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ABSTRACT

We study the canonical statistical estimation problem of linear regression from
n i.i.d. examples under (ε, δ)-differential privacy when a fraction of response
variables are adversarially corrupted. We propose a variant of the popular dif-
ferentially private stochastic gradient descent (DP-SGD) algorithm with two in-
novations: a full-batch gradient descent to improve sample complexity and a
novel adaptive clipping to guarantee robustness. When there is no adversarial
corruption, this algorithm improves upon the existing state-of-the-art approach
and achieves near optimal sample complexity. Under label-corruption, this is the
first efficient linear regression algorithm to provably guarantee both (ϵ, δ)-DP and
robustness. Synthetic experiments confirm the superiority of our approach.

1 INTRODUCTION

Differential Privacy (DP) is a widely accepted notion of privacy introduced in (Dwork et al., 2006),
which is now standard in industry and government (Tang et al., 2017; Erlingsson et al., 2014; Fanti
et al., 2016; Abowd, 2018). A query to a database is said to be (ε, δ)-differentially private if a strong
adversary who knows all other entries cannot identify with high confidence whether you participated
in the database or not. The parameters ε and δ restrict the Type-I and Type-II errors achievable by
the adversary (Kairouz et al., 2015). Smaller ε > 0 and δ ∈ [0, 1] imply stronger privacy guarantees.

Significant advances have been made recently in understanding the utility-privacy trade-offs in
canonical statistical tasks. We provide a survey in App. A. However, several important questions
remain open, some of which we address below. A canonical statistical task of linear regression is
when n i.i.d. samples, {(xi ∈ Rd, yi ∈ R)}ni=1, are drawn from xi ∼ N (0,Σ), yi = x⊤i w

∗ + zi,
and zi ∼ N (0, σ2). The error is measured in ∥ŵ − w∗∥Σ := ∥Σ1/2(ŵ − w∗)∥, which correctly
accounts for the signal-to-noise ratio in each direction; in the direction of large eigenvalue of Σ, we
have larger signal in xi and the same noise in zi, and hence expect smaller error.

When computational complexity is not concerned, the best known algorithm is introduced by Liu
et al. (2022b), called High-dimensional Propose-Test-Release (HPTR), that can be flexibly applied
to a variety of statistical tasks to achieve the optimal sample complexity under (ε, δ)-DP. For linear
regression, n = O(d/α2+d/(εα)) samples are sufficient for HPTR to achieve an error of (1/σ)∥ŵ−
w∗∥2Σ = α with high probability. This is optimal, matching known information theoretic lower
bounds. It remains an important open question if this can be achieved with an efficient algorithm.
After a series of work surveyed in App. A, Varshney et al. (2022) achieves the best known sample
complexity for an efficient algorithm: n = Õ(κ2d/ε + d/α2 + κd/(εα)). The last term is sub-
optimal by a factor of κ, the condition number of the covariance Σ of the covariates, and the first
term is unnecessary. We further close this gap in the following.

Theorem 1 (informal version of Theorem 3 with no adversary). Under the (Σ, σ2, w∗,K, a)-model
in Assumption 1, n = Õ(d/α2 + κ1/2d/(εα)) samples are sufficient for Algorithm 1 to achieve an
error rate of (1/σ)∥ŵ − w∗∥2Σ = Õ(α) and (ε, δ)-DP, where κ := λmax(Σ)/λmin(Σ).

Perhaps surprisingly, we show that the same algorithm is also robust against label-corruption, where
an adversary selects arbitrary αcorrupt fraction of the data points and changes their response variables
arbitrarily. When computational complexity is not concerned, the best known algorithm is HPTR
by Liu et al. (2022b) that also provides optimal robustness and (ε, δ)-DP simultaneously, i.e., n =
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O(d/α2 + d/(εα)) samples are sufficient for HPTR to achieve an error of (1/σ)∥ŵ − w∗∥2Σ = α
for any corruption bounded by αcorrupt ≤ α. Note that this is a strong adversary who can corrupt
both the covariate, xi, and the response variable, yi. Currently, there is no efficient algorithm that
can guarantee both privacy and robustness for linear regression. Under a weaker adversary who can
only corrupt the response variable, we close this gap in the following.
Theorem 2 (informal version of Theorem 3 with adversarial label corruption). Under the hypotheses
of Theorem 1 and under αcorrupt-corruption model of Assumption 2, if αcorrupt ≤ α then n =

Õ(d/α2+κ1/2d/(εα)) samples are sufficient for Algorithm 1 to achieve an error rate of (1/σ)∥ŵ−
w∗∥2Σ = Õ(α) and (ε, δ)-DP, where κ := λmax(Σ)/λmin(Σ).

We start with the formal description of the setting in Sec. 2 and present the approach of Varshney
et al. (2022) for a private but non-robust linear regression. We build upon this approach and make
two innovations. First, we propose full-batch gradient descent, which is more challenging to analyze
but achieves improved dependence on the condition number κ. Crucial in overcoming the challenges
in the analysis is the notion of resilience explained in our proof sketch (Sec. 6). Secondly, we propose
novel adaptive clipping method that ensures robustness against label corruption. We present our
main algorithm (Alg. 1) in Sec. 3 with theoretical analysis and justification of the assumptions. Our
adaptive clipping is both robust and private. We use truncated mean to ensure robustness and private
histogram to ensure privacy in Sec. 4. We present numerical experiments on synthetic data that
demonstrates the sample efficiency of our approach in Sec. 5. We end with a sketch of our main
proof ideas in Sec. 6, which might be of independent interest to those requiring tight analysis of
linear regression in other settings.

2 PROBLEM FORMULATION AND BACKGROUND

For linear regression without adversarial corruption, the following assumption is standard for the
uncorrupted dataset Sgood, except for the fact that we assume a more general family of (K, a)-sub-
Weibull distributions that recovers the standard sub-Gaussian family as a special case when a = 1/2.
Assumption 1 ((Σ, σ2, w∗,K, a)-model). A multiset Sgood = {(xi ∈ Rd, yi ∈ R)}ni=1 of n
i.i.d. samples is from a linear model yi = ⟨xi, w∗⟩ + zi, where the input vector xi is zero mean,
E[xi] = 0, with a positive definite covariance Σ := E[xix⊤i ] ≻ 0, and the (input dependent) label
noise zi is zero mean, E[zi] = 0, with variance σ2 := E[z2i ]. We further assume E[xizi] = 0, which
is equivalent to assuming that the true parameter w∗ = Σ−1E[yixi]. We assume that the marginal
distribution of xi is (K, a)-sub-Weibull and that of zi is also (K, a)-sub-Weibull, as defined below.

Sub-Weibull distributions provide Gaussian-like tail bounds determining the resilience of the dataset
in Lemma J.7, which our analysis critically relies on and whose necessity is justified in Sec. 3.3.
Definition 2.1 (sub-Weibull distribution Kuchibhotla & Chakrabortty (2018) ). For some K, a > 0,
we say a random vector x ∈ Rd is from a (K, a)-sub-Weibull distribution if for all v ∈ Rd,

E

exp
( ⟨v, x⟩2

K2E[⟨v, x⟩2]

)1/(2a)
 ≤ 1 .

Our goal is to estimate the unknown parameter w∗, given upper bounds on the sub-Weibull param-
eters (K, a) and a corrupted dataset under the the standard definition of label corruption in (Bhatia
et al., 2015). There are variations in literature, which we survey in Appendix A.
Assumption 2 (αcorrupt-corruption). Given a dataset Sgood = {(xi, yi)}ni=1, an adversary inspects
all the data points, selects αcorruptn data points denoted as Sr, and replaces the labels with arbi-
trary labels while keeping the covariates unchanged. We let Sbad denote this set of αcorruptn newly
labelled examples by the adversary. Let the resulting set be S := Sgood ∪ Sbad \ Sr. We further
assume that the corruption rate is bounded by αcorrupt ≤ ᾱ, where ᾱ is a known positive constant
satisfying ᾱ ≤ 1/10, 72C2K

2 ᾱ log2a(1/(6ᾱ)) log(κ) ≤ 1/2, and 2C2K
2 log2a(1/(2ᾱ)) ≥ 1 for

the (K, a)-sub-Weibull distribution of interest and a positive constant C2 defined in Lemma J.7 that
only depends on (K, a).

Notations. A vector x ∈ Rd has the Euclidean norm ∥x∥. For a matrix M , we use ∥M∥2 to denote
the spectral norm. The error is measured in ∥ŵ−w∗∥Σ := ∥Σ1/2(ŵ−w∗)∥ for some PSD matrix Σ.
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The identity matrix is denoted by Id ∈ Rd×d. Let [n] = {1, 2, . . . , n}. Õ(·) hides some constants
terms, K, a = Θ(1), and poly-logarithmic terms in n, d, 1/ε, log(1/δ), 1/ζ, and 1/αcorrupt.

2.1 BACKGROUND ON DP

Differential Privacy (DP) is a standard measure of privacy leakage when a dataset is accessed via
queries, introduced by Dwork et al. (2006). Algorithms with strong DP guarantees provide plausible
deniability to a strong adversary who knows all other entries in that dataset and tries to identify a
particular user’s entry (Kairouz et al., 2015). Two datasets S and S′ are said to be neighbors if
they differ at most by one entry, which is denoted by S ∼ S′. A stochastic query q is said to be
(ε, δ)-differentially private for some ε > 0 and δ ∈ [0, 1], if P(q(S) ∈ A) ≤ eεP(q(S) ∈ A) + δ,
for all neighboring datasets S ∼ S′ and all subset A of the range of the query. We build upon two
widely used DP primitives, the Gaussian mechanism and the private histogram. A central concept in
DP mechanism design is the sensitivity of a query, defined as ∆q := supS∼S′ ∥q(S) − q(S′)∥. We
describe private histogram in App. B.
Lemma 2.2 (Gaussian mechanism Dwork & Roth (2014)). For a query q with sensitivity ∆q , the
Gaussian mechanism outputs q(S) +N (0, (∆q

√
2 log(1.25/δ)/ε)2Id) and achieves (ε, δ)-DP.

2.2 STANDARD APPROACH IN PRIVATE LINEAR REGRESSION

When there is no adversarial corruption, the state-of-the-art approach introduced by Varshney et al.
(2022) is based on stochastic gradient descent with clipping and additive Gaussian noise to ensure
privacy. There are two main components in this approach: adaptive clipping and streaming SGD.
Adaptive clipping with an appropriate threshold θt ensures that no data point is clipped while pro-
viding a bound on the sensitivity of the average mini-batch gradient, which ensures we do not add
too much noise. The streaming approach, where a data point is only touched once and discarded,
ensures independence between the past iterate wt−1 and the gradients at round t, which the analysis
critically relies on. For T = Θ̃(κ), iterations where κ is the condition number of the covariance Σ
of the covariates, the dataset S = {(xi, yi)}ni=1 is partitioned into {Bt}Tt=1 subsets of equal size. At
each round t < T , the gradients are clipped and averaged with additive Gaussian noise:

wt+1 ← wt − η
( 1

|Bt|
∑
i∈Bt

clipθt(xi(w
⊤
t xi − yi)) +

θt
√
2 log(1.25/δ)

ε|Bt|
νt

)
, (1)

where νt ∼ N (0, Id). In Varshney et al. (2022), a variation of this streaming SGD is shown to
require n = Õ(κ2d/ε+ d/α2 + κd/(εα)) to achieve an error of ∥wT − w∗∥2Σ = O(σ2α2).

Our approach builds upon such gradient based methods but makes two important innovations. First,
we use full-batch gradient descent, as opposed to the streaming SGD above. Using all n samples
reduces the sensitivity of the per-round gradient average, allowing us to improve the sample com-
plexity to n = Õ(d/α2 + κ1/2d/(εα)) to achieve an error of ∥wT − w∗∥2Σ = O(σ2α2). However,
we lose the independence between wt−1 and the gradients in the current round, which makes the
analysis more challenging. We instead rely on resilience to precisely track the bias and variance of
the (dependent) full-batch gradient average. Resilience is a central concept in robust statistics which
we explain in Sec. 6. The second innovation we make is separately clipping xi and (wt

⊤xi − yi) in
the gradient. This is critical in achieving robustness to label-corruption, as we explain in Sec. 3.1.

3 ROBUST AND DIFFERENTIALLY PRIVATE LINEAR REGRESSION

We introduce a gradient descent approach for linear regression with a novel adaptive clipping that
ensures robustness against label-corruption. This achieves a near-optimal sample complexity and,
for the special case of private linear regression without adversarial corruption, improves upon the
state-of-the-art algorithm.

3.1 ALGORITHM

The skeleton of our approach in Alg. 1 is the general DP-SGD Abadi et al. (2016); Song et al. (2013)
with adaptive clipping Andrew et al. (2021). However, the standard adaptive clipping is not robust
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against label-corruption under the more general (K, a)-sub-Weibull assumption. In particular, it
is possible under sub-Weibull distribution that a positive fraction of the covariates are close to the
origin, which is not possible under Gaussian data due to concentration. In this case, the adversary
can select to corrupt those points with small norm, ∥xi∥, making large changes in the residual,
(yi − w⊤

t xi), while evading the standard clipping (by the norm of the gradient), since the norm
of the gradient, ∥xi(yi − w⊤

t xi)∥ = ∥xi∥ |yi − w⊤
t xi|, can remain under the threshold. This is

problematic, since the bias due to the corrupted samples in the gradient scales proportional to the
magnitude of the residual (after clipping). To this end, we propose clipping the norm and the residual
separately: clipΘ(xi)clipθt

(
w⊤

t xi − yi
)
. This keeps the sensitivity of gradient average bounded by

Θθt, and the subsequent Gaussian mechanism in line 8 ensures (ε0, δ0)-DP at each round. Applying
advanced composition in Lemma B.4 of T rounds, this ensures end-to-end (ε, δ)-DP.

Novel adaptive clipping. In clipΘ(xi), the only purpose of clipping the covariate by its norm, ∥xi∥,
is to bound the sensitivity of the resulting clipped gradient. In particular, we do not need to make it
robust as there is no corruption in the covariates. Ideally, we want to select the smallest threshold
Θ that does not clip any of the covariates. Since the norm of a covariate is upper bounded by
∥xi∥2 ≤ K2Tr(Σ) log2a(1/ζ) with probability 1−ζ (Lemma J.3), we estimate the unknown Tr(Σ)

using Private Norm Estimator in Alg. 3 in App. F and set the norm threshold Θ = K
√
2Γ loga(n/ζ)

(line 3). The n in the logarithm ensures that the union bound holds.

In clipθt(w
⊤
t xi − yi), the purpose of clipping the residual by its magnitude, |yi − w⊤

t xi| = |(w∗ −
wt)

⊤xi + zi|, is to bound the sensitivity of the gradient and also to provide robustness against
label-corruption. We want to choose a threshold that only clips corrupt data points and at most a
few clean data points. We know that any set of (1 − 2αcorrupts) fraction of the clean data points
is sufficient to get a good estimate of the average gradient, and we can find such a large enough
set of points that satisfy |(w∗ − wt)

⊤xi + zi|2 ≤ (∥wt − w∗∥2Σ + σ2)CK2 log2a(1/(2α)) from
Lemma J.3. At the same time, this threshold on the residual is small enough to guarantee robustness
against the label-corrupted samples. We introduce Robust Private Distance Estimator in Alg. 2
to estimate the unknown (squared and shifted) distance, ∥wt − w∗∥2Σ + σ2, and set the distance

threshold θt = 2
√
2γt

√
9C2K2 log2a(1/(2α)) (line 6). Both norm and distance estimation rely on

private histogram (Lemma B.1), but over a set of statistics computed on partitioned datasets, which
we explain in detail in Sec. 4.

Algorithm 1: Robust and Private Linear Regression

Input: dataset S = {(xi, yi)}3ni=1, privacy parameters (ε, δ), number of iterations T , learning
rate η, failure probability ζ, target error rate α, distribution parameter (K, a)

1 Partition dataset S into three equal sized disjoint subsets S = S1 ∪ S2 ∪ S3.
2 δ0 ← δ/(2T ), ε0 ← ε/(4

√
T log(1/δ0)), ζ0 ← ζ/3, w0 ← 0

3 Γ← PrivateNormEstimator(S1, ε0, δ0, ζ0), Θ← K
√
2Γ loga(n/ζ0)

4 for t = 1, 2, . . . , T − 1 do
5 γt ← RobustPrivateDistanceEstimator(S2, wt, ε0, δ0, α, ζ0)

6 θt ← 2
√
2γt ·

√
9C2K2 log2a(1/(2α)).

7 Sample νt ∼ N (0, Id)

8 wt+1 ← wt − η
(

1
n

∑
i∈S3

(
clipΘ(xi)clipθt

(
w⊤

t xi − yi
))

+

√
2 log(1.25/δ0)Θθt

ε0n
· νt
)

9 Return wT

3.2 ANALYSIS

We show that Algorithm 1 achieves a near-optimal sample complexity. We provide a proof in Ap-
pendix H and a sketch of the proof in Section 6. We address the necessity of the assumptions in
Sec. 3.3, along with some lower bounds.

Theorem 3. Algorithm 1 is (ε, δ)-DP. Under (Σ, σ2, w∗,K, a)-model of Assumption 1 and αcorrupt-
corruption of Assumption 2 and for any failure probability ζ ∈ (0, 1) and target error rate α ≥
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αcorrupt, if sample size is large enough such that

n = Õ

(
K2d log2a+1

(1
ζ

)
+
d+ log(1/ζ)

α2
+
dT 1/2 log( 1δ ) log

a( 1ζ )

εα

)
, (2)

with a large enough constant where Õ hides poly-logarithmic terms in d, n, and κ, then the
choices of a small enough step size, η ≤ 1/(1.1λmax(Σ)), and the number of iterations, T =

Θ̃ (κ log (∥w∗∥)) for a condition number of the covariance κ := λmax(Σ)/λmin(Σ), ensures that,
with probability 1− ζ, Algorithm 1 achieves

Eν1,··· ,νt∼N (0,Id)

[
∥wT − w∗∥2Σ

]
= Õ

(
K4σ2α2 log4a

( 1
α

))
, (3)

where the expectation is taken over the noise added for DP, and Θ̃(·) hides logarithmic terms in
K,σ, d, n, 1/ε, log(1/δ), 1/α, and κ.

Optimality. Omitting some constant and logarithmic terms, Alg. 1 requires

n = Õ
( d

α2
+
κ1/2d log(1/δ)

εα

)
, (4)

samples to ensure an error rate of E[∥wT − w∗∥2Σ] = Õ(σ2α2) for any α ≥ αcorrupt. The lower
bound on the achievable error of σ2α2 ≥ σ2α2

corrupt is due to the label-corruption and cannot be
improved, as it matches an information theoretic lower bound we provide in Proposition 3.1. In the
special case when the covariate follows a sub-Gaussian distribution, that is (K, 1/2)-sub-Weibull
for a constant K, there is an n = Ω(d/α2 + d/(εα)) lower bound (Cai et al. (2019), Theorem
4.1), and our upper bound matches this lower bound up to a factor of κ1/2 in the second term and
other logarithmic factors. Eq. (4) is the best known rate among all efficient private linear regression
algorithms, strictly improving upon existing methods when log(1/δ) = Õ(1). We discuss some
exponential time algorithms that closes the κ1/2 gap in Sec. 3.3.

Comparisons with the state-of-the-art. The best existing efficient algorithm by Varshney et al.
(2022) can only handle the case where there is no adversarial corruption, and requires n =

Õ(κ2d
√

log(1/δ)/ε+ d/α2 + κd
√
log(1/δ)/(εα)) to achieve an error rate of σ2α2. Compared to

Eq. (4), the first term dominates in its dependence in κ, which is a factor of κ larger than Eq. (4).
The third term is larger by a factor of κ1/2 but smaller by a factor of log1/2(1/δ), compared to the
second term in Eq. (4).

In the non-private case, when ε = ∞, a recent line of work has developed algorithms for linear re-
gression that are robust to label corruptions (Bhatia et al., 2015; 2017; Suggala et al., 2019; Dalalyan
& Thompson, 2019). Of these, Bhatia et al. (2015); Dalalyan & Thompson (2019) are relevant to
our work as they consider the same adversary model as us. When xi’s and zi’s are sampled from
N (0,Σ) and N (0, σ2), Dalalyan & Thompson (2019) proposed a Huber loss based estimator that
achieves error rate of σ2α2 log2(n/δ) when n = Õ

(
κ2d/α2

)
. Under the same setting, Bhatia et al.

(2015) propoased a hard thresholding based estimator that achieves σ2α2 error rate with Õ
(
d/α2

)
sample complexity. Our results in Theorem 3 match these rates, except for the sub-optimal depen-
dence on log4a(1/α). Another line of work considered both label and covariate corruptions and
developed optimal algorithms for parameter recovery (Diakonikolas et al., 2019c;b; Prasad et al.,
2018; Pensia et al., 2020; Cherapanamjeri et al., 2020; Jambulapati et al., 2020; Klivans et al., 2018;
Bakshi & Prasad, 2021; Zhu et al., 2019; Depersin, 2020). The best existing efficient algorithm , e.g.
Pensia et al. (2020) achieves error rate of σ2α2 log(1/α) when n = Õ

(
d/α2

)
, and the uncorrupted

xi and zi are sampled from N (0, I) and N (0, σ2).

Under both privacy requirements and adversarial corruption, the only algorithm with a provable
guarantee is the exponential time approach, known as High-dimensional Propose-Test-Release
(HPTR), of (Liu et al., 2022b, Corollary C.2), which achieves a sample complexity of n =
O(d/α2 + (d + log(1/δ))/(εα)). Notice that there is no dependence on κ and the log(1/δ) term
scales as 1/(εα) as opposed to κd1/2/(εα) of Eq. (4). It remains an open question if computationally
efficient private linear regression algorithms can achieve such a κ-independent sample complexity.
Further, HPTR is robust against a stronger adversary who corrupts the covariates also and not just
the labels. Under this more powerful adversary, it remains an open question if there is an efficient
algorithm that achieves n = O(d/α2 + d/(εα)) sample complexity even for constant κ and δ.
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3.3 LOWER BOUNDS

Necessity of our assumptions. A tail assumption on the covariate xi such as Assumption 1 is
necessary to achieve n = O(d) sample complexity in Eq. (4). Even when the covariance Σ is close
to identity, without further assumptions on the tail of covariate x, the result in Bassily et al. (2014)
implies that for δ < 1/n and sufficiently large n, no (ε, δ)-DP estimator can achieve excess risk
∥ŵ − w∗∥2Σ better than Ω(d3/(ε2n2)) (see Eq. (3) in Wang (2018)). Note that this lower bound is a
factor d larger than our upper bound that benefits from the additional tail assumption.

A tail assumption on the noise zi such as Assumption 1 is necessary to achieve n = O(d/(εα))
dependence on the sample complexity in Eq. (4). For heavy-tailed noise, such as k-th moment
bounded noise, the dependence can be significantly larger. (Liu et al., 2022b, Proposition C.5)
implies that for δ = e−Θ(d) and 4-th moment bounded xi and zi, any (ε, δ)-DP estimator requires
n = Ω(d/(εα2)) to achieve excess risk E[∥ŵ − w∗∥2Σ] = Õ(σ2α2).

The assumption that only label is corrupted is critical for Algorithm 1. The average of the (adap-
tively) clipped gradient can be significantly more biased, if the adversary can place the covariates of
the corrupted samples in the same direction. In particular, the bound on the bias of our gradient step
in Eq. (42) in App. H would no longer hold. Against such strong attacks, one requires additional
steps to estimate the mean of the gradients robustly and privately, similar to those used in robust
private mean estimation Liu et al. (2021); Kothari et al. (2021); Hopkins et al. (2022); Ashtiani &
Liaw (2022). Pursuing this direction is outside the scope of this paper.

Lower bounds under label corruption. Under theαcorrupt label corruption setting (Assumption 2),
even with infinite data and without privacy constraints, no algorithm is able to learn w∗ with ℓ2 error
better than αcorrupt. We provide a formal derivation for completeness.

Proposition 3.1. Let DΣ,σ2,w∗,K,a be a class of joint distributions on (xi, yi) from
(Σ, σ2, w∗,K, a)-model in Assumption 1. Let Sn,α be an α-corrupted dataset of n i.i.d. samples
from some distribution D ∈ DΣ,σ2,w∗,K,a under Assumption 2. LetM be a class of estimators that
are functions over the datasets Sn,α. Then there exists a positive constant c such that

min
n,ŵ∈M

max
Sn,α,D∈DΣ,σ2,w∗,K,a,w

∗,K,a,
E[∥ŵ − w∗∥2Σ] ≥ c α2 σ2 . (5)

A proof is provided in Appendix I.1. A similar lower bound can be found in (Bakshi & Prasad,
2021, Theorem 6.1).

4 ADAPTIVE CLIPPING FOR THE GRADIENT NORM

In the ideal clipping thresholds for norm and the residual, there is an unknown terms which we need
to estimate adaptively, (∥wt − w∗∥2Σ + σ2) and Tr(Σ), up to a constant multiplicative error. We
privately estimate the (squared and shifted) distance to optimum, (∥wt − w∗∥2Σ + σ2), with Alg. 2
and privately estimate the average input norm, E[∥xi∥2] = Tr(Σ), with Alg. 3 in App. F. These
are used to get the clipping thresholds in Alg. 1. We propose a trimmed mean approach below for
distance estimation. The norm estimator is similar and is provided in App. F.

Private distance estimation using private trimmed mean. The goal is to estimate the (shifted)
distance to optimum, ∥wt − w∗∥2Σ + σ2, up to some constant multiplicative error. Note that this is
precisely the task of estimating the variance of the residual bi = yi − w⊤

t xi. When there is no ad-
versarial corruptions and no privacy constraints, we can simply use the empirical variance estimator
(1/n)

∑
i∈[n](yi − w⊤

t xi)
2 to obtain a good estimate. However, the empirical variance estimator is

not robust against adversarial corruptions since one outlier can make the estimate arbitrarily large.
A classical idea is using the trimmed estimator from (Tukey & McLaughlin, 1963), which throws
away the 2α fraction of residuals bi with the largest magnitude. For datasets with resilience property
as assumed in this paper, this will guarantee an accurate estimate of the distance to optimum in the
presence of α fraction of corruptions.

To make the estimator private, it is tempting to simply add a Laplacian noise to the estimate. How-
ever, the sensitivity of the trimmed estimator is unknown and depends on the distance to the optimum
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that we aim to estimate; we cannot determine the variance of the Laplacian noise we need to gener-
ate. Instead, we propose to partition the dataset into k batches, compute an estimate for each batch,
and form a histogram with over those k estimates. Using a private histogram mechanism with ge-
ometrically increasing bin sizes, we propose using the bin with the most estimates to guarantee a
constant factor approximation of the distance to the optimum. We describe the algorithm as follows.

Algorithm 2: Robust Private Distance Estimator
Input: S2 = {(xi, yi)}ni=1, current weight wt, privacy (ε0, δ0), ᾱ, ζ

1 Let bi ← (yi − w⊤
t xi)

2, for all i ∈ [n] and S̃ ← {bi}ni=1.
2 Partition S̃ into k = ⌊C1 log(1/(δ0ζ))/ε0⌋ subsets of equal size and let Gj be the j-th partition.
3 For j ∈ [k], denote ψj as the (1− 3ᾱ)-quantile of Gj and ϕj ← 1

|Gj |
∑

i∈Gj
bi1{bi ≤ ψj}.

4 Partition [0,∞) into bins of geometrically increasing intervals
Ω :=

{
. . . ,

[
2−1, 1

)
, [1, 2) ,

[
2, 22

)
,
[
22, 23

)
, . . .

}
∪ {[0, 0]}

5 Run (ε0, δ0)-DP histogram learner of Lemma B.1 on {ϕj}kj=1 over Ω
6 if all the bins are empty then Return ⊥
7 Let [ℓ, r] be a non-empty bin that contains the maximum number of points in the DP histogram
8 return ℓ

This algorithm gives an estimate of the distance up to a constant multiplicative error as we show in
the following theorem. We provide a proof in App. D.
Theorem 4. Algorithm 2 is (ε0, δ0)-DP. For an αcorrupt-corrupted dataset S2 and an upper bound
ᾱ on αcorrupt that satisfy Assumption 1 and 37C2K

2 · ᾱ log2a(1/(6ᾱ)) ≤ 1/4 and any ζ ∈ (0, 1),
if

n = O

(
(d+ log((log(1/(δ0ζ)))/ε0ζ))(log(1/(δ0ζ)))

ᾱ2ε0

)
, (6)

with a large enough constant then, with probability 1− ζ, Algorithm 2 returns ℓ such that 1
4 (∥wt −

w∗∥2Σ + σ2) ≤ ℓ ≤ 4(∥wt − w∗∥2Σ + σ2).

Remark 4.1. While DP-STAT (Algorithm 3 in Varshney et al. (2022)) can also be used to estimate
∥wt − w∗∥Σ + σ (and it would not change the ultimate sample complexity in its dependence on κ,
d, ε, and n), there are three important improvements we make: (i) DP-STAT requires the knowledge
of ∥w∗∥Σ + σ; (ii) our utility guarantee has improved dependence in K and log2a(n); and (iii)
Algorithm 2 is robust against label corruption.

Upper bound on clipped good data points. Using the above estimated distance to the optimum in
selecting a threshold θt, we also need to ensure that we do not clip too many clean data points. The
tolerance in our algorithm to reach the desired level of accuracy is clipping O(α) fraction of clean
data points. This is ensured by the following lemma, and we provide a proof in Appendix E.

Lemma 4.2. Under Assumptions 1, if θt ≥
√

9C2K2 log2a(1/(2α)) · (∥w∗ − wt∥Σ + σ), then∣∣{i ∈ S3 ∩ Sgood :
∣∣w⊤

t xi − yi
∣∣ ≥ θt}∣∣ ≤ αn, for all t ∈ [T ].

5 EXPERIMENTAL RESULTS

5.1 DP LINEAR REGRESSION

We present experimental results comparing our proposed technique (DP-ROBGD) with other base-
lines. We consider non-corrupted regression in this section and defer corrupted regression to the
next section. We begin by describing the problem setup and the baseline algorithms first.

Experiment Setup. We generate data for all the experiments using the following generative model.
The parameter vector (w∗) is uniformly sampled from the surface of a unit sphere. The covariates
{xi}ni=1 are first sampled from N (0,Σ) and then projected to unit sphere. We consider diagonal
covariances Σ of the following form: Σ[0, 0] = κ, and Σ[i, i] = 1 for all i ≥ 1. Here κ ≥ 1 is
the condition number of Σ. We generate noise zi from uniform distribution over [−σ, σ]. Finally,

7
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Figure 1: Performance of various techniques on DP linear regression. d = 10 in all the experiments.
n = 107, κ = 1 in the 2nd experiment. n = 107, σ = 1 in the 3rd experiment.

the response variables are generated as follows yi = ⟨xi, w∗⟩ + zi. All the experiments presented
below are repeated 5 times and the averaged results are presented. We set the DP parameters (ϵ, δ)
as ϵ = 1, δ = min(10−6, n−2). Experiments for ϵ = 0.1 can be found in the Appendix.

Baseline Algorithms. We compare our estimator with the following baseline algorithms:

• Non private algorithms: ordinary least squares (OLS), one-pass stochastic gradient descent with
tail-averaging (SGD). For SGD, we use a constant step-size of 1/(2λmax) with n/T minibatch
size, where T = 3κ log n.

• Private algorithms: sufficient statistics perturbation (DP-SSP) (Foulds et al., 2016; Wang,
2018), differentially private stochastic gradient descent (DP-AMBSSGD) (Varshney et al., 2022).
DP-SSP had the best empirical performance among numerous techniques studied by Wang
(2018), and DP-AMBSSGD has the best known theoretical guarantees. The DP-SSP algo-
rithm involves releasing XTX and XTy differentially privately and computing (X̂TX)−1X̂Ty.
DP-AMBSSGD is a private version of SGD where the DP noise is set adaptively according to
the excess error in each iteration. For both the algorithms, we use the hyper-parameters recom-
mended in their respective papers. To improve the performance of DP-AMBSSGD, we reduce
the clipping threshold recommended by the theory by a constant factor.

DP-ROBGD. We implement Algorithm 1 with the following key changes. Instead of relying on
PrivateNormEstimator to estimate Γ, we set it to its true value Tr(Σ). This is done for a fair
comparison with DP-AMBSSGD which assumes the knowledge of Tr(Σ). Next, we use 20% of
the samples to compute γt in line 5 (instead of the 50% stated in Algorithm 1). In our experiments
we also present results for a variant of our algorithm called DP-ROBGD* which outputs the best
iterate based on γt, instead of the last iterate. One could also perform tail-averaging instead of
picking the best iterate. Both these modifications are primarily used to reduce the variance in the
output of Algorithm 1 and achieved similar performance in our experiments.

Results. Figure 1 presents the performance of various algorithms as we vary n, κ, σ. It can be
seen that DP-ROBGD outperforms DP-AMBSSGD in almost all the settings. DP-SSP has poor
performance when the noise σ is low, but performs slightly better than DP-ROBGD in other settings.
A major drawback of DP-SSP is its computational complexity which scales as O(nd2 + dω). In
contrast, the computational complexity of DP-ROBGD has smaller dependence on d and scales as
Õ(ndκ). Thus the latter is more computationally efficient for high-dimensional problems.

5.2 DP ROBUST LINEAR REGRESSION

We now illustrate the robustness of our al-
gorithm. We consider the same experi-
mental setup as above and randomly cor-
rupt α fraction of the response variables
by setting them to 1000. The figure on the
right presents the results from this experi-
ment. It can be seen that none of the base-
lines are robust to adversarial corruptions.
They can be made arbitrarily bad by in-
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creasing the magnitude of corruptions. In contrast, DP-ROBGD is able to handle the corruptions
well. More experimental results on a harder adversary can be found in the Appendix.

6 SKETCH OF THE MAIN IDEAS IN THE ANALYSIS

We provide the main ideas behind the proof of Theorem 3. The privacy proof is straightforward since
no matter what clipping threshold we get from private norm estimator and private distance estimator,
the noise we add is always proportionally to the clipping threshold which guaranteed privacy. The
focus of this section will be on the utility of the algorithm.

The proof of the utility heavily relies on the resilience Steinhardt et al. (2017) (also known as sta-
bility Diakonikolas & Kane (2019)), which states that given a large enough sample set S, varies
statistics (for example, sample mean and sample variance) of any large enough subset of S will be
close to each other. We provide the formal definition of resilience in Appendix C.

The main effort for proving Theorem 3 lies in the analysis of the gradient descent algorithm. With-
out clipping and added noise for differential privacy, convergence property of gradient descent for
linear regression is well known. The convergence proof of noisy gradient descent is also relatively
straightforward. However, our algorithm requires clipping and added noise together for robustness
and privacy purposes, and the key difference between our setting and the classical setting is the ex-
istence of adversarial bias and random noise in the gradient. We give an overview of the proof of
our robust and private gradient descent as follows.

First we introduce some notations. Let gi = (x⊤i wt−yi)xi be the raw gradient, g̃i = clipθt(x
⊤
i wt−

yi)clipΘ(xi) be the clipped gradient. Note that when the data follows from our distributional as-
sumption, clipΘ(xi) = xi for i ∈ Sgood. We can write down one step of gradient update as follows:

wt+1 − w∗ = wt − η

(
1

n

∑
i∈S

g̃
(t)
i + ϕtνt

)
− w∗

=

(
I− η

n

∑
i∈G

xix
⊤
i

)
(wt − w∗) +

η

n

∑
i∈G

xizi +
η

n

∑
i∈G

(g
(t−1)
i − g̃(t−1)

i )− η

n

∑
i∈Sbad

g̃
(t)
i − ηϕtνt

In the above equation, the first term is a contraction, meaning wt is moving toward w∗. The sec-
ond term captures the noise from the randomness of the data set. The third term captures the bias
introduced by the clipping operation, the fourth term η

n

∑
i∈Sbad

g̃
(t)
i captures the bias introduced

by the adversarial datapoints, the fifth term captures the added Gaussian noise. The second term is
standard and relatively easy to control, and our main focus is on the last three terms.

The third term η
n

∑
i∈G(g

(t−1)
i − g̃

(t−1)
i ) can be controlled using the resilience property. We

prove that with our estimated threshold, the clipping will only affect a small amount of data-
points, whose contribution to the gradient is small collectively. The fourth term η

n

∑
i∈Sbad

g̃
(t)
i =

η
n

∑
i∈Sbad

clipθt(x
⊤
i wt − yi)xi can be controlled since there is only a small amount data points

whose label is corrupted, the clipθt(x
⊤
i wt − yi) is controlled by the clipping threshold and the xi

part satisfies resilience property which implies a small, say Sbad, must have small ∥
∑

i∈Sbad
xi∥.

Now we have controlled the deterministic bias. Then, we upper bound the fifth term, which is the
noise introduced by the Gaussian noise for the purpose of privacy, and show the expected prediction
error decrease in every gradient step. The difficulty is that, since our clipping threshold is adaptive,
the decrease of the estimation error depends on the estimation error of all the previous steps. This
causes that in some iterations, the estimation error actually increase. In order to get around this, we
split the iterations into length κ chunks, and argue that the maximum estimation error in a chunk
must be a constant factor smaller than the previous chunk. This implies we will reach the desired
error with in Õ(κ) steps.

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC

9



Under review as a conference paper at ICLR 2023

conference on computer and communications security, pp. 308–318, 2016.

John M Abowd. The US Census Bureau adopts differential privacy. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2867–
2867, 2018.

Daniel Alabi, Audra McMillan, Jayshree Sarathy, Adam Smith, and Salil Vadhan. Differentially
private simple linear regression. arXiv preprint arXiv:2007.05157, 2020.

Kareem Amin, Matthew Joseph, Mónica Ribero, and Sergei Vassilvitskii. Easy differentially private
linear regression. arXiv preprint arXiv:2208.07353, 2022.

Galen Andrew, Om Thakkar, Brendan McMahan, and Swaroop Ramaswamy. Differentially private
learning with adaptive clipping. Advances in Neural Information Processing Systems, 34, 2021.

Hassan Ashtiani and Christopher Liaw. Private and polynomial time algorithms for learning gaus-
sians and beyond. In Conference on Learning Theory, pp. 1075–1076. PMLR, 2022.

Hilal Asi, Vitaly Feldman, Tomer Koren, and Kunal Talwar. Private stochastic convex optimization:
Optimal rates in l1 geometry. In International Conference on Machine Learning, pp. 393–403.
PMLR, 2021.

Ainesh Bakshi and Adarsh Prasad. Robust linear regression: Optimal rates in polynomial time. In
Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pp. 102–115,
2021.

Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization: Efficient
algorithms and tight error bounds. In 2014 IEEE 55th Annual Symposium on Foundations of
Computer Science, pp. 464–473. IEEE, 2014.

Raef Bassily, Vitaly Feldman, Kunal Talwar, and Abhradeep Guha Thakurta. Private stochastic
convex optimization with optimal rates. Advances in Neural Information Processing Systems, 32,
2019.

Kush Bhatia, Prateek Jain, and Purushottam Kar. Robust regression via hard thresholding. Advances
in neural information processing systems, 28, 2015.

Kush Bhatia, Prateek Jain, Parameswaran Kamalaruban, and Purushottam Kar. Consistent robust
regression. Advances in Neural Information Processing Systems, 30, 2017.

Gavin Brown, Marco Gaboardi, Adam Smith, Jonathan Ullman, and Lydia Zakynthinou.
Covariance-aware private mean estimation without private covariance estimation. Advances in
Neural Information Processing Systems, 34, 2021.

Tony Cai, Yichen Wang, and Linjun Zhang. The cost of privacy: Optimal rates of convergence for
parameter estimation with differential privacy. arXiv preprint arXiv:1902.04495, 2019.

Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. Differentially private empirical
risk minimization. Journal of Machine Learning Research, 12(3), 2011.

Yu Cheng, Ilias Diakonikolas, and Rong Ge. High-dimensional robust mean estimation in nearly-
linear time. In Proceedings of the thirtieth annual ACM-SIAM symposium on discrete algorithms,
pp. 2755–2771. SIAM, 2019.

Yeshwanth Cherapanamjeri, Efe Aras, Nilesh Tripuraneni, Michael I Jordan, Nicolas Flammar-
ion, and Peter L Bartlett. Optimal robust linear regression in nearly linear time. arXiv preprint
arXiv:2007.08137, 2020.

Arnak Dalalyan and Philip Thompson. Outlier-robust estimation of a sparse linear model using ℓ1
-penalized huber’s m-estimator. Advances in neural information processing systems, 32, 2019.

Jules Depersin. A spectral algorithm for robust regression with subgaussian rates. arXiv preprint
arXiv:2007.06072, 2020.

10



Under review as a conference paper at ICLR 2023

Ilias Diakonikolas and Daniel M Kane. Recent advances in algorithmic high-dimensional robust
statistics. arXiv preprint arXiv:1911.05911, 2019.

Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Ankur Moitra, and Alistair Stewart.
Being robust (in high dimensions) can be practical. In International Conference on Machine
Learning, pp. 999–1008. PMLR, 2017.

Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. List-decodable robust mean estimation
and learning mixtures of spherical gaussians. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, pp. 1047–1060, 2018.

Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Ankur Moitra, and Alistair Stewart.
Robust estimators in high-dimensions without the computational intractability. SIAM Journal on
Computing, 48(2):742–864, 2019a.

Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Jacob Steinhardt, and Alistair Stew-
art. Sever: A robust meta-algorithm for stochastic optimization. In International Conference on
Machine Learning, pp. 1596–1606, 2019b.

Ilias Diakonikolas, Weihao Kong, and Alistair Stewart. Efficient algorithms and lower bounds for ro-
bust linear regression. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 2745–2754. SIAM, 2019c.

Ilias Diakonikolas, Samuel B Hopkins, Daniel Kane, and Sushrut Karmalkar. Robustly learning any
clusterable mixture of gaussians. arXiv preprint arXiv:2005.06417, 2020.

Christos Dimitrakakis, Blaine Nelson, Aikaterini Mitrokotsa, and Benjamin IP Rubinstein. Robust
and private bayesian inference. In International Conference on Algorithmic Learning Theory, pp.
291–305. Springer, 2014.

Yihe Dong, Samuel Hopkins, and Jerry Li. Quantum entropy scoring for fast robust mean estimation
and improved outlier detection. Advances in Neural Information Processing Systems, 32, 2019.

Cynthia Dwork and Jing Lei. Differential privacy and robust statistics. In Proceedings of the forty-
first annual ACM symposium on Theory of computing, pp. 371–380, 2009.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Foundations
and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of cryptography conference, pp. 265–284. Springer, 2006.
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Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th computer security foundations sympo-
sium (CSF), pp. 263–275. IEEE, 2017.

Ankit Pensia, Varun Jog, and Po-Ling Loh. Robust regression with covariate filtering: Heavy tails
and adversarial contamination. arXiv preprint arXiv:2009.12976, 2020.

Adarsh Prasad, Arun Sai Suggala, Sivaraman Balakrishnan, and Pradeep Ravikumar. Robust esti-
mation via robust gradient estimation. arXiv preprint arXiv:1802.06485, 2018.

Holger Sambale. Some notes on concentration for α-subexponential random variables. arXiv
preprint arXiv:2002.10761, 2020.

Or Sheffet. Old techniques in differentially private linear regression. In Algorithmic Learning
Theory, pp. 789–827. PMLR, 2019.

Shuang Song, Kamalika Chaudhuri, and Anand D Sarwate. Stochastic gradient descent with differ-
entially private updates. In 2013 IEEE global conference on signal and information processing,
pp. 245–248. IEEE, 2013.

Shuang Song, Om Thakkar, and Abhradeep Thakurta. Characterizing private clipped gradient de-
scent on convex generalized linear problems. arXiv preprint arXiv:2006.06783, 2020.

Jacob Steinhardt, Moses Charikar, and Gregory Valiant. Resilience: A criterion for learning in the
presence of arbitrary outliers. arXiv preprint arXiv:1703.04940, 2017.

Arun Sai Suggala, Kush Bhatia, Pradeep Ravikumar, and Prateek Jain. Adaptive hard thresholding
for near-optimal consistent robust regression. In Conference on Learning Theory, pp. 2892–2897.
PMLR, 2019.

Jun Tang, Aleksandra Korolova, Xiaolong Bai, Xueqiang Wang, and Xiaofeng Wang. Privacy loss in
apple’s implementation of differential privacy on macos 10.12. arXiv preprint arXiv:1709.02753,
2017.

Henri Theil. A rank-invariant method of linear and polynomial regression analysis. Indagationes
mathematicae, 12(85):173, 1950.

Kiran K Thekumparampil, Ashish Khetan, Zinan Lin, and Sewoong Oh. Robustness of conditional
gans to noisy labels. Advances in neural information processing systems, 31, 2018.

John W Tukey. Mathematics and the picturing of data. In Proceedings of the International Congress
of Mathematicians, Vancouver, 1975, volume 2, pp. 523–531, 1975.

John W Tukey and Donald H McLaughlin. Less vulnerable confidence and significance procedures
for location based on a single sample: Trimming/winsorization 1. Sankhyā: The Indian Journal
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APPENDIX

A RELATED WORK

Differentially private optimization. There is a long line of work at the intersection of differentially
privacy and optimization (Chaudhuri et al., 2011; Kifer et al., 2012; Bassily et al., 2014; Song et al.,
2013; Bassily et al., 2019; Wu et al., 2017; Andrew et al., 2021; Feldman et al., 2020; Song et al.,
2020; Asi et al., 2021; Kulkarni et al., 2021; Kamath et al., 2021; Zhang et al., 2022). As one of the
most well-studied problem in differentially privacy, DP Empirical Risk Minimization (DP-ERM)
aims to minimize the empirical risk (1/n)

∑
i∈S ℓ(xi;w) privately. The optimal excess empirical

risk for approximate DP (i.e., δ > 0) is known to be GD ·
√
d/(εn), where the loss ℓ is convex and

G-Lipschitz with respect to the data, and D is the diameter of the convex parameter space (Bassily
et al., 2014). This bound can be achieved by several DP-SGD methods, e.g., (Song et al., 2013;
Bassily et al., 2014), with different computational complexities. Differentially private stochastic
convex optimization considers minimizing the population risk Ex∼D[ℓ(x,w)], where data is drawn
i.i.d. from some unknown distribution D. Using some variations of DP-SGD, Bassily et al. (2019)
and Feldman et al. (2020) achieves a population risk of GD(1/

√
n+
√
d/(εn)).

DP linear regression. Applying above results for the linear model, by observing that G = O(d) if
D = O(1), the sample complexity required for achieving generalization error is n = d2. Existing
works for DP linear regression, for example (Vu & Slavkovic, 2009; Kifer et al., 2012; Mir, 2013;
Dimitrakakis et al., 2014; Wang et al., 2015; Foulds et al., 2016; Minami et al., 2016; Wang, 2018;
Sheffet, 2019; Wang & Gu, 2019; Hu et al., 2022) typically consider deterministic data. Under the
i.i.d. Gaussian data setting, this translates into a sample complexity of n = d3/2/(εα), where the
extra d1/2 due to the fact that no statistical assumptions are made. For i.i.d. sub-Weibull data, recent
work (Varshney et al., 2022) achieved nearly optimal excess population risk d/n+ d2/(ε2n2) using
DP-SGD with adaptive clipping, up to extra factors on the condition number. This is closest to our
work and we provide detailed comparisons in Sections 2.2 and 3.2. Under Gaussian assumptions,
Milionis et al. (2022) analyze linear regression algorithm with sub-optimal guarantees. (Dwork
& Lei, 2009; Alabi et al., 2020; Amin et al., 2022; Liu et al., 2022b) also consider using robust
statistics like Tukey median (Tukey, 1975) or Theil–Sen estimator (Theil, 1950) for differentially
private regression. However, (Dwork & Lei, 2009; Amin et al., 2022) lack utility guarantees and
(Alabi et al., 2020) is restricted to one-dimensional data. Liu et al. (2022b) achieves optimal sample
complexity but takes exponential time.

Robust linear regression. Robust mean estimation and linear regression have been studied for
a long time in the statistics community (Tukey & McLaughlin, 1963; Huber, 1992; Tukey, 1975).
However, for high dimensional data, these estimators generalizing the notion of median to higher di-
mensions are typically computationally intractable. Recent advances in the filter-based algorithms,
e.g., (Diakonikolas et al., 2017; 2020; 2019a; 2018; Cheng et al., 2019; Dong et al., 2019), achieve
nearly optimal guarantees for mean estimation in time linear in the dimension of the dataset. Mo-
tivated by the filter algorithms, Diakonikolas et al. (2019c;b); Prasad et al. (2018); Pensia et al.
(2020); Cherapanamjeri et al. (2020); Jambulapati et al. (2020) achieved nearly optimal rate with d
samples for robust linear regression, where both data xi and label yi are corrupted. Another type
of efficient methods that achieve similar rates and sample complexity in polynomial time is based
on sum-of-square proofs (Klivans et al., 2018; Bakshi & Prasad, 2021), which can be computation-
ally expensive in practice. Zhu et al. (2019); Brown et al. (2021); Liu et al. (2022b) achieve nearly
optimal rates using d samples but require exponential time complexities. An important special case
of adversarial corruption is when the adversary only corrupts the response variable in supervised
learning (Khetan et al., 2018) and also in unsupervised learning (Thekumparampil et al., 2018). For
linear regression, when there is only label corruptions, (Bhatia et al., 2015; Dalalyan & Thompson,
2019; Kong et al., 2022) achieve nearly optimal rates with O(d) samples. Under the oblivious la-
bel corruption model, i.e., the adversary only corrupts a fraction of labels in complete ignorance
of the data, (Bhatia et al., 2017; Suggala et al., 2019) provide consistent estimator ŵn such that
limn→∞ E [ŵn − w∗]2 = 0 with O(d) samples.

Robust and private linear regression. Under the settings of both DP and data corruptions, the
only algorithm by Liu et al. (2022b) achieves nearly optimal rates α log(1/α)σ with optimal sample
complexities of d/α2 + d/(εα). However, their algorithm requires exponential time complexities.
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B PRELIMINARY ON DIFFERENTIAL PRIVACY

Our algorithm builds upon two DP primitive: Gaussian mechanism and private histogram. The
Gaussian mechanism is one examples of a larger family of mechanisms known as output perturba-
tion mechanisms. In practice, it is possible to get better utility trade-off for a output perturbation
mechanism by carefully designing the noise, such as the stair-case mechanism which are shown to
achieve optimal utility in the variance (Geng et al., 2015) and also in hypothesis testing (Kairouz
et al., 2014). However, the gain is only by constant factors, which we do not try to optimize in this
paper. We provide a reference for the private histogram below.

Lemma B.1 (Stability-based histogram (Karwa & Vadhan, 2017, Lemma 2.3)). For every K ∈
N∪∞, domain Ω, for every collection of disjoint bins B1, . . . , BK defined on Ω, n ∈ N, ε ≥ 0, δ ∈
(0, 1/n), β > 0 and α ∈ (0, 1) there exists an (ε, δ)-differentially private algorithm M : Ωn → RK

such that for any set of data X1, . . . , Xn ∈ Ωn

1. p̂k = 1
n

∑
Xi∈Bk

1

2. (p̃1, . . . , p̃K)←M(X1, . . . , Xn), and

3.

n ≥ min

{
8

εβ
log(2K/α),

8

εβ
log(4/αδ)

}

then,

P(|p̃k − p̂k| ≤ β) ≥ 1− α

When the databse is accessed multiple times, we use the following composition theorems to account
for the end-to-end privacy leakage.

Lemma B.2 (Parallel composition McSherry (2009)). Consider a sequence of interactive queries
{qk}Kk=1 each operating on a subset Sk of the database and each satisfying (ε, δ)-DP. If Sk’s are
disjoint then the composition (q1(S1), q2(S2), . . . , qK(SK)) is (ε, δ)-DP.

Lemma B.3 (Serial composition Dwork & Roth (2014)). If a database is accessed with an (ε1, δ1)-
DP mechanism and then with an (ε2, δ2)-DP mechanism, then the end-to-end privacy guarantee is
(ε1 + ε2, δ1 + δ2)-DP.

In most modern privacy analysis of iterative processes, advanced composition theorem from Kairouz
et al. (2015) gives tight accountant for the end-to-end privacy budget. It can be improved for specific
mechanisms using tighter accountants, e.g., in Mironov (2017); Girgis et al. (2021); Wang et al.
(2019); Zhu et al. (2022); Gopi et al. (2021).

Lemma B.4 (Advanced composition Kairouz et al. (2015)). For ε ≤ 0.9, an end-to-end guar-
antee of (ε, δ)-differential privacy is satisfied if a database is accessed k times, each with a
(ε/(2

√
2k log(2/δ)), δ/(2k))-differential private mechanism.

C DEFINITION OF RESILIENCE

Definition C.1 ((Liu et al., 2022b, Definition 23)). For some α ∈ (0, 1), ρ1 ∈ R+, ρ2 ∈ R+, and
ρ3 ∈ R+, ρ4 ∈ R+, we say dataset Sgood = {(xi ∈ Rd, yi ∈ R)}ni=1 is (α, ρ1, ρ2, ρ3, ρ4)-resilient
with respect to (w∗,Σ, σ) for some w∗ ∈ Rd, positive definite Σ ≻ 0 ∈ Rd×d, and σ > 0 if for any
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T ⊂ Sgood of size |T | ≥ (1− α)n, the following holds for all v ∈ Rd:∣∣∣ 1

|T |
∑

(xi,yi)∈T

⟨v, xi⟩(yi − x⊤i w∗)
∣∣∣ ≤ ρ1√v⊤Σv σ , (7)

∣∣∣ 1

|T |
∑
xi∈T

⟨v, xi⟩2 − v⊤Σv
∣∣∣ ≤ ρ2v⊤Σv , (8)

∣∣∣ 1

|T |
∑

(xi,yi)∈T

(yi − x⊤i w∗)2 − σ2
∣∣∣ ≤ ρ3σ2 , (9)

∣∣∣ 1

|T |
∑

(xi,yi)∈T

⟨v, xi⟩
∣∣∣ ≤ ρ4√v⊤Σv . (10)

D PROOF OF THEOREM 4 ON THE PRIVATE DISTANCE ESTIMATION

We first analyze the privacy. Changing a data point (xi, yi) can affect at most one partition in
{Gj}kj=1. This would affect at most two histogram bins, increasing the count of one bin by one
and decreasing the count in another bin by one. Under such a bounded ℓ1 sensitivity, the privacy
guarantees follows from Lemma B.1.

Next, we analyze the utility. In the (private) histogram step, we claim that at most only two
consecutive bins can be occupied by any ϕj’s. This is also true for the private histogram, be-
cause the private histogram of Lemma B.1 adds noise to non-empty bins only. By Lemma B.1,
if k ≥ c log(1/(δ0ζ0))/ε0, one of these two intervals (the union of which contains the true distance
∥wt − w∗∥2Σ + σ2) is released. This results in a multiplicative error bound of four, as the bin size
increments by a factor of two.

To show that only two bins are occupied, we show that all ϕj’s are close to the true distance. We
first show that each partition contains at most 2αcorrupt fraction of corrupted samples and thus all
partitions are (2ᾱ, 6ᾱ, 6ρ̂, 6ρ̂, 6ρ̂, 6ρ̂′)-corrupt good, where ρ̂(C2,K, a, ᾱ) = C2K

2ᾱ log2a(1/6ᾱ)
and ρ̂′(C2,K, a, ᾱ) = C2Kᾱ loga(1/6ᾱ), as defined in Definition J.6.

Let B = ⌊n/k⌋ be the sample size in each partition. Let ζ0 = ζ/2. Since the partition is drawn
uniformly at random, for each partition Gj , the number of corrupted samples α′n satisfies α′n ∼
Hypergeometric(n, αcorruptn, n/k). The tail bound gives that with probability 1− ζ0,

α′ ≤ αcorrupt + (k/n) log(2/ζ0) ≤ 2ᾱ ,

where the last inequality follows from the fact that the corruption level is bounded byαcorruption ≤ ᾱ
and the assumption on the sample size in Eq. (6) which implies n ≳ log(1/(δ0ζ0)) log(1/ζ0)/(ᾱε0).

For a particular subset Gj , Lemma J.7 implies that if B = O((d + log(1/ζ0))/ᾱ
2), then Gj is

(α′, 6ᾱ, 6ρ̂, 6ρ̂, 6ρ̂, 6ρ̂′)-corrupt good set with respect to (w∗,Σ, σ) from Assumption 1. This means
that there exists a constant C2 > 0 such that for any T1 ⊂ Sgood with |T1| ≥ (1− 6ᾱ)B, we have∣∣∣∣∣ 1

|T1|
∑
i∈T1

⟨xi, w∗ − wt⟩2 − ∥w∗ − wt∥2Σ

∣∣∣∣∣ ≤ 6C2K
2ᾱ log2a(1/(6ᾱ))∥w∗ − wt∥2Σ ,∣∣∣∣∣ 1

|T1|
∑
i∈T1

z2i − σ2

∣∣∣∣∣ ≤ 6C2K
2ᾱ log2a(1/(6ᾱ))σ2 ,

and ∣∣∣∣∣ 1

|T1|
∑
i∈T1

zi ⟨xi, w∗ − wt⟩

∣∣∣∣∣ ≤ 6C2K
2ᾱ log2a(1/(6ᾱ))∥w∗ − wt∥Σσ .

Note that for i ∈ Sgood, bi = z2i +2zi(w
∗−wt)

⊤xi+(w∗−wt)
⊤xix

⊤
i (w

∗−wt). By the triangular
inequality, we know, under above conditions,∣∣∣∣∣ 1

|T1|
∑
i∈T1

bi − ∥w∗ − wt∥2Σ − σ2

∣∣∣∣∣ ≤ 12C2K
2ᾱ log2a(1/(6ᾱ))(∥w∗ − wt∥2Σ + σ2) . (11)
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Which also implies that any subset T2 ⊂ Sgood and |T2| ≤ 6ᾱ|Sgood|, we have∣∣∣∣∣ 1

|T2|
∑
i∈T2

bi − ∥w∗ − wt∥2Σ − σ2

∣∣∣∣∣ ≤ 12C2K
2 log2a(1/(6ᾱ))(∥w∗ − wt∥2Σ + σ2) . (12)

Recall thatψj is the (1−3ᾱ)-quantile of the datasetGj . Let T := {i ∈ Sgood : bi ≤ ψj}, where with
a slight abuse of notations, we use Sgood to denote the set of uncorrupted samples corresponding to
Gj and Sbad to denote the set of corrupted samples corresponding to Gj . Since the corruption is
less than α′, we know (1− 3ᾱ− α′)B ≤ |T | ≤ (1− 3ᾱ+ α′)B. By our assumption that α′ ≤ 2ᾱ,
we have |Ē| ≥ (3ᾱ−α′)B ≥ ᾱB where Ē := Sgood \E. Using Eq. (12) with a choice of T2 = Ē,
we get that

min
i∈Ē

bi − ∥w∗ − wt∥2Σ − σ2 ≤ 12C2K
2 log2a(1/(6ᾱ))(∥w∗ − wt∥2Σ + σ2) . (13)

This implies that

ψj ≤ 12C2K
2 log2a(1/(6ᾱ))(∥w∗ − wt∥2Σ + σ2). (14)

Hence

∣∣ϕj − ∥w∗ − wt∥2Σ − σ2
∣∣ =

∣∣∣∣∣∣ 1B
∑
i∈Gj

bi · 1{bi ≤ ψj} − ∥w∗ − wt∥2Σ − σ2

∣∣∣∣∣∣
=

∣∣∣∣∣ 1B∑
i∈T

bi − ∥w∗ − wt∥2Σ − σ2

∣∣∣∣∣+
∣∣∣∣∣ 1B ∑

i∈Sbad

bi · 1{bi ≤ ψj}

∣∣∣∣∣
≤ 37C2K

2 · ᾱ log2a(1/(6ᾱ))(∥w∗ − wt∥2Σ + σ2), (15)

where we applied Eq. (14) and Eq. (11) in the last inequality.

On a fixed partition Gj , we showed that if B = O((d + log(1/ζ0))/ᾱ
2) then, with probability

1 − ζ0, |ϕj − ∥w∗ − wt∥2Σ − σ2| ≤ 1
4 (∥w

∗ − wt∥2Σ + σ2), which follows from our assumption
that 37C2K

2 · ᾱ log2a(1/(6ᾱ)) ≤ 1/4. Using an union bound for all subsets, we know if B =
O((d + log(k/ζ0))/ᾱ

2), then 1 − ζ0, |ϕj − ∥w∗ − wt∥2Σ − σ2| ≤ 1
4 (∥w

∗ − wt∥2Σ + σ2) holds for
all j ∈ [k]. Since the upper bound lower bound ratio is 5/3 which is less than 2. All the ϕj must lie
in two bins, which will result in a factor of 4 multiplicative error.

E PROOF OF LEMMA 4.2 ON THE UPPER BOUND ON CLIPPED GOOD POINTS

Let ρ̂(C2,K, a, α) = 2C2K
2α log2a(1/(2α)) and ρ̂′(C2,K, a, α) = 2C2Kα loga(1/(2α)).

Lemma J.7 implies that if n = O((d + log(1/ζ))/(α2)) with a large enough constant, then there
exists a universal constant C2 such that S3 is, with respect to (w∗,Σ, σ), (αcorrupt, 2α, ρ̂, ρ̂, ρ̂, ρ̂

′)-
corrupt good. The rest of the proof is under this (deterministic) resilience condition. By the re-
silience property in Eq. (8), we know for any T ⊂ Sgood with |T | ≥ (1− 2α)n,∣∣∣∣∣ 1

|T |
∑
i∈T

(w∗ − wt)
⊤xix

⊤
i (w

∗ − wt)− ∥w∗ − wt∥2Σ

∣∣∣∣∣ ≤ 2C2K
2α log2a(1/(2α))∥w∗ − wt∥2Σ .

(16)

Let E :=
{
i ∈ Sgood : (w∗ − wt)

⊤xix
⊤
i (w

∗ − wt) > ∥w∗ − wt∥2Σ(8C2K
2 log2a(1/(2α)) + 1)

}
.

Denote α̃ := |E|/n. We want to show that α̃ ≤ α/2. Let T be the set of points that contain the
smallest 1− α/2 fraction in {(w∗ − wt)

⊤xix
⊤
i (w

∗ − wt)}i∈Sgood
. We know |T | = (1− α/2)n ≥

(1− 2α)n. To prove by contradiction, suppose α̃ > α/2, which means all data points in Sgood \ T
are larger than ∥w∗ − wt∥2Σ(8C2K

2 log2a(1/(2α)) + 1). From resilience property in Eq. (16), we
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know

1

n

∑
i∈Sgood

(w∗ − wt)
⊤xix

⊤
i (w

∗ − wt)

=
1

n

∑
i∈T

(w∗ − wt)
⊤xix

⊤
i (w

∗ − wt) +
1

n

∑
i∈Sgood\T

(w∗ − wt)
⊤xix

⊤
i (w

∗ − wt)

≥
(
1− α

2

)(
1− 2C2K

2α log2a(
1

2α
)

)
∥w∗ − wt∥2Σ +

α

2
(8C2K

2 log2a(
1

2α
) + 1)∥w∗ − wt∥2Σ

> (1 + 2C2K
2α log2a(1/2α))∥w∗ − wt∥2Σ ,

which contradicts Eq. (16) for Sgood. This shows α̃ ≤ α/2.

Similarly, we can show that
∣∣{i ∈ Sgood : z2t > σ2(8C2K

2 log2a(1/(2α)) + 1)
}∣∣ ≤ α/2. This

means the rest (1 − α)n points in Sgood satisfies
√

(w∗ − wt)⊤xix⊤i (w
∗ − wt) + |zi| ≤ (∥wt −

w∗∥+ σ)
√

(8C2K2 log2a(1/(2α)) + 1). Note that for all i ∈ Sgood, we have

|x⊤i wt − yi| =
∣∣x⊤i (wt − w∗)− zi

∣∣
≤ |x⊤i (wt − w∗)|+ |zi|

≤
(√

(w∗ − wt)⊤xix⊤i (w
∗ − wt) + |zi|

)
.

By our assumption that C2K
2 log2a(1/(2ᾱ)) ≥ 1 which follows from Assumption 2, we have∣∣∣∣{i ∈ Sgood : ∥x⊤i wt − yi∥ ≤ (∥wt − w∗∥+ σ)

√
9C2K2 log2a(1/(2α))

}∣∣∣∣ ≥ (1− α)n . (17)

F PRIVATE NORM ESTIMATION: ALGORITHM AND ANALYSIS

Algorithm 3: Private Norm Estimator
Input: S1 = {(xi, yi)}ni=1, target privacy (ε0, δ0), failure probability ζ.

1 Let ai ← ∥xi∥2. Let S̃ = {ai}ni=1.
2 Partition S̃ into k = ⌊C1 log(1/(δ0ζ))/ε⌋ subsets of equal size and let Gj be the j-th partition.
3 For each j ∈ [k], denote ψj = (1/|Gj |)

∑
i∈Gj

ai.
4 Partition [0,∞) into bins of geometrically increasing intervals

Ω :=
{
. . . ,

[
2−2/4, 2−1/4

)
,
[
2−1/4, 1

)
,
[
1, 21/4

)
,
[
21/4, 22/4

)
, . . .

}
∪ {[0, 0]}

5 Run (ε0, δ0)-DP histogram learner of Lemma B.1 on {ψj}kj=1 over Ω
6 if all the bins are empty then Return ⊥
7 Let [ℓ, r] be a non-empty bin that contains the maximum number of points in the DP histogram
8 Return ℓ

Lemma F.1. Algorithm 3 is (ε0, δ0)-DP. If {xi}ni=1 are i.i.d. samples from (K, a)-sub-Weibull dis-
tributions with zero mean and covariance Σ and

n = Õ

(
log2a(1/(δ0ζ))

ε0

)
,

with a large enough constant then Algorithm 3 returns Γ such that, with probability 1− ζ,

1√
2
Tr(Σ) ≤ Γ ≤

√
2Tr(Σ) .

We provide a proof in App. F.1.
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F.1 PROOF OF LEMMA F.1 ON THE PRIVATE NORM ESTIMATION

By Hanson-Wright inequality in Lemma J.1 and union bound, there exists constant c > 0 such that
with probability 1− ζ,

|1
b

b∑
i=1

∥xi∥2 − Tr(Σ)| ≤ cK2 Tr(Σ)

(√
log(1/ζ)

b
+

log2a(1/ζ)

b

)
, (18)

This means there exists a constant c′ > 0 such that if b ≥ c′K2 log2a(k/ζ), then for all j ∈ [k].

|ψj − Tr(Σ)| ≤ 21/8 Tr(Σ) (19)

With probability 1−ζ, {ψj}kj=1 lie in interval of size 21/4 Tr(Σ). Thus, at most two consecutive bins
are filled with {ψj}kj=1. Denote them as I = I1 ∪ I2. Our analysis indicates that P(ψi ∈ I) ≥ 0.99.
By private histogram in Lemma B.1, if k ≥ log(1/(δζ))/ε, |p̂I − p̃I | ≤ 0.01 where p̂I is the
empirical count on I and p̃I is the noisy count on I . Under this condition, one of these two intervals
are released. This results in multiplicative error of

√
2.

G PROOF OF THE RESILIENCE IN LEMMA J.7

We apply following resilience property for general distribution characterized by Orlicz function
from Zhu et al. (2019).

Lemma G.1 ((Zhu et al., 2019, Theorem 3.4)). Dataset S = {xi ∈ Rd}ni=1 consists i.i.d. samples

from a distribution D. Suppose D is zero mean and satisfies Ex∼D

[
ψ
(

(v⊤x)2

κ2Ex∼D[(v⊤x)2]

)]
≤ 1

for all v ∈ Rd, where ψ(·) is Orlicz function. Let Σ = Ex∼D[xx
⊤]. Suppose α ≤ ᾱ, where ᾱ

satisfies (1 + ᾱ/2) · 2κ2ᾱψ−1(2/ᾱ) < 1/3, ᾱ ≤ 1/4. Then there exists constant c1, C2 such that if
n ≥ c1((d + log(1/ζ))/(α2)), with probability 1 − ζ, for any T ⊂ S of size |T | ≥ (1 − α)n, the
following holds: ∥∥∥∥∥Σ−1/2

(
1

|T |
∑
i∈T

xi

)∥∥∥∥∥ ≤ C2κα
√
ψ−1(1/α) (20)

and ∥∥∥∥∥Id − Σ−1/2

(
1

|T |
∑
i∈T

xix
⊤
i

)
Σ−1/2

∥∥∥∥∥
2

≤ C2κ
2αψ−1(1/α) . (21)

Let ψ(t) = et
1/(2a)

. It is easy to see that ψ(t) is a valid Orlicz function. Then if xi is (K, a)-sub-
Weibull, then we know ∥∥∥∥∥Σ−1/2

(
1

|T |
∑
i∈T

xi

)∥∥∥∥∥ ≤ C2Kα

√
log2a(1/α) , (22)

and ∥∥∥∥∥Id − Σ−1/2

(
1

|T |
∑
i∈T

xix
⊤
i

)
Σ−1/2

∥∥∥∥∥
2

≤ C2K
2α log2a(1/α) . (23)

This implies

(1− C2K
2α log2a(1/α))Id ⪯ Σ−1/2

(
1

|T |
∑
i∈T

xix
⊤
i

)
Σ−1/2 ⪯ (1 + C2K

2α log2a(1/α))Id .

(24)
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Using the fact that C⊤AC ⪯ C⊤BC if A ⪯ B, we know

(1− C2K
2α log2a(1/α))Σ ⪯ 1

|T |
∑
i∈T

xix
⊤
i ⪯ (1 + C2K

2α log2a(1/α))Σ . (25)

This implies resilience properties of xi and zi in Eq. (8) and Eq. (9) in Definition C.1 respectively.
Next, we show the resilience property of xizi.

By ab ≤ a2

2 + b2

2 , for any fixed v ∈ Rd,

E[exp

((
| ⟨xizi, v⟩ |2

K4σ2v⊤Σv

)1/(4a)
)
] ≤ E

[
exp

((
| ⟨xi, v⟩ |2

K2v⊤Σv

)1/(2a)

/2

)
exp

((
z2i

K2σ2

)1/(2a)

/2

)]
(26)

≤ 1

2

(
E

[
exp

((
| ⟨xi, v⟩ |2

K2v⊤Σv

)1/(2a)
)]

+ E

[
exp

((
z2i

K2σ2

)1/(2a)
)])

(27)
≤ 1 . (28)

Since E[xizi] = 0, (Zhu et al., 2019, Lemma E.3) implies that there exists constant c1, C2 > 0 such
that if n ≥ c1(d+log(1/ζ))/(α2), with probability 1−ζ, for any T ⊂ Sgood of size |T | ≥ (1−α)n,∥∥∥∥∥Σ−1

(
1

|T |
∑
i∈T

xizi

)∥∥∥∥∥ ≤ C2K
2σα log2a(1/α) . (29)

H PROOF OF THEOREM 3 ON THE ANALYSIS OF ALGORITHM 1

The main theorem builds upon the following lemma that analyzes a (stochastic) gradient descent
method, where the randomness is from the DP noise we add and the analysis only relies on certain
deterministic conditions on the dataset including resilienece and concentration. Theorem 3 follows
in a straightforward manner by collecting Theorem 4, Lemma F.1, Lemma 4.2, and Lemma H.1.

Lemma H.1. Algorithm 1 is (ε, δ)-DP. Under Assumptions 1 and 2 for any ζ ∈ (0, 1) and α ≥
αcorrupt satisfying K2α log2a(1/α) log(κ) ≤ c for some universal constant c > 0, if distance
threshold is small enough such that

θt ≤ 3C
1/2
2 K loga(1/(2α)) · (∥w∗ − wt∥Σ + σ) , (30)

and large enough such that the number of clipped clean data points is no larger than αn, at every
round, the norm threshold is large enough such that

Θ ≥ K
√

Tr(Σ) loga(n/ζ) , (31)

and sample size is large enough such that

n = O

(
K2d log(d/ζ) log2a(n/ζ) +

d+ log(1/ζ)

α2
+
K2T 1/2d log(T/δ) loga(n/(αζ))

εα

)
,

(32)

with a large enough constant, then the choices of a step size, η = 1/(Cλmax(Σ)) for some C ≥ 1.1,
and the number of iterations, T = Θ̃ (κ log (∥w∗∥)) , ensures that Algorithm 1 outputswT satisfying
the following with probability 1− ζ:

Eν1,··· ,νt∼N (0,Id)[∥wT − w∗∥2Σ] ≲ K4σ2 log2(κ)α2 log4a(1/α) , (33)

where the expectation is taken over the noise added for DP and Θ̃(·) hides logarithmic terms in
K,σ, d, n, 1/ε, log(1/δ), 1/α.
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Proof of Lemma H.1. We first prove a set of deterministic conditions on the clean dataset, which is
sufficient for the analysis of the gradient descent.

Step 1: Sufficient deterministic conditions on the clean dataset. Let Sgood be the uncorrupted
dataset for S3 and Sbad be the corrupted datapoints in S3. Let G := Sgood ∩S3 = S3 \Sbad denote
the clean data that remains in the input dataset. Let λmax = ∥Σ∥2. Define Σ̂ := (1/n)

∑
i∈G xix

⊤
i ,

B̂ := Id − ηΣ̂. Lemma J.4 implies that if n = O(K2d log(d/ζ) log2a(n/ζ)), then

0.9Σ ⪯ Σ̂ ⪯ 1.1Σ . (34)

We pick step size η such that η ≤ 1/(1.1λmax) to ensure that η ≤ 1/∥Σ̂∥2. Since the covariates
{xi}i∈S are not corrupted, from Lemma J.3, we know with probability 1− ζ, for all i ∈ S3,

∥xi∥2 ≤ K2 Tr(Σ) log2a(n/ζ) . (35)

Lemma J.7 implies that if n = O((d + log(1/ζ))/(α2)), then there exists a univer-
sal constant C2 such that S3 is, following Definition J.6, with respect to (w∗,Σ, σ),
(αcorrupt, α, C2K

2α log2a(1/α), C2K
2α log2a(1/α), C2K

2α log2a(1/α), C2Kα loga(1/α))-
corrupt good. Such corrupt good sets have a sufficiently large, 1 − αcorrupt, fraction of points that
satisfy a good property that we need: resilience. The rest of the proof is under Eq. (34), Eq. (35),
and that Sgood is resilient.

Step 2: Upper bounding the deterministic noise in the gradient. In this step, we bound the
deviation of the gradient from its mean. There are several sources of deviation: (i) clipping, (ii)
adversarial corruptions, and (iii) randomness of the data noise and privacy noise. We will show that
deviations from all these sources can be controlled deterministically under the corrupt-goodness
(i.e., resilience).

Let ϕt = (
√
2 log(1.25/δ0)Θθt)/(ε0n), which ensures that we add enough noise to guarantee

(ε0, δ0)-DP for each step of gradient descent. This follows from the standard Gaussian mechanism
in Lemma 2.2 and the fact that each gradient is clipped to the norm of Θθt, resulting in a DP
sensitivity of Θθt/n. The fact that this sensitivity scales as 1/n is one of the main reasons for
the performance gain we get over Varshney et al. (2022) that uses a minimatch of size n/κ with
sensitivity scaling as κ/n. Define g(t)i := xi(x

⊤
i wt− yi). For i ∈ Sgood, we know yi = x⊤i w

∗+ zi.
Let g̃i = clipΘ(xi)clipθt(x

⊤
i wt − yi). Note that under Eq. (35), clipΘ(xi) = xi for all i ∈ S3.

From Algorithm 1, we can write one-step update rule as follows:
wt+1 − w∗

=wt − η

(
1

n

∑
i∈S

g̃
(t)
i + ϕtνt

)
− w∗

=

(
I− η

n

∑
i∈G

xix
⊤
i

)
(wt − w∗) +

η

n

∑
i∈G

xizi +
η

n

∑
i∈G

(g
(t)
i − g̃

(t)
i )− ηϕtνt −

η

n

∑
i∈Sbad

g̃
(t)
i

(36)

Let Et := {i ∈ G : θt ≤ |x⊤i wt−yi|} be the set of clipped clean data points such that
∑

i∈G(g
(t)
i −

g̃
(t)
i ) =

∑
i∈Et

(g
(t)
i − g̃

(t)
i ). We define v̂ := (1/n)

∑
i∈G xizi, u

(1)
t := (1/n)

∑
i∈Et

xix
⊤
i (wt −

w∗), u(2)t := (1/n)
∑

i∈Et
−xizi, and u(3)t := (1/n)

∑
i∈Sbad∪Et

g̃
(t)
i .

We can further write the update rule as:

wt+1 − w∗ =B̂(wt − w∗) + ηv̂ + ηu
(1)
t−1 + ηu

(2)
t−1 − ηϕtνt − ηu

(3)
t−1 . (37)

We bound each term one-by-one. Since G ⊂ Sgood and |G| = (1− αcorrupt)n, using the resilience
property in Eq. (7), we know

∥Σ−1/2v̂∥ = (1− αcorrupt) max
∥v∥=1

Σ−1/2

〈
v,

1

(1− αcorrupt)n

∑
i∈G

xizi

〉
≤ (1− αcorrupt)C2K

2α log2a(1/α)σ (38)

≤ C2K
2α log2a(1/α)σ . (39)
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Let α̃ = |Et|/n. By assumption, we know α̃ ≤ α (which holds for the given dataset due to
Lemma 4.2), and

∥Σ−1/2u
(1)
t ∥ = ∥Σ−1/2 1

n

∑
i∈Et

xix
⊤
i (wt − w∗)∥ .

From Corollary J.8, we know∣∣∣∣∣∥Σ−1/2 1

|Et|
∑
i∈Et

xix
⊤
i (wt − w∗)∥ − ∥wt − w∗∥Σ

∣∣∣∣∣
=

∣∣∣∣∣ max
u:∥u∥=1

1

|Et|
∑
i∈Et

u⊤Σ−1/2xix
⊤
i (wt − w∗)∥ − max

v:∥v∥=1
v⊤Σ1/2(wt − w∗)

∣∣∣∣∣
≤ max

u:∥u∥=1

∣∣∣∣∣ 1

|Et|
∑
i∈Et

u⊤Σ−1/2xix
⊤
i Σ

−1/2Σ1/2(wt − w∗)∥ − u⊤Σ1/2(wt − w∗)

∣∣∣∣∣
≤ max

u:∥u∥=1

∣∣∣∣∣ 1

|Et|
∑
i∈Et

u⊤
(
Σ−1/2xix

⊤
i Σ

−1/2 − Id

)
Σ1/2(wt − w∗)∥

∣∣∣∣∣
=

∥∥∥∥∥ 1

|Et|
∑
i∈Et

(
Σ−1/2xix

⊤
i Σ

−1/2 − Id

)
Σ1/2(wt − w∗)

∥∥∥∥∥
≤

∥∥∥∥∥ 1

|Et|
∑
i∈Et

(
Σ−1/2xix

⊤
i Σ

−1/2 − Id

)∥∥∥∥∥ · ∥∥∥Σ1/2(wt − w∗)
∥∥∥

≤2− α̃
α̃

C2K
2α log2a(1/α) ∥wt − w∗∥Σ .

This implies that

∥Σ−1/2u
(1)
t ∥ ≤ ∥Σ−1/2 1

n

∑
i∈E

xix
⊤
i (wt − w∗)∥

≤
(
α̃+ 2C2K

2α log2a(1/α)
)
∥wt − w∗∥Σ

≤ 3C2K
2α log2a(1/α) ∥wt − w∗∥Σ , (40)

where the last inequality follows from the fact that α̃ ≤ α and our assumption that
C2K

2 log2a(1/ᾱ) ≥ 1 from Assumption 2. Similarly, we use resilience property in Eq. (7) in-
stead of Eq. (8), we can show that

∥Σ−1/2u
(2)
t ∥ ≤ 3C2K

2α log2a(1/α)σ . (41)

Next, we consider u(3)t . Since |Sbad| ≤ αcorruptn and |Et| ≤ αn, using Eq. (10) and Corollary J.8,
we have

∥Σ−1/2u
(3)
t ∥ = max

v:∥v∥=1

1

n

∑
i∈Sbad∪Et

v⊤Σ−1/2xiclipθt(x
⊤
i wt − yi)

≤ 2C2Kα loga(1/α)θt

≤ 6C1.5
2 K2α log2a(1/α)(∥wt − w∗∥Σ + σ) . (42)

Now we use Eq. (39), Eq. (40), Eq. (41) and Eq. (42) to bound the final error from update rule in
Eq. (37).

Step 3: Analysis of the t-steps recurrence relation. We have controlled the deterministic noise in
the last step. In this step, we will upper bound the noise introduced by the Gaussian noise for the
purpose of privacy, and show the expected distance to optimum decrease every step.
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Define ut = (v̂ + u
(1)
t + u

(2)
t − u

(3)
t ). We can rewrite Eq. (37) as

wt+1 − w∗ =B̂(wt − w∗) + ηut − ηϕtνt (43)

=B̂t+1(w0 − w∗) + η

t∑
i=0

B̂iut−i − η
t∑

i=0

ϕt−iB̂
iνt−i . (44)

Taking expectations of Σ̂-norm square with respect to ν1, · · · , νt, we have

Eν1,...,νt∼N (0,Id)∥wt+1 − w∗∥2
Σ̂

(45)

≤ 2∥B̂t+1(w0 − w∗)∥2
Σ̂
+ 2E[∥η

t∑
i=0

B̂iut−i∥2Σ̂] + η2
t∑

i=0

Tr(B̂2iΣ̂)E[ϕ2t−i] (46)

≤ 2∥B̂t+1(w0 − w∗)∥2
Σ̂
+ 2η2E[

t∑
i=0

t∑
j=0

∥B̂iut−i∥Σ̂∥B̂
jut−j∥Σ̂] (47)

+ η2
t∑

i=0

Tr(B̂2iΣ̂)E[ϕ2t−i] , (48)

where at the second step we used the fact that ν1, ν2, · · · , νt are independent isotropic Gaussian.

Note that

η∥B̂iut−i∥Σ̂ = η∥Σ̂1/2B̂iΣ̂1/2Σ̂−1/2ut−i∥
≤ η∥Σ̂1/2B̂iΣ̂1/2∥2 · ∥Σ̂−1/2ut−i∥
≤ η∥Σ̂1/2B̂iΣ̂1/2∥2 ρ̂(α) (∥wt−i − w∗∥Σ̂ + σ)

≤ 1

i+ 1
ρ̂(α) (∥wt−i − w∗∥Σ̂ + σ) ,

where ρ̂(α) = 1.1(6C2 +6C1.5
2 )K2α log2a(1/α), and the second inequality follows from Eq. (40),

Eq. (41), Eq. (42) and the deterministic condition in Eq. (34). Note that the last inequality is true
because η ≤ 1/(1.1λmax) and ∥Σ̂1/2B̂iΣ̂1/2∥2 ≤ ∥Id − ηΣ̂∥i2∥Σ̂∥2 ≤ λmax/(i+ 1) .

This implies

E[η2
t∑

i=0

t∑
j=0

∥B̂iut−i∥Σ̂∥B̂
jut−j∥Σ̂] (49)

≤ 4E[
t∑

i=0

t∑
j=0

ρ̂(α)2

(i+ 1)(j + 1)
(E[∥wt−i − w∗∥2

Σ̂
] + E[∥wt−j − w∗∥2

Σ̂
] + σ2) (50)

≤ 8(

t∑
i=0

1

i+ 1
)2ρ̂(α)2(max

i
E[∥wt−i − w∗∥2

Σ̂
] + σ2) (51)

≤ 8(log t)2ρ̂(α)2(max
i

E[∥wt−i − w∗∥2
Σ̂
] + σ2) , (52)

Then,

∥B̂t+1(w0 − w∗)∥2
Σ̂
= ∥Σ̂1/2B̂t+1Σ̂−1/2Σ̂1/2(w0 − w∗)∥2

≤ (1− 1

κ
)2(t+1)∥w0 − w∗∥2

Σ̂
≤ e−2(t+1)/κ∥w0 − w∗∥2

Σ̂
,
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and for n ≳ (1/ε)
√
κd log(1/δ)/α,

η2
t∑

i=0

Tr(B̂2iΣ̂)E[ϕ2t−i] (53)

≤η2
t∑

i=0

∥Id − ηΣ̂∥2i2 ∥Σ̂∥2 ·
2 log(1.25/δ0)K

2 Tr(Σ) log2a(n/ζ0)C2K
2 log2a(1/(2α))(E[∥wt−i − w∗∥2Σ] + σ2)

ε20n
2

(54)

≤4
t∑

i=0

(
1

i+ 1
)2ρ̂(α)2(E[∥wt−i − w∗∥2

Σ̂
] + σ2) . (55)

We have
Eν1,...,νt∼N (0,Id)[∥wt+1−w∗∥2

Σ̂
] ≤ 2e−2(t+1)/κ∥w0−w∗∥2

Σ̂
+20(log t)2ρ̂(α)2(max

i∈[t]
E[∥wt−i−w∗∥2

Σ̂
]+σ2) .

Note that this also implies that

E[∥(wt′+t − w∗)∥2
Σ̂
|wt′ ] ≤ 2e−2t/κ∥wt′ − w∗∥2

Σ̂
+ 20ρ̂(α)2

t−1∑
i=0

(
1

i+ 1
)2(E[∥wt′+t−i − w∗∥2

Σ̂
|wt′ ] + σ2) ,

(56)
which implies

E[∥(wt′+t − w∗)∥2
Σ̂
] ≤ 2e−2t/κE[∥wt′ − w∗∥2

Σ̂
] + 20ρ̂(α)2

t−1∑
i=0

(
1

i+ 1
)2(E[∥wt′+t−i − w∗∥2

Σ̂
] + σ2)

(57)

≤ 2e−2t/κE[∥wt′ − w∗∥2
Σ̂
] + 20(log t)2ρ̂(α)2(max

i∈[t]
E[∥wt′+t−i − w∗∥2

Σ̂
] + σ2)

(58)
Step 4: End-to-end analysis of the convergence. In the last step, we shown that the amount of
estimation error decrease depends on the estimation error of the previous t steps. In order for the
estimation error to decrease by a constant factor, we will take t = κ. Roughly speaking, we will
prove that for every κ steps, the estimation error will decrease by a constant factor, if it is much larger
thanO((log κ)2ρ̂(α)2σ2). This implies we will reachO((log κ)2ρ̂(α)2σ2) error with in Õ(κ) steps.

For any integer s ≥ 0, as long as maxi∈[(s−1)κ+1,sκ] E[∥wi − w∗∥2
Σ̂
] ≥ 2(log κ)2ρ̂(α)2σ2,

max
i∈[sκ+1,(s+1)κ]

E[∥wi − w∗∥2
Σ̂
] ≤ (

1

e2
+ (log κ)2ρ̂(α)2) max

i∈[(s−1)κ+1,sκ]
E[∥wi − w∗∥2

Σ̂
] + (log 2κ)2ρ̂(α)2σ2 . (59)

Assuming ρ̂(α)2(log κ)2 ≤ 1/2−1/e2, the maximum expected error in a length κ sequence decrease
by a factor of 1/2 every time.

Now we bound the maximum expected error in the first length κ sequence: maxi∈[0,κ−1] E[∥wi −
w∗∥2

Σ̂
]. Since

E[∥wi−w∗∥2
Σ̂
] ≤ e−2i/κ∥w0−w∗∥2

Σ̂
+(log i)2ρ̂(α)2 max

j∈[0,i−1]
E[∥wj −w∗∥2

Σ̂
]+ (log i)2ρ̂(α)2σ2 .

As a function of i, maxj∈[0,i−1] E[∥wj − w∗∥2
Σ̂
] only increase when it is smaller than

1

1− (log i)2ρ̂(α)2
(∥w0 − w∗∥2

Σ̂
+ (log i)2ρ̂(α)2σ2) .

Thus we conclude

max
i∈[0,κ−1]

E[∥wi − w∗∥2
Σ̂
] ≤ 1

1− (log κ)2ρ̂(α2)
(∥w0 − w∗∥2

Σ̂
+ (log κ)2ρ̂(α2)σ2)

s = log(∥w∗∥/(ρ̂(α)σ)) will give us

E[∥wsκ+1 − w∗∥2
Σ̂
] ≤ (log κ)2ρ̂(α)2σ2 .
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I LOWER BOUNDS

I.1 PROOF OF PROPOSITION 3.1 FOR LABEL CORRUPTION LOWER BOUNDS

We first prove the following lemma.
Lemma I.1. Consider an α label-corrupted dataset S = {(xi, yi)}ni=1 with α < 1/2, that is
generated from either xi ∼ N (0, 1), yi ∼ N (0, 1) or xi ∼ N (0, 1), zi ∼ N (0, 1 − α2), yi =
αxi + zi. It is impossible to distinguish the two hypotheses with probability larger than 1/2.

In the first case,

(xi, yi) ∼ P1 = N (0,

[
1 0
0 1

]
).

In the second case,

(xi, yi) ∼ P2 = N (0,

[
1 α
α 1

]
).

By simple calculation, it holds that DKL(P1||P2) = − 1
2 log(1 − α2) ≤ α2/2 for all α < 1/2.

Then, Pinsker’s inequality implies that DTV (P1||P2) ≤ α/2. Since the covariate xi follows from
the same distribution in the two cases, and the total variation distance between the two cases is less
than α/2. This means there is an label corruption adversary that change α/2 fraction of yi’s in P1

to make it identical to P2. Therefore, no algorithm can distinguish the two cases with probability
better than 1/2 under α fraction of label corruption.

Since Σ = 1, σ2 ∈ [3/4, 1], the first case above has w∗ = 0, and the second case has w∗ = α, this
implies that no algorithm is able to achieve E[∥ŵ − w∗∥Σ] < σα for all instances with ∥w∗∥ ≤ 1
under α fraction of label corruption.

J TECHNICAL LEMMAS

Lemma J.1 (Hanson-Wright inequality for subWeibull distributions Sambale (2020)). Let S =
{xi ∈ Rd}ni=1 be a dataset consist of i.i.d. samples from (K, a)-subWeibull distributions, then

P

(∣∣∣∣∣ 1n
n∑

i=1

∥xi∥2 − Tr(Σ)

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
−min

{
nt2

K4(Tr(Σ))2
,

(
nt

K2 Tr(Σ)

) 1
2a

})
. (60)

Lemma J.2. Let Y ∼ Lap(b). Then for all h > 0, we have P(|Y | ≥ hb) = e−h.
Lemma J.3. If x ∈ Rd is (K, a)-subWeibull for some a ∈ [1/2,∞). Then

• for any fixed v ∈ Rd, with probability 1− ζ,

⟨x, v⟩2 ≤ K2v⊤Σv log2a(1/ζ) . (61)

• with probability 1− ζ,

∥x∥2 ≤ K2 Tr(Σ) log2a(1/ζ) . (62)

We provide a proof in Appendix J.1.1.
Lemma J.4. Dataset S = {xi ∈ Rd}ni=1 consists i.i.d. samples from a zero mean distribution D.
Suppose D is (K, a)-subWeibull. Define Σ = Ex∼D[xx

⊤]. Then there exists a constant c1 > 0 such
that with probability 1− ζ,∥∥∥∥∥ 1n

n∑
i=1

xix
⊤
i − Σ

∥∥∥∥∥ ≤ c1
K2d log(d/ζ) log2a(n/ζ)

n
+

√
K2d log(d/δ) log2a(n/ζ)

n

 ∥Σ∥2 .
(63)

Lemma J.5 (Lemma F.1 from Liu et al. (2022a)). Let x ∈ Rd ∼ N (0,Σ). Then there exists
universal constant C6 such that with probability 1− ζ,

∥x∥2 ≤ C Tr(Σ) log(1/ζ) . (64)
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Definition J.6 (Corrupt good set). We say a dataset S is (αcorrupt, α, ρ1, ρ2, ρ3, ρ4)-corrupt good
with respect to (w∗,Σ, σ) if it is αcorrupt-corruption of an (α, ρ1, ρ2, ρ3, ρ4)-resilient dataset Sgood.

Lemma J.7. Under Assumptions 1 and 2, there exists positive constants c1 and C2 such that if
n ≥ c1((d + log(1/ζ))/α2, then with probability 1 − ζ, Sgood is, with respect to (w∗,Σ, σ),
(α,C2K

2α log2a(1/α), C2K
2α log2a(1/α), C2K

2α log2a(1/α), C2Kα loga(1/α))-resilient.

We provide a proof in Appendix G.

Corollary J.8 (Lemma 10 from Steinhardt et al. (2017) and Lemma 25 from Liu et al. (2022b)).
For a (α, ρ1, ρ2, ρ3, ρ4)-resilient set S with respect to (w∗,Σ, γ) and any 0 ≤ α̃ ≤ α, the following
holds for any subset T ⊂ S of size at least α̃n and for any unit vector v ∈ Rd:

∣∣∣ 1

|T |
∑

(xi,yi)∈T

⟨v, xi⟩(yi − x⊤i w∗)
∣∣∣ ≤ 2− α̃

α̃
ρ1
√
v⊤Σv σ , (65)

∣∣∣∣∣ 1

|T |
∑
xi∈T

⟨v, xi⟩2 − v⊤Σv

∣∣∣∣∣ ≤ 2− α̃
α̃

ρ2v
⊤Σv , (66)

∣∣∣ 1

|T |
∑

(xi,yi)∈T

(yi − x⊤i w∗)2 − σ2
∣∣∣ ≤ 2− α̃

α̃
ρ3 σ

2 , and (67)

∣∣∣∣∣ 1

|T |
∑
xi∈T

⟨v, xi⟩

∣∣∣∣∣ ≤ 2− α̃
α̃

ρ4
√
v⊤Σv . (68)

J.1 PROOF OF TECHNICAL LEMMAS

J.1.1 PROOF OF LEMMA J.3

Using Markov inequality,

P
(
⟨v, x⟩2 ≥ t2

)
= P

(
e⟨v,x⟩

1/a

≥ et
1/a
)

(69)

≤ e−t1/aE[e⟨v,x⟩
1/a

] (70)

≤ e−t1/aeK(E[⟨v,x⟩2])1/(2a)

(71)

= exp
(
−
( t2

K2E[⟨v, x⟩2]

)1/(2a))
. (72)

This implies for any fixed v, with probability 1− ζ,

⟨x, v⟩2 ≤ K2v⊤E[xx⊤]v log2a(1/ζ) . (73)

For j-th coordinate, let v = ej where j ∈ [d]. Definition 2.1 implies

E

exp
( x2j

K2 Tr(Σ)

)1/(2a)
 ≤ E

exp
( x2j

K2Σjj

)1/(2a)
 ≤ 1 . (74)
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Figure 2: Performance of various techniques on DP linear regression. d = 10 in all the experiments.
n = 107, κ = 1 in the 2nd experiment. n = 107, σ = 1 in the 3rd experiment.

Note that f(x) = xα is concave function for α ≤ 1 and x > 0. Then (a1 + · · · ak)α ≤ aα1 + · · · aαk
holds for any positive numbers a1, · · · , ak > 0. By our assumption that 1/(2a) ≤ 1. , we have

E[exp

((
∥x∥2

K2 Tr(Σ)

)1/(2a)
)
] = E[exp

((
x21 + x22 + · · ·+ x2d

K2 Tr(Σ)

)1/(2a)
)
] (75)

≤ E[
d∏

j=1

exp

( x2j
K2 Tr(Σ)

)1/(2a)
] (76)

≤


∑d

j=1 E[exp
((

x2
j

K2 Tr(Σ)

)1/(2a))
]

d


d

(77)

≤ 1 . (78)

By Markov inequality,

P (∥x∥ ≥ t) = P
(
e∥x∥

1/a

≥ et
1/a
)

(79)

≤ e−t1/aE[e∥x∥
1/a

] (80)

≤ exp

(
−
(

t2

K2 Tr(Σ)

)1/(2a)
)
. (81)

This implies with probability 1− ζ,

∥x∥2 ≤ K2 Tr(Σ) log2a(1/ζ) . (82)

K EXPERIMENTS

K.1 DP LINEAR REGRESSION

Experimental results for ϵ = 0.1 can be found in Figure 2. The observations are similar to the ϵ = 1
case. In particular, DP-SSP has poor performance when σ is small. In other settings, DP-SSP has
better performance than DP-ROBGD.

K.2 DP ROBUST LINEAR REGRESSION

In this section, we consider a stronger adversary for DP-ROBGD than the one considered in Sec-
tion 5. Recall, for the adversary model considered in Section 5, DP-ROBGD was able to consistently
estimate the parameter w∗ (i.e., the parameter recovery error goes down to 0 as n→∞). This is be-
cause the algorithm was able to easily identify the corruptions and ignore the corresponding points
while performing gradient descent. We now construct a different instance where the corruptions
are hard to identify. Consequently, DP-ROBGD can no longer be consistent against the adversary.
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Figure 3: Performance against the stronger adversary

This hard instance is inspired by the lower bound in Bakshi & Prasad (2021) (see Theorem 6.1 of
Bakshi & Prasad (2021)). This is a 2 dimensional problem where the first covariate is sampled uni-
formly from [−1, 1]. The second covariate, which is uncorrelated from the first, is sampled from a
distribution with the following pdf

p(x(2)) =


α
2 if x(2) ∈ {−1, 1}
1−α
2ασ if x(2) ∈ [−σ, σ]
0 otherwise

.

We set σ = 0.1 in our experiments. The noise zi is sampled uniformly from [−σ, σ]. We consider
two possible parameter vectors w∗ = (1, 1) and w∗ = (1,−1). It can be shown that the total
variation (TV) distance between these problem instances (each parameter vector corresponds to one
problem instance) is Θ(α) (Bakshi & Prasad, 2021). What this implies is that, one can corrupt at
most α fraction of the response variables and convert one problem instance into another. Since the
distance (in Σ norm) between the two parameter vectors is Ω(ασ), any algorithm will suffer an error
of Ω(ασ).

We generate 107 samples from this problem instance and add corruptions that convert one problem
instance to the other. Figure 3 presents the results from this experiment. It can be seen that our al-
gorithm works as expected. In particular, it is not consistent in this setting. Moreover, the parameter
recovery error increases with the fraction of corruptions.
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