment, strongly limiting its
scope for vision-based environments, and does not address
non-verbal communication or dynamic interactions.

B. nuScenes and Natural Language in Autonomous Driving
Datasets

nuScenes [6] is a multimodal dataset designed to fill the
gap of capturing diverse real-world conditions necessary for
building robust autonomous driving perception systems. At the
time of its release, nuScenes was the largest AV dataset to
feature a complete 360° field of view (FOV) AV sensor suite,
including 6 cameras, 5 radars, and 1 lidar, and is also the
first to include radar data using an AV approved for public
roads. Additionally, nuScenes was the first multimodal dataset
to capture nighttime and rainy condition data. The dataset
includes 1,000 manually selected scenes from two highly chal-
lenging and dense traffic environments: Boston (Seaport and
South Boston) and Singapore (One North, Holland Village,
and Queenstown). Each scene is annotated at 2 Hz, resulting in
1.4 million 3D bounding boxes for 23 object classes. The AV
utilized during data collection were two Renault Zoe supermini
electric cars, equipped with front and side cameras with a 70°
FOV, offset by 55°, and a rear camera with a 110° FOV.

Though novel in its instruction and interactivity basis,
doScenes is not the first dataset which features nuScenes
annotations extended using natural language. nuScenes-QA [7]
combined nuScenes’ 3D detection annotations with question
templates, automatically generating 460K question-answer
pairs based on scene graphs. nuScenes-MQA (Markup Ques-
tion Answering) [8] introduced questions and answers en-
closed within markups of particular objects within the visual
scene.

Beyond re-annotations of nuScenes, other datasets have
been developed to integrate natural language information into
the driving environment. The Rank2Tell dataset [9] advances
autonomous driving with multimodal data annotated with
visual elements in a traffic scene ranked by relevance to
safety, traffic rule compliance, and the dynamic context of the
situation. By emphasizing contextual prioritization, Rank2Tell
provides a benchmark for evaluating how well autonomous
vehicle systems align with human judgment. While Rank2Tell
makes significant contributions to ranking-based reasoning
and highlights the importance of competing visual elements,
it is limited to scene-level understanding and is only based
on certain specific key-frames of the traffic scene video. It
lacks actionable instructions for motion planning, restricting
its applicability to real-world driving scenarios where vehicles
must respond to specific directives. doScenes addresses this
gap by bridging the divide between multimodal reasoning and
actionable instructions. Annotations can be directly tied to ob-
jects of importance in traffic scenes, focusing on the execution
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of human and natural-language commands. By complementing
Rank2Tell’s emphasis on importance ranking with actionable
directives, doScenes offers a novel framework for training and
evaluating autonomous systems in real-world human-vehicle
interactions.

The GPT-Driver framework [10] transforms autonomous
driving motion planning into a language modeling task using
OpenAI’s GPT-3.5 model. It converts inputs like sensor data
and vehicle states into a unified language representation,
generating driving trajectories as language tokens with natural
language explanations. This tokenized-driving approach en-
hances interpretability and generalization, allowing for greater
transparency in decision-making. Tested on the nuScenes
dataset, GPT-Driver achieved state-of-the-art trajectory pre-
diction accuracy on the nuScenes dataset with a centimeter-
level L2 error and competitive collision rates. However, it is
evaluated in an open loop form on 3-second intervals, and does
not make use of important features found in doScenes, such as
egocentric views or human instruction beyond generic high-
level objectives (e.g. “right”), limiting its ability to generalize
to novel scenarios or instructions.

With similar data to doScenes, the DriveMLM and LMDrive
frameworks [11], [12] leverage large language models (LLMs)
for autonomous driving by integrating multimodal data from
CARLA simulations, including images, LiDAR data, traffic
rules, and user commands, to align with human instructions.
The primary aim is to enable the LLM to predict actionable
steps for the ego vehicle to execute given specific human
commands, a similar objective to doScenes. DriveMLM is
supported by a robust dataset of 280 hours of annotated
CARLA simulation data, including decision states and corre-
sponding explanations. LMDrive enables vehicles to perform
step-by-step navigation tasks, supported by a 64K-clip dataset
encompassing diverse scenarios and complex instructions.
LMDrive segments training data into clips, with each clip
corresponding to one navigation instruction from a pre-defined
set of 56 instructions. Notably, they augment their dataset by
using ChatGPT to generate 8 semantically-equivalent variants
of each instruction.

However, the reliance of DriveMLM and LMDrive on sim-
ulated data restricts their applicability to real-world scenarios.
Additionally, the frameworks prioritize immediate, one-step
decisions over multi-step planning or adaptive driving styles
necessary for handling complex environments, reflected in
the limited output of DriveMLM within a set of instructions
such as keep, accelerate, left change, right change, which
may fail to fully capture the nuances and complexities of
diverse driving scenarios and constrain the system’s flexibility
in responding to unique situations requiring dynamic or nu-
anced decision-making. doScenes does not limit instructions
to a fixed set; annotators can freely describe each scene’s
instructions, and because there are multiple ways to give
an instruction with the same effect, some choose to make
references to scene objects while others do not. doScenes
brings the concepts of DriveMLM and LMDrive to real-world
data and provides instructions which serve decisions beyond
one-step decisions, further augmented with tagged information
on whether instructions rely on dynamic or static objects

within the driving scenes. We note that, at the time of writing,
only LMDrive has made their data publicly available.

DriveGPT4 [13] is an interpretable end-to-end autonomous
driving system using LLMs for multimodal reasoning and
control. It integrates video inputs and textual queries to predict
low-level vehicle control signals and provides natural language
explanations for its actions. Motivating our research, the
authors note the scarcity of publicly available datasets suitable
for their task, and train on an enhanced BDD-X dataset
with ChatGPT-generated Q&A pairs for questions equivalent
to what is the vehicle doing, why is the vehicle doing it,
and what will the vehicle do next. DriveGPT4 excels in
action description, justification, and control signal prediction,
offering actionable decisions and user-friendly explanations.
However, the dataset is again without human instruction, only
explanation of the current state.

The DRAMA dataset [14] advances situational awareness in
autonomous driving by addressing two key challenges: identi-
fying risks and explaining them. DRAMA (Driving Risk As-
sessment Mechanism with A captioning module) distinguishes
itself by not only pinpointing risks in driving scenes but
also describing them in natural language. It contains 17,785
real-world driving scenarios from urban roads in Tokyo,
Japan, with detailed annotations on risks, critical objects,
and interactions from the driver’s perspective. By combining
visual reasoning with linguistic explanations, DRAMA lays
a foundation for enhancing perception and communication
systems in autonomous vehicles. DRAMA excels in localizing
and explaining risks, associating important objects like vehi-
cles or pedestrians with potential hazards and pairing these
insights with natural language captions. It benchmarks multi-
task models that simultaneously identify risks and generate
explanations, fostering advancements in vision-language in-
tegration. However, DRAMA’s natural language annotations
focus on assessing and understanding risks, whereas doScenes
is built around driving instructions.

C. Bridging Human-Robot Instruction and Autonomous Driv-
ing

Unlike previously-mentioned datasets which emphasize
scene understanding and description, our research is the first
public real-world dataset to provide driving instructions and
referentiality information as the natural language annotation,
creating a link between imperative language and motion for
autonomous vehicles. This task is relevant for autonomous
vehicles due to sudden changes to the environment which
can create novel or anomalous scenarios, even in spatial
locations which may have been typical in moments prior.
Vision-language models have been successful in detecting such
scene changes [15]. Such anomalies may require a manual
takeover response [16], [17], [18], but in cases where a driver
is unable to operate the vehicle, the ability of the vehicle to
autonomously respond to commands can be especially valu-
able; this task of navigation of a novel environment without
a map but with natural language instruction is often referred
to as Vision-and-Language Navigation (VLN) [19], [20]. The
task of translating language to actuated action is complex, re-
quiring reasoning, closed-loop planning, and control. NaVILA
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[19] addresses this task by adding an intermediate mid-level,
language-based representation of actions above low-level con-
trol signals, providing a reasonable intermediate in the process
of translating language to action. This decoupling of language
and control allows one VLA to modularly fit a new robot with
appropriate adjustment of low-level control policy, particularly
useful towards an autonomous driving setting where different
vehicles may have different control configurations. NaviLLM
[21] frames the task as a VQA, with an answer set comprised
of scene views from multiple directions; the predictive task is
to identify which direction the robot should move next toward
the completing of a text-prompted goal, evaluating based on
whether (and how soon) the robot reaches the desired goal.
Essentially, this evaluation is a step-through of panoramic
options, which is infeasible for open-world driving where
additional agents affect safe reachability of spatial states. With
similar one-to-one framing of waypoints as images observed
by the robot, LM-Nav [22] uses a goal-conditioned model to
infer a sequence of graph vertices to traverse for the purpose of
visiting landmarks identified by an LLM and grounded to the
scene [23] by a VLM. This approach requires that the robot
first collects image and GPS observations over the intended
search area. This is, however, less practical for a dynamic
environment where landmarks may be other agents themselves,
and have no grounding to a map, something reflected in
the dynamic-referential instruction subset of doScenes. The
algorithm of Hu et al. [24] may better interact with such
dynamism by grounding constraint-based instructions through
detection-informed adjustments to a costmap which is then
used for collision-avoidant navigation. As in additional works,
goals are grounded to locations in a predefined semantic map
for global motion plans.

III. DOSCENES DATASET

The process of collecting and annotating driving-instruction
data is a complex task; a test vehicle must be properly
equipped with appropriate sensors for perception, and interior
microphones must capture and synchronize verbal commands
to driving events. Following collection, expensive annotation
of objects and visual scene features must occur to enable
supervised learning. Fortunately, massive datasets such as
nuScenes provide completion of large portion of this task
(that is, large-scale collection and vision-based annotation).
We apply retroactive annotation of driving instructions by
playing back each of the 1,000 12-second nuScenes clips, and
transcribing an instruction (or lack of instruction) that would
be given to a driver from the vantage of the passenger to
initiate the motion plan observed in the clip.

This natural language instruction can be generated by a
heuristic we name the taxi test: if you were being driven
through this scene by a taxi driver, what instruction, if any,
would you need to give an instruction to trigger the behavior
observed in the video?

For each of the 1,000 scenes in nuScenes, we provide a set
of instruction annotations. These annotations are generated by
five independent annotators, and each annotator may include
multiple annotations for a scene if they imagine multiple
instructions which may generate a similar series of events.

Fig. 2. Histogram of number of instruction annotations per scene; most
of the scenes of doScenes have only one or two annotations. Having a
greater number of instruction annotations reflects an annotator’s generation
of multiple possible instructions that could cause the same scene playout.

TABLE II
STATISTICS ON REFERENTIALITY OF DOSCENES INSTRUCTIONS

Non-Referential 535
Static Referential 214

Dynamic Referential 159
Both 93

An instruction field may be blank if no instruction interac-
tion is needed to ‘cause’ the action (e.g. waiting at a red light,
continuing in your lane with the flow of traffic, etc.). Referring
to the taxi test, instructions should instigate a change from
default vehicle motion.

In addition to the annotated instruction, we provide an
additional column for instruction referentiality. When an in-
struction refers to dynamic objects, e.g. “follow the white van”,
the dynamic reference tag is given. When an instruction refers
to static objects, e.g. “stop at the blue sign”, the static reference
tag is given. It is possible for an instruction to be annotated
with zero, one, or both of these tags.

We note that even though an instruction may not be ref-
erential, it is still expected that the autonomous vehicle (or
driver) is fully aware of the major static and dynamic objects
in the scene at all times. This is a prerequisite for safe
autonomous driving, independent of instruction interactions.
Rather, the dynamic referentiality tag is intended to indicate
which instructions may require further observation of an
object than is available at the moment of instruction. Such
instructions cannot be evaluated in an “open loop” manner,
since the playout of the scene’s dynamic objects will influence
the ego motion plan.

IV. CONSIDERATIONS FOR APPLICATION AND
EVALUATION

In this section, we provide some observations on the nature
of the annotated instructions and their relationship to nuScenes
data, with possible implications in how this data may be useful
for learning, and where some limitations may exist.
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While the instructions in doScenes provide information
about where a vehicle should move, it does not necessarily
provide information about how the vehicle should move, e.g.,
driving speed or style. This is primarily due to the retroactive
annotation approach applied; in future datasets, instructions on
driving style or speed may be provided to instigate particular
driving responses. Accordingly, motion plans generated by
natural language learned from doScenes may not be responsive
to prompts related to speed or style.

Further, the 12-second duration of the scenes in the
nuScenes dataset, especially when taken at free-flowing urban
traffic speeds, may present motion plans longer than a single
instruction can cover. This should be accounted for when
using doScenes as a basis for evaluation; accurate response
to a prompt may be reflected in only the first t seconds of a
nuScenes path before the instruction becomes irrelevant after
a significant change of scenery or transition to later stages of a
multi-step motion plan. This also opens for future research the
consideration of frameworks for multi-stage motion planning
using natural language.

We chose to create the tags for static and dynamic referential
instructions so that motion plans and associated models can
be trained or evaluated over particular sets (e.g. those without
reference to certain types of objects). For example, models
which use only the rasterized map as input, which have
found decent success in prior trajectory prediction tasks [25],
[26], [27], may be able to learn appropriate motion plans for
non-referential instructions, but would be limited without the
LiDAR or front-view image as input for making sense of
object references.

doScenes was designed to provide data for systems to learn
a relationship between instructions and vehicle motion. If
such a model can be learned, future research may include
techniques to use this model to generate a trajectory based
on natural language, or assign a natural language descriptor to
a vehicle trajectory, contributing to the task of interpretable,
interactive autonomous vehicle motion planning.

As an example of models which may be extended from
vision-language to vision-language-action based on prompted
instruction, SpatialRGPT [28] learns representations at the
instance level (rather than global level) from 3D scene graphs
and integrates depth information to enhance VLMs’ spatial
perception and reasoning capabilities. Importantly, nuScenes
provides 3D input in the form of LiDAR point clouds, making
it an appropriate dataset for this VLM, and the annotations
of doScenes create possibilities for learning information about
the corresponding actions to instructional inputs, which can be
explored as future research enabled by this dataset, crossing
from the generalized robotics domain to the specific challenges
of autonomous driving.

V. CONCLUDING REMARKS AND FUTURE RESEARCH

In addition to the application areas for future research
identified throughout the paper, in this section, we would
like to highlight future research potential for data collection
beyond doScenes. doScenes is a novel form of autonomous
driving data where natural language instructions are paired

with driving scenes and respective sensor time series. How-
ever, the instructions in this case are annotated retroactively;
while the annotators give their best estimate of an instruction
that would have caused such a scene to unfold, this is only
a proxy for a true signal. Future data collection should pair
true human instructions with action responses. There are a
variety of settings (both naturalistic and experimental) which
can allow for such collection, and it is reasonable to expect
that a higher volume of such high-quality data will enable
better learning of corresponding VLA models.
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