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Abstract

The recent development of fact verification
systems with natural logic has enhanced the
explainability of these systems by aligning
claims with evidence through set-theoretic op-
erators, providing justifications that faithfully
expose the model’s reasoning. Despite these
advancements, such systems often rely on a
large amount of training data annotated with
natural logic. To address this issue, we propose
a zero-shot method that utilizes the generaliza-
tion capabilities of instruction-tuned large lan-
guage models. Our system uses constrained de-
coding to mitigate hallucinations and employs
weighted prompt ensembles to improve stabil-
ity. We evaluate our system on artificial and
real-world fact verification data. In a zero-shot
setup where models were not trained on any
data annotated with natural logic, our method
surpasses the best baselines by an average of
7.52 accuracy points. We also demonstrate mul-
tilingual capabilities in other languages, such
as Danish, where we outperform our baselines
by 8.72 accuracy points.

1 Introduction

In the context of fact-checking, fact verification
(FV) is a process of verifying whether a textual hy-
pothesis holds based on retrieved evidence. While
many improvements have been made in this field
due to the recent rapid growth in NLP (Mubashara
et al., 2023; Guo et al., 2022; Nakov et al., 2021),
FV systems often employ pipelines with black-box
components that hide the underlying reasoning.
One line of research attempts to improve explain-
ability with attention-based methods (Shu et al.,
2019; Popat et al., 2018) and post-hock summa-
rizations (Atanasova et al., 2020; Kotonya and
Toni, 2020). However, these approaches do not
provide faithful justifications — explanations that
accurately reflect the model’s decision-making pro-
cess and the data it used (Jacovi and Goldberg,
2020). In contrast, systems such as NaturallLl

(Angeli and Manning, 2014) and ProoFVer (Kr-
ishna et al., 2022) provide faithful justifications by
expressing semantic relations between claim/evi-
dence pairs. Modeling these logical relations and
their aggregation explicitly with natural logic (such
as double-negation) has also resulted in more accu-
rate and robust fact-checking systems.

However, a severe limitation of natural logic-
based FV systems is the necessity for large amounts
of training data annotated with entire natural logic
proofs. For example, ProoFVer (Krishna et al.,
2022) was trained on 145K instances artificially
obtained from structured knowledge bases such
as PPDB (Ganitkevitch et al., 2013) and Wiki-
data (Vrandeci¢ and Krotzsch, 2014). While re-
cent work (Aly et al., 2023) attempts to alleviate
this issue by proposing a few-shot learning method
trained on as few as 32 instances, human anno-
tation of even a small number of proofs can be
impractical and expensive, as it requires substantial
linguistic knowledge and familiarity with natural
logic. Moreover, few-shot systems might require
additional training data in order to generalize ef-
fectively to new domains, further increasing the
Costs.

To this end, we propose Zero-NatVer, a zero-
shot fact verification approach for constructing
natural logic proofs that leverages prompting and
question-answering with instruction-tuned large
language models (LLMs). Unlike some previous
works that combine several fine-tuned models, our
method uses a single language model for all stages
of the pipeline and does not require any adjust-
ments when transferring to different domains or
languages. Furthermore, we investigate evidence
rephrasing to address the lack of clear alignment
between claim and evidence, a common problem
of fact verification with natural logic. For example,
as illustrated in Figure 1, evidence rephrasing can
improve alignments by reformulating text into a
more detailed form.



CLAIM EVIDENCE

Bessie Smith was married
on April 15, 1894.

Bessie Smith (April 15, 1894
- September 26, 1937) was »
an American blues singer.

REPHRASED EVIDENCE

Bessie Smith, who was an
American blues singer, was
born on April 15, 1894.

Supports

Bessie Smith was married on  April 15, 1894 Q/v %E Refutes
Bessie Smith was born on April 15, 1894 Start, s - R REFUTED

Equivalence=  Alternation |[ Equivalence= E T’ =k Refutes
PROOF DFA DFA STATES VERDICT

Figure 1: Proof generation with natural logic using rephrased evidence. Evidence is first rephrased to facilitate
alignment with the claim (e.g., it introduces the word ’born’). Claim and evidence texts are then processed to
generate a proof sequence, which consists of (claim, evidence, NatOp) triples. Lastly, NatOps are used as transitions
in the DFA, and the final state (i.e. Refutes) determines the verdict.

We evaluate our method on real-world and ar-
tificial FV datasets, including Climate-FEVER
((Diggelmann et al., 2020)), PubHealth ((Kotonya
and Toni, 2020)), SciFact ((Wadden et al., 2020)),
and Hover ((Jiang et al., 2020)). In a zero-shot
setup, where models have not been trained using
any data labeled with natural logic, our approach
outperforms the top baseline models by an aver-
age accuracy improvement of 10.09 points. By
rephrasing relevant evidence, we further improve
these results by additional 1.96 points. Our method
also surpasses fully supervised and few-shot trained
models on natural datasets, obtaining the average
improvement of 2.22 accuracy points without evi-
dence rephrasing and 5.29 points with evidence
rephrasing. Lastly, we evaluate our system on
multilingual datasets, including Danish (DanFever
(Ngrregaard and Derczynski, 2021)) and Chinese
(CHEF (Hu et al., 2022)), demonstrating that it can
generalize to other languages.

Our study also evaluates the performance ben-
efits of using natural logic in FV. To this end, we
conduct experiments, comparing Zero-NatVer with
LLMs of similar sizes that are prompted directly
for determining the final verdict. Zero-NatVer out-
performs these methods by 3.67 accuracy points.

2 Related Work

Natural logic (Van Benthem, 1986; Sanchez, 1991)
and NaturalLI (Angeli and Manning, 2014), com-
poses full inference proofs that operate directly
on natural language, capable of expressing more
complex logical relationships between claim and
evidence, such as double-negation. Krishna et al.
(2022) train natural logic inference systems for fact

verification, achieving competitive performance
while remaining faithful and more explainable than
its entirely neural counterpart. While these neural-
symbolic approaches require substantial training
data to perform well, Aly et al. (2023) explore nat-
ural logic inference in a few-shot setting by casting
natural logic operators into a question-answering
framework, subsequently making use of the gener-
alization capabilities of instruction-tuned language
models. While our work also uses question answer-
ing to predict natural logic operators, we further
address prediction calibration issues frequently en-
countered in a zero-shot setting (Kadavath et al.,
2022; Jiang et al., 2023). Other neuro-symbolic
reasoning systems for FV use simple logical rules
to aggregate veracity information on a claim’s com-
ponents to provide a simple faithful explanation
(Stacey et al., 2022, 2023; Chen et al., 2022).

Previous work on zero-shot FV is limited and
largely relies on the generation of weakly super-
vised training samples and on knowledge of the
target domain (Pan et al., 2021; Wright et al., 2022).
Pan et al. (2023b) observe that typical FV systems
fail when transferred to unseen domains in a zero-
shot setting and propose a data augmentation tech-
nique to improve generalizability. However, none
of the aforementioned zero-shot methods produces
(faithful) explanations. In a few-shot setting, sev-
eral recent works have explored the use of large
language models that produce explanations along-
side the verdict. Pan et al. (2023a) define a reason-
ing program consisting of a sequence of subtasks
to verify complex claims. Yao et al. (2023) pro-
poses chain-of-thought prompting complemented
by action operations to support the model’s reason-
ing and its explanation generation. Li et al. (2023)



propose to edit rationales generated via chain-of-
thought prompting by querying knowledge sources.
Yet, in contrast to this work, these approaches still
rely on in-context examples.

3 Zero-NatVer

Given a claim ¢ and evidence sentences
e1,e2,....,e, € FE, our system determines
the veracity label y, which denotes whether
the information from FE supports c, refutes c,
or whether there is not enough information to
reach a verdict. Zero-NatVer obtains the verdict
in four steps, executed by an instruction-tuned
LLM. In the first step, we address the fact that
complex claim and evidence sentences can vary
considerably in terms of their syntactical structures,
resulting in inaccuracies during chunking and
alignment. Thus, Zero-NatVer first rephrases
evidence E into R so that relevant information
is easier to align with the claim ¢ while staying
semantically equivalent to E' (Sec. 3.1). In the
second step, Zero-NatVer segments c into several
chunks and aligns each such chunk with relevant
information from R (Sec. 3.2). This process results
in a sequence of [ claim-evidence alignment pairs
A = aq,as, ..., a;. Next, Zero-NatVer determines
the relation of each pair in terms of natural logic
and generates a sequence of natural logic operators
O = 01,09, ..., 07, which correspond to alignment
pairs in A (Sec. 3.3). Finally, O is used to traverse
a deterministic finite state automaton (DFA), which
determines the claim’s veracity. The following
sections describe each step in more detail.

3.1 Evidence Rephrasing

Fact-checking systems based on natural logic typi-
cally assume that claim and evidence texts can be
split and aligned into meaningful claim-evidence
pairs that can be individually resolved in terms of
their natural logic relations. While these systems
showed impressive performance on artificial claims
where claims and evidence are syntactically similar
(Krishna et al., 2022; Aly et al., 2023), real-life
claims and evidence can challenge this assumption
due to the complexity and variability inherent in
natural language. For example, the fact that the
dates in the phrase “Bessie Smith (April 15, 1894 -
September 26, 1937)” (Figure 1) refer to the birth
and death dates of Bessie Smith is obvious only
after seeing the full sentence. After the chunking
and alignment process, spans can often lose a rele-

vant context and become more ambiguous, leading
to incorrect verdicts. In this example, a hypotheti-
cal claim about her birth date could be incorrectly
aligned only with the relevant date (i.e. April 15,
1894), complicating the NatOp assignment in the
next stage of the process.

We address this problem by prompting a lan-
guage model to rephrase the evidence text and
make it syntactically closer to the claim text before
it gets chunked and aligned. The full prompt tem-
plate can be found in Listing 1. As shown in Figure
1, we can use an LLM to rephrase the previous
phrase into “Bessie Smith, who was an American
blues singer, was born on April 15, 1894, which
reorganizes relevant parts of the evidence and ex-
pands the date by the verb “born”, allowing now
for a comparison with the verb “married”. Other
examples of situations where rephrasing can be
beneficial include anaphora resolution, acronym
expansion, or counting problems.

While rephrasing can resolve some of the short-
comings of natural logic-based FV, we must be
careful not to alter the meaning of the evidence.
Even though we instruct the LLM accordingly, it
could still skip some information or hallucinate
new facts, changing the final verification verdict.
In our work, we mitigate these problems by using
a constrained beam-search decoding approach (An-
derson et al., 2016). At each decoding step, we
keep track of several most likely partial sequences
and constrain sequences that contain prohibited
words. A prohibited word is any non-stop word
from the claim that does not appear in the evidence
text. For example, in Figure 1, this prevents the
model from making the rephrased sentence even
more similar by copying over the word “married”.

3.2 Chunking and Alignment

FV systems based on natural logic require addi-
tional preprocessing of claims and evidence before
they can determine NatOps and final verdicts (Kr-
ishna et al., 2022). This preprocessing tradition-
ally consists of two separate steps— chunking and
alignment. The chunking process segments both
c and E into smaller, manageable pieces (chunks),
and the alignment step links each claim chunk with
a single evidence chunk, ideally providing enough
information for predicting relevant NatOps.
Zero-NatVer performs both steps as a joint task,
using the same prompt (details in Listing 2) and
context window. As shown in Figure 2, the decod-
ing starts with generating claim chunks as follows:



Claim

[ 1

Evidence

(From the article " ": Set primarily in Italy during N
German-occupied Europe in World War I, the film tells the story of
four Buffalo Soldiers of the 92nd Infantry Division who seek refuge
in a small Tuscan village, where they form a bond with the
residents.

Output

Step 1) Segment the claim text into chunks:

*

*

Step 2) Align each claim chunk with relevant evidence:

* "Miracle at St. Anna" (claim) -> "Miracle at St. Anna" (evidence)

* "tells the story of" (claim) -> "the film tells the story of" (evidence)

* "four soldiers" (claim) -> "four Buffalo Soldiers of the 92nd Infantry
Division" (evidence)

Figure 2: Decoding for chunking and alignment. The
blue text refers to generated claim chunks, and the pur-
ple text refers to generated evidence alignments. The
remaining text was forced during the decoding.

1. The claim text is pre-processed as a queue of
tokens Q¢.

2. The decoding is prefixed with the phrase
"Step 1) Segment the claim text into chunks:"
to encourage the generation of claim chunks.

3. The model is constrained to sample one of
two outputs - the next token from Q¢ or a
new-line character.

4. Repeats step 3 until Q¢ is empty (all claim
tokens are consumed).

The outcome of this process is a bulleted list
of claim segments. Due to the constraints at each
decoding step, this generation cannot hallucinate,
skip words, or alter information from the claim.

Keeping the generated output in the context,
Zero-NatVer then starts generating alignments:

1. The previously generated chunks are parsed

and stored in queue @ 4.

2. The decoding is prefixed with the phrase "Step
2) Align each claim chunk with relevant evi-
dence:" to encourage alignment generation.

3. The model is prefixed with a chunk from Q 4.

4. Aligned evidence text is sampled with con-
strained decoding.

5. Repeats steps 3-4 until () 4 is empty.

As shown in Figure 2, the outcome of this pro-
cess is a bulleted list of claim-evidence segments.
While the decoding of claim chunks is constrained
by design and does not allow for hallucinations,
the alignment generation in step 4 relies on general
sampling and needs to be constrained. In order to
prevent hallucinations and guarantee reliability, we

post-process the alignments and remove any text
that does not form sequences of tokens in F or R.
This approach ensures the aligned text comprises
only sub-strings from E or R.

We also use additional markers such as
"x" Mclaims)", "(evidence)", and "->" to denote
each section. These markers help with consistency
and maintain the intended format and behavior in a

zero-shot setting.

3.3 NatOp Assignment via QA Ensembles

Having alignments between claim and evidence,
the next step is to determine a NatOp for each
claim-evidence pair. Similar to Aly et al. (2023),
we consider them as relations that can be inferred
via questions over claim-evidence spans. Thus, we
prompt our model with Yes/No questions to deter-
mine whether a relation can be expressed by one of
the NatOps. Using questions-answering, we con-
sider the following NatOps: Equivalence (=), For-
ward Entailment (C), Backward Entailment (3),
Negation (—), and Alternation (|[). For example,
for the negation NatOp, we can ask the question
"Is the phrase X a negation of Y?", where X and Y
represent claim and evidence spans, respectively.

In order to reduce the variability of outcomes,
we use a large number of Yes/No questions to
prompt the model, thereby obtaining several micro-
judgements per NatOp, which are then aggregated
as a weighted average. Instead of manually hand-
crafting these question templates, we prompt the
LLM to generate them. This approach ensures the
questions are more aligned with the model’s dis-
tribution. In our experiments, we employ 10 tem-
plates for each NatOp, though it is easy to generate
and use additional templates.

For a given claim-evidence alignment pair a and
operator o, we compute a NatOp score s, , as a
weighted average over all micro-judgments:

N
Soa = Y _ wi QA(Yes|T}, a) (1)

=1

where T is a collection of prompt templates, and
w represents confidence weights for each template,
with 3N w; = 1.

We compute w; by iterating over the entire
dataset in a single pass and capturing the log-
likelihood scores for each template. For each in-
stance, we always capture only the Yes/No option,
which has the higher log-likelihood score (i.e., the
option that the model favors more).
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Figure 3: Proof generation process of Zero-NatVer. We use prompt ensembles to determine a set of NatOp
candidates (orange blocks) for each claim-evidence pair. A single NatOp (green blocks) is then selected for each

pair, using NatOp priority.

Using Equation 1, we then compile a list of
NatOps candidates C, considering only s, , > «,
where « can be seen as a confidence threshold for
the model. Since we are not using any validation
data to determine hyper-parameters, we set « = 0.5
as we are considering two output classes.

Due to the ambiguity of natural language and
the complexity of alignments, it frequently occurs
that |C| > 1. However, we want to minimize the
chance of incorrectly choosing NatOps that leads
to the Not Enough Evidence state, from which
there are no outgoing transitions to other states.
Thus, we use a NatOp priority approach and se-
lect from the operators in C' in the following order:
[=,—, C, 3, |]]-We defined the NatOp order by con-
sidering the difficulty of each task. For instance, in
a scenario where the candidate list C' consists of
equivalence (=) and alternation (|[), we postulate
that identifying equivalence (i.e., assessing textual
similarity) is a simpler task compared to identify-
ing alternation (i.e., recognizing non-exhaustive
exclusion). We decided on this order before our
experiments and did not optimize this order.

4 Experimental Methodology
4.1 Zero-shot Setups

To better assess the zero-shot capabilities of our
approach, we differentiate between two types of
zero-shot setups— zero-shot generalization and
zero-shot transfer. We define zero-shot general-
ization as a model’s ability to handle entirely new
tasks or domains it has not encountered during
training. Conversely, zero-shot transfer refers to

training a model on a specific task or dataset and
subsequently applying it to a different but related
task or dataset without further training. For exam-
ple, consider a model trained on a broad spectrum
of general data (e.g., BART, T5, or Llama?2) that did
not include proofs with natural logic. Applying this
model to FV with natural logic then exemplifies
zero-shot generalization according to our defini-
tion. In contrast, if the same model is fine-tuned
on a dataset annotated with natural logic proofs
and then applied to perform FV with natural logic
on a different dataset, this would be an instance of
zero-shot transfer.

4.2 Datasets

Previous works on NLI-based FV models mainly
examined the performance on artificial claims from
FEVER-like datasets (Krishna et al., 2022; Aly
et al., 2023; Chen et al., 2023). However, these
datasets tend to cover mostly general topics, and ar-
tificial claims are often rather simple in their struc-
ture. For a more comprehensive assessment of
zero-shot capabilities, we also evaluate our method
on natural claims from datasets Climate-FEVER
(Diggelmann et al., 2020), PubHealth (Kotonya and
Toni, 2020), and Scifact (Wadden et al., 2020) (See
Appendix A for more details).

5 Results

To effectively assess the impact of evidence
rephrasing, we consistently report our results in
two separate formats: without evidence rephras-
ing (denoted as Zero-NatVer) and with rephrasing



Model Climate-FEVER | PubHealth SciFact Hover
F1 Acc F1 Acc F1 Acc F1 Acc
ProoF Ver BART 26.63 34.75 38.15 39.27 | 25.58 34.67 | 47.13 49.76
QA-NatVer Flan-T5 22.20 36.86 4442 48.73 | 23.56 40.67 | 35.65 50.85
QA-NatVer Llama2-70B || 36.13 47.28 57.05 63.12 | 37.78 46.67 | 5545 5547
Zero-NatVer Llama2-70B || 44.71 46.78 6545 6545 | 5747 60.33 | 59.12 59.13
Zero-NatVer-R | Llama2-70B || 45.78 49.38 6691 68.39 | 61.07 64.00 | 60.83 60.85
Full Supervision - 75.7 - 85.88 86.93 | 71.1 - - 81.2

Table 1: Zero-shot generalization results. Macro-F1 and accuracy scores for systems that were not specifically
trained on FV datasets. Where possible, we also report available SOTA results with fully-supervised models trained

on in-domain data as a reference.

Model Training data Climate-FEVER | PubHealth SciFact Hover

(size) F1 Acc F1 Acc Fl1 Acc F1 Acc
Pan et al. (2013) BERT FEVER/VitC (800) || 40.60 - 60.06 - 50.71 - - -
ProoFVer BART FEVER (145K) 40.70 43.35 57.78 61.22 | 45.57 49.16 | 57.08 57.89
QA-NatVer Flan-T5 FEVER (64) 44.74 47.43 61.8 61.8 | 52.02 56.67 | 70.27 70.5
Zero-NatVer Llama2-70B None 44.71 46.78 6545 6545 | 5747 60.33 | 59.12 59.13
Zero-NatVer-R | Llama2-70B None 45.78 49.38 66.91 68.39 | 61.07 64.00 | 60.83 60.85
Full Supervision - - 75.7 - 85.88 8693 | 71.1 - - 81.2

Table 2: Zero-shot transfer results. Macro-F1 and accuracy scores for systems trained on fact-checking datasets.
For each system, we report the type and size of FV training data. Where possible, we also report available SOTA
results with fully-supervised models trained on in-domain data as a reference. Results from Pan et al. (2013) do not

include accuracy scores and experiments on Hover.
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Figure 4: Macro-F1 scores across all datasets for vari-
ous ensemble sizes. The light blue area represents the
standard deviation from 10 independent measurements.

(denoted as Zero-NatVer-R)."

We conducted our main experiments with the
Llama2-70B model (Touvron et al., 2023), one of
the largest open-source LLMs to date. Crucially,
we did not fine-tune the model on any specific
dataset, and we did not tune any hyperparameters.
The only exposure to fact-checking datasets was
when we were designing our prompts. For this pur-
pose, we used a separate dataset, Symmetric-Fever
(Schuster et al., 2019). We selected a small subset
of 100 claims and tested that our prompts generated
responses in the desired format. For hyperparam-

eters, we have adopted the recommendations of
Perez et al. (2021) and did not rely on hyperparam-
eters from prior works (details in Appendix C).

Baselines Our natural-logic-based baselines con-
sist of ProoFVer (Krishna et al., 2022), which is
based on the BART model (Lewis et al., 2019), and
QA-NatVer (Aly et al., 2023), which uses Flan-T5
(Chung et al., 2022). In zero-shot generalization
setups, we run both models with their correspond-
ing pre-trained LL.Ms without fine-tuning on NLI
data. In order to provide a directly comparable
baseline, we also implemented support for Llama2
in QA-NatVer. ProoFVer currently supports only
models from the Fairseq toolkit', which does not
include models of similar sizes to Llama2. For
zero-shot transfer setups, we use ProoFVer with
BART trained on 145K FEVER instances and QA-
NatVer with Flan-T5 trained on 64 instances of
NLI annotated data. We were unable to fine-tune
QA-NatVer with Llama2-70B model due to com-
putational constraints. We include results reported
by Pan et al. (2023b) as an additional baseline for
zero-shot transfer experiments. More details about
our baselines can be found in Appendix B.

Main Results We report the main results for

zero-shot generalization in Table 1. Zero-NatVer

"https://github.com/facebookresearch/fairseq



Macro-F1  Accuracy
Llama2-7B 20.57 41.67
Llama2-13B 30.96 42.16
Llama2-70B 57.47 60.33
GPT-3.5-Turbo 49.21 53.00

Table 3: SciFact results for different Llama-2 model
sizes and ChatGPT.

achieves 57.92 accuracy points on average, sur-
passing all baselines. Our system outperforms
ProoFVer and QA-NatVer with Flan-T5 backbone
by 18.31 and 13.65 accuracy points, respectively.
Notably, it also outperforms QA-NatVer with
Llama2-70B backbone by 4.79 accuracy points.
Evidence rephrasing (Zero-NatVer-R) further im-
proves our results by additional 2.73 accuracy
points. The main results for zero-shot transfer
are reported in Table 2. When considering only
datasets that contain natural claims, Zero-NatVer
outperforms ProoFVer and QA-NatVer with Flan-
T5 backbone by 6.28 and 2.22 accuracy points on
average, respectively. Zero-NatVer-R further im-
proves results by additional 3.07 accuracy points.
However, QA-NatVer outperforms Zero-NatVer-R
by 9.65 accuracy points on the artificial claims
from Hover. While QA-NatVer’s results demon-
strate generalization capabilities beyond the train-
ing domain, the high scores can be attributed to the
fact that both FEVER (i.e., QA-NatVer’s training
data) and Hover consist of artificial claims com-
piled from Wikipedia.

Ensemble size To assess the impact of the
prompt ensemble size (Section 3.3), we run an ex-
periment measuring performance across all datasets
for various ensemble sizes. For each measured en-
semble size S, we randomly sample .S prompts for
each NatOp from our prompt bank. We repeat this
process 10 times and report means and standard
deviations for each ensemble size in Figure 4.

The results show that the size of prompt ensem-
bles has a large impact on the variability of out-
comes. Using only one question per NatOp and
sampling different prompts, we obtain Macro-F1
scores with a standard deviation of 3.59 points. In
comparison, an ensemble of only 4 prompts sub-
stantially reduces this variation by more than half.

Model size Table 3 compares our method with
different sizes of Llama2 models, showing a sub-
stantial improvement in performance as the model
scales up. Additionally, we evaluated our method

Macro-F1  Accuracy
Zero-NatVer 5747 60.33
w/o weighted prompts 56.52 59.33
w/o prompt ensemble 49.56 53.67
w/o constrained decoding 55.45 58.00
separate chunking/alignment 523 54.33

Table 4: Ablation study on SciFact.

Macro-F1  Accuracy
Llama2-70B w/o NatLog 57.61 60.33
GPT-3.5-Turbo w/o NatLog 54.63 59.33
Zero-NatVer 57.47 60.33
Zero-NatVer-R 61.07 64.00

Table 5: Comparison of our method with other non-
NatLog systems on SciFact.

using the proprietary model ChatGPT-3.5 (OpenAl,
2023), which is allegedly larger in size than our
Llama2 models. The low scores for ChatGPT-3.5
can be caused by API limitations, which prevented
us from using constrained decoding and weighted
prompting (see Appendix D for prompting details).

Ablation Study We perform four ablation stud-
ies on SciFact, as reported in Table 4. First,
we examine the performance of Zero-NatVer
and Zero-NatVer-R without weighting ensemble
prompts, observing a small drop of 1 accuracy
point. Second, we ablate our method by omitting
prompt ensembles and using a single randomly
sampled prompt instead. We observe a substantial
drop in performance of 6.66 accuracy points, which
agrees with our previous findings regarding ensem-
ble sizes. Third, we ablate Zero-NatVer by using
unconstrained generation in decoding, observing
an accuracy drop of 2.33 points. Last, we ablate
our method by processing chunking and alignments
as two separate consecutive steps, resulting in 6.0
points drop in accuracy.

Non-NatLog Systems We also compared our
method with similar models that are not grounded
in natural logic and conducted experiments with
Llama2 and ChatGPT-3.5 models, prompting
them to determine the verdict directly (see Ap-
pendix D for prompting details). Our experimen-
tal results reported in Table 5 demonstrate that
Zero-NatVer-R substantially outperforms Llama2-
70B and ChatGPT-3.5 by 3.67 and 4.67 accuracy
points, respectively. These results demonstrate that
natural logic provides improved performance in
addition to the benefits of explainability.



Model Dan-FEVER CHEF

Macro-F1  Acc | Macro-F1  Acc
ProoFVer mBART 29.80 41.97 20.16 38.57
QA-NatVer mTO 35.68 37.05 - -
QA-NatVer Llama2-70B 34.17 48.81 - -
Zero-NatVer Llama2-70B 43.28 57.47 51.10 58.75
Zero-NatVer-R | Llama2-70B 44.93 57.53 51.34 58.46
Full-Supervision - 90.2 - 67.62 -

Table 6: Zero-shot generalization results for multi-lingual datasets. Macro-F1 and accuracy scores for systems
that were not specifically trained on FV datasets. Where possible, we also report available SOTA results with
fully-supervised models trained on in-domain data as a reference.

Model Training data (size) Dan-FEVER CHEF
Macro-F1 ~ Acc | Macro-F1  Acc
ProoFVer mBART FEVER (145K) 36.12 55.22 20.18 37.72
QA-NatVer mTO0 FEVER (64) 63.64 68.41 - -
Zero-NatVer Llama2-70B None 43.28 57.47 51.10 58.75
Zero-NatVer-R | Llama2-70B None 4493 57.53 51.34 58.46
Full-Supervision - - 90.2 - 67.62 -

Table 7: Zero-shot transfer results for multi-lingual datasets. Macro-F1 and accuracy scores for systems trained
on fact-checking datasets. Where possible, we also report available SOTA results with fully-supervised models

trained on in-domain data as a reference.

Multilingual Capabilities We also assess the
multi-lingual capabilities of Zero-NatVer on two
fact-checking datasets in languages other than
English— DanFEVER (Danish) and CHEF (Chi-
nese). To evaluate our baselines, we use models
based on multi-lingual backbones. Thus, we use
mBART (Liu et al., 2020) for ProoFVer, and we
use mTO (Muennighoff et al., 2022) and Llama-
70B for QA-NatVer. Table 6 reports our re-
sults for zero-shot generalization. On DanFEVER,
Zero-NatVer-R outperforms both ProoFVer and
QA-NatVer by 15.56 and 8.72 accuracy points,
respectively. This gap is substantially larger on
CHEF, where the difference is 21.03 points. We
could not run QA-NatVer on CHEF because QA-
NatVer relies on an additional model for chunk-
ing that currently does not support Chinese. This
limitation highlights the simplicity of our method,
which uses a single multi-lingual model for all
stages of the pipeline and does not require any
adjustments when transferring to different domains
or languages. Table 7 then reports results for
zero-shot transfer, comparing Zero-NatVer with
two multilingual baseline models trained on data
with natural logic. While our system’s accuracy is
worse than QA-NatVer by 10.88 points, it is impor-
tant to note that QA-NatVer uses a multi-lingual
backbone model mTO with a balanced distribution
of languages. In comparison, the proportion of

Chinese and Danish in Llama2 pre-training data
was only 0.13% and 0.02% Danish, respectively
(Touvron et al., 2023). ProoFVer was unable to
generalize to CHEF in this setup, and Zero-NatVer
outperforms ProoFVer by 21.03 accuracy points.

6 Conclusion

We have presented Zero-NatVer, a zero-shot
method for fact verification based on natural logic.
Our method leverages the generalization capabili-
ties of instruction-tuned LLMs and generates faith-
ful justifications for proofs without relying on train-
ing data annotated with natural logic. We have
evaluated Zero-NatVer in two zero-shot setups, out-
performing our baselines on most datasets. The ab-
lation study shows the importance of individual de-
sign choices, and our experiments with non-NatLog
systems demonstrate that natural logic improves the
performance of our system. Moreover, we explored
the impact of evidence rephrasing, which further
improves Zero-NatVer’s performance across all
datasets. We hope that the methods and analy-
ses presented here enable further progress toward
improving the efficiency and explainability of fact
verification systems.



Limitations

Evidence Rephrasing While rephrasing im-
proved our results across all datasets, it represents
a trade-off between performance and explainabil-
ity. Despite the use of constrained beam-search
decoding, it can still generate sentences that are
not logically consistent with the original evidence
text, leading to an incorrect verdict. Therefore,
users should have access to both texts in order to
make their own judgments about the reliability of
rephrasing.

Natural Logic Natural logic is useful for explain-
ability but is less expressive than semantic parsing
methods such as lambda calculus (Zettlemoyer and
Collins, 2005). This paper doesn’t address natural
logic’s limitations. Furthermore, our method gen-
erates proofs, which are meant to be processed by
the DFA from left to right. Nevertheless, natural
logic-based inference is not constrained to such
execution.

Ethics Statement

Intended Use and Misuse Potential. Our mod-
els can potentially captivate a wider audience and
significantly reduce the workload for human fact-
checkers. Nevertheless, it is crucial to acknowledge
the possibility of their exploitation by malicious
actors. As such, we strongly advise researchers to
approach them with caution.

Accuracy and Infallibility. Our approach im-
proves the clarity of FV models, enabling indi-
viduals to make better-informed decisions about
trusting these models and their assessments. How-
ever, it is crucial for users to remain critical while
interpreting the results of these systems and not
mistake explainability for accuracy. We clarify that
our evaluations do not determine the factual ac-
curacy of a statement in the real world; instead,
we use sources like Wikipedia as the basis for evi-
dence. Wikipedia is a great collaborative resource,
yet it has mistakes and noise of its own, similar to
any encyclopedia or knowledge source. Therefore,
we advise against using our verification system to
make definitive judgments about the veracity of the
assessed claims, meaning it should not be relied
upon as an infallible source of truth.
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A Dataset Processing

To effectively assess the zero-shot capabilities of
FV systems, it is important to evaluate the perfor-
mance on real-life claims and consider domains
requiring various domain expertise. We evaluated
all models on datasets covering natural claims and
domains such as climate change, biomedical sub-
jects, government healthcare policies, and scien-
tific literature. We chose datasets that mainly focus
on three-way classification, i.e., using three labels
Suppports, Refutes, or Not Enough Information:

Climate-FEVER (Diggelmann et al., 2020)
dataset comprises 1535 real-life climate change
claims, each annotated with five evidence sentences
retrieved from Wikipedia. Each evidence sentence
was labeled by five human annotators as support-
ing, refuting, or inconclusive regarding the claim’s
veracity, resulting in 5 votes for each evidence sen-
tence. These votes were then aggregated to micro-
verdicts for each retrieved evidence sentence, and
micro-verdicts were further aggregated to a single
macro-label for the claim. In our data processing,
we combined all evidence sentences into a single
paragraph and paired them with the macro-label as-
sessment. Besides the standard three labels, some
claims in the datasets are labeled as DISPUTED
if they are paired with both supporting and refut-
ing micro-verdicts. Since our work focuses on
three-label class prediction, we removed those 154
claims from the dataset.

PubHealth (Kotonya and Toni, 2020) is a dataset
with natural claims in the public health domain.
These claims are accompanied by evidence that
requires subject matter expertise, along with expert
explanations (judgments). The dataset contains
four labels True, False, Unproven, and Mixture.
However, the classes are heavily unbalanced and
the labels Unproven and Mixture cover less than
10% of the data in total. Therefore, we use test set


https://doi.org/10.18653/v1/2022.emnlp-main.251
https://doi.org/10.18653/v1/2022.emnlp-main.251
https://doi.org/10.18653/v1/2022.emnlp-main.251
https://doi.org/10.1007/978-94-009-4540-1_6
https://doi.org/10.18653/v1/2022.acl-long.175
https://doi.org/10.18653/v1/2022.acl-long.175
https://doi.org/10.18653/v1/2022.acl-long.175
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X

You are given two sentences — Original Sentence and Syntax Reference Sentence.

Your task is to rephrase the first sentence (Original Sentence) so that it becomes syntactically closer to the structure of the
second sentence (Syntax Reference Sentence), while ensuring that all the information from the original sentence remains
logically consistent.

Original Sentence: {E}

Syntax Reference Sentence: {C}

Rephrase only the parts relevant to Syntax Reference Sentence. Don't change the logical meaning of Original Sentence.

Listing 1: Prompt template for the rephrasing task. Placeholders {E} and {C} get replaced by corresponding texts.

You are given two texts — a claim and evidence. Your task is to split the given claim into smaller verifiable segments and align
each segment with the corresponding relevant information from the evidence text.

Proceed in two steps.

Step 1: Divide the provided claim text into smaller, independently verifiable segments.

Step 2: For each segmented chunk of the claim, identify and align it with the corresponding relevant information in the evidence
text.

Segment and align the following claim and evidence texts:

CLAIM: {C}
EVIDENCE: {E}

Listing 2: Prompt template for the chunking and alignment task. Placeholders {E} and {C} get replaced by
corresponding texts.

claims with only True and False labels, resulting  and Refuted claims. To obtain evidence for NEI
in 987 claims paired with expert explanations as  claims, we use the BM25 retriever (Robertson and
evidence. Walker, 1994).

SciFact (Wadden et al., 2020) is a dataset of CHEF (Hu et al., 2022) is a Chinese dataset of
expert-written scientific claims paired with evi-  real-world claims. We use their development set,
dence that was extracted from academic papers.  which consists of 703 claims.

We collect the claims with supporting and refuting

rationale and construct claim-evidence pairs with B Baselines

SUPPORT and REFUTE labels. Claims lacking a ProoFVer (Krishna et al., 2022) is a seq2seq

spe;ciﬁc rati(?nale are c.ategorized as NEL and we gy o del that generates natural logic proofs as
pair therq WI.th the entire abstract text. .We evalu- sequences of (claim, evidence, NatOp) triples.
ate.our pipeline on a test set that consists of 300 ProoFVer is based on GENRE (De Cao et al., 2020),
claims. an end-to-end entity linking model that was ob-
Hover (Jiang et al., 2020) is an open-domain, tained by fine-tuning the BART language model
multi-hop FV dataset, containing artificial claims ~ (Lewis et al., 2019). ProoFVer was trained on a
built from the Wikipedia corpus. Its claims large collection of 145,449 claims from FEVER
are labeled as either SUPPORTED and NOT- that were heuristically annotated with natural logic
SUPPORTED. We use the development set, which proofs.

consists of 4000 claims. QA-NatVer (Aly et al., 2023) is also based on
DanFEVER (Ngrregaard and Derczynski, 2021)  natural logic but uses a question-answering frame-
is a Danish dataset of counterfactual claims con-  work to determine proofs. As a few-shot method,
structed from Danish Wikipedia. It consists of 6407 ~ QA-NatVer was trained only on a small subset of
instances and provides gold evidence for Supported ~ FEVER data. It uses 64 training instances, which
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were further manually annotated with natural logic
proofs.

QA-NatVer currently supports BARTO (Lin et al.,
2022), Flan-T5 (Chung et al., 2022) and mTO
(Muennighoff et al., 2022) backbones. However,
we also implemented support for Llama2 in QA-
NatVer, and reported results for zero-shot general-
ization with the Llama2-70B model.

Pan et al. Pan et al. (2023b) recently published
an extensive analysis of zero-shot FV over 11 FV
datasets. In their work, they experimented with
different combinations of datasets for training and
testing. While Pan et al. (2023b) consider their ex-
periments as zero-shot generalization tasks, in our
work, we consider them as zero-shot transfer be-
cause they train their models on other FV datasets.
Their results show useful zero-shot baselines over
most of our datasets, providing a comparison with
FV models that are not based on natural logic.

C Models

Llama2 We ran 7B, 13B, and 70B parameter
models locally and used the GPTQ (Frantar et al.,
2022) version of these models with 4-bit quantiza-
tion to lower the computational requirements and
speed up the inference.

Hyperparameters When decoding  with
Llama-2 models, we did not tune any hyper-
parameters and used the values described in
Touvron et al. (2023). Specifically, in the question-
answering task for NatOPs, we set temperature
to 1.0 and use nucleus sampling (Holtzman et al.,
2019) with top-p set to 0.9. For all other tasks, we
change temperature to 0.1.

Experimental Setup All experiments using
Llama? as the instruction-finetuned LLM were run
on a machine with a single Quadro RTX 8000 with
49GB memory and 64GB RAM memory.

D Prompting

Listings 1 and 2 show prompt templates for the
evidence-rephrasing task, and the chunking and
alignment task, respectively. These prompt tem-
plates were used for all experiments with Llama2
and ChatGPT models.

NatOp assignment Listing 3 shows the prompt
templates used in the question-answering task for
NatOps. Given a claim-evidence pair, we gener-
ated 10 distinct questions for each NatOp in sepa-
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rate prompts, replacing X with the claim text and
Y with the evidence text. Additionally, we added
the phrase "Answer Yes or No." at the end of each
prompt to encourage the Yes/No output format.
Lastly, we used the default system prompt "You
are a helpful assistant.” for all prompts.

ChatGPT We used OpenAI’s API (Brockman
et al., 2020) to query gpt-3.5-turbo-1106 and used
the same hyperparamteres as with Llama2 models.
Due to the API limitations, we were unable to use
constrained decoding for rephrasing, chunking, and
alignment. Moreover, we could not use weighted
prompt ensembles due to the inability to access
the model’s log-likelihood scores. Otherwise, we
could replicate all the steps of our method with
ChatGPT.



Is X a paraphrase of Y?

Are X and Y semantically equivalent in meaning?

Is the meaning of X effectively the same as Y?

Do X and Y function as synonyms or paraphrases of each other?

Does X serve as a paraphrase or an alternative expression for Y?

Are X and Y synonymous or nearly synonymous in meaning?

Do X and Y mean the same, without using external knowledge or assumptions?

Are X and Y semantically identical when considered independently of external knowledge?
Considering just X and Y, do these expressions have the same meaning?

Comparing X with Y, are they semantically equivalent based solely on their respective content?

Given the premise Y does the hypothesis X hold?

Does the expression Y entail X?

Does the phrase Y logically imply X?

Is it true that if Y then X?

Is X a valid inference from Y?

Can X be inferred from the statement Y?

Given just the statements Y and X, does the first statement logically and necessarily imply the second without any external
information?

Is it true that the statement Y logically entails X based solely on the information within the statements?
Does Y imply X when only the information within these statements is considered?

Is it accurate to say that Y categorically entails X, without external interpretations?

Is the phrase X a negation of Y?

Do X and Y represent mutually exclusive states, where the presence of one negates the possibility of the other?
Is the relationship between X and Y binary, such that if X is true, Y must necessarily be false, and vice versa?

Do X and Y negate each other completely?

Are X and Y in a dichotomous relationship, where the existence of one implies the non-existence of the other?

Is there a mutually exclusive relationship between X and Y, indicating that only one can be true at any given time?
In the context of X and Y, does the affirmation of one mean the automatic negation of the other?

Do X and Y form a binary opposition, where one categorically negates the other?

Are X and Y opposites in such a way that they cannot be true simultaneously?

Is the relationship between X and Y characterized by a strict either/or dichotomy?

Does X exclude Y?

Do X and Y represent distinct alternatives, but not the only possibilities in their category?

Are X and Y exclusively different without negating the existence of additional states or options?

Do X and Y denote exclusive but not exhaustive options within a larger set of possibilities?

In comparing X and Y, are they distinct yet not limiting the possibility of other variations or alternatives?

Are X and Y distinct entities or states that exclude each other without forming a complete, exhaustive set?

Are X and Y different entities or states, but not in a way that negates the possibility of other, different entities or states?
Are X and Y distinct entities or states that exclude each other without forming a complete, exhaustive set?

In comparing X and Y, are they exclusive in nature but not necessarily covering all possible alternatives?

Do X and Y define separate, non-intersecting options, while not encompassing all possible scenarios?

Listing 3: Template questions for determining NatOps.

Is the claim {C} supported or refuted by the evidence {E}?
Alternatively, reply that there is insufficient evidence to support or refute the claim.

Choices:

(A): Supported

(B): Refuted

(C): Not Enough Information

Answer in the following format:
Answer=A|B|C

Listing 4: Prompt template for FV experiments in a direct multiple-choice setup. Placeholders {E} and {C} get
replaced by corresponding texts.
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