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Abstract

The recent development of fact verification001
systems with natural logic has enhanced the002
explainability of these systems by aligning003
claims with evidence through set-theoretic op-004
erators, providing justifications that faithfully005
expose the model’s reasoning. Despite these006
advancements, such systems often rely on a007
large amount of training data annotated with008
natural logic. To address this issue, we propose009
a zero-shot method that utilizes the generaliza-010
tion capabilities of instruction-tuned large lan-011
guage models. Our system uses constrained de-012
coding to mitigate hallucinations and employs013
weighted prompt ensembles to improve stabil-014
ity. We evaluate our system on artificial and015
real-world fact verification data. In a zero-shot016
setup where models were not trained on any017
data annotated with natural logic, our method018
surpasses the best baselines by an average of019
7.52 accuracy points. We also demonstrate mul-020
tilingual capabilities in other languages, such021
as Danish, where we outperform our baselines022
by 8.72 accuracy points.023

1 Introduction024

In the context of fact-checking, fact verification025

(FV) is a process of verifying whether a textual hy-026

pothesis holds based on retrieved evidence. While027

many improvements have been made in this field028

due to the recent rapid growth in NLP (Mubashara029

et al., 2023; Guo et al., 2022; Nakov et al., 2021),030

FV systems often employ pipelines with black-box031

components that hide the underlying reasoning.032

One line of research attempts to improve explain-033

ability with attention-based methods (Shu et al.,034

2019; Popat et al., 2018) and post-hock summa-035

rizations (Atanasova et al., 2020; Kotonya and036

Toni, 2020). However, these approaches do not037

provide faithful justifications — explanations that038

accurately reflect the model’s decision-making pro-039

cess and the data it used (Jacovi and Goldberg,040

2020). In contrast, systems such as NaturalLI041

(Angeli and Manning, 2014) and ProoFVer (Kr- 042

ishna et al., 2022) provide faithful justifications by 043

expressing semantic relations between claim/evi- 044

dence pairs. Modeling these logical relations and 045

their aggregation explicitly with natural logic (such 046

as double-negation) has also resulted in more accu- 047

rate and robust fact-checking systems. 048

However, a severe limitation of natural logic- 049

based FV systems is the necessity for large amounts 050

of training data annotated with entire natural logic 051

proofs. For example, ProoFVer (Krishna et al., 052

2022) was trained on 145K instances artificially 053

obtained from structured knowledge bases such 054

as PPDB (Ganitkevitch et al., 2013) and Wiki- 055

data (Vrandečić and Krötzsch, 2014). While re- 056

cent work (Aly et al., 2023) attempts to alleviate 057

this issue by proposing a few-shot learning method 058

trained on as few as 32 instances, human anno- 059

tation of even a small number of proofs can be 060

impractical and expensive, as it requires substantial 061

linguistic knowledge and familiarity with natural 062

logic. Moreover, few-shot systems might require 063

additional training data in order to generalize ef- 064

fectively to new domains, further increasing the 065

costs. 066

To this end, we propose Zero-NatVer, a zero- 067

shot fact verification approach for constructing 068

natural logic proofs that leverages prompting and 069

question-answering with instruction-tuned large 070

language models (LLMs). Unlike some previous 071

works that combine several fine-tuned models, our 072

method uses a single language model for all stages 073

of the pipeline and does not require any adjust- 074

ments when transferring to different domains or 075

languages. Furthermore, we investigate evidence 076

rephrasing to address the lack of clear alignment 077

between claim and evidence, a common problem 078

of fact verification with natural logic. For example, 079

as illustrated in Figure 1, evidence rephrasing can 080

improve alignments by reformulating text into a 081

more detailed form. 082
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Figure 1: Proof generation with natural logic using rephrased evidence. Evidence is first rephrased to facilitate
alignment with the claim (e.g., it introduces the word ’born’). Claim and evidence texts are then processed to
generate a proof sequence, which consists of (claim, evidence, NatOp) triples. Lastly, NatOps are used as transitions
in the DFA, and the final state (i.e. Refutes) determines the verdict.

We evaluate our method on real-world and ar-083

tificial FV datasets, including Climate-FEVER084

((Diggelmann et al., 2020)), PubHealth ((Kotonya085

and Toni, 2020)), SciFact ((Wadden et al., 2020)),086

and Hover ((Jiang et al., 2020)). In a zero-shot087

setup, where models have not been trained using088

any data labeled with natural logic, our approach089

outperforms the top baseline models by an aver-090

age accuracy improvement of 10.09 points. By091

rephrasing relevant evidence, we further improve092

these results by additional 1.96 points. Our method093

also surpasses fully supervised and few-shot trained094

models on natural datasets, obtaining the average095

improvement of 2.22 accuracy points without evi-096

dence rephrasing and 5.29 points with evidence097

rephrasing. Lastly, we evaluate our system on098

multilingual datasets, including Danish (DanFever099

(Nørregaard and Derczynski, 2021)) and Chinese100

(CHEF (Hu et al., 2022)), demonstrating that it can101

generalize to other languages.102

Our study also evaluates the performance ben-103

efits of using natural logic in FV. To this end, we104

conduct experiments, comparing Zero-NatVer with105

LLMs of similar sizes that are prompted directly106

for determining the final verdict. Zero-NatVer out-107

performs these methods by 3.67 accuracy points.108

2 Related Work109

Natural logic (Van Benthem, 1986; Sanchez, 1991)110

and NaturalLI (Angeli and Manning, 2014), com-111

poses full inference proofs that operate directly112

on natural language, capable of expressing more113

complex logical relationships between claim and114

evidence, such as double-negation. Krishna et al.115

(2022) train natural logic inference systems for fact116

verification, achieving competitive performance 117

while remaining faithful and more explainable than 118

its entirely neural counterpart. While these neural- 119

symbolic approaches require substantial training 120

data to perform well, Aly et al. (2023) explore nat- 121

ural logic inference in a few-shot setting by casting 122

natural logic operators into a question-answering 123

framework, subsequently making use of the gener- 124

alization capabilities of instruction-tuned language 125

models. While our work also uses question answer- 126

ing to predict natural logic operators, we further 127

address prediction calibration issues frequently en- 128

countered in a zero-shot setting (Kadavath et al., 129

2022; Jiang et al., 2023). Other neuro-symbolic 130

reasoning systems for FV use simple logical rules 131

to aggregate veracity information on a claim’s com- 132

ponents to provide a simple faithful explanation 133

(Stacey et al., 2022, 2023; Chen et al., 2022). 134

Previous work on zero-shot FV is limited and 135

largely relies on the generation of weakly super- 136

vised training samples and on knowledge of the 137

target domain (Pan et al., 2021; Wright et al., 2022). 138

Pan et al. (2023b) observe that typical FV systems 139

fail when transferred to unseen domains in a zero- 140

shot setting and propose a data augmentation tech- 141

nique to improve generalizability. However, none 142

of the aforementioned zero-shot methods produces 143

(faithful) explanations. In a few-shot setting, sev- 144

eral recent works have explored the use of large 145

language models that produce explanations along- 146

side the verdict. Pan et al. (2023a) define a reason- 147

ing program consisting of a sequence of subtasks 148

to verify complex claims. Yao et al. (2023) pro- 149

poses chain-of-thought prompting complemented 150

by action operations to support the model’s reason- 151

ing and its explanation generation. Li et al. (2023) 152
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propose to edit rationales generated via chain-of-153

thought prompting by querying knowledge sources.154

Yet, in contrast to this work, these approaches still155

rely on in-context examples.156

3 Zero-NatVer157

Given a claim c and evidence sentences158

e1, e2, ..., ek ∈ E, our system determines159

the veracity label y, which denotes whether160

the information from E supports c, refutes c,161

or whether there is not enough information to162

reach a verdict. Zero-NatVer obtains the verdict163

in four steps, executed by an instruction-tuned164

LLM. In the first step, we address the fact that165

complex claim and evidence sentences can vary166

considerably in terms of their syntactical structures,167

resulting in inaccuracies during chunking and168

alignment. Thus, Zero-NatVer first rephrases169

evidence E into R so that relevant information170

is easier to align with the claim c while staying171

semantically equivalent to E (Sec. 3.1). In the172

second step, Zero-NatVer segments c into several173

chunks and aligns each such chunk with relevant174

information from R (Sec. 3.2). This process results175

in a sequence of l claim-evidence alignment pairs176

A = a1, a2, ..., al. Next, Zero-NatVer determines177

the relation of each pair in terms of natural logic178

and generates a sequence of natural logic operators179

O = o1, o2, ..., ol, which correspond to alignment180

pairs in A (Sec. 3.3). Finally, O is used to traverse181

a deterministic finite state automaton (DFA), which182

determines the claim’s veracity. The following183

sections describe each step in more detail.184

3.1 Evidence Rephrasing185

Fact-checking systems based on natural logic typi-186

cally assume that claim and evidence texts can be187

split and aligned into meaningful claim-evidence188

pairs that can be individually resolved in terms of189

their natural logic relations. While these systems190

showed impressive performance on artificial claims191

where claims and evidence are syntactically similar192

(Krishna et al., 2022; Aly et al., 2023), real-life193

claims and evidence can challenge this assumption194

due to the complexity and variability inherent in195

natural language. For example, the fact that the196

dates in the phrase “Bessie Smith (April 15, 1894 -197

September 26, 1937)” (Figure 1) refer to the birth198

and death dates of Bessie Smith is obvious only199

after seeing the full sentence. After the chunking200

and alignment process, spans can often lose a rele-201

vant context and become more ambiguous, leading 202

to incorrect verdicts. In this example, a hypotheti- 203

cal claim about her birth date could be incorrectly 204

aligned only with the relevant date (i.e. April 15, 205

1894), complicating the NatOp assignment in the 206

next stage of the process. 207

We address this problem by prompting a lan- 208

guage model to rephrase the evidence text and 209

make it syntactically closer to the claim text before 210

it gets chunked and aligned. The full prompt tem- 211

plate can be found in Listing 1. As shown in Figure 212

1, we can use an LLM to rephrase the previous 213

phrase into “Bessie Smith, who was an American 214

blues singer, was born on April 15, 1894”, which 215

reorganizes relevant parts of the evidence and ex- 216

pands the date by the verb “born”, allowing now 217

for a comparison with the verb “married”. Other 218

examples of situations where rephrasing can be 219

beneficial include anaphora resolution, acronym 220

expansion, or counting problems. 221

While rephrasing can resolve some of the short- 222

comings of natural logic-based FV, we must be 223

careful not to alter the meaning of the evidence. 224

Even though we instruct the LLM accordingly, it 225

could still skip some information or hallucinate 226

new facts, changing the final verification verdict. 227

In our work, we mitigate these problems by using 228

a constrained beam-search decoding approach (An- 229

derson et al., 2016). At each decoding step, we 230

keep track of several most likely partial sequences 231

and constrain sequences that contain prohibited 232

words. A prohibited word is any non-stop word 233

from the claim that does not appear in the evidence 234

text. For example, in Figure 1, this prevents the 235

model from making the rephrased sentence even 236

more similar by copying over the word “married”. 237

3.2 Chunking and Alignment 238

FV systems based on natural logic require addi- 239

tional preprocessing of claims and evidence before 240

they can determine NatOps and final verdicts (Kr- 241

ishna et al., 2022). This preprocessing tradition- 242

ally consists of two separate steps— chunking and 243

alignment. The chunking process segments both 244

c and E into smaller, manageable pieces (chunks), 245

and the alignment step links each claim chunk with 246

a single evidence chunk, ideally providing enough 247

information for predicting relevant NatOps. 248

Zero-NatVer performs both steps as a joint task, 249

using the same prompt (details in Listing 2) and 250

context window. As shown in Figure 2, the decod- 251

ing starts with generating claim chunks as follows: 252
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Miracle at St. Anna tells the story of four soldiers.

From the article "Miracle at St. Anna": Set primarily in Italy during
German-occupied Europe in World War II, the film tells the story of
four Buffalo Soldiers of the 92nd Infantry Division who seek refuge
in a small Tuscan village, where they form a bond with the
residents.

 Claim

 Evidence

 Output
Step 1) Segment the claim text into chunks:
* Miracle at St. Anna
* tells the story of
* four soldiers
Step 2) Align each claim chunk with relevant evidence:
* "Miracle at St. Anna" (claim) -> "Miracle at St. Anna" (evidence)
* "tells the story of" (claim) -> "the film tells the story of" (evidence)
* "four soldiers" (claim) -> "four Buffalo Soldiers of the 92nd Infantry
   Division" (evidence)

Figure 2: Decoding for chunking and alignment. The
blue text refers to generated claim chunks, and the pur-
ple text refers to generated evidence alignments. The
remaining text was forced during the decoding.

1. The claim text is pre-processed as a queue of253

tokens QC .254

2. The decoding is prefixed with the phrase255

"Step 1) Segment the claim text into chunks:"256

to encourage the generation of claim chunks.257

3. The model is constrained to sample one of258

two outputs - the next token from QC or a259

new-line character.260

4. Repeats step 3 until QC is empty (all claim261

tokens are consumed).262

The outcome of this process is a bulleted list263

of claim segments. Due to the constraints at each264

decoding step, this generation cannot hallucinate,265

skip words, or alter information from the claim.266

Keeping the generated output in the context,267

Zero-NatVer then starts generating alignments:268

1. The previously generated chunks are parsed269

and stored in queue QA.270

2. The decoding is prefixed with the phrase "Step271

2) Align each claim chunk with relevant evi-272

dence:" to encourage alignment generation.273

3. The model is prefixed with a chunk from QA.274

4. Aligned evidence text is sampled with con-275

strained decoding.276

5. Repeats steps 3-4 until QA is empty.277

As shown in Figure 2, the outcome of this pro-278

cess is a bulleted list of claim-evidence segments.279

While the decoding of claim chunks is constrained280

by design and does not allow for hallucinations,281

the alignment generation in step 4 relies on general282

sampling and needs to be constrained. In order to283

prevent hallucinations and guarantee reliability, we284

post-process the alignments and remove any text 285

that does not form sequences of tokens in E or R. 286

This approach ensures the aligned text comprises 287

only sub-strings from E or R. 288

We also use additional markers such as 289

"*","(claims)", "(evidence)", and "->" to denote 290

each section. These markers help with consistency 291

and maintain the intended format and behavior in a 292

zero-shot setting. 293

3.3 NatOp Assignment via QA Ensembles 294

Having alignments between claim and evidence, 295

the next step is to determine a NatOp for each 296

claim-evidence pair. Similar to Aly et al. (2023), 297

we consider them as relations that can be inferred 298

via questions over claim-evidence spans. Thus, we 299

prompt our model with Yes/No questions to deter- 300

mine whether a relation can be expressed by one of 301

the NatOps. Using questions-answering, we con- 302

sider the following NatOps: Equivalence (≡), For- 303

ward Entailment (⊑), Backward Entailment (⊒), 304

Negation (¬), and Alternation (⇃↾). For example, 305

for the negation NatOp, we can ask the question 306

"Is the phrase X a negation of Y?", where X and Y 307

represent claim and evidence spans, respectively. 308

In order to reduce the variability of outcomes, 309

we use a large number of Yes/No questions to 310

prompt the model, thereby obtaining several micro- 311

judgements per NatOp, which are then aggregated 312

as a weighted average. Instead of manually hand- 313

crafting these question templates, we prompt the 314

LLM to generate them. This approach ensures the 315

questions are more aligned with the model’s dis- 316

tribution. In our experiments, we employ 10 tem- 317

plates for each NatOp, though it is easy to generate 318

and use additional templates. 319

For a given claim-evidence alignment pair a and 320

operator o, we compute a NatOp score so,a as a 321

weighted average over all micro-judgments: 322

so,a =

N∑
i=1

wi QA(Yes|Ti, a) (1) 323

where T is a collection of prompt templates, and 324

w represents confidence weights for each template, 325

with
∑N

i=1wi = 1. 326

We compute wi by iterating over the entire 327

dataset in a single pass and capturing the log- 328

likelihood scores for each template. For each in- 329

stance, we always capture only the Yes/No option, 330

which has the higher log-likelihood score (i.e., the 331

option that the model favors more). 332
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Proof Selection

Miracle at St. Anna

Miracle at St. Anna

tells the story of

the film tells the story of

four soldiers

four Buffalo Soldiers of the
92nd Infantry Division

QA Prompt Ensembles
(10 questions / NatOp)

Aligned claim/evidence pairs

Q: Does "the film tells the story of"
logically imply "tells the story of" ?

Q: Does "the film tells the story of"
exclude "tells the story of"?

Q: Is "Miracle at St. Anna" a
paraphrase of "Miracle at St. Anna"?

Figure 3: Proof generation process of Zero-NatVer. We use prompt ensembles to determine a set of NatOp
candidates (orange blocks) for each claim-evidence pair. A single NatOp (green blocks) is then selected for each
pair, using NatOp priority.

Using Equation 1, we then compile a list of333

NatOps candidates C, considering only so,a > α,334

where α can be seen as a confidence threshold for335

the model. Since we are not using any validation336

data to determine hyper-parameters, we set α = 0.5337

as we are considering two output classes.338

Due to the ambiguity of natural language and339

the complexity of alignments, it frequently occurs340

that |C| > 1. However, we want to minimize the341

chance of incorrectly choosing NatOps that leads342

to the Not Enough Evidence state, from which343

there are no outgoing transitions to other states.344

Thus, we use a NatOp priority approach and se-345

lect from the operators in C in the following order:346

[≡,¬,⊑,⊒, ⇃↾].We defined the NatOp order by con-347

sidering the difficulty of each task. For instance, in348

a scenario where the candidate list C consists of349

equivalence (≡) and alternation (⇃↾), we postulate350

that identifying equivalence (i.e., assessing textual351

similarity) is a simpler task compared to identify-352

ing alternation (i.e., recognizing non-exhaustive353

exclusion). We decided on this order before our354

experiments and did not optimize this order.355

4 Experimental Methodology356

4.1 Zero-shot Setups357

To better assess the zero-shot capabilities of our358

approach, we differentiate between two types of359

zero-shot setups– zero-shot generalization and360

zero-shot transfer. We define zero-shot general-361

ization as a model’s ability to handle entirely new362

tasks or domains it has not encountered during363

training. Conversely, zero-shot transfer refers to364

training a model on a specific task or dataset and 365

subsequently applying it to a different but related 366

task or dataset without further training. For exam- 367

ple, consider a model trained on a broad spectrum 368

of general data (e.g., BART, T5, or Llama2) that did 369

not include proofs with natural logic. Applying this 370

model to FV with natural logic then exemplifies 371

zero-shot generalization according to our defini- 372

tion. In contrast, if the same model is fine-tuned 373

on a dataset annotated with natural logic proofs 374

and then applied to perform FV with natural logic 375

on a different dataset, this would be an instance of 376

zero-shot transfer. 377

4.2 Datasets 378

Previous works on NLI-based FV models mainly 379

examined the performance on artificial claims from 380

FEVER-like datasets (Krishna et al., 2022; Aly 381

et al., 2023; Chen et al., 2023). However, these 382

datasets tend to cover mostly general topics, and ar- 383

tificial claims are often rather simple in their struc- 384

ture. For a more comprehensive assessment of 385

zero-shot capabilities, we also evaluate our method 386

on natural claims from datasets Climate-FEVER 387

(Diggelmann et al., 2020), PubHealth (Kotonya and 388

Toni, 2020), and Scifact (Wadden et al., 2020) (See 389

Appendix A for more details). 390

5 Results 391

To effectively assess the impact of evidence 392

rephrasing, we consistently report our results in 393

two separate formats: without evidence rephras- 394

ing (denoted as Zero-NatVer) and with rephrasing 395
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Model Climate-FEVER PubHealth SciFact Hover
F1 Acc F1 Acc F1 Acc F1 Acc

ProoFVer BART 26.63 34.75 38.15 39.27 25.58 34.67 47.13 49.76
QA-NatVer Flan-T5 22.20 36.86 44.42 48.73 23.56 40.67 35.65 50.85
QA-NatVer Llama2-70B 36.13 47.28 57.05 63.12 37.78 46.67 55.45 55.47
Zero-NatVer Llama2-70B 44.71 46.78 65.45 65.45 57.47 60.33 59.12 59.13
Zero-NatVer-R Llama2-70B 45.78 49.38 66.91 68.39 61.07 64.00 60.83 60.85
Full Supervision - 75.7 - 85.88 86.93 71.1 - - 81.2

Table 1: Zero-shot generalization results. Macro-F1 and accuracy scores for systems that were not specifically
trained on FV datasets. Where possible, we also report available SOTA results with fully-supervised models trained
on in-domain data as a reference.

Model Training data Climate-FEVER PubHealth SciFact Hover
(size) F1 Acc F1 Acc F1 Acc F1 Acc

Pan et al. (2013) BERT FEVER/VitC (800) 40.60 - 60.06 - 50.71 - - -
ProoFVer BART FEVER (145K) 40.70 43.35 57.78 61.22 45.57 49.16 57.08 57.89
QA-NatVer Flan-T5 FEVER (64) 44.74 47.43 61.8 61.8 52.02 56.67 70.27 70.5
Zero-NatVer Llama2-70B None 44.71 46.78 65.45 65.45 57.47 60.33 59.12 59.13
Zero-NatVer-R Llama2-70B None 45.78 49.38 66.91 68.39 61.07 64.00 60.83 60.85
Full Supervision - - 75.7 - 85.88 86.93 71.1 - - 81.2

Table 2: Zero-shot transfer results. Macro-F1 and accuracy scores for systems trained on fact-checking datasets.
For each system, we report the type and size of FV training data. Where possible, we also report available SOTA
results with fully-supervised models trained on in-domain data as a reference. Results from Pan et al. (2013) do not
include accuracy scores and experiments on Hover.
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Ensamble Size per NatOp

41
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Figure 4: Macro-F1 scores across all datasets for vari-
ous ensemble sizes. The light blue area represents the
standard deviation from 10 independent measurements.

(denoted as Zero-NatVer-R)."396

We conducted our main experiments with the397

Llama2-70B model (Touvron et al., 2023), one of398

the largest open-source LLMs to date. Crucially,399

we did not fine-tune the model on any specific400

dataset, and we did not tune any hyperparameters.401

The only exposure to fact-checking datasets was402

when we were designing our prompts. For this pur-403

pose, we used a separate dataset, Symmetric-Fever404

(Schuster et al., 2019). We selected a small subset405

of 100 claims and tested that our prompts generated406

responses in the desired format. For hyperparam-407

eters, we have adopted the recommendations of 408

Perez et al. (2021) and did not rely on hyperparam- 409

eters from prior works (details in Appendix C). 410

Baselines Our natural-logic-based baselines con- 411

sist of ProoFVer (Krishna et al., 2022), which is 412

based on the BART model (Lewis et al., 2019), and 413

QA-NatVer (Aly et al., 2023), which uses Flan-T5 414

(Chung et al., 2022). In zero-shot generalization 415

setups, we run both models with their correspond- 416

ing pre-trained LLMs without fine-tuning on NLI 417

data. In order to provide a directly comparable 418

baseline, we also implemented support for Llama2 419

in QA-NatVer. ProoFVer currently supports only 420

models from the Fairseq toolkit1, which does not 421

include models of similar sizes to Llama2. For 422

zero-shot transfer setups, we use ProoFVer with 423

BART trained on 145K FEVER instances and QA- 424

NatVer with Flan-T5 trained on 64 instances of 425

NLI annotated data. We were unable to fine-tune 426

QA-NatVer with Llama2-70B model due to com- 427

putational constraints. We include results reported 428

by Pan et al. (2023b) as an additional baseline for 429

zero-shot transfer experiments. More details about 430

our baselines can be found in Appendix B. 431

Main Results We report the main results for 432

zero-shot generalization in Table 1. Zero-NatVer 433

1https://github.com/facebookresearch/fairseq
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Macro-F1 Accuracy
Llama2-7B 20.57 41.67
Llama2-13B 30.96 42.16
Llama2-70B 57.47 60.33
GPT-3.5-Turbo 49.21 53.00

Table 3: SciFact results for different Llama-2 model
sizes and ChatGPT.

achieves 57.92 accuracy points on average, sur-434

passing all baselines. Our system outperforms435

ProoFVer and QA-NatVer with Flan-T5 backbone436

by 18.31 and 13.65 accuracy points, respectively.437

Notably, it also outperforms QA-NatVer with438

Llama2-70B backbone by 4.79 accuracy points.439

Evidence rephrasing (Zero-NatVer-R) further im-440

proves our results by additional 2.73 accuracy441

points. The main results for zero-shot transfer442

are reported in Table 2. When considering only443

datasets that contain natural claims, Zero-NatVer444

outperforms ProoFVer and QA-NatVer with Flan-445

T5 backbone by 6.28 and 2.22 accuracy points on446

average, respectively. Zero-NatVer-R further im-447

proves results by additional 3.07 accuracy points.448

However, QA-NatVer outperforms Zero-NatVer-R449

by 9.65 accuracy points on the artificial claims450

from Hover. While QA-NatVer’s results demon-451

strate generalization capabilities beyond the train-452

ing domain, the high scores can be attributed to the453

fact that both FEVER (i.e., QA-NatVer’s training454

data) and Hover consist of artificial claims com-455

piled from Wikipedia.456

Ensemble size To assess the impact of the457

prompt ensemble size (Section 3.3), we run an ex-458

periment measuring performance across all datasets459

for various ensemble sizes. For each measured en-460

semble size S, we randomly sample S prompts for461

each NatOp from our prompt bank. We repeat this462

process 10 times and report means and standard463

deviations for each ensemble size in Figure 4.464

The results show that the size of prompt ensem-465

bles has a large impact on the variability of out-466

comes. Using only one question per NatOp and467

sampling different prompts, we obtain Macro-F1468

scores with a standard deviation of 3.59 points. In469

comparison, an ensemble of only 4 prompts sub-470

stantially reduces this variation by more than half.471

Model size Table 3 compares our method with472

different sizes of Llama2 models, showing a sub-473

stantial improvement in performance as the model474

scales up. Additionally, we evaluated our method475

Macro-F1 Accuracy
Zero-NatVer 57.47 60.33
w/o weighted prompts 56.52 59.33
w/o prompt ensemble 49.56 53.67
w/o constrained decoding 55.45 58.00
separate chunking/alignment 52.3 54.33

Table 4: Ablation study on SciFact.

Macro-F1 Accuracy
Llama2-70B w/o NatLog 57.61 60.33
GPT-3.5-Turbo w/o NatLog 54.63 59.33
Zero-NatVer 57.47 60.33
Zero-NatVer-R 61.07 64.00

Table 5: Comparison of our method with other non-
NatLog systems on SciFact.

using the proprietary model ChatGPT-3.5 (OpenAI, 476

2023), which is allegedly larger in size than our 477

Llama2 models. The low scores for ChatGPT-3.5 478

can be caused by API limitations, which prevented 479

us from using constrained decoding and weighted 480

prompting (see Appendix D for prompting details). 481

Ablation Study We perform four ablation stud- 482

ies on SciFact, as reported in Table 4. First, 483

we examine the performance of Zero-NatVer 484

and Zero-NatVer-R without weighting ensemble 485

prompts, observing a small drop of 1 accuracy 486

point. Second, we ablate our method by omitting 487

prompt ensembles and using a single randomly 488

sampled prompt instead. We observe a substantial 489

drop in performance of 6.66 accuracy points, which 490

agrees with our previous findings regarding ensem- 491

ble sizes. Third, we ablate Zero-NatVer by using 492

unconstrained generation in decoding, observing 493

an accuracy drop of 2.33 points. Last, we ablate 494

our method by processing chunking and alignments 495

as two separate consecutive steps, resulting in 6.0 496

points drop in accuracy. 497

Non-NatLog Systems We also compared our 498

method with similar models that are not grounded 499

in natural logic and conducted experiments with 500

Llama2 and ChatGPT-3.5 models, prompting 501

them to determine the verdict directly (see Ap- 502

pendix D for prompting details). Our experimen- 503

tal results reported in Table 5 demonstrate that 504

Zero-NatVer-R substantially outperforms Llama2- 505

70B and ChatGPT-3.5 by 3.67 and 4.67 accuracy 506

points, respectively. These results demonstrate that 507

natural logic provides improved performance in 508

addition to the benefits of explainability. 509
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Model Dan-FEVER CHEF
Macro-F1 Acc Macro-F1 Acc

ProoFVer mBART 29.80 41.97 20.16 38.57
QA-NatVer mT0 35.68 37.05 - -
QA-NatVer Llama2-70B 34.17 48.81 - -
Zero-NatVer Llama2-70B 43.28 57.47 51.10 58.75
Zero-NatVer-R Llama2-70B 44.93 57.53 51.34 58.46
Full-Supervision - 90.2 - 67.62 -

Table 6: Zero-shot generalization results for multi-lingual datasets. Macro-F1 and accuracy scores for systems
that were not specifically trained on FV datasets. Where possible, we also report available SOTA results with
fully-supervised models trained on in-domain data as a reference.

Model Training data (size) Dan-FEVER CHEF
Macro-F1 Acc Macro-F1 Acc

ProoFVer mBART FEVER (145K) 36.12 55.22 20.18 37.72
QA-NatVer mT0 FEVER (64) 63.64 68.41 - -
Zero-NatVer Llama2-70B None 43.28 57.47 51.10 58.75
Zero-NatVer-R Llama2-70B None 44.93 57.53 51.34 58.46
Full-Supervision - - 90.2 - 67.62 -

Table 7: Zero-shot transfer results for multi-lingual datasets. Macro-F1 and accuracy scores for systems trained
on fact-checking datasets. Where possible, we also report available SOTA results with fully-supervised models
trained on in-domain data as a reference.

Multilingual Capabilities We also assess the510

multi-lingual capabilities of Zero-NatVer on two511

fact-checking datasets in languages other than512

English– DanFEVER (Danish) and CHEF (Chi-513

nese). To evaluate our baselines, we use models514

based on multi-lingual backbones. Thus, we use515

mBART (Liu et al., 2020) for ProoFVer, and we516

use mT0 (Muennighoff et al., 2022) and Llama-517

70B for QA-NatVer. Table 6 reports our re-518

sults for zero-shot generalization. On DanFEVER,519

Zero-NatVer-R outperforms both ProoFVer and520

QA-NatVer by 15.56 and 8.72 accuracy points,521

respectively. This gap is substantially larger on522

CHEF, where the difference is 21.03 points. We523

could not run QA-NatVer on CHEF because QA-524

NatVer relies on an additional model for chunk-525

ing that currently does not support Chinese. This526

limitation highlights the simplicity of our method,527

which uses a single multi-lingual model for all528

stages of the pipeline and does not require any529

adjustments when transferring to different domains530

or languages. Table 7 then reports results for531

zero-shot transfer, comparing Zero-NatVer with532

two multilingual baseline models trained on data533

with natural logic. While our system’s accuracy is534

worse than QA-NatVer by 10.88 points, it is impor-535

tant to note that QA-NatVer uses a multi-lingual536

backbone model mT0 with a balanced distribution537

of languages. In comparison, the proportion of538

Chinese and Danish in Llama2 pre-training data 539

was only 0.13% and 0.02% Danish, respectively 540

(Touvron et al., 2023). ProoFVer was unable to 541

generalize to CHEF in this setup, and Zero-NatVer 542

outperforms ProoFVer by 21.03 accuracy points. 543

6 Conclusion 544

We have presented Zero-NatVer, a zero-shot 545

method for fact verification based on natural logic. 546

Our method leverages the generalization capabili- 547

ties of instruction-tuned LLMs and generates faith- 548

ful justifications for proofs without relying on train- 549

ing data annotated with natural logic. We have 550

evaluated Zero-NatVer in two zero-shot setups, out- 551

performing our baselines on most datasets. The ab- 552

lation study shows the importance of individual de- 553

sign choices, and our experiments with non-NatLog 554

systems demonstrate that natural logic improves the 555

performance of our system. Moreover, we explored 556

the impact of evidence rephrasing, which further 557

improves Zero-NatVer’s performance across all 558

datasets. We hope that the methods and analy- 559

ses presented here enable further progress toward 560

improving the efficiency and explainability of fact 561

verification systems. 562
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Limitations563

Evidence Rephrasing While rephrasing im-564

proved our results across all datasets, it represents565

a trade-off between performance and explainabil-566

ity. Despite the use of constrained beam-search567

decoding, it can still generate sentences that are568

not logically consistent with the original evidence569

text, leading to an incorrect verdict. Therefore,570

users should have access to both texts in order to571

make their own judgments about the reliability of572

rephrasing.573

Natural Logic Natural logic is useful for explain-574

ability but is less expressive than semantic parsing575

methods such as lambda calculus (Zettlemoyer and576

Collins, 2005). This paper doesn’t address natural577

logic’s limitations. Furthermore, our method gen-578

erates proofs, which are meant to be processed by579

the DFA from left to right. Nevertheless, natural580

logic-based inference is not constrained to such581

execution.582

Ethics Statement583

Intended Use and Misuse Potential. Our mod-584

els can potentially captivate a wider audience and585

significantly reduce the workload for human fact-586

checkers. Nevertheless, it is crucial to acknowledge587

the possibility of their exploitation by malicious588

actors. As such, we strongly advise researchers to589

approach them with caution.590

Accuracy and Infallibility. Our approach im-591

proves the clarity of FV models, enabling indi-592

viduals to make better-informed decisions about593

trusting these models and their assessments. How-594

ever, it is crucial for users to remain critical while595

interpreting the results of these systems and not596

mistake explainability for accuracy. We clarify that597

our evaluations do not determine the factual ac-598

curacy of a statement in the real world; instead,599

we use sources like Wikipedia as the basis for evi-600

dence. Wikipedia is a great collaborative resource,601

yet it has mistakes and noise of its own, similar to602

any encyclopedia or knowledge source. Therefore,603

we advise against using our verification system to604

make definitive judgments about the veracity of the605

assessed claims, meaning it should not be relied606

upon as an infallible source of truth.607
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A Dataset Processing 836

To effectively assess the zero-shot capabilities of 837

FV systems, it is important to evaluate the perfor- 838

mance on real-life claims and consider domains 839

requiring various domain expertise. We evaluated 840

all models on datasets covering natural claims and 841

domains such as climate change, biomedical sub- 842

jects, government healthcare policies, and scien- 843

tific literature. We chose datasets that mainly focus 844

on three-way classification, i.e., using three labels 845

Suppports, Refutes, or Not Enough Information: 846

Climate-FEVER (Diggelmann et al., 2020) 847

dataset comprises 1535 real-life climate change 848

claims, each annotated with five evidence sentences 849

retrieved from Wikipedia. Each evidence sentence 850

was labeled by five human annotators as support- 851

ing, refuting, or inconclusive regarding the claim’s 852

veracity, resulting in 5 votes for each evidence sen- 853

tence. These votes were then aggregated to micro- 854

verdicts for each retrieved evidence sentence, and 855

micro-verdicts were further aggregated to a single 856

macro-label for the claim. In our data processing, 857

we combined all evidence sentences into a single 858

paragraph and paired them with the macro-label as- 859

sessment. Besides the standard three labels, some 860

claims in the datasets are labeled as DISPUTED 861

if they are paired with both supporting and refut- 862

ing micro-verdicts. Since our work focuses on 863

three-label class prediction, we removed those 154 864

claims from the dataset. 865

PubHealth (Kotonya and Toni, 2020) is a dataset 866

with natural claims in the public health domain. 867

These claims are accompanied by evidence that 868

requires subject matter expertise, along with expert 869

explanations (judgments). The dataset contains 870

four labels True, False, Unproven, and Mixture. 871

However, the classes are heavily unbalanced and 872

the labels Unproven and Mixture cover less than 873

10% of the data in total. Therefore, we use test set 874
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You are given two sentences − Original Sentence and Syntax Reference Sentence.
Your task is to rephrase the first sentence (Original Sentence) so that it becomes syntactically closer to the structure of the
second sentence (Syntax Reference Sentence), while ensuring that all the information from the original sentence remains
logically consistent.

Original Sentence: {E}

Syntax Reference Sentence: {C}

Rephrase only the parts relevant to Syntax Reference Sentence. Don't change the logical meaning of Original Sentence.

Listing 1: Prompt template for the rephrasing task. Placeholders {E} and {C} get replaced by corresponding texts.

You are given two texts − a claim and evidence. Your task is to split the given claim into smaller verifiable segments and align
each segment with the corresponding relevant information from the evidence text.

Proceed in two steps.
Step 1: Divide the provided claim text into smaller, independently verifiable segments.
Step 2: For each segmented chunk of the claim, identify and align it with the corresponding relevant information in the evidence
text.

Segment and align the following claim and evidence texts:

CLAIM: {C}
EVIDENCE: {E}

Listing 2: Prompt template for the chunking and alignment task. Placeholders {E} and {C} get replaced by
corresponding texts.

claims with only True and False labels, resulting875

in 987 claims paired with expert explanations as876

evidence.877

SciFact (Wadden et al., 2020) is a dataset of878

expert-written scientific claims paired with evi-879

dence that was extracted from academic papers.880

We collect the claims with supporting and refuting881

rationale and construct claim-evidence pairs with882

SUPPORT and REFUTE labels. Claims lacking a883

specific rationale are categorized as NEI, and we884

pair them with the entire abstract text. We evalu-885

ate our pipeline on a test set that consists of 300886

claims.887

Hover (Jiang et al., 2020) is an open-domain,888

multi-hop FV dataset, containing artificial claims889

built from the Wikipedia corpus. Its claims890

are labeled as either SUPPORTED and NOT-891

SUPPORTED. We use the development set, which892

consists of 4000 claims.893

DanFEVER (Nørregaard and Derczynski, 2021)894

is a Danish dataset of counterfactual claims con-895

structed from Danish Wikipedia. It consists of 6407896

instances and provides gold evidence for Supported897

and Refuted claims. To obtain evidence for NEI 898

claims, we use the BM25 retriever (Robertson and 899

Walker, 1994). 900

CHEF (Hu et al., 2022) is a Chinese dataset of 901

real-world claims. We use their development set, 902

which consists of 703 claims. 903

B Baselines 904

ProoFVer (Krishna et al., 2022) is a seq2seq 905

FV model that generates natural logic proofs as 906

sequences of (claim, evidence, NatOp) triples. 907

ProoFVer is based on GENRE (De Cao et al., 2020), 908

an end-to-end entity linking model that was ob- 909

tained by fine-tuning the BART language model 910

(Lewis et al., 2019). ProoFVer was trained on a 911

large collection of 145,449 claims from FEVER 912

that were heuristically annotated with natural logic 913

proofs. 914

QA-NatVer (Aly et al., 2023) is also based on 915

natural logic but uses a question-answering frame- 916

work to determine proofs. As a few-shot method, 917

QA-NatVer was trained only on a small subset of 918

FEVER data. It uses 64 training instances, which 919
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were further manually annotated with natural logic920

proofs.921

QA-NatVer currently supports BART0 (Lin et al.,922

2022), Flan-T5 (Chung et al., 2022) and mT0923

(Muennighoff et al., 2022) backbones. However,924

we also implemented support for Llama2 in QA-925

NatVer, and reported results for zero-shot general-926

ization with the Llama2-70B model.927

Pan et al. Pan et al. (2023b) recently published928

an extensive analysis of zero-shot FV over 11 FV929

datasets. In their work, they experimented with930

different combinations of datasets for training and931

testing. While Pan et al. (2023b) consider their ex-932

periments as zero-shot generalization tasks, in our933

work, we consider them as zero-shot transfer be-934

cause they train their models on other FV datasets.935

Their results show useful zero-shot baselines over936

most of our datasets, providing a comparison with937

FV models that are not based on natural logic.938

C Models939

Llama2 We ran 7B, 13B, and 70B parameter940

models locally and used the GPTQ (Frantar et al.,941

2022) version of these models with 4-bit quantiza-942

tion to lower the computational requirements and943

speed up the inference.944

Hyperparameters When decoding with945

Llama-2 models, we did not tune any hyper-946

parameters and used the values described in947

Touvron et al. (2023). Specifically, in the question-948

answering task for NatOPs, we set temperature949

to 1.0 and use nucleus sampling (Holtzman et al.,950

2019) with top-p set to 0.9. For all other tasks, we951

change temperature to 0.1.952

Experimental Setup All experiments using953

Llama2 as the instruction-finetuned LLM were run954

on a machine with a single Quadro RTX 8000 with955

49GB memory and 64GB RAM memory.956

D Prompting957

Listings 1 and 2 show prompt templates for the958

evidence-rephrasing task, and the chunking and959

alignment task, respectively. These prompt tem-960

plates were used for all experiments with Llama2961

and ChatGPT models.962

NatOp assignment Listing 3 shows the prompt963

templates used in the question-answering task for964

NatOps. Given a claim-evidence pair, we gener-965

ated 10 distinct questions for each NatOp in sepa-966

rate prompts, replacing X with the claim text and 967

Y with the evidence text. Additionally, we added 968

the phrase "Answer Yes or No." at the end of each 969

prompt to encourage the Yes/No output format. 970

Lastly, we used the default system prompt "You 971

are a helpful assistant." for all prompts. 972

ChatGPT We used OpenAI’s API (Brockman 973

et al., 2020) to query gpt-3.5-turbo-1106 and used 974

the same hyperparamteres as with Llama2 models. 975

Due to the API limitations, we were unable to use 976

constrained decoding for rephrasing, chunking, and 977

alignment. Moreover, we could not use weighted 978

prompt ensembles due to the inability to access 979

the model’s log-likelihood scores. Otherwise, we 980

could replicate all the steps of our method with 981

ChatGPT. 982
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Equivalence
Is X a paraphrase of Y?
Are X and Y semantically equivalent in meaning?
Is the meaning of X effectively the same as Y?
Do X and Y function as synonyms or paraphrases of each other?
Does X serve as a paraphrase or an alternative expression for Y?
Are X and Y synonymous or nearly synonymous in meaning?
Do X and Y mean the same, without using external knowledge or assumptions?
Are X and Y semantically identical when considered independently of external knowledge?
Considering just X and Y, do these expressions have the same meaning?
Comparing X with Y, are they semantically equivalent based solely on their respective content?

Entailment
Given the premise Y does the hypothesis X hold?
Does the expression Y entail X?
Does the phrase Y logically imply X?
Is it true that if Y then X?
Is X a valid inference from Y?
Can X be inferred from the statement Y?
Given just the statements Y and X, does the first statement logically and necessarily imply the second without any external
information?
Is it true that the statement Y logically entails X based solely on the information within the statements?
Does Y imply X when only the information within these statements is considered?
Is it accurate to say that Y categorically entails X, without external interpretations?

Negation
Is the phrase X a negation of Y?
Do X and Y represent mutually exclusive states, where the presence of one negates the possibility of the other?
Is the relationship between X and Y binary, such that if X is true, Y must necessarily be false, and vice versa?
Do X and Y negate each other completely?
Are X and Y in a dichotomous relationship, where the existence of one implies the non−existence of the other?
Is there a mutually exclusive relationship between X and Y, indicating that only one can be true at any given time?
In the context of X and Y, does the affirmation of one mean the automatic negation of the other?
Do X and Y form a binary opposition, where one categorically negates the other?
Are X and Y opposites in such a way that they cannot be true simultaneously?
Is the relationship between X and Y characterized by a strict either/or dichotomy?

Alternation
Does X exclude Y?
Do X and Y represent distinct alternatives, but not the only possibilities in their category?
Are X and Y exclusively different without negating the existence of additional states or options?
Do X and Y denote exclusive but not exhaustive options within a larger set of possibilities?
In comparing X and Y, are they distinct yet not limiting the possibility of other variations or alternatives?
Are X and Y distinct entities or states that exclude each other without forming a complete, exhaustive set?
Are X and Y different entities or states, but not in a way that negates the possibility of other, different entities or states?
Are X and Y distinct entities or states that exclude each other without forming a complete, exhaustive set?
In comparing X and Y, are they exclusive in nature but not necessarily covering all possible alternatives?
Do X and Y define separate, non−intersecting options, while not encompassing all possible scenarios?

Listing 3: Template questions for determining NatOps.

Is the claim {C} supported or refuted by the evidence {E}?
Alternatively, reply that there is insufficient evidence to support or refute the claim.

Choices:
(A): Supported
(B): Refuted
(C): Not Enough Information

Answer in the following format:
Answer=A|B|C

Listing 4: Prompt template for FV experiments in a direct multiple-choice setup. Placeholders {E} and {C} get
replaced by corresponding texts.
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