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ABSTRACT

Structure-Based Drug Design (SBDD) is crucial for identifying bioactive molecules.
Recent deep generative models are faced with challenges in geometric struc-
ture modeling. A major bottleneck lies in the twisted probability path of multi-
modalities—continuous 3D positions and discrete 2D topologies—which jointly
determine molecular geometries. By establishing the fact that noise schedules
decide the Variational Lower Bound (VLB) for the twisted probability path, we
propose VLB-Optimal Scheduling (VOS) strategy in this under-explored area,
which optimizes VLB as a path integral for SBDD. Our model effectively enhances
molecular geometries and interaction modeling, achieving state-of-the-art Pose-
Busters passing rate of 95.9% on CrossDock, more than 10% improvement upon
strong baselines, while unlocking the potential of repurposing SBDD model as
docking method without retraining, with 44.0% RMSD < 2Å on PoseBusters V2.

1 INTRODUCTION

Structure-Based Drug Design (SBDD) plays a pivotal role in the discovery of bioactive molecules,
leveraging the knowledge of protein-ligand interactions to identify potential therapeutic compounds
(Isert et al., 2023). Despite its importance, achieving high-fidelity interaction modeling remains
a significant challenge. Recent advances in geometric deep generative models have centered on
non-autoregressive methods such as diffusion (Guan et al., 2023) and Bayesian Flow Network (BFN)
(Qu et al., 2024), showing promise by capturing the molecular geometries at the global level.

We aim to enhance the geometric structure modeling by improving the intertwined probability path
of different modalities: continuous atom positions and discrete molecular topologies. While these
modalities jointly determine molecular geometries and protein-ligand interaction types, there lacks a
systematic understanding in designing the twisted probability path for SBDD. Prior works (Peng et al.,
2023; Vignac et al., 2023; Guan et al., 2023) adopt sophisticated noise schedules adapted for different
modalities, and propose to generate 3D positions first. In our preliminary studies (Sec. 2), we identify
the potential problem of prioritizing the 3D modality, where the model cannot effectively utilize 2D
topology information in generation, suggesting current noise schedule is suboptimal. Despite its
importance, the design of optimal noise schedules remains largely under-explored.

To address the gap left by previous methods, we aim at a systematic solution for the optimal schedule
for the twisted probability path of different modalities, and emphasize the need for principled metrics
relevant to generative modeling in order to evaluate schedule quality. EquiFM (Song et al., 2024b)
introduces improved hybrid probability paths aligned with information-theoretic heuristics but lacks
a theoretical foundation for optimality. To rigorously define optimality, we analyze the Variational
Lower Bound (VLB) under varying noise schedules. Crucially, we prove that in the multi-modality
generation, the VLB becomes a path-dependent integral—its value depends on the entire noise
schedule, not just endpoints (Kingma et al., 2021).
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This motivates our VLB-Optimal Scheduling (VOS), eliminating heuristic noise schedule design
and directly linking it to the theoretical guarantees of the VLB landscape. Specifically, we combat
the combinatorial complexity in schedule design space when navigating and optimizing for VLB. To
make it tractable to exhaust the possibilities, we demonstrate that the design space of multi-modality
noise schedules can be reduced to a two-dimensional plane. Building on this insight, we develop a
generalized objective, showing that decoupling timesteps during training allows a single model to
implicitly cover this space, generalizing beyond fixed schedules. This framework enables efficient
interpolation and extrapolation of schedules at inference time, bypassing costly retraining for new
design constraints. By advancing the under-explored area of modality-specific optimal scheduling,
we address key shortcomings in SBDD models such as strained conformations and suboptimal
interactions, substantially improving the geometric structure modeling.

Our contributions can be summarized as follows:

• We introduce VLB-Optimal Scheduling (VOS), a novel method for systematic noise schedule
design in SBDD, achieving fine-grained control over multi-modality interdependence and
improved interaction modeling.

• We establish the theoretical link between noise schedules and VLB in multi-modality
probabilistic modeling. Unlike prior heuristic approaches, our principled method reveals
path-dependent VLB dynamics and provides insights for modality-specific scheduling.

• Integrated with advanced frameworks, our proposed MolPilot achieves SOTA in de novo
design with a remarkable PoseBusters passing rate of 95.9% on CrossDock, and competitive
in local docking with 44.0% RMSD < 2Å on PoseBusters.

2 ISSUES WITH CURRENT PROBABILITY PATH

In this section, we introduce the formulation of Structure-Based Drug Design (SBDD) and demon-
strate that the default noise schedule in current generative models leads to a 3D-dominant probability
path. Through preliminary experiments, we demonstrate that the model trained along this path cannot
adequately capture the interdependence between 2D and 3D modalities, which motivates the need for
an optimal probability path facilitated by corresponding noise schedule.

2.1 PROBLEM FORMULATION

Structure-based Drug Design (SBDD) involves modeling the conditional probability P (xM |xP ),
where xM = (rM ,hM ,AM ) represents the N -atom molecular geometry, and xP = (rP ,hP )
represents the protein target. Here, r ∈ RN×3 denotes continuous atom positions, h ∈ RN×Kh

encodes discrete atom types, and A ∈ RN×(N−1)×KA encodes discrete bond types, with Kh and
KA denoting the number of atom types and bond types, respectively. In molecular generation, r
from the continuous modality is usually described as the 3D geometry, and (h,A) from the discrete
modality as the 2D topology of the molecular graph.
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Figure 1: Validation loss curves on default schedule w.r.t. time in generation. Sync: Modalities at the
same timestep. w/ 2D: Discrete modality at t = 1. w/ 3D: Continuous modality at t = 1.

2.2 3D-DRIVEN PROBABILITY PATH

We visualize the modality-specific validation losses for a vanilla BFN (Qu et al., 2024) trained with
default noise schedule (details of the background in Appendix A). As shown in Fig. 1, the continuous
modality loss decreases before the discrete modality, verifying that the twisted probability path is
driven by 3D modality. However, the problem lies in that the model leverages cleaner 3D input to
denoise the 2D topology effectively (Right), but fails the other way around (Left), as it performs
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A.  KL Loss Surface B.  Default Noise Schedule              vs.              with Optimal VLB

Figure 2: Our proposed VLB-Optimal Scheduling (VOS) that works by estimating the loss landscape
and deriving an optimal noise schedule. A. Visualization of the loss surface over the function space.
B. Upper: Visualization of the probability path of continuous data xc. Lower: The equivalent
time-rescaling functions tc ≡ f(t), td ≡ g(t).

worse when exposed to less noisy 2D input, suggesting that it is unable to benefit from cleaner 2D
information. This highlights that the current noise schedule favors a twisted probability path driven
by 3D modality, inducing a generative process with lower-noise 3D and higher-noise 2D data.

Intuitively, a well-balanced probability path should allow the models to leverage cleaner input
from either modality to inform the generative process effectively, thereby accurately capturing the
molecular geometries required for effective drug design. The problem of current twisted probability
path is strengthened by the observation of inaccurate geometric structure modeling, where SBDD
baselines exhibit abnormal bond lengths and angles (Fig. 6-8), suggesting inconsistency between
modalities. We hypothesize that the distorted molecular geometry originates from the gap between
modalities in the twisted probability path, which inspires us for an optimal scheduling.

We desire the optimal probability path defined by the optimal noise schedule to benefit from mutually
informed modalities, with the potential to improve the generation of chemically valid and spatially
accurate molecules, ultimately enhancing protein-ligand interaction modeling.

3 METHODOLOGY

We propose VLB-Optimal Scheduling (VOS), a principled methodology for optimal probability path
in SBDD, by analyzing and identifying the optimal noise schedule for both modalities.

3.1 PATH-DEPENDENT VLB FOR JOINT NOISE SCHEDULE

In this section, we establish a key result for the twisted probability path, where the joint noise schedule
β(t) : [0, 1]→ (R+)2 induces path-dependent VLB.

A key foundation in single modality is that the continuous-time loss, i.e., VLB, remains invariant to
the shape of noise schedule function β(t), except for the endpoints β(0), β(1) (Kingma et al., 2021),
allowing the design of different schedules for efficient training. As a natural extension, we generalize
this invariance to multi-modalities given βc ̸= βd:

L̇∞(x) =
1

2

∫ βc(1)

βc(0)

∫ βd(1)

βd(0)

E
pF (θ|x;β)

∥x− x̃ϕ(θ, β)∥2dβ. (1)

This equation shows that the generalized loss is invariant to the decoupled schedules as a surface
integral over the plane [βc(0), βc(1)]× [βd(0), βd(1)].

However, this generalized loss L̇ no longer corresponds to the objective of generative modeling,
where the VLB should be a path integral along a line on such plane:

L∞(x) =
1

2

∫
βc,βd

E
pF (θ|x;β)

∥x− x̃ϕ(θ, β)∥2dβ. (2)
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This curve is equivalent to a specific noise schedule β in the possible design space Z (formalized
in Appendix B.1). Therefore, we draw the conclusion that the VLB varies for different coupling
even with the same endpoints β(0) = (βc(0), βd(0)) and β(1) = (βc(1), βd(1)), and it is no longer
agnostic to the intermediate trajectory of β(t), which is essentially different from the generative
modeling within single modality.

The fundamental challenge, then, lies in identifying an optimal joint schedule β∗ in the design space
Z with the best possible VLB integrated along that path:

β∗ = argmin
β∈Z

∫
β

E
pF (θ|x;β)

∥x− x̃ϕ(θ, β)∥2dβ. (3)

3.2 NAVIGATING FOR THE VLB-OPTIMAL SCHEDULE

The first obstacle in identifying the optimal β∗ is to obtain a model x̃ϕ(θ, β) that can be evaluated
over all possible β ∈ Z . We facilitate the VLB analysis of different joint noise schedules by training
x̃ϕ(θ, t) to minimize the generalized loss L̇ described in Eq. 1 through the change of variables
tc ≡ β−1

c (t), td ≡ β−1
d (t), thereby the objective becomes:

L̇∞(x) =
1

2

∫ 1

0

∫ 1

0

E
pF (θ|x;t)

∥x− x̃ϕ(θ, t)∥2dtcdtd, (4)

for which the proposition holds (proof in Appendix C.4):
Proposition 3.1. Suppose we have a model x̃ϕ(θ, t) trained by Eq. 4, and let βc(t), βd(t) be any
monotonically increasing functions in X . Then the line integral in Eq. 2 corresponds to the negative
VLB for β(t) = (βc(t), βd(t)).

We reframe finding the VLB-optimal β∗ as a search problem for the solution with the minimal
cumulative cost along the discretized N -step trajectory {tc, td} from [0, 0] to [1, 1], which can be
solved by dynamic programming (Appendix B.2).

We visualize the derived optimal schedule in Fig. 2B. Intuitively, this time rescaling corresponds
to a two-stage probability path: (1) Shape-driven sketching: First, the generation predominantly
focuses on generating the continuous atom positions and largely ignores the discrete topology. Then,
when t ∈ [0.3, 0.8], the model starts to fit a possible 2D molecular graph into the rough shape of
fixed 3D conformation. (2) Topology-driven docking: at the last stage t > 0.8, the generation enters
into the docking stage, altering the conformation according to the discrete molecular topologies.
By facilitating such a principled probability path, the optimal noise schedule effectively harnesses
different modalities, achieving the best VLB and sample quality.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We conduct two main experiments in the broader scope of SBDD: (1) de novo design on Cross-
Dock (Francoeur et al., 2020), and (2) molecular docking on PoseBusters V2 (Buttenschoen et al.,
2024). The same model checkpoint trained with generalized loss is evaluated throughout both main
experiments. Detailed setups are in Appendix D.1, with more evaluation results in Appendix E.

4.2 DE NOVO DESIGN

We report the main results in Table 1 by sampling 100 molecules for each of the test proteins.

MolPilot achieves the most accurate molecular geometries. For intramolecular validity, we
achieve the highest passing rate of internal energy, demonstrating our conformation stability. We
additionally report the bond length, angle, and torsion angle distributions in Fig. 6, 7, 8, further
underscoring its superiority.

MolPilot generates the best binding poses. For protein-ligand intermolecular validity, we excel at
the highest PB-Valid of 95.9%, ensuring reasonable binding poses. For binding affinities, our method
outperforms all other models with an average Vina Score of -6.88 kcal/mol.
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Table 1: Performance on CrossDock, where MolPilot shows superior results. ♡: results cited from
Qu et al. (2024). †: results calculated by us using the official samples. Top-2 results are highlighted
in bold and underlined, respectively.

Methods PB-Valid† Vina Score (↓) Vina Min (↓) Vina Dock (↓) scRMSD Energy Connected† QED SA Div Size
Avg. (↑) Avg. Med. Avg. Med. Avg. Med. <2 Å (↑) Passed† (↑) Avg. (↑) Avg. Avg. Avg. Avg.

CrossDock♡ 95.0% -6.36 -6.46 -6.71 -6.49 -7.45 -7.26 34.0% 98.0% - 0.48 0.73 - 22.8

AR♡ 59.0% -5.75 -5.64 -6.18 -5.88 -6.75 -6.62 36.5% 84.9% 93.5% 0.51 0.63 0.70 17.7
Pocket2Mol♡ 72.3% -5.14 -4.70 -6.42 -5.82 -7.15 -6.79 32.0% 97.3% 96.3% 0.57 0.76 0.69 17.7
FLAG♡ 16.0% 45.85 36.52 9.71 -2.43 -4.84 -5.56 0.3% 83.4% 97.1% 0.61 0.63 0.70 16.7
TargetDiff♡ 50.5% -5.47 -6.30 -6.64 -6.83 -7.80 -7.91 37.1% 69.8% 90.4% 0.48 0.58 0.72 24.2
DiffSBDD† 37.6% -1.44 -4.91 -4.52 -5.84 -7.14 -7.3 18.7% 74.0% 93.2% 0.47 0.58 0.73 24.4
DecompDiff♡ 71.7% -5.19 -5.27 -6.03 -6.00 -7.03 -7.16 24.2% 84.1% 82.9% 0.51 0.66 0.73 21.2
MolCRAFT♡ 84.6% -6.55 -6.95 -7.21 -7.14 -7.67 -7.82 46.8% 91.1% 96.7% 0.50 0.67 0.72 22.7
MolPilot (Ours) 95.9% -6.88 -7.03 -7.23 -7.27 -7.92 -7.92 41.1% 98.5% 97.9% 0.56 0.74 0.69 22.6
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Figure 3: PoseBusters V2 structural accuracy (RMSD) and validity (PB-Valid) for docking methods
(in gray, cited from Abramson et al. (2024)) and SBDD methods (in blue, calculated by us).

4.3 MOLECULAR DOCKING

We note that the model trained with L̇ in Eq. 1 is also available for multimarginal generative modeling
(Campbell et al., 2024), i.e., it can be used for molecular docking by an induced P (r | {h,A},xP ).
For a deeper understanding of our model’s ability in capturing genuine spatial interaction, we
additionally evaluate its docking accuracy on PoseBusters V2 dataset with holo pocket residue
structures specified, and report the RMSD results. While we did not specifically optimize our
design w.r.t. molecular docking, Fig. 3 suggests that our method is a competitive SBDD model
even compared with the local docking methods. This capability in recovering ground truth binding
poses serves as an indicator of capturing true interactions, which is essential for designing bioactive
molecules with potential biological efficacy. We believe that incorporating molecular docking as a
subtask of SBDD also sheds light on the model’s ability of interaction modeling.

4.4 ABLATION

We report the ablation study results in Table 2. When training under the generalized objective L̇
and sampling under different noise schedules β, it can be seen that optimal schedule β∗ consistently
achieves better performance than default noise schedule.

5 CONCLUSION

This work addresses a critical challenge in Structure-Based Drug Design (SBDD) by introducing a
better-balanced dynamics in the generative process of multi-modalities. Equipped with an optimal
noise schedule in terms of Variational Lower Bound (VLB), MolPilot achieves a SOTA PoseBusters

Table 2: Ablation study of the optimal noise schedule. The same model trained with generalized loss
(Eq. 1) is evaluated given different noise schedules β for test time only.

Schedule Vina Score Vina Min QED SA PB-Valid Connect

Default -6.16 -6.59 0.49 0.72 0.95 0.98
Optimal -7.02 -7.29 0.53 0.75 0.99 0.98
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passing rate of 95.9% on CrossDock and unlocks the potential of repurposing SBDD model as
docking method, offering a promising step forward in the field of drug discovery.
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Pietro Lió, Carla Gomes, Max Welling, Michael Bronstein, and Bruno Correia. Structure-based
Drug Design with Equivariant Diffusion Models, October 2022. URL http://arxiv.org/
abs/2210.13695. arXiv:2210.13695 [cs, q-bio].

Yuxuan Song, Jingjing Gong, Yanru Qu, Hao Zhou, Mingyue Zheng, Jingjing Liu, and Wei-Ying
Ma. Unified generative modeling of 3d molecules via bayesian flow networks. arXiv preprint
arXiv:2403.15441, 2024a.

Yuxuan Song, Jingjing Gong, Minkai Xu, Ziyao Cao, Yanyan Lan, Stefano Ermon, Hao Zhou,
and Wei-Ying Ma. Equivariant flow matching with hybrid probability transport for 3d molecule
generation. Advances in Neural Information Processing Systems, 36, 2024b.

Clement Vignac, Nagham Osman, Laura Toni, and Pascal Frossard. Midi: Mixed graph and 3d
denoising diffusion for molecule generation, 2023. URL https://arxiv.org/abs/2302.
09048.

7

https://linkinghub.elsevier.com/retrieve/pii/S0959440X23000222
https://linkinghub.elsevier.com/retrieve/pii/S0959440X23000222
http://arxiv.org/abs/2203.10446
https://proceedings.mlr.press/v162/peng22b.html
https://proceedings.mlr.press/v162/peng22b.html
https://openreview.net/forum?id=192L9cr-8HU
https://openreview.net/forum?id=192L9cr-8HU
http://arxiv.org/abs/2210.13695
http://arxiv.org/abs/2210.13695
https://arxiv.org/abs/2302.09048
https://arxiv.org/abs/2302.09048


Published at the GEM workshop, ICLR 2025

Zaixi Zhang, Yaosen Min, Shuxin Zheng, and Qi Liu. Molecule Generation For Target Protein
Binding with Structural Motifs. 2023.

Gengmo Zhou, Zhifeng Gao, Qiankun Ding, Hang Zheng, Hongteng Xu, Zhewei Wei, Linfeng
Zhang, and Guolin Ke. Uni-mol: A universal 3d molecular representation learning framework.
In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=6K2RM6wVqKu.

8

https://openreview.net/forum?id=6K2RM6wVqKu
https://openreview.net/forum?id=6K2RM6wVqKu


Published at the GEM workshop, ICLR 2025

A BACKGROUND

Our work is built within the framework of Bayesian Flow Network (BFN) (Graves et al., 2023),
the SOTA model for 3D molecular generation (Song et al., 2024a; Qu et al., 2024) that shows
superiority over diffusion counterparts. In this section, we introduce the noise schedule and define
the corresponding noising process, paving the way for Variational Lower Bound (VLB) analysis w.r.t.
noise schedules.

Similar to diffusion, BFN involves a noising process q for data x to obtain a temporal sequence of
observed latents y1:n := {y1, . . . ,yn}, and optimizes the VLB:

log p(x) ≥ VLB = Eq(y1:n|x)[log p(x | y1:n)

−DKL(q(y1:n|x)∥p(y1:n))] (5)

where the noising process q is defined by the variational distribution q(y1:n | x) =
∏n
i=1 q(yi | x)

that depends on the noise schedule over timesteps:

q(y | x) =
{
N (x, α−1I), continuous data
N (α(Kex − 1), αKI), discrete one-hot

(6)

The modality-specific noise schedules are defined as monotonically increasing differentiable functions
over t ∈ [0, 1]:

βc(t) = σ−2t
1 − 1, βd(t) = β1t

2, (7)

where σ1 ∈ R+ controls the noise for continuous atomic positions, and β1 ∈ R+ is the hyperparame-
ter for discrete topology. The noise level α(t) = β′(t) := dβ(t)/dt.

BFN differs from diffusions in the generative process, where instead of noisy latents y, the network
is informed by a lower-variance posterior θ given the observed latents, from the Bayesian flow
distribution of Gaussian or Dirac δ:

pF (θ | x; t) =
{
N (γx, γ(1− γ)I), continuous
δ(θ − softmax(y)), discrete

(8)

where γ := βc(t)
1+βc(t)

, y follows the discrete case in Eq. 6.

The network x̃ϕ(θ, t)
1 is trained to denoise x given θ instead of y, and thus constructs a receiver

distribution pR(y | θ; t) = q(y | x̃ϕ(θ, t)). We show in Appendix C.1 that the single-modality VLB
objective simplifies to:

LVLB(x) = −Eq(y1:n|x) log p(x | y1:n)

+

n∑
i=1

DKL(q(yi | x) ∥ p(yi | y1:i−1)) (9)

and can be optimized by the continuous-time loss:

L∞(x) = E
t∼U(0,1),pF (θ|x;t)

DKL(q(y | x; t) ∥ pR(y | θ; t))

=
1

2
E

t∼U(0,1),pF (θ|x;t)
β′(t)∥x− x̃ϕ(θ, t)∥2 (10)

where we redefine x :=
√
Kex for the discrete data for simplicity. Based on the monotonic and thus

invertible function u ≡ β(t), we perform a change of variables similarly to Kingma et al. (2021) as
t = β−1(u), and rewrite the network as x̃ϕ(θ, u). Therefore, the loss in Eq. 10 is equivalent to the
continuous-time loss expressed by noise schedule β(t) : [0, 1]→ R+:

L∞(x) =
1

2

∫ β(1)

β(0)

E
pF (θ|x;u)

∥x− x̃ϕ(θ, u)∥2du. (11)

1The actual noise prediction model is specified as x̃ϕ(θ, t,xP ) with the protein structure input. We omit xP

for simplicity.

9



Published at the GEM workshop, ICLR 2025

In the single-modality case, this states that the VLB is invariant to the shape of noise schedule
functions except for the endpoints (Kingma et al., 2021). However, we will see in the following
section that this invariance no longer holds for multi-modality cases, where the VLB becomes:

LVLB(x) =
1

2
EpF (θ|x;t)

∫ 1

0

[β′
c(t)∥xc − x̃ϕ,c(θ, β(t))∥2

+ β′
d(t)∥xd − x̃ϕ,d(θ, β(t))∥2]dt, (12)

which is simply summed along each modality due to the factorized nature of q, yet this results in path-
dependent VLB which is closely related to the design of joint noise schedule β(t) : [0, 1]→ (R+)2.

B DETAILS ABOUT THE PROPOSED METHOD

B.1 DESIGN SPACE OF JOINT NOISE SCHEDULES

To formalize the design space of noise schedules, we define the space of monotonically increasing
functions X : [0, 1]→ R+, thus the coupled function space Z is:

{β(t) = (βc(t), βd(t)) | ∀βc, βd ∈ X , β′
c > 0, β′

d > 0}, (13)

where βc(t) and βd(t) are monotonic schedules for the continuous and discrete modalities, respec-
tively.

To explore arbitrary schedule configurations, we introduce time-rescaling functions tc ≡ f(t),
td ≡ g(t), allowing for arbitrary β expressed in predefined β̃c, β̃d as in Eq. 7 and varying forms of
implicit functions f and g by:

β(t) = (β̃c(f(t)), β̃d(g(t))) (14)
for which we have the following theorem that guarantees this general form of β expressed in terms of
tc, td is sufficient to cover the entire function space Z .

Theorem B.1. Suppose we have a monotonic function β̃m(t) : [0, 1] → R+, and let βm(t) be
any such monotonic function. Then there exists a time-rescaling function tm ≡ f(t) such that
βm(t) = β̃m(tm). In fact, f(t) = β̃−1

m (βm(t)) has the same monotonicity as βm(t), β̃m(t).
Remark B.2. It follows from the monotonicity of the schedule functions that we can obtain arbitrary
combination of noise levels simply by setting tc, td ∈ [0, 1] separately.

B.2 DYNAMIC PROGRAMMING FOR OPTIMAL SCHEDULES

We present the method to navigate the function space of arbitrary β. Note that from Remark B.2, we
can discretize the function space through discretized combinations of tc, td. Therefore, we reframe
finding the VLB-optimal β∗ as a search problem for the solution with the minimal cumulative cost
along the discretized N -step trajectory {tc, td} from [0, 0] to [1, 1].

Depicted in Fig. 2, we estimate the cost matrix across a grid of possible tc and td values by evaluating
the KL divergence over a batch of samples given the L̇-trained model x̃ϕ(θ, β), and fit a smooth loss
surface using B-spline interpolation.
Definition B.3 (Cost). The cost at a given noise level tc, td as implicit functions over t is defined as:

C(tc, td) =
1

2
∥x− x̃ϕ(θ, β)∥2 (15)

We employ dynamic programming to solve the search problem for a minimal cumulative cost J :

J(tc, td) = min
(ϵc,ϵd)

(
J(tc − ϵc, td − ϵd) + αC(tc, td)

)
. (16)

where α := β(t)−β(t−ϵ)
ϵ is the discretized noise level, and the valid ranges of (ϵc, ϵd) are approximated

by the gradient of the smooth surface. It is guaranteed that this yields the VLB-optimal schedule:
Remark B.4. J(1, 1) corresponds to an unbiased Monte-Carlo estimate of the optimal VLB among
all generative models trained by arbitrary β ∈ Z , and backtracking the path {tc = f(t), td = g(t)}
from [1, 1] to [0, 0] yields the optimal schedule β∗(t) = (β̃c(tc), β̃d(td)).

10
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Algorithm 1: Deriving Optimal Schedule

Input: Multi-modality data x, default noise schedule β = (β̃c, β̃d), grid resolution M , step
N , step scale K.

Output: Optimal schedule β∗, generative model x̃ϕ(θ, t).
Train x̃ϕ(θ, t) to minimize the generalized loss L̇ (Eq. 4);
L̇∞(x) = 1

2

∫ 1

0

∫ 1

0
E

pF (θ|x;t)
∥x− x̃ϕ(θ, t)∥2dtcdtd

Discretized grid g = (tc, td)M×M ← [ 1
M , . . . , 1]2;

foreach (tc, td) in g do
Compute cost C(tc, td)← 1

2∥x− x̃ϕ(θ, t)∥2

Optimal path {t∗c ≡ f(t), t∗d ≡ g(t)}, J∗ ← DP(C,N,K);
Optimal schedule β∗(t)← (β̃c(t

∗
c), β̃d(t

∗
d));

Algorithm 2: Dynamic Programming for Optimal Path

Input: Cost matrix C ∈ RM×M×2, step budget L, step scale K, default noise schedule β(t)
Output: Optimal path, minimal cumulative cost J∗

Initialization:
Fit a smooth loss surface C̃ using B-spline interpolation.;
J [: M, : M, : N + 1]←∞, J [0, 0, 0]← 0
prev[: M, : M, : N + 1, : 2]← −1
active states← {(0, 0, 0)}
size← K

1+∥∇C̃∥ , where ∥∇C̃∥ =
√

(∂C̃∂x )
2 + (∂C̃∂y )

2

Dynamic Programming:
for l← 0 to L− 1 do

states← ∅
foreach (x, y, l) ∈ active states do

foreach (ϵx, ϵy) ∈ valid steps(size[x, y]) do
xt, yt ← x+ ϵx, y + ϵy

α← [βc(xt)−βc(x)
ϵx

, βd(yt)−βd(y)
ϵy

]

cost← J [x, y, l] + α · C[xt, yt]
if J [xt, yt, l + 1] > cost then

J [xt, yt, l + 1]← cost
prev[xt, yt, l + 1]← (x, y)
states← states ∪ {(xt, yt, l + 1)}

active states← states
x, y, path←M − 1,M − 1, ∅
l← argminJ [x, y, :]
while l ≥ 0 do

path.append((x, y))
(x, y)← prev[x, y, l], l← l − 1

return path,min J [M − 1,M − 1, :]

Convergence guarantee As the grid resolution N → ∞, the discrete solution converges to the
continuous VLB-optimal path β∗(t). Since the VLB for a joint schedule β(t) is a line integral over
the model’s loss field in the 2D noise space (Appendix C.4), and training with the generalized loss
L̇∞ ensures the model’s predictions are accurate everywhere in this space, enabling the evaluation
of VLBs for arbitrary paths β(t) (Appendix C.5), the dynamic programming solution recovers the
optimal path asymptotically, maximizing the VLB over the function space Z .

Time complexity The computational complexity is O(NM2K), which does not add too much
computational overhead and can be solved within a few minutes on a single CPU. Once solved, the
optimal schedule can be adopted for test time, enabling the VLB-optimal generative process, where

11



Published at the GEM workshop, ICLR 2025

the multi-modalities effectively inform each other at the optimal accuracy level. However, in order to
estimate the cost matrix over M ×M discretized grid requires the same number of evaluations of the
generative model x̃ϕ, which scales quadratically to the discretization M and involves considerable
GPU computation. Empirically, we found that M = 20 would yield an accurate enough estimate,
taking less than 20 minutes.

B.3 WHY LEARNING FOR OPTIMAL SCHEDULE MIGHT FAIL

Given the obtained optimal schedule β∗(t), we can train the generative model with invariant optimal
VLB (Eq. 2) more effectively, allocating the model capacity towards learning to denoise only along
the selected path. We found this results in earlier convergence, taking around half the previous
training time for generalized objective (Eq. 1) with similar performance.

We would like to take one step further to see if we can directly optimize the joint noise schedule β(t)
in generative training with the negative VLB objective in Eq. 2, i.e., optimizing the generative model
and the noise schedule simultaneously through the same loss objective.

We parametrize the learnable time-rescaling function by
f(t) = t+ (1− t)t · sigmoid(hψ(t)) (17)

where hψ(x) is a monotonic neural network which we choose to be a three-layered MLP with Softplus
activation before the final output. This rescaling function is strictly monotonically increasing with
endpoint constraints, i.e., f(0) = 0, f(1) = 1.

However, we found that the learned noise schedule does not change much from its initialized shape,
and the performance proves to be suboptimal. We hypothesize that there are several challenges in
learning for the optimal schedule during training: (1) Large combinatorial space with limited exposure
to possible noise schedules in the process of active learning. Unlike single-modality models, where
the range of noise levels is easily explored within the modality (Dieleman et al., 2022), multi-modality
generative models can suffer from exposure to only a subset of the possible noise combinations.
This incomplete exploration makes it challenging to optimize directly for the best schedule, as large
regions of the design space remain unvisited. It impacts the VLB estimation since the model x̃ϕ
is still learning to adapt to the scaled noisy inputs during training, and is not invariant w.r.t. noisy
input at different scales. (2) Optimization difficulties. Directing taking the gradient w.r.t. tc, td
introduces numerical instability, particularly when β̃c involves exponentiation, which can grow or
shrink very rapidly for certain values of tc, leading to vanishing or exploding gradients. Moreover,
the VLB optimization is sensitive to the trajectory defined by the noise schedule, and the optimization
landscape of may have many local minima, especially due to the coupling of noise schedules, which
can make it difficult to find the global optimum.

Addressing these might require more sophisticated methods such as bilevel optimization, which we
leave for future work.

B.4 MODEL ARCHITECTURE

We employ an equivariant Graph Transformer architecture (Vignac et al., 2023), with heterogeneous
message passing between protein-ligand atoms similar to (Guan et al., 2023).

Denoting node positions as r ∈ RN×3, one-hot atom types as h ∈ RN×Kh , and one-hot bond types
as A ∈ RN×(N−1)×KA , where Kh and KA are the numbers of atom and bond types, respectively.

Protein-Ligand Message Passing: For interactions between a protein node i and a ligand node j,
we define:

K = XWk,V = XWv,Q = XqWq.
where the input features X = concat(hi,hj ,hedge), Xq = concat(hi,hedge). The attention scores
are computed using:

αij =
(qi ⊙ kj ⊙ eij)√

dh
, eij = tanh(Wedgedij),

where dh is the head dimension, and eij is the edge-specific weights modulating the contribution of
distant neighbors, dij = ∥ri − rj∥ is the pairwise distance. hedge describes the edge types between
protein-ligand atoms.

12
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Intra-Ligand Message Passing: For interactions within the same ligand (between atoms i and
j), denoting the flattened bond matrix as hbond, the input features for message passing is defined
as X = concat(hi,hj ,hbond, rfeat,afeat), Xq = concat(hi,hbond). Here, attention is computed in a
similar fashion:

αligand
ij =

(qi ⊙ kj ⊙ eligand
ij )

√
dh

, eligand
ij = tanh(Wedgerfeat).

where rfeat encodes the pairwise distance through Gaussian smearing, and afeat is the angular encoding
for the bond triplets.

Message Update The aggregated message for each node i is computed as:

mij =
∑

k∈N (j)

αkjivj ,

where N (j) denotes the set of neighbors of node j.

Feature and Position Updates Node features at layer l are updated as:

h
(l+1)
i = σ

W
(l)
out

h
(l)
i ∥

∑
j∈N (i)

mij

 ,

where σ is a non-linear activation function, and ∥ denotes concatenation.

The bond feature h
(l+1)
bond is updated as:

h
(l+1)
bond,ij = σ

(
W

(l)
bond

(
h
(l)
bond,ij∥m

ligand
ij

))
.

The spatial positions are updated to ensure equivariance:

r
(l+1)
i = r

(l)
i +∆r

(l)
i ,

where the update ∆r
(l)
i is computed as a function of the aggregated message and neighboring bond

features:
∆r

(l)
i =

∑
j∈Nligand(i)

(r
(l)
i − r

(l)
j )mligand

ij +
∑

k∈Ncomplex(i)

(r
(l)
i − r

(l)
k )mcomplex

ik

where mligand
ij , mcomplex

ik are the aggregated message under the similar message passing mechanism

to protein-ligand and intra-ligand, respectively, given the updated node features h
(l+1)
ij and bond

features h(l+1)
bond,ij .

B.5 IMPLEMENTATION DETAILS

Training and Inference We use Adam optimizer with learning rate 5e-4, batch size of 16, and
fit the model with 3.1 million parameters on one NVIDIA 80GB A100 GPU. We set β1 = 1.5 for
discrete atom types and bond types, σ1 = 0.05 for atom coordinates. The training converges in 200K
steps (around 24 hours). For inference, we use the exponential moving average of the weights from
training that is updated at every optimization step with a decay factor of 0.999. We run inference
with 100 sampling steps with the same variance reduction sampling strategy as Qu et al. (2024).

Hyperparameters for Network We set the network to be kNN graphs with k = 32, N = 9 layers
with d = 128 hidden dimension, 16-headed attention, and dropout rate 0.1.

Featurization We describe our atom-level and edge-level featurization for the protein-ligand
complexes. At the atom-level, each protein atom is represented with a one-hot element indicator (H,
C, N, O, S, Se), a 20-dimensional one-hot amino acid type indicator, and a 1-dimensional backbone
flag. Ligand atoms are featurized with a one-hot element indicator (C, N, O, F, P, S, Cl) coupled
with an aromaticity flag. For edge-level featurzation in the heterogeneous protein-ligand graph, edge
types are encoded as a 4-dimensional one-hot vector indicating whether the edge is between ligand
atoms, protein atoms, ligand-protein atoms, or protein-ligand atoms. For the ligand graph, bonds are
represented with a 4-dimensional one-hot bond type vector (non-bond, single, double, triple), where
aromatic bonds are kekulized using RDKit.
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C PROOF

C.1 DERIVATION OF EQ. 10 AS SINGLE-MODALITY VLB (EQ. 9)

We begin with the negative Variational Lower Bound (VLB) in Eq. 9:

LVLB(x) = −Eq(y1:n|x)
[
log p(x | y1:n) +

n∑
i=1

DKL

(
q(yi | x)

∥∥ p(yi | y1:i−1)
)]

.

In further analysis, we focus on the treatment of the second term on the right-hand side. For
convenience in the subsequent derivation, we define:

Ln(x) = Eq(y1:n|x)

[ n∑
i=1

DKL

(
q(yi | x) ∥ p(yi | y1:i−1,x)

)]
= n Ei∼U(1,n),q(y1:n|x)

[
DKL

(
q(yi | x) ∥ p(yi | y1:i−1,x)

)]
(18)

Next, to specify the conditional distribution p(yi | y1:i−1,x), we utilize p(yi | y1:i−1,x) =
p(y1:i|x)
p(y1:i−1|x) , and incorporate the following decomposition:

p(y1:i | x) =

i∏
j=1

EpF (θ j−1|x,tj−1)

[
pR(yj | θ j−1, tj−1)

]
(19)

It follows that:

p(yi | y1:i−1,x) = EpF (θ i−1|x,t i−1)

[
pR(yi | θ i−1, t i−1)

]
(20)

Substituting this result into Eq. 18, we obtain:

Ln(x) = n Ei∼U(1,n),θ∼pF (θ|x,ti−1)

[
DKL

(
q(yi | x) ∥ pR(yi | θ, ti−1)

)]
(21)

Given our parametrization with neural network, we can further replace pR(yi | θ, ti−1) with
q
(
yi | x̃ϕ(θ, t)

)
:

Ln(x) = n Ei∼U(1,n),θ∼pF (θ|x,ti−1)

[
DKL

(
q(yi | x) ∥ q(yi | x̃ϕ(θ, t))

)]
(22)

Following Graves et al. (2023), different noising processes are specified for q for different modalities.
For continuous data, q(y | x) = N (x, α−1I). For discrete data, q(y | x) = N (α(Kex− 1), αKI),
where we define x :=

√
Kex. Denoting L∞(x) = limn→∞ Ln(x), α(t, ϵ) = β(t)− β

(
t− ϵ

)
, we

have

L∞(x) = lim
ϵ→0

1

ϵ
Ei∼U(1,n),pF (θ|x,ti−1)DKL(q(yi | x) ∥ q(yi | x̃ϕ(θ, t)))

= lim
ϵ→0

Ei∼U(1,n),pF (θ|x,ti−1)
α(t, ϵ)

2ϵ
∥x− x̃ϕ(θ, t)∥2

=
1

2
Ei∼U(1,n),pF (θ|x,ti−1)β

′(t)∥x− x̃ϕ(θ, t)∥2 (23)

which establishes the fact that Eq. 10 corresponds to the single-modality VLB.

C.2 EQUIVALENCE BETWEEN EQ. 10 AND EQ. 11

Rewrite the expectation in the above equation into an integral form and make the substitution
u = β(t). This substitution can be transformed as follows: u = β(t)⇒ du = β′(t)dt⇒ dt = du

β′(t) ,
and we directly rewrite x̃ϕ(θ, t) as x̃ϕ(θ, u).
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L∞(x) =
1

2

∫ 1

0

∫
pF (θ|x,t)

β′(t)∥x− x̃ϕ(θ, t)∥2dθ dt

=
1

2

∫ β(1)

β(0)

∫
pF (θ|x,u)

β′(β−1(u))∥x− x̃ϕ(θ, u)∥2
du

β′(β−1(u))
dθ

=
1

2

∫ β(1)

β(0)

∫
pF (θ|x,u)

∥x− x̃ϕ(θ, u)∥2du dθ

=
1

2

∫ β(1)

β(0)

EpF (θ|x,u)∥x− x̃ϕ(θ, u)∥2du (24)

which gives the form of Eq. 11.

C.3 EQUIVALENCE BETWEEN EQ. 1 AND 4

Recall that the generalized loss over β ∈ Z is:

L∞(x) =
1

2

∫
βc,βd

E
pF (θ|x;β)

∥x− x̃ϕ(θ, β)∥2dβ.

and the function space Z is reparameterized into a product of uniform distributions over tc, td,
yielding

L̇∞(x) =
1

2

∫ 1

0

∫ 1

0

E
pF (θ|x;t)

∥x− x̃ϕ(θ, t)∥2dtcdtd,

this is equivalent to implicitly sampling f(t), g(t), covering all possible time-rescaling functions as
stated in Remark B.2.

The joint distribution over (βc, βd) is thus

p(βc, βd) = p(f, g) = U(0, 1)× U(0, 1), (25)

where βc = β̃c(f(t)) and βd = β̃d(g(t)).

Therefore, we see that the time-rescaling functions f(t), g(t) act as latent variables defining the
coupling of βc, βt. Integrating over (tc, td) marginalizes over all possible β, ensuring the model is
trained to denoise all possible combinations of noise levels. By demonstrating this equivalence, we
reframe the invariant objective described in Eq. 1 as Eq. 4.

C.4 DERIVATION OF EQ. 2 AS MULTI-MODALITY VLB

To rigorously prove that the VLB corresponds to a line integral along a 1D submanifold (path) in
the 2D noise schedule space, recall that the joint noise schedule be a parameterized path in the joint
function space Z:

β(t) =
(
βc(t), βd(t)

)
, t ∈ [0, 1],

where βc(t), βd(t) are monotonically increasing functions with fixed endpoints:

βc(0) = βc,0, βc(1) = βc,1, βd(0) = βd,0, βd(1) = βd,1.

Following Appendix C.1 and the factorized nature of q, the VLB for a joint schedule β(t) and
multi-modality x is:

LVLB(x) =
1

2
EpF (θ|x;t)

∫ 1

0

[
β′
c(t)∥xc − x̃ϕ,c(θ, β(t))∥2 + β′

d(t)∥xd − x̃ϕ,d(θ, β(t))∥2
]
dt,

where x̃ϕ = (x̃ϕ,c, x̃ϕ,d) is the denoising model output for continuous (c) and discrete (d) modalities.

The VLB can be interpreted as a line integral over the trajectory β(t) ∈ Z . Define the vector field
F(βc, βd) as:

F(βc, βd) =

(
∥xc − x̃ϕ,c(θ, β)∥2
∥xd − x̃ϕ,d(θ, β)∥2

)
.
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The VLB then becomes:

LVLB(x) =
1

2
Eθ

∫
β(t)

F(βc, βd) · dβ,

where dβ = (β′
c(t)dt, β

′
d(t)dt) is the differential vector along the path β(t), and · denotes inner

product. By redefining x̃ϕ(θ, β) := F(βc, βd), we obtain Eq. 2.

C.5 DERIVATION OF PROPOSITION 3.1

Proof. Since the model x̃ϕ(θ, t) is trained by the generalized loss L̇∞, which is equivalent to
integrating the scalar field ∥x − x̃ϕ∥2 over the entire function space Z , it is exposed to all pairs
(βc, βd) ∈ Z within the region [β̃c(0), β̃c(1)]×[β̃d(0), β̃d(1)], with β̃c, β̃d defined in Eq. 7. Therefore,
the model achieves minimal prediction error everywhere in the joint noise space, allowing accurate
computation for any specific path β(t).

Following Appendix C.4, the line integral L∞(x) corresponds to the VLB for a given path β(t). Since
the integral is equivalent to restricting the generalized loss L̇∞(x) to the 1D manifold defined by β(t),
and the model’s predictions are accurate along any submanifold within the space, evaluating L∞(x)
for a specific β(t) uses the model’s pre-optimized predictions at each point on the path, thereby
yielding a valid VLB estimate. This establishes that the generalized training enables estimating VLBs
for arbitrary joint schedules β ∈ Z .

D DETAILS ON BENCHMARKING

D.1 EXPERIMENTAL SETUP

Dataset. Following SBDD conventions (Luo et al., 2021), we adopt the same split of CrossDock
(Francoeur et al., 2020) to train and validate our model, which consists of 100,000 training poses
and 100 test proteins for de novo design. For molecular docking, after removing 10 proteins that
cannot be processed for non-standard residues from the PoseBusters V2, we test on the remaining
298 protein-ligand complexes as ground-truth-based evaluation.

Baselines We provide a brief overview of all SBDD baselines as follows:

• Autoregressive methods: AR (Luo et al., 2021) utilizes MCMC sampling to reconstruct
molecules atom-by-atom based on voxel-wise density predictions. Pocket2Mol (Peng et al.,
2022) generates molecules atom-by-atom with bonds using an E(3)-equivariant network,
predicting frontier atoms to improve sampling efficiency. FLAG (Zhang et al., 2023) is a
fragment-based model that assembles molecular fragments by predicting their positions and
torsion angles.

• Diffusion: DiffSBDD (Schneuing et al., 2022) constructs an E(3)-equivariant continuous
diffusion model for full-atom generation, applying noise to both atom types and coordi-
nates, while TargetDiff (Guan et al., 2022) adopts a hybrid diffusion process to separately
handle continuous coordinates and discrete atom types. DecompDiff (Guan et al., 2023)
incorporates chemical priors by decomposing molecules into scaffolds and contact arms.

• BFN: MolCRAFT (Qu et al., 2024) uses Bayesian Flow Network (BFN) with advanced
variance reduction sampling technique, demonstrating notable improvements over diffusion-
based models in molecular design.

Metrics We evaluate the generated molecules using the following commonly adopted metrics:

• PB-Valid denotes the PoseBusters passing rate, where Strain Energy Passed denotes the
ratio of molecules passing PoseBusters internal energy check.

• Affinity Metrics are calculated using AutoDock Vina (Eberhardt et al., 2021), these include
Vina Score as the raw binding energy of a molecular pose in the pocket, Vina Min as the
binding energy after local energy minimization of the molecular pose, and Vina Dock as the
lowest binding energy obtained after an extended search for the optimal pose.
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Figure 4: Percentage of generated molecules that have passed the PoseBusters validity checks on
CrossDock test set. PB-Valid Mol: intramolecular validity. PB-Valid Dock: intermolecular validity.
Reported PB-Valid: PB-Valid Mol & PB-Valid Dock.

• Molecular Properties including QED for drug-likeness and SA (synthetic accessibility
score) are calculated using RDKit. They are desired to fall within reasonable ranges.

• Connected Ratio is the percentage of fully connected molecules.

• Diversity assesses the variety of generated molecules for each binding site by averaging
Tanimoto similarity over Morgan fingerprints across all test proteins, following Luo et al.
(2021). It is worth noting that this is not necessarily the higher the better, as the desirable
bioactive compounds against a protein target often cluster in the molecular space.

• RMSD reports the percentage of molecules where the RMSD between generated poses and
ground-truth or Vina redocked poses is within 2 Å, indicating consistent binding modes. For
better differentiation, we refer to the latter as self-consistency RMSD (scRMSD).

E MORE EVALUATION RESULTS

E.1 DYNAMICS OF BETTER-BALANCED MODALITIES

We visualize the modality-specific validation loss curves for the model trained under generalized loss
(Eq. 1) in Fig. 5, which shows that the denoising model effectively learns to mutually benefit from
cleaner information either modality.

E.2 DE NOVO DESIGN

We report the results on CrossDock (Francoeur et al., 2020) for de novo design. We sample 100
molecules for each of the 100 test proteins, and the results in Table 1 show that our model consis-
tently performs exceptionally across most metrics—leading in PB-Valid, overall Vina affinities, and
achieving comparable drug-like properties w.r.t. reference molecules.

For conformation quality, our model achieves the best performance with the highest PoseBusters
passing rate, closely matching the reference value of 95.0%. Details of each validity check are shown
in Fig. 4, and it can be seen that the leading factors affecting the overall performance are bond lengths
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Figure 5: Validation loss curves for the model trained under generalized objective w.r.t. timestep in
the generative process. Sync: Modalities at the same timestep. w/ 2D: Discrete modality always at
t = 1. w/ 3D: Continuous modality always at t = 1.

Table 3: Results of Jenson-Shannon Divergence (JSD) of bond length, bond angle, torsion angle
distributions between generated molecules and CrossDock reference molecules, averaged over all
types with a frequency > 100.

Methods Length (↓) Angle (↓) Torsion (↓)
Avg. JSD Avg. JSD Avg. JSD

AR 0.544 0.507 0.545
Pocket2Mol 0.472 0.482 0.467
TargetDiff 0.365 0.435 0.411
DecompDiff 0.332 0.410 0.338
MolCRAFT 0.318 0.384 0.322
Ours 0.252 0.351 0.287

and angles (AR, TargetDiff), internal energy (MolCRAFT, DecompDiff) for intramolecular validity,
and minimum distance to protein (Pocket2Mol) for intermolecular validity.

For molecular geometries, we visualize the distributions of bond length, bond angle, and torsion
angle, between generated molecules and reference molecules in the test set in Fig. 6, 7, 8 for the top-5
frequent types, and summarize the overall Jensen-Shannon Divergence (JSD) in Table 3, averaged
over all types with a frequency > 100. While the previous strong-performing method MolCRAFT
captures the bond length distributions relatively well, it cannot fit all the bond angle or torsion angle
distributions, displaying for example non-standard C-C-C bond angle, smoothed C-C-N bond angle,
and diverges more severely in C-C-C-C and C-C-N-C torsion angles compared with reference. Our
method excels at modeling all these distributions, underscoring its ability to capture the molecular
geometries.

For binding affinities, our model demonstrates the leading performance with an average Vina score
of -6.88 kcal/mol, maintaining the closest gap between Vina Score, Vina Min, and Vina Dock. This
shows our model’s superiority in capturing spatial interactions in the generated pose.

For molecular properties like QED and SA, our model displays competitive performance, and ranks
at the top among all non-autoregressive models.

E.3 MOLECULAR DOCKING

We repurpose the SBDD models from the joint codesign model P (x,h,A | xP ) to the conditional
marginal P (x | h,A,xP ). This actually corresponds to another specific line on the loss surface
described by Eq. 2, with βd(t) ≡ βd(1). We employ the joint schedule β(t) = (β̃c(t), β̃d(1)) with β̃
being the default noise schedule for continuous modality in Eq. 7.

F RELATED WORKS

Structure-based Drug Design (SBDD) SBDD generative models focus on the joint generation of
discrete molecular topology and continuous conformation conditioned on protein-binding pockets.

18



Published at the GEM workshop, ICLR 2025

Recent approaches have centered on capturing the critical protein-ligand interactions. Autoregressive
models (Luo et al., 2021; Peng et al., 2022; Liu et al., 2022) generate molecules atom-by-atom while
preserving geometric equivariance but are computationally expensive. Fragment-based methods
(Powers et al., 2022; Zhang et al., 2023; Lin et al.) improve efficiency by generating motifs instead of
atoms, though they often require post-processing to mitigate error accumulation. Non-autoregressive
models such as diffusion-based approaches (Schneuing et al., 2022; Guan et al., 2022; 2023) and
Bayesian Flow Networks (BFNs) (Qu et al., 2024) focus on full-atom generation, enabling scalability
and improved controllability. While significant progress has been made, challenges in conformation
quality and interaction modeling remain central to advancing structure-based drug design (Harris
et al., 2023).

Molecular Docking In the context of SBDD, molecular docking concerns predicting the 3D
conformation given 2D molecular topology and the protein pocket structures. Traditional search-
based local-docking approaches include AutoDock Vina (Eberhardt et al., 2021), Gold (Jones et al.,
1997). Deep learning-based methods are divided into blind docking methods with holo protein
structures specified, such as DiffDock (Corso et al., 2023), and local docking methods such as
DeepDock (Méndez-Lucio et al., 2021) and Uni-Mol (Zhou et al., 2023). These methods additionally
rely on the RDKit-initialized molecular conformation as input.
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Figure 6: Top-5 frequent bond length distribution of generated molecules compared with CrossDock
reference molecules.
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Figure 7: Top-5 frequent bond angle distribution of generated molecules compared with CrossDock
reference molecules.
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Figure 8: Top-5 frequent torsion angle distribution of generated molecules compared with CrossDock
reference molecules.
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