
CURE: Co-Evolving Coders and Unit Testers via
Reinforcement Learning

Yinjie Wang1∗, Ling Yang2∗†, Ye Tian3, Ke Shen4, Mengdi Wang2
1University of Chicago, 2Princeton University, 3Peking University, 4ByteDance Seed

Project: https://github.com/Gen-Verse/CURE

Abstract

Mathematical reasoning in large language models has been successfully incen-
tivized through reinforcement learning with verifiable rewards, leading to improved
one-shot precision. In this work, we turn our focus to the coding domain. Be-
yond one-shot precision, we highlight unit test generation as another key factor
for enhancing coding ability, since accurate unit tests are essential for enabling
self-checking and self-correction during inference. Traditional approaches for fine-
tuning LLMs on unit test generation rely heavily on ground-truth code solutions in
the training data. We propose CURE, a novel reinforcement learning framework
with a dedicated reward design that co-evolves coding and unit test generation
capabilities based on their interaction outcomes—without any ground-truth code
as supervision. This approach enables flexible and scalable training and allows the
unit tester to learn directly from the coder’s mistakes. Through extensive evalua-
tions, we demonstrate that our CURE models, derived from base models of varying
sizes, excel in both code generation and unit test generation. They naturally extend
to downstream tasks such as test-time scaling—achieving a 6.2% improvement
over the base model—and agentic unit test generation, with a 25.1% improvement.
Our CURE-4B model consistently outperforms Qwen3-4B while achieving 64.8%
inference efficiency in unit test generation. Notably, we also find that the CURE
model can serve as an effective reward model for reinforcement learning on base
models, even in the absence of any labeled supervision.

1 Introduction

Recently, the mathematical reasoning capabilities and precision of large language models (LLMs)
have seen substantial improvements through post-training optimization techniques such as rein-
forcement learning [14, 18, 39, 49], as well as through test-time scaling methods guided by reward-
based selection strategies [7, 24, 3, 53, 27], including Best of N (BoN). In this paper, we focus
on enhancing the coding capabilities of LLMs—a domain critical to the advancement of artificial
intelligence—through both post-training optimization and test-time scaling approaches.

Beyond scaling the one-shot coding capabilities of LLMs, we identify generating unit tests as a
key factor—and a promising entry point—for improving coding performance. Specifically, we
focus on task-derived unit tests, which are generated from a given coding task description and are
designed to verify the correctness of the corresponding code. We highlight several advantages of
using unit tests in this context. First, their direct alignment with code correctness makes unit tests
a reliable reward signal, suitable for guiding both reinforcement learning [52, 8, 22] and test-time
scaling or agentic coding pipelines [28, 5, 16, 35, 21]. Second, generated unit tests can be efficiently
reused across all candidate solutions during test-time scaling, avoiding the quadratic complexity

∗Equal Contribution. Contact: yangling0818@163.com
†Corresponding Author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/Gen-Verse/CURE

Figure 1: (a). This is an example of a problem description along with three task-derived generated
unit tests. The first unit test is incorrect, although it is easily produced due to strong hallucination.
The second unit test is correct but naive, allowing some incomplete or unthoughtful code to pass.
The final unit test is both correct and non-naive, though generating such a test is much easier than
actually solving the full coding problem. (b–d) Co-evolving process: (b) unit test accuracy, (c) code
accuracy, and (d) estimated reward versus number of steps. (e-f). The Long CoT unit tester becomes
increasingly efficient in reasoning as the response length decreases during optimization.

inherent in scalar or generative reward models, which require separate reward computations for each
candidate [7, 24, 3, 53, 27]. Most importantly, generating a unit test does not necessarily require
the model to produce a complete solution or algorithm (see Figure 1(a)), substantially simplifying
test construction compared to traditional verification approaches, in which LLMs often struggle to
verify and correct self-generated solutions [17]. Moreover, using generated unit tests at inference
time naturally promotes a self-check and self-correction pattern.

Traditional unit test generation techniques include software analysis methods [11, 30] and machine
translation-based approaches [41, 1]. Recent developments show that large language models (LLMs)
outperform traditional approaches in unit test generation [38, 50, 36], aided by prompt engineering
and agentic techniques [50, 6, 13]. These findings highlight the potential for fine-tuning LLMs to
further enhance their unit test generation capabilities [38]. O1-Coder [52] fine-tunes LLMs using
unit tests derived from ground-truth code. Inspired by the trade-off between attack rate and accuracy,
UTGEN [32] further proposes training LLMs with both correct unit tests from ground-truth code and
incorrect tests from perturbed code to enhance downstream inference tasks.

However, training unit test generators in these ways requires supervision from ground-truth code
solutions, whose collection is both costly and labor-intensive, thereby limiting the scale and diversity
of usable training data. If a unit test generator could instead be trained without reliance on ground-
truth code, this would substantially improve the flexibility and scalability of the optimization process.
To this end, we propose leveraging the code generator to provide supervision for the unit test generator,
while simultaneously improving the code generator itself to produce more accurate outputs that guide
the generation of correct unit tests.

Motivated by this, we pose the following central research question for scaling LLMs in coding
tasks: Can the unit test generator and code generator coevolve effectively, without access to
ground-truth code solutions, to improve LLM coding ability?

We answer this question affirmatively by introducing CURE, a novel reinforcement learning frame-
work (Figure 2) that co-evolves a self-play agent acting as both a code generator and a unit test
generator. CURE constructs a pairwise reward matrix based on interactions between generated codes
and generated tests, enabling mutual supervision and continuous improvement (Figure 1 (b)-(d)).
This setup is well-motivated: during reinforcement learning, the coder naturally produces both correct

2

and incorrect solutions, with the incorrect ones revealing typical failure modes. These, in turn, offer
valuable opportunities for the unit test generator to learn to distinguish good code from bad code.

We further demonstrate the utility of the optimized model in two settings. First, and most importantly,
it effectively enhances one-shot coding, unit test generation, test-time scaling and agentic coding
ability. Second, we find that using the optimized model to generate unit tests, as a reward model
for reinforcement learning on the base model, can lead to competitive improvements compared
to using ground-truth labeled unit tests. Finally, while long-chain-of-thought (long-CoT) models
represent some of the most advanced AI capabilities to date, they suffer from extremely slow inference
[48, 42, 14]. To address this, we introduce a response-length-guided transformation on the reward to
make the long-CoT unit test generator more efficient in test-time applications.

We summarize our contributions as follows:

1. We propose CURE, a novel co-evolving reinforcement learning framework that enables a single
model to simultaneously excel at unit test generation and coding, without access to any ground-truth
code solutions. The framework employs a theoretically derived and well-motivated reward design for
unit test generation. In addition, for long-chain-of-thought models, we introduce a response-length-
guided reward transformation to enhance test-time efficiency of the fine-tuned unit test generator.
This results in models of different scales: CURE-4B, 7B and 14B.

2. We conduct extensive evaluations on five benchmarks and demonstrate that CURE effectively
enhances the abilities of the model in unit test generation and coding, naturally extends to test-time
scaling and agentic coding tasks (with a 6.2% average gain in accuracy over the base model), and
agentic unit test generation tasks (with a 25.1% average gain in accuracy). Our 4B model consistently
outperforms Qwen3-4B while achieving 64.8% inference efficiency in unit test generation.

3. Finally, we show that the trained unit test generator can serve as a reward model to fine-tune
LLMs via reinforcement learning—improving coding performance without any human-labeled or
ground-truth unit test supervision.

2 Related Work

Unit Test Generation Manually creating unit tests is costly and inefficient [5, 25], motivating
the development of automated unit test generation methods, such as software analysis methods
[11, 30, 9, 12, 33, 10] and traditional neural machine translation approaches [41, 1]. With the recent
advancements in LLMs, prompt-based and agentic methods [50, 6, 13] have demonstrated superior
performance, further highlighting the potential of training LLMs for unit test generation. In light
of this, methods like O1-Coder [52] and UTGEN [32] construct datasets using ground-truth code
solutions to fine-tune LLMs for better unit test generation. However, relying on ground-truth code
solutions in the training data limits both flexibility and scalability.

Application of Unit Tests Unit tests have been shown to serve as effective rewards for test-time
scaling and agentic coding [28]. A common strategy is to generate multiple code and unit test
candidates using the model, then select the best-performing sample based on execution results against
the generated unit tests [5, 16]. AlphaCodium [35] introduces self-revision by leveraging both public
and generated tests to refine solutions. S* [21] further incorporates iterative debugging and pairwise
discrimination guided by generated unit tests to enhance final code quality.

Reinforcement Learning for LLM Improvement Proximal Policy Optimization (PPO) [37] uses
an actor-critic setup with clipped updates for stability. Direct Preference Optimization (DPO) and its
variants [34, 26, 4, 29, 46, 44] skip the critic and directly optimize from preferences using closed-form
rewards, improving efficiency. Recent efficient Group Relative Policy Optimization (GRPO) [39]
scales well with large-scale reinforcement learning [14, 49, 15, 43]. Reinforcement learning applied
specifically to coding tasks has also gained traction [8, 22]. We do not aim to compete with existing
reinforcement learning algorithms for code generation; in fact, these RL-on-coding methods can be
naturally integrated into our co-evolutionary framework by directly applying them to optimize the
coding component.

3

Figure 2: Method Pipeline Overview. In our RL framework, for each task, we generate a batch of
unit tests and code solutions, along with some ground-truth unit tests. Using these, we construct an
execution table. From this table, we extract rewards for each unit test (Equation 4) and code response
(Equation 3). For the long-CoT model, we apply a transformation on the reward to ensure efficiency.
Then we optimize both the unit tester and the coder iteratively over time.

3 Method

In this section, we begin by formulating our final objective and introducing the general concept
of reward precision (Section 3.1). We then provide a theoretical analysis of reward precision to
derive individual-level rewards for each generated unit test (Section 3.2). Next, we present our
novel co-evolving reinforcement learning framework, CURE, in Section 3.3. Finally, we introduce a
response-length-guided transformation on the reward, designed to improve the efficiency of the unit
test generator for long CoT models (Section 3.4).

3.1 Motivation: Using Unit Tests for Inference

Unlike mathematical tasks, which are computationally intensive and challenging to verify accurately
[17], code-generation tasks benefit significantly from the use of unit tests for efficient verification. It
has been shown [28] that the accuracy of code generation can be enhanced by adopting the following
BoN approach: For each task q, the policy LLM generates n candidate solutions sj , where 1 ≤ j ≤ n,
and m additional unit tests uk, where 1 ≤ k ≤ m. Executing the n generated solutions against these
m unit tests produces a binary evaluation matrix B ∈ {0, 1}n×m, where each entry indicates whether
a given solution passes a specific test. The reward for solution sj is defined as follows, and is used to
select the optimal coding solution:

Rsj =

m∑
l=1

Bj,l. (1)

Empirically, this reward is typically valid because incorrectly generated unit tests also rarely favor
incorrect solutions. However, this assumption can break down when the generated unit tests are
of low accuracy, under ambiguous problem formulations, or in binary output tasks. Therefore, we
propose our objective for optimizing the unit test generator, reward precision:

P (Rsj1
> Rsj2

| sj1 is correct, sj2 is wrong). (2)

The higher the reward precision, the more accurately the generated unit tests can identify and promote
correct solutions. But this is merely an overall objective. To obtain rewards at the individual level for
generated unit tests, we conduct the following analysis to derive the reward formulation.

3.2 Analysis on Reward Precision

In this section, we identify the key factors that ensure the validity and accuracy of the reward precision
defined in Equation 2. Given that the generated responses are i.i.d., we model the binary evaluation
results with the following generative process: First, the correctness of a generated solution, denoted
by cs, and the correctness of a generated unit test, denoted by cu, are modeled as Bernoulli random
variables with success probabilities ps and pu, respectively. Conditional on their correctness, the
execution outcome is another Bernoulli random variable with success probability pcscu . Specifically,
we have p10 = 0 and p11 = 1, while the parameters p00 and p01 remain unknown.

4

In the theorem below, we demonstrate increasing the number of generated unit tests m causes the
reward precision to converge to 1, provided that certain conditions involving the parameters pu, p00,
and p01 are satisfied. We naturally derive our optimization objective with this theoretical analysis.

Theorem 3.1. Consider a ground truth unit test uk, a correct solution sj1 , and an incorrect solution
sj2 . The precision based on a single ground truth test is given by P (Bj1,k > Bj2,k) = 1 −
P (the incorrect solution sj2 passes test uk). However, when using the aggregated reward defined in
Equation 1, we have P (Rsj1

> Rsj2
)→ 1 as m→∞, if and only if µ > 0, where

µ := pu(1− p01)− (1− pu)p00.

Moreover, under this condition, the reward precision satisfies

P (Rsj1
> Rsj2

) ≳ 1− e−µ2m/8.

From this theorem, we observe that µ not only guarantees the convergence and validity of the
aggregated reward (Equation 2), but also governs the rate at which it converges to 1. Specifically, a
larger value of µ implies that fewer unit tests are needed to obtain a reliable reward signal.

Therefore, we use µ as the optimization objective for the unit test generator, estimating the individual
value of µ for each unit test from the execution matrix to serve as its reward. Intuitively, optimizing
µ corresponds to increasing the accuracy pu while controlling the error rates p01 and p00 for the
generated unit tests. We now introduce our algorithm to co-evolve the coder and the unit tester.

3.3 Co-evolving Coder and Unit Tester with RL

For each task q in the training set, which is paired with tq ground truth unit tests, the policy LLM
generates n candidate solutions and m additional unit tests uk, where 1 ≤ k ≤ m. Similarly, we
obtain a binary evaluation matrix B⋆ ∈ {0, 1}n×(m+tq) by executing the n generated solutions
against these m+ tq unit tests. The last tq columns correspond to the ground truth unit tests. This
evaluation matrix serves as the basis for estimating rewards for both the solution generator and the
unit test generator, enabling joint optimization via reinforcement learning.

For solution sj , where 1 ≤ j ≤ n, we assign higher rewards to solutions that pass more ground-truth
unit tests, reflecting greater correctness and generalizability. The reward is defined as:

R⋆
sj =

tq∑
l=1

B⋆j,m+l. (3)

For each generated unit test uk, where 1 ≤ k ≤ m, we estimate the reward µ = pu(1− p01)− (1−
pu)p00 from the execution matrix B⋆ by deriving estimators for pu, p01, and p00. This leads to the
following form of the estimated individual-level reward:

R⋆
uk

= −
n∑

l=1

(1− Isl)B⋆l,k + (
∏

l:Isl
=1

B⋆l,k)(
n∑

l=1

(1− Isl)), (4)

where Isj =
∏tq

l=1 B⋆j,m+l. The detailed derivation is provided in Appendix A. Intuitively, R⋆
uk

is
positive and proportional to the number of incorrect solutions that fail test uk when uk correctly
passes all accurate solutions. Conversely,R⋆

uk
is negative and proportional to the number of incorrect

solutions that pass test uk when uk fails even one correct solution. Here, a correct solution is defined
as one passing all ground-truth unit tests, whereas an incorrect solution fails at least one ground-
truth test. Therefore, this theoretically derived reward serves as an effective objective, optimizing
the accuracy and discriminative power of generated unit tests. Naively using reward functions
like “whether the unit test passes all correct codes" incentivize the generation of trivial or overly
permissive tests that simply maximize pass rates. This undermines the reliability of the reward signal
and diminishes the overall effectiveness of the co-evolution process.

5

After collecting the rollout samples for codes and unit tests and their rewards, we optimize the policy
with the following objective iteratively:

J (θ, {oi}Gi=1) =E q∼P (Q)
oi∼πθold

(·|q)

[
1

G

G∑
i=1

|oi|∑
t=1

Cϵ(
πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
, Aoi)

]
−E q∼P (Q)

oi∼πθold
(·|q)

[
βDKL

[
πθ ∥πref

]]
,

where Cϵ(r,A) := min(rA, clip(r, ε)A), clip(r, ε) := min(max(r, 1− ε), 1 + ε), πθ is the policy
to be optimized, πold is the old policy, {oi}Gi=1 are the rollout responses, and Aoi is the normalized
reward corresponding toR⋆

oi . Specifically, we iteratively optimize the policy for coding ability with
J (θ, {sj}nj=1), and unit test generation ability with J (θ, {uk}mk=1) (see Figure 2).

3.4 Improve Efficiency of Long-CoT Unit Tester

In addition to experiments conducted on base LLMs, we also perform experiments using the long-
CoT model, which currently exemplifies the highest reasoning capabilities of LLMs. However, it
is well-documented that these long-CoT models suffer from significantly increased inference times
[48, 42, 14]. To enhance efficiency, we propose a general response-length-aware transformation
applied to the rewards of unit tests specifically when utilizing long-CoT models.

Formally, for each task q, consider a set of standardized rewards {ri}mi=1 (standardized by subtracting
the mean) and the corresponding response lengths {li}mi=1. Our goal is to assign negative values to
overly long responses proportionally to their lengths while ensuring that the transformed rewards
maintain a clear separation such that negative original rewards remain negative and positive original
rewards remain positive. Specifically, we first transform the rewards to r̂i by

r̂i =

{
−li + Tl if ri > 0,

−lmax + Tl if ri ≤ 0,

where Tl = median{lj | rj > 0}, lmax = max{lj | rj > 0}. Subsequently, we balance
the transformed rewards between positive and negative responses and normalize them, yielding
the final transformed reward r⋆i , defined by r⋆i = αr̂i/σ if r̂i > 0, or r⋆i = r̂i/σ if r̂i ≤ 0,
where α =

∑
j:r̂j<0(−r̂j)/(

∑
j:r̂j>0 r̂j), and σ is the standard deviation calculated over the set

{αr̂i | r̂i > 0} ∪ {r̂i | r̂i ≤ 0}. In this way, we aim to preserve the original reward information to
some extent, while penalizing overly long responses.

4 Experiments

4.1 Settings

Datasets We select five widely used coding datasets for our comprehensive evaluation: LiveBench
[45], MBPP [2], LiveCodeBench [19], CodeContests [23], and CodeForces [31]. Specifically, for
CodeContests, we extract tasks with difficulty level ≤ 2, and randomly split them into a training set
of 4.5k examples and an evaluation set of 200 examples. For LiveCodeBench, we utilize version 2,
which contains 511 problems. For MBPP, we use its standard test set for evaluation. The CodeForces
data used in our experiments has no overlap with CodeContests [31]; we randomly sample 500
examples from it for evaluation.

Models and Optimization We use Qwen2.5-7B and 14B [47] as our standard base models, and
select Qwen3-4B as the base model for the long-CoT variant. At each sampling step during rein-
forcement learning, we generate 32 rollouts for unit tests and 32 for code using vLLM [20], with
a temperature of 1.0, top-p of 0.95, and top-k of 40. For optimization, we set the learning rate to
1 × 10−6 and the KL coefficient to 0.01. Specifically, for the long-CoT model, we use a lower
temperature of 0.8 and apply a response-length-guided transformation to the unit test reward to
improve post-training inference efficiency. We train these models using 8 A100 GPUs.

6

Table 1: Performance of CURE models and baseline models across five benchmarks. Each entry
reports the average accuracy (%) of generated unit tests (UT), the average one-shot code generation
accuracy (Code), and the Best-of-N (BoN) accuracy, using 16 generated code solutions and 16
generated unit tests. “Long” refers to the long-CoT models. The Coder models here are also
instruction-finetuned models.

Model LiveBench MBPP LiveCodeBench CodeContests CodeForces
UT Code BoN UT Code BoN UT Code BoN UT Code BoN UT Code BoN

Qwen2.5-14B-Coder 39.0 42.2 53.1 75.1 72.6 84.9 41.6 38.2 47.7 37.3 23.3 32.0 22.1 7.8 13.5
Qwen2.5-14B-Ins 27.8 36.4 51.7 72.8 76.3 83.2 35.7 33.5 45.1 43.8 25.6 33.4 20.7 7.3 12.5
CURE-14B 55.4 45.2 57.0 85.3 78.1 85.4 63.1 39.9 48.7 64.4 30.2 38.9 53.5 10.2 19.1
Qwen2.5-7B-Coder 19.3 35.0 42.9 41.3 68.0 79.6 20.6 29.8 34.8 12.9 22.8 23.8 7.2 6.7 9.1
Qwen2.5-7B-Ins 26.5 31.1 35.9 35.8 66.3 79.4 28.6 26.9 32.6 26.7 21.2 25.8 18.9 5.4 8.9
CURE-7B 44.2 37.3 45.5 74.5 69.4 82.3 48.7 31.6 41.8 52.5 25.7 29.7 39.4 7.7 10.8
Qwen3-4B (Long) 36.8 72.5 78.1 76.5 88.4 90.1 50.9 74.5 80.0 43.6 53.1 58.1 54.1 28.8 38.5
CURE-4B (Long) 84.6 74.6 82.0 83.3 89.5 91.2 86.8 75.9 80.6 72.2 55.4 59.9 65.8 31.3 40.2

Table 2: Application to GPT-series models. We apply CURE-4B as a unit tester to scale GPT models
serving as coders, achieving improved performance while maintaining cost efficiency. The two entries
report the average API cost (Cost, in units of 10−3 USD) per task and the overall accuracy (Acc) for
each benchmark.

Model LB MBPP LCB CC CF
Cost Acc Cost Acc Cost Acc Cost Acc Cost Acc

4o (one-shot) 4.8 48.4 2.7 85.0 5.8 48.7 5.5 41.0 7.1 11.1
4o-mini (one-shot) 0.3 46.3 0.2 80.1 0.4 44.3 0.3 38.8 0.4 12.0
4o-mini (BoN-16) 10.8 55.4 6.7 81.5 12.0 50.7 10.1 40.6 13.1 13.5
4o-mini-CURE(BoN-16) 4.7 58.6 2.7 86.1 5.6 56.8 5.3 46.4 6.9 21.2
4.1-mini (one-shot) 0.6 65.4 0.3 88.4 0.6 68.1 1.0 51.3 1.5 22.8
4.1-mini (BoN-16) 32.5 69.5 14.7 88.2 31.9 73.4 42.2 56.9 59.5 34.1
4.1-mini-CURE (BoN-16) 9.3 74.2 4.6 89.6 9.6 74.1 15.5 58.1 24.4 35.1

Test-time Scaling and Agentic Coding Best-of-N (BoN) is the most straightforward and widely
used test-time scaling and agentic coding method [28, 5], and serves as a primary metric for evaluating
coding performance in our setting. Specifically, the policy generates n candidate code solutions and m
unit tests, then selects the best solution based on the reward defined in Equation 1. We also evaluate our
approach under several other agentic coding and test-time scaling pipelines [16, 35, 21]. In particular,
MPSC [16] generates multiple code solutions, unit tests, and specifications per task, and selects
the best solution by computing a consistency score. AlphaCodium [35] generates comprehensive
unit tests to critique the generated solutions and iteratively refine the code accordingly. S* [21]
organically combines iterative debugging using public unit tests and generates unit tests for pairwise
discrimination, in order to select the most promising solution. See details in Appendix C.4.

Agentic Unit Test Generation We also evaluate our model’s utility in an agentic unit test generation
pipeline. Following prior work [50, 6], we first generate unit tests and then iteratively refine them
based on their execution results on the corresponding code. See details in Appendix C.5.

4.2 Results

CURE significantly improves the overall coding ability. Specifically, we apply our optimization
to derive the CURE-7B and CURE-14B models from the base Qwen2.5-7B-Instruct and Qwen2.5-
14B-Instruct models. Figure 1 (b–d) show the co-evolution process for unit test accuracy, code
accuracy, and estimated reward, demonstrating a stable and promising co-evolving pattern. The
resulting CURE models surpass their respective base models on average by 24.4% in unit test
accuracy, 4.5% in one-shot code generation accuracy, and 5.1% in Best-of-N (BoN) accuracy (using
16 code solutions and 16 unit tests) (Table 1). Notably, CURE also consistently outperforms the
corresponding coding-supervised fine-tuned (SFT) models—Qwen2.5-Coder-Instruct—across all
three metrics. Moreover, our results show that the optimization leads to consistent and robust
improvements across various BoN settings (Figure 3 (a)). This indicates that the CURE models not
only enhance the overall performance ceiling (when large amounts of code and unit test samples are

7

Figure 3: The BoN performance improvement across benchmarks. Four curves (left to right) show
sampling 2, 4, 8, and 16 generated codes; each curve’s five points represent 1, 2, 4, 8, and 16 generated
unit tests. (a). Improvement in BoN performance on open-source models after optimization. The
model serves as both coder and unit tester here. (b). BoN improvement with optimized unit tester on
GPT-series coders.

generated), but also improve self-check efficiency in low-sample regimes (e.g., when sampling only 1
or 2 candidates).

Robust for long-CoT models and achieve inference efficiency. We also evaluate CURE’s op-
timization on the Long-CoT model, Qwen3-4B, incorporating our response-length-guided reward
transformation. The resulting CURE-4B model consistently outperforms Qwen3-4B in unit test
accuracy, code accuracy, and BoN accuracy (Table 1). Notably, the average response length for unit
test generation is reduced to 64.8% of its original length (Figure 1 (e-f)), significantly improving
inference-time efficiency. We also observe that the accuracy gains for standard base models are more
substantial than for long-CoT models, which aligns with the demonstrated findings [51]. Long-CoT
models have already captured much of the benefit from scaling through CoT reasoning and gain less
from BoN compared to standard models.

Figure 4: (a). Application of CURE to various test-time scaling and agentic coding methods. We set
the number of generated samples to eight in the BoN setting here. (b). Ablation study on optimization
strategies and reward design choices, using Qwen2.5-14B-Instruct as the base model. All training
runs are conducted with 100 optimization steps. (c). Application of CURE to different agentic unit
test generation tasks. “Function-specific" refers to tasks where the input includes both the problem
description and the ground-truth code, whereas “Task-derived" refers to tasks where the input consists
solely of the problem description. (a–c) are all evaluated on LiveBench, with Qwen2.5-14B-Instruct
used as the base model.

CURE models help API-inference models become more powerful and cost-efficient. We apply
CURE-4B as the unit tester and evaluate its effect when paired with GPT-series models as coders, to
disentangle the effects of the long-CoT coders’ strong coding ability from the unit test generation
ability. We find that CURE improves the BoN accuracy of GPT-4o-mini and GPT-4.1-mini by an
average of 5.5% and 1.8%, respectively (Table 2). Notably, using GPT-4o-mini as the coder and

8

Figure 5: Accuracy improvement of Qwen2.5-14B-Instruct when trained with reinforcement learning
using labeled unit tests as rewards versus using CURE-generated unit tests as rewards. Both models
are trained for 150 steps. The BoN setting involves generating 16 samples for both code and unit
tests.

CURE-4B as the unit tester yields a 7.0% improvement over GPT-4o one-shot performance, while
also reducing cost. This demonstrates our model’s strong potential for reducing the cost of API-based
pipelines. In contrast, scaling GPT-4o-mini alone results in only a 1.5% gain while incurring nearly
twice the API cost compared to using CURE-4B. As shown in Figure 3(b), CURE-4B consistently
outperforms both Qwen3-4B and GPT-4o-mini as a unit tester across different BoN settings. These
results demonstrate the effectiveness of using unit tests generated by the CURE model.

Serves as an effective reward model enabling RL without any labeled data. We have already
demonstrated the utility of unit tests generated by the CURE model for solution selection. But can
the CURE model also serve as a reward model to guide reinforcement learning? We apply CURE-4B
to generate unit tests as supervision for reinforcement learning training on the Qwen2.5-14B-Instruct
model. Surprisingly, the resulting performance improvements are comparable to those achieved
using ground-truth labeled supervision, across all three metrics: code generation accuracy, unit test
accuracy, and BoN accuracy (Figure 5). This demonstrates that CURE can serve as an effective
reward model not only for inference-time enhancement but also for guiding optimization during
training.

Broad application to test-time scaling and agentic coding methods. In addition to the standard
test-time scaling method BoN [28, 5], we also evaluate CURE-14B on several other test-time
scaling and agentic methods—MPSC [16], AlphaCodium [35], and S* [21]—achieving an average
improvement of 6.2% over the base model Qwen2.5-14B-Instruct (Figure 4(a)). Beyond code and
unit test generation, these pipelines involve iterative refinement and debugging based on execution
results, which require comprehensive coding and self-correction capabilities—capabilities our model
successfully demonstrates. We further evaluate CURE on agentic unit test generation tasks, which
focus on refining unit tests based on execution results from code, and observe an average improvement
of 25.1% in unit test accuracy over the base model (Figure 4(c)).

Ablation study on optimization methods and reward designs. We conduct ablation studies
on two aspects of the optimization process. First, we conduct experiments optimizing only the
coder and using supervised fine-tuning (selecting the samples with positive rewards to fine-tune)
instead of reinforcement learning. Second, we evaluate a simplified reward design for the unit test:
assigning a reward of 1 if all correct codes pass, and 0 otherwise, which is an estimate of pu. We
find that CURE consistently outperforms these alternatives and remains the optimal choice across all
ablations (Figure 4(b)). Optimizing only for code generation does not improve the model’s ability
to produce accurate unit tests and therefore falls short in self-check-based inference scaling (e.g.,
BoN). Supervised fine-tuning focuses solely on positive examples, ignoring informative negative
samples. Moreover, using a simple reward during optimization leads to poor control over key error
probabilities: p01 and p00 reach 40.5% and 15.8%, respectively. In contrast, our theoretically derived
reward better constrains these values to 30.1% and 10.6%, improving the precision of selection and
the overall effectiveness of solution ranking.

5 Discussions

In this paper, we propose CURE, a novel optimization framework combined with a theoretically
derived reward for the unit tester, that co-evolves models’ coding and unit test generation capabilities
without requiring any ground-truth code for supervision, which greatly enhances flexibility and scala-

9

bility. Through extensive evaluations on five benchmarks, our results demonstrate that CURE models
achieve significant performance improvements in both code generation and unit test generation tasks.
Our long-CoT model CURE-4B consistently outperforms Qwen-4B while achieving significantly
higher efficiency in unit test generation. Moreover, CURE proves effective in broader applications,
including test-time scaling and agentic coding (6.2% improvement), agentic unit test generation
(25.1% improvement), and as a reward model for reinforcement learning.

CURE currently focuses on Python competition-style tasks evaluated via stdin/stdout unit tests.
Extending CURE to support functional tests and additional programming languages is essential
for greater practical utility. In addition, CURE still depends on ground-truth unit tests during
reinforcement learning to achieve high performance. Removing this reliance while preserving
comparable performance remains an intriguing direction for future work.

10

References
[1] Saranya Alagarsamy, Chakkrit Tantithamthavorn, and Aldeida Aleti. A3test: Assertion-

augmented automated test case generation. Information and Software Technology, 176:107565,
2024.

[2] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large
language models. arXiv preprint arXiv:2108.07732, 2021.

[3] Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré,
and Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated
sampling. arXiv preprint arXiv:2407.21787, 2024.

[4] Shicong Cen, Jincheng Mei, Katayoon Goshvadi, Hanjun Dai, Tong Yang, Sherry Yang, Dale
Schuurmans, Yuejie Chi, and Bo Dai. Value-incentivized preference optimization: A unified
approach to online and offline rlhf. arXiv preprint arXiv:2405.19320, 2024.

[5] Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu
Chen. Codet: Code generation with generated tests. arXiv preprint arXiv:2207.10397, 2022.

[6] Yinghao Chen, Zehao Hu, Chen Zhi, Junxiao Han, Shuiguang Deng, and Jianwei Yin. Chatu-
nitest: A framework for llm-based test generation. In Companion Proceedings of the 32nd ACM
International Conference on the Foundations of Software Engineering, pages 572–576, 2024.

[7] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

[8] Shihan Dou, Yan Liu, Haoxiang Jia, Limao Xiong, Enyu Zhou, Wei Shen, Junjie Shan,
Caishuang Huang, Xiao Wang, Xiaoran Fan, et al. Stepcoder: Improve code generation
with reinforcement learning from compiler feedback. arXiv preprint arXiv:2402.01391, 2024.

[9] Eduard P Enoiu, Adnan Čaušević, Thomas J Ostrand, Elaine J Weyuker, Daniel Sundmark, and
Paul Pettersson. Automated test generation using model checking: an industrial evaluation.
International Journal on Software Tools for Technology Transfer, 18:335–353, 2016.

[10] Unit Tests Using Symbolic Execution. Symstra: A framework for generating object-oriented.
In Tools and Algorithms for the Construction and Analysis of Systems: 11th International
Conference, TACAS 2005, Held as Part of the Joint European Conference on Theory and
Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2004, Proceedings, volume 3440,
page 365. Springer, 2005.

[11] Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite generation for object-oriented
software. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European
conference on Foundations of software engineering, pages 416–419, 2011.

[12] Angelo Gargantini and Constance Heitmeyer. Using model checking to generate tests from
requirements specifications. ACM SIGSOFT Software Engineering Notes, 24(6):146–162, 1999.

[13] Siqi Gu, Chunrong Fang, Quanjun Zhang, Fangyuan Tian, and Zhenyu Chen. Testart: Improving
llm-based unit test via co-evolution of automated generation and repair iteration. arXiv e-prints,
pages arXiv–2408, 2024.

[14] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[15] Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model. arXiv preprint arXiv:2503.24290, 2025.

[16] Baizhou Huang, Shuai Lu, Weizhu Chen, Xiaojun Wan, and Nan Duan. Enhancing large
language models in coding through multi-perspective self-consistency. arXiv preprint
arXiv:2309.17272, 2023.

11

[17] Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying
Song, and Denny Zhou. Large language models cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023.

[18] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

[19] Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-
mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination
free evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

[20] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large lan-
guage model serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium
on Operating Systems Principles, 2023.

[21] Dacheng Li, Shiyi Cao, Chengkun Cao, Xiuyu Li, Shangyin Tan, Kurt Keutzer, Jiarong Xing,
Joseph E Gonzalez, and Ion Stoica. S*: Test time scaling for code generation. arXiv preprint
arXiv:2502.14382, 2025.

[22] Jia Li, Yunfei Zhao, Yongmin Li, Ge Li, and Zhi Jin. Acecoder: An effective prompting
technique specialized in code generation. ACM Transactions on Software Engineering and
Methodology, 33(8):1–26, 2024.

[23] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy,
Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl,
Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level
code generation with alphacode. Science, 378(6624):1092–1097, 2022.

[24] Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee,
Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The
Twelfth International Conference on Learning Representations, 2023.

[25] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated
by chatgpt really correct? rigorous evaluation of large language models for code generation.
Advances in Neural Information Processing Systems, 36:21558–21572, 2023.

[26] Yongshuai Liu, Jiaxin Ding, and Xin Liu. Ipo: Interior-point policy optimization under
constraints. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pages
4940–4947, 2020.

[27] Zijun Liu, Peiyi Wang, Runxin Xu, Shirong Ma, Chong Ruan, Peng Li, Yang Liu, and Yu Wu.
Inference-time scaling for generalist reward modeling. arXiv preprint arXiv:2504.02495, 2025.

[28] Zeyao Ma, Xiaokang Zhang, Jing Zhang, Jifan Yu, Sijia Luo, and Jie Tang. Dynamic scaling of
unit tests for code reward modeling. arXiv preprint arXiv:2501.01054, 2025.

[29] Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a
reference-free reward. Advances in Neural Information Processing Systems, 37:124198–124235,
2024.

[30] Carlos Pacheco and Michael D Ernst. Randoop: feedback-directed random testing for java. In
Companion to the 22nd ACM SIGPLAN conference on Object-oriented programming systems
and applications companion, pages 815–816, 2007.

[31] Guilherme Penedo, Anton Lozhkov, Hynek Kydlíček, Loubna Ben Allal, Edward Beeching,
Agustín Piqueres Lajarín, Quentin Gallouédec, Nathan Habib, Lewis Tunstall, and Leandro von
Werra. Codeforces. https://huggingface.co/datasets/open-r1/codeforces, 2025.

12

https://huggingface.co/datasets/open-r1/codeforces

[32] Archiki Prasad, Elias Stengel-Eskin, Justin Chih-Yao Chen, Zaid Khan, and Mohit Bansal.
Learning to generate unit tests for automated debugging. arXiv preprint arXiv:2502.01619,
2025.

[33] Corina S Pǎsǎreanu, Peter C Mehlitz, David H Bushnell, Karen Gundy-Burlet, Michael Lowry,
Suzette Person, and Mark Pape. Combining unit-level symbolic execution and system-level con-
crete execution for testing nasa software. In Proceedings of the 2008 international symposium
on Software testing and analysis, pages 15–26, 2008.

[34] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
Advances in Neural Information Processing Systems, 36:53728–53741, 2023.

[35] Tal Ridnik, Dedy Kredo, and Itamar Friedman. Code generation with alphacodium: From
prompt engineering to flow engineering. arXiv preprint arXiv:2401.08500, 2024.

[36] Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. An empirical evaluation of using
large language models for automated unit test generation. IEEE Transactions on Software
Engineering, 50(1):85–105, 2023.

[37] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[38] Ye Shang, Quanjun Zhang, Chunrong Fang, Siqi Gu, Jianyi Zhou, and Zhenyu Chen. A large-
scale empirical study on fine-tuning large language models for unit testing. arXiv preprint
arXiv:2412.16620, 2024.

[39] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

[40] Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025.

[41] Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, Shao Kun Deng, and Neel Sundaresan.
Unit test case generation with transformers and focal context. arXiv preprint arXiv:2009.05617,
2020.

[42] Libo Wang. Dynamic chain-of-thought: Towards adaptive deep reasoning. arXiv preprint
arXiv:2502.10428, 2025.

[43] Yinjie Wang, Ling Yang, Bowen Li, Ye Tian, Ke Shen, and Mengdi Wang. Revolutioniz-
ing reinforcement learning framework for diffusion large language models. arXiv preprint
arXiv:2509.06949, 2025.

[44] Yinjie Wang, Ling Yang, Guohao Li, Mengdi Wang, and Bryon Aragam. Scoreflow: Mastering
llm agent workflows via score-based preference optimization. arXiv preprint arXiv:2502.04306,
2025.

[45] Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid
Shwartz-Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, et al. Livebench: A challenging,
contamination-free llm benchmark. arXiv preprint arXiv:2406.19314, 2024.

[46] Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan, Lingfeng Shen, Benjamin Van Durme, Ken-
ton Murray, and Young Jin Kim. Contrastive preference optimization: Pushing the boundaries
of llm performance in machine translation. arXiv preprint arXiv:2401.08417, 2024.

[47] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

[48] Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long
chain-of-thought reasoning in llms. arXiv preprint arXiv:2502.03373, 2025.

13

[49] Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan,
Gaohong Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning
system at scale. arXiv preprint arXiv:2503.14476, 2025.

[50] Zhiqiang Yuan, Yiling Lou, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen, and Xin
Peng. No more manual tests? evaluating and improving chatgpt for unit test generation. arXiv
preprint arXiv:2305.04207, 2023.

[51] Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
reinforcement learning really incentivize reasoning capacity in llms beyond the base model?
arXiv preprint arXiv:2504.13837, 2025.

[52] Yuxiang Zhang, Shangxi Wu, Yuqi Yang, Jiangming Shu, Jinlin Xiao, Chao Kong, and Jitao
Sang. o1-coder: an o1 replication for coding. arXiv preprint arXiv:2412.00154, 2024.

[53] Jian Zhao, Runze Liu, Kaiyan Zhang, Zhimu Zhou, Junqi Gao, Dong Li, Jiafei Lyu, Zhouyi
Qian, Biqing Qi, Xiu Li, et al. Genprm: Scaling test-time compute of process reward models
via generative reasoning. arXiv preprint arXiv:2504.00891, 2025.

14

A Proofs of Theoretical Results

Proof. (of Theorem 3.1)

Set–up and intuition. For every test index k(1≤k≤m) define

Xk := Bj1k︸︷︷︸
outcome on correct sj1

− Bj2k︸︷︷︸
outcome on wrong sj2

∈ {−1, 0, 1}.

Positive Xk means the correct solution beats the wrong one on test k, Xk = 0 means they tie, and
Xk = −1 means the wrong solution wins. The reward difference after m tests is Dm :=

∑m
k=1 Xk =

Rsj1
−Rsj2

. Our target event {Rsj1
> Rsj2

} coincides with {Dm > 0}, so we analyse the sign of
Dm.

Single ground-truth test. Assume a particular test uk is correct (i.e. cuk
= 1). Because a correct

solution always passes a correct test (p11 = 1) we have Bj1k = 1 with probability 1. Conversely, an
incorrect solution passes that same correct test with probability p01, so

P
[
Bj2k = 0

]
= 1− p01.

Hence
P
[
Xk = 1

]
= P

[
Bj1k = 1, Bj2k = 0

]
= 1− p01, P

[
Xk ≤ 0

]
= p01.

Therefore P
(
Xk > 0

)
= 1− p01, which proves the first statement.

Distribution of Xk. Let Ik := 1{cuk
= 1} indicate whether the k-th test is correct. By the

data-generation assumption,

P (Ik = 1) = pu, P (Ik = 0) = 1− pu.

Case Ik = 1: we are in the setting of Step 1, so

P (Xk = 1 | Ik = 1) = 1− p01, P (Xk = −1 | Ik = 1) = 0, P (Xk = 0 | Ik = 1) = p01.

Case Ik = 0: the test itself is wrong. Now a correct solution fails with probability 1 (p10 = 0), while
the incorrect solution can pass spuriously with probability p00. Thus

P (Xk = 1 | Ik = 0) = 0, P (Xk = −1 | Ik = 0) = p00, P (Xk = 0 | Ik = 0) = 1− p00.

Applying the law of total probability yields the unconditional mass

P (Xk = 1) = pu(1− p01) + (1− pu) · 0 = pu(1− p01),

P (Xk = −1) = (1− pu)p00,

P (Xk = 0) = 1− P (Xk = ±1).

Denote

µ := E[Xk] = 1 · P (Xk = 1) + (−1) · P (Xk = −1) = pu(1− p01)− (1− pu)p00,

σ2
k := Var(Xk) = E[X2

k]− µ2 = P (Xk = 1) + P (Xk = −1)− µ2.

All Xk’s are i.i.d. because the unit tests are generated independently and the solutions themselves are
fixed.

Convergence Analysis. Write the empirical mean Xm := 1
m

∑m
k=1 Xk. Since E[Xk] = µ and

E[|Xk|] ≤ 1, the strong law of large numbers (SLLN) tells us

Xm
a.s.−−→ µ (m→∞).

But Dm/m = Xm, hence
Dm

m

a.s.−−→ µ.

Consequences.

• If µ > 0, then Dm

m is eventually positive almost surely, so P (Dm > 0)→ 1.

15

• If µ < 0, Dm

m is eventually negative a.s., so P (Dm > 0)→ 0.

• If µ = 0, Dm√
m

has variance σ2
k and remains Op(1), whence P (Dm > 0)→ 1

2 by symmetry
of the CLT limit distribution.

Explicit tail bound for finite m, assuming µ > 0.

Recall Xk ∈ {−1, 0, 1} and E[Xk] = µ > 0. Define the centred variables

Zk := Xk − µ (1 ≤ k ≤ m),

so that E[Zk] = 0. Because −1 ≤ Xk ≤ 1, we have −1 − µ ≤ Zk ≤ 1 − µ. Since µ ∈ (0, 1),
we have

|Zk| ≤ 2 almost surely.

Now we apply Hoeffding’s additive inequality. Let Z1, . . . , Zm be independent, centred random
variables satisfying |Zk| ≤ c a.s. for every k. For any t > 0,

P
(m∑
k=1

Zk ≤ −t
)
≤ exp

(
− t2

2mc2

)
. (Hoeffding)

Here c = 2, By definition

Dm =

m∑
k=1

Xk =

m∑
k=1

(Zk + µ) = mµ+

m∑
k=1

Zk.

Hence

{Dm ≤ 0} =
{ m∑
k=1

Zk ≤ −mµ
}
.

Substituting t = mµ and c = 2 into (Hoeffding) gives

P (Dm ≤ 0) = P
(m∑
k=1

Zk ≤ −mµ
)
≤ exp

(
− (mµ)2

8m

)
= exp

(
−µ2m

8

)
.

Finally,
P (Dm > 0) = 1− P (Dm ≤ 0) ≥ 1− exp

(
−µ2m

8

)
,

yielding the advertised exponential guarantee.

Proposition A.1. Given the execution table, the individual reward for unit test uk can be estimated
by

R⋆
uk

= −
n∑

l=1

(1− Isl)B⋆l,k + (
∏

l:Isl
=1

B⋆l,k)(
n∑

l=1

(1− Isl)).

Proof. (of Proposition A.1) We use the following estimation to detect if a code solution sj is correct
or not:

Isj =

tq∏
l=1

B⋆j,m+l.

So the accuracy of uk, p̂u, can be estimated by∏
l:Isl

=1

B⋆l,k.

Similarly, we can obtain estimator 1− p̂01 and p̂00 as
n∑

l=1

(1− Isl)(1− B⋆l,k)/
n∑

l=1

(1− Isl),
n∑

l=1

(1− Isl)B⋆l,k/
n∑

l=1

(1− Isl),

16

respectively. Finally, we derive µ̂ = p̂u(1− p̂01)− (1− p̂u)p̂00:(∏
l:Isl

=1

B⋆l,k)(
n∑

l=1

(1− Isl)(1− B⋆
l,k))− (1−

∏
l:Isl

=1

B⋆l,k)(
n∑

l=1

(1− Isl)B⋆l,k)

 /

n∑
l=1

(1− Isl)

=

− n∑
l=1

(1− Isl)B⋆l,k + (
∏

l:Isl
=1

B⋆l,k)(
n∑

l=1

(1− Isl))

 /

n∑
l=1

(1− Isl).

Given that
∑n

l=1(1− Isl) is constant for different k, we have our final reward for uk:

−
n∑

l=1

(1− Isl)B⋆l,k + (
∏

l:Isl
=1

B⋆l,k)(
n∑

l=1

(1− Isl)).

17

B Additional Experimental Results

Table 3: This is the error analysis table corresponding to Table 1. Each cell reports the “accuracy
improvement over the base model (standard error).” Note that the accuracies of unit test and code are
evaluated over 16 independent runs, whereas BoN scaling is computationally intensive, so we report
BoN accuracy based on a single run per benchmark.

Model LiveBench MBPP LiveCodeBench CodeContests CodeForces
UT Code UT Code UT Code UT Code UT Code

CURE-14B 0.276
(0.008)

0.088
(0.0042)

0.125
(0.010)

0.018
(0.0025)

0.274
(0.012)

0.064
(0.0029)

0.206
(0.015)

0.046
(0.0031)

0.328
(0.038)

0.029
(0.0013)

CURE-7B 0.177
(0.005)

0.062
(0.0037)

0.387
(0.030)

0.031
(0.0021)

0.201
(0.009)

0.047
(0.0032)

0.258
(0.014)

0.045
(0.0036)

0.205
(0.022)

0.023
(0.0011)

CURE-4B 0.478
(0.009)

0.021
(0.0034)

0.068
(0.010)

0.011
(0.0021)

0.359
(0.021)

0.014
(0.0025)

0.286
(0.004)

0.023
(0.0027)

0.117
(0.024)

0.025
(0.0014)

Figure 6: BoN performance improvement across benchmarks. Four curves (left to right) show
sampling 2, 4, 8, and 16 generated codes; each curve’s five points represent 1, 2, 4, 8, and 16
generated unit tests. (a). Improvement in BoN performance on open-source models after optimization.
(b). BoN improvement with optimized unit tester on GPT-series coders.

Table 4: Response length (in tokens) of Qwen3-4B and CURE-4B in unit test generation task,
corresponding to Figure 1 (e).

Benchmark Qwen3-4B CURE-4B

LiveBench 4711 3067
MBPP 2419 1611
LiveCodeBench 4326 2837
CodeContests 6086 3899
CodeForces 7309 4706

C Details of Experiments

C.1 Detailed Algorithm

We have our detailed CURE optimization pipeline as follows. The training data we use is our training
split of CodeContests. We set n = m = 32, η = 1e− 6 and β = 0.01.

18

Algorithm 1 CURE
1: Input:
2: 1) A set of coding tasks D = {q1, q2, . . . , qN}.
3: 2) A poliy πθ parameterized by θ.
4: 3) Number of iterations M.
5: 4) Number of code solutions generated in each step: n.
6: 5) Number of unit tests generated in each step: m.
7: 5) Learning rate η, KL coefficient β.
8: Initialize: Policy parameters θ.
9: for t = 1 to M or not converged do

10: Collect rollout samples:
11: for each task q ∈ D do
12: Generate n code solutions, sj , 1 ≤ j ≤ n, by policy πθ.
13: Generate m unit tests, uk, 1 ≤ k ≤ m, by policy πθ.
14: Executing the n generated solutions against these m unit tests produces a binary evaluation

matrix B ∈ {0, 1}n×m.
15: end for
16: Obtain the reward for code solutions:
17: for each task sj , 1 ≤ j ≤ n do
18:

R⋆
sj =

tq∑
l=1

B⋆j,m+l

19: end for
20: Obtain the reward for each unit test:
21: for each task uk, 1 ≤ k ≤ m do
22:

R⋆
uk

= −
n∑

l=1

(1− Isl)B⋆l,k + (

n∏
l=1

IslB⋆l,k)(
n∑

l=1

(1− Isl))

23: if πθ is long-cot model then
24: R⋆

uk
= trans(R⋆

uk
, lk)

25: end if
26: end for
27: Optimize the policy πθ:

J (θ, {oi}Gi=1) =E q∼P (Q)

{oi}G
i=1∼πθold

(·|q)

[
1

G

G∑
i=1

min
[πθ(oi | q)
πθold(oi | q)

Aoi , clip
(πθ(oi | q)
πθold(oi | q)

, ε
)
Aoi

]]
−E q∼P (Q)

{oi}G
i=1∼πθold

(·|q)

[
βDKL

[
πθ ∥πref

]]
,

28: Fine-tune πθ to obtain updated parameters θ ← θ − η∇θJ (θ, {sj}nj=1),
29: where Asj = normalize(R⋆

sj).
30: Fine-tune πθ to obtain updated parameters θ ← θ − η∇θJ (θ, {uk}mk=1),
31: where Auk

= normalize(R⋆
uk
).

32: end for
33: Output: Trained generator πθ.

C.2 Prompt Design

This is the prompt for code generation:

19

Code generation prompt

PROMPT = """ <|im_start|>You are a helpful assistant help user solve
problems. <|im_end|> <|im_start|>User: You need to think first then
write python script. Use input() to input and print() to output.
This is the problem: {{problem}} <|im_end|> <|im_start|>Assistant:
"""

This is the prompt for unit test generation:

Unit test prompt

PROMPT = """ <|im_start|>You are a helpful assistant help user
generate test examples for coding tasks. <|im_end|> <|im_start|>User:
Given a coding task, instead of providing the final script, your
task is to generate a new test example (both input, output and
explanation). This is the problem: {{problem}} You need to provide
a new test example. A good test example should be completely
accurate and conform to the problem’s format requirements, while also
possessing enough discriminative power to distinguish correct code
from incorrect code. Before providing a test example, you must think
carefully and reason step by step to derive an input and output you
are very confident are correct. For example, start by designing an
input you can reliably handle, then compute the output step by step.
If you’re unsure about the output, revise or re-design the input to
ensure accuracy. Finally, after completing these previous thinking
and derivation steps, you MUST put your final test example in the
following format:

Test Input: “‘input here“‘

Test Output: “‘output here“‘

Explanation: explanation here. <|im_end|> <|im_start|>Assistant:
"""

C.3 Preprocess Data

In our experiments, we adopt the stdio format for inputs and outputs, which is the standard input/output
format used in LiveBench [45], LiveCodeBench [19], CodeContests [23], and CodeForces [31].
However, some tasks in LiveBench and LiveCodeBench, as well as all tasks in MBPP [2], originally
use a functional input/output format. For consistency and ease of evaluation, we convert these
functional formats to stdio. Specifically, the conversion rule is as follows: each variable is placed on
a separate line, and lists are flattened into space-separated values on a single line, as illustrated in the
following example:

Input and output format example

functional format:

assert work("a", [1, 2, 3]) == 2

stdio format:

Input:

a

1 2 3

Output:

2

20

For evaluation, we directly use the ground-truth code provided in CodeContests and MBPP. For
Codeforces, LiveCode, and LiveCodeBench, we collect code generated by QwQ-32B [40] (using
BoN with a maximum of 3 samples) that passes all ground-truth tests to serve as the ground-truth
code.

C.4 Test-time Scaling and Agentic Coding

We introduce how we apply MPSC [16], AlphaCodium [35] and S* [21] in our test-time scaling and
agentic coding applications.

MPSC For each task, we generate 8 samples of code, unit tests, and specifications (A specification
is a pair of functions—a pre-condition and a post-condition—that define the valid input space and
the expected input-output behavior of a program, serving as a formal description of its intended
functionality.). We then follow the iterative optimization algorithm to derive the consistency scores,
which will be used to identify the optimal code solution.

AlphaCodium Following their procedure, we generate 8 code solutions per task using reasoning
over public tests, along with 8 corresponding unit tests. Each code solution undergoes 2 iterations of
refinement based on execution results from the public tests, followed by another 2 iterations based on
execution results using the generated unit tests. Specifically, the refinement step asks the model to
check the unit tests, code, and execution results, and then decide whether to refine or not.

S* We generate 8 code solutions and apply 4 iterations of self-debugging using public tests to
obtain 8 refined versions. Note that the debugging is based on the execution results of ground-truth
unit tests, so we directly ask the model to modify the code if the execution fails. The final solution is
selected via their pairwise comparison method, using generated unit tests for evaluation.

C.5 Agentic Unit Test Generation Methods

We first introduce the development of unit test generation methods. Traditional approaches rely
on software analysis techniques such as search-based methods (Evosuite) [11], random testing (Ran-
doop) [30], model checking [9, 12], and symbolic execution [33, 10]. To improve scalability, neural
machine translation-based methods were introduced [41, 1]. Specifically, AthenaTest [41] employs a
BART model, while A3Test [1] uses a PLBART model with post-processing for improved accuracy.
With the recent advancements in LLMs, prompt-based agentic methods such as ChatTester [50],
ChatUniTest [6], and TestART [13] have demonstrated superior performance, further highlighting the
potential of training LLMs for unit test generation. In this paper, we adopt the iterative refinement
and generation pipeline used in ChatTester and ChatUniTest.

Detailed Approach for Agentic Unit Test Generation in Our Experiments For the function-
specific unit test generation task, where the input includes both the task description and ground-truth
code, we prompt the policy model to generate both the code and the corresponding unit test. We then
execute them to obtain the test result. If the test passes, the process proceeds to the next iteration; if
it fails, we provide the code, unit test, and execution feedback to the policy model, which decides
whether to refine the unit test. The maximum number of iterations is set to 3.

C.6 Generated Unit Test Examples

Examples for CURE-14B
Task 1

You are given an array of integers nums of length n.
The cost of an array is the value of its first element. For example, the cost of [1,2,3] is 1,
while the cost of [3,4,1] is 3.
You need to divide nums into 3 disjoint contiguous subarrays.
Return the minimum possible sum of the cost of these subarrays.
Example 1:
Input:

21

1 2 3 12
Output:
6
Explanation: The best possible way to form 3 subarrays is: [1], [2], and [3,12] at a total
cost of 1 + 2 + 3 = 6.
Other possible ways include:

• [1], [2,3], [12] with a cost of 1 + 2 + 12 = 15
• [1,2], [3], [12] with a cost of 1 + 3 + 12 = 16

Generated unit test for task 1

1. Start with a simple input and compute the output step by step.
2. Let’s take the input as [2, 3, 4, 1].
3. According to the rules:

• The array needs to be divided into three disjoint contiguous subarrays.
• The cost is defined as the first element of each subarray.

Let’s think through the possible ways to divide the array [2, 3, 4, 1] into three subarrays:
Option 1: [2], [3], [4, 1]
Cost: 2 + 3 + 4 = 9
Option 2: [2, 3], [4], [1]
Cost: 2 + 4 + 1 = 7
Option 3: [2], [3, 4], [1]
Cost: 2 + 3 + 1 = 6
After comparing all options, the minimum cost is from [2], [3, 4], [1] yielding a cost
of 6.
Test Input:
2 3 4 1
Test Output:
6
Explanation: The optimal way to divide the array [2, 3, 4, 1] is:

• [2] with a cost of 2,
• [3, 4] with a cost of 3,
• [1] with a cost of 1.

Total cost: 2 + 3 + 1 = 6.

Task 2

You are given a 0-indexed integer array batteryPercentages having length n, denoting
the battery percentages of n 0-indexed devices.
Your task is to test each device i in order from 0 to n - 1, by performing the following test
operations:

• If batteryPercentages[i] is greater than 0:
– Increment the count of tested devices.
– Decrease the battery percentage of all devices with indices j in the range
[i + 1, n - 1] by 1, ensuring their battery never goes below 0, i.e.,
batteryPercentages[j] = max(0, batteryPercentages[j] - 1).

– Move to the next device.
• Otherwise, move to the next device without performing any test.

Return an integer denoting the number of devices that will be tested after performing the test
operations in order.

22

Example 1:
Input:
1 1 2 1 3
Output:
3
Explanation:

• At device 0: batteryPercentages[0] > 0, so count = 1. batteryPercentages becomes
[1,0,1,0,2]

• At device 1: batteryPercentages[1] == 0, skip.
• At device 2: batteryPercentages[2] > 0, count = 2. batteryPercentages becomes

[1,0,1,0,1]
• At device 3: batteryPercentages[3] == 0, skip.
• At device 4: batteryPercentages[4] > 0, count = 3.

So the answer is 3.

Generated unit test for task 2

1. Start with a case where devices alternate between having battery and not having battery to
ensure we understand the decrement logic correctly.
2. Let’s consider the input [1, 0, 2, 0, 3].
Analysis:

• At device 0: batteryPercentages[0] = 1 > 0
– Increment tested count: 1
– Decrement indices 1 to 4 → batteryPercentages becomes [1,0,1,0,2]

• At device 1: batteryPercentages[1] = 0 → skip
• At device 2: batteryPercentages[2] = 1 > 0

– Increment tested count: 2
– Decrement indices 3 to 4 → batteryPercentages becomes [1,0,1,0,1]

• At device 3: batteryPercentages[3] = 0 → skip
• At device 4: batteryPercentages[4] = 1 > 0 → increment tested count: 3

Test Input:
1 0 2 0 3
Test Output:
3
Explanation:

• Step-by-step execution results in final batteryPercentages: [1,0,1,0,1]
• Devices tested: 0, 2, and 4 → total = 3

Task 3

You are given an array nums consisting of positive integers.
Return the total frequencies of elements in nums such that those elements all have the
maximum frequency.
The frequency of an element is the number of occurrences of that element in the array.
Example 1:
Input:
1 2 2 3 1 4

23

Output:
4
Explanation: The elements 1 and 2 have a frequency of 2, which is the maximum frequency
in the array.
So the number of elements in the array with maximum frequency is 2 (from 1) + 2
(from 2) = 4.

Generated unit test for task 3

Let’s consider an input where we have multiple elements with different frequencies. For
instance, an array with several 2s and 3s, and a few 1s and 4s.
Test Input:
1 2 2 3 3 3 4 4 4 4
Step-by-Step Computation:

• Count the frequency of each element:
– 1: 1 time
– 2: 2 times
– 3: 3 times
– 4: 4 times

• Maximum frequency = 4 (from element 4)
• Only element 4 has this maximum frequency.

Test Output:
4
Explanation: The element 4 appears 4 times, and this is the highest frequency in the array.
Therefore, the total number of elements with the maximum frequency is 4.

Task 4

You are given an array of integers nums of length n.
The cost of an array is the value of its first element. For example, the cost of [1,2,3] is 1,
while the cost of [3,4,1] is 3.
You need to divide nums into 3 disjoint contiguous subarrays.
Return the minimum possible sum of the cost of these subarrays.
Example 1:
Input:
1 2 3 12
Output:
6
Explanation:

• The best way to partition is [1], [2], [3,12] with a total cost: 1 + 2 + 3 = 6.
• Other possibilities:

– [1], [2,3], [12] → cost = 1 + 2 + 12 = 15
– [1,2], [3], [12] → cost = 1 + 3 + 12 = 16

Generated unit test for task 4

1. Designing the Input:
• Use an array of length 5 to explore multiple partitioning scenarios.

24

• Mix small and large integers for diversity.
Consider the array [4, 1, 5, 2, 6].
2. Computing the Output: Try all valid 3-way partitions:

• [4], [1], [5, 2, 6] → cost = 4 + 1 + 5 = 10
• [4], [1, 5], [2, 6] → cost = 4 + 1 + 2 = 7
• [4], [1, 5, 2], [6] → cost = 4 + 1 + 6 = 11
• [4, 1], [5], [2, 6] → cost = 4 + 5 + 2 = 11
• [4, 1], [5, 2], [6] → cost = 4 + 5 + 6 = 15
• [4, 1, 5], [2], [6] → cost = 4 + 2 + 6 = 12

Minimum cost = 7 from partition [4], [1, 5], [2, 6].
Test Input:
4 1 5 2 6
Test Output:
7
Explanation: The optimal partition is:

• [4] → cost = 4
• [1, 5] → cost = 1
• [2, 6] → cost = 2

Total cost: 4 + 1 + 2 = 7.

Examples for CURE-4B (long-CoT)
Task 5

You are given an array of integers nums of length n.
The cost of an array is the value of its first element. For example, the cost of [1,2,3] is 1
while the cost of [3,4,1] is 3.
You need to divide nums into 3 disjoint contiguous subarrays.
Return the minimum possible sum of the cost of these subarrays.
Example 1:
Input:
1 2 3 12
Output:
6
Explanation: The best possible way to form 3 subarrays is: [1], [2], and [3,12] at a total
cost of 1 + 2 + 3 = 6. The other possible ways to form 3 subarrays are:

• [1], [2,3], [12] → cost = 1 + 2 + 12 = 15
• [1,2], [3], [12] → cost = 1 + 3 + 12 = 16

Generated unit test for task 5

<think>
Okay, let’s see. I need to create a new test case for this problem. The problem is about
selecting up to L subjects without overlapping, maximizing happiness. So I need to make
sure the input follows the constraints and that the output is correct.
First, I need to make sure the input is valid. Let’s start by choosing small values for N, M, L
that are within the constraints. Let’s say N is 3, M is 3, L is 2. That’s manageable.
Now, I need to create courses that don’t overlap and can be selected without conflict. Let me
think of some courses that are non-overlapping. For example:

25

Course 1: di=0 (Monday), ai=1, ki=1 (so runs during 1st period). That’s 1 period. Then
course 2 could be di=0, ai=2, ki=1. Then course 3 could be di=1, ai=1, ki=1. Then they
can be selected as they don’t overlap. But since L is 2, I need to select 2 courses that give
maximum happiness.
Let me think of their ti values. Let’s say course 1 has ti=5, course 2 has ti=4, course 3 has
ti=3. Then the max would be 5+4=9. But maybe there’s a better selection.
Alternatively, if there’s a course that overlaps with others. Wait, but in this case, the courses
are not overlapping. But maybe in the test case, it’s possible to select two courses that don’t
conflict, but another combination gives higher happiness.
Alternatively, maybe there’s a scenario where overlapping courses can’t be selected. So I
need to design courses that allow different combinations.
Another approach: Let me think of two courses that can be chosen. For instance, course 1
(d=0, a=1, k=1) and course 2 (d=1, a=1, k=1). But course 1 is on Monday, a=1, so runs from
Monday period 1, and course 2 is Tuesday period 1. So they are not overlapping. They can
be both selected if L is 2. So total happiness is sum of their ti.
But maybe another course has higher ti. Let me try to make a test case where the best selection
is two courses that don’t overlap, but perhaps have higher ti.
Let’s design a scenario. For example, N=3 (days 0-4?), wait N is the number of periods per
day. Wait the problem says that classes are from Monday to Friday (5 days) and for each day,
there are N periods (from 1 to N), and courses start at ai and run ki frames (consecutive). So
for example, if ai is 1 and ki is 2, the course runs from 1 to 2 (periods 1 and 2) of that day.
So for the test case, I need to make sure that courses are not overlapping. For example, a
course that starts on Monday (d=0) at a=1, ki=1 (so runs Monday period 1), and a course that
starts on Tuesday (d=1) at a=2, ki=2 (so runs Tuesday period 2 and 3) — they don’t overlap.
But to make this work, let’s create a few courses that can be selected and have different ti
values.
Let me try to create a test case:
N=3 (so each day has 3 periods)
M=3, L=2.
Course1: d=0 (Monday), a=1, k=1, t=5. It runs from Monday period 1.
Course2: d=0 (Monday), a=2, k=1, t=6. It runs from Monday period 2.
Course3: d=1 (Tuesday), a=1, k=1, t=4. It runs on Tuesday period 1.
Now, if L is 2, the best selection is course1 and course3 (t=5+4=9) or course2 and course3
(6+4=10). But course1 and course2 overlap on Monday, so they cannot be selected together.
So the maximum is course2 and course3, which sum to 6+4=10.
But wait, if course2 and course3 are selected, then course2 is on Monday period 2, course3 is
on Tuesday period 1. They don’t conflict, so that’s allowed.
So in that case, the output would be 10.
But maybe that’s the test case. However, I need to make sure that the input is correct.
Let me structure the input as:
N=3, M=3, L=2
Then three courses:
d1=0, a1=1, k1=1, t1=5
d2=0, a2=2, k2=1, t2=6
d3=1, a3=1, k3=1, t3=4
So the input is:
3 3 2
0 1 1 5
0 2 1 6
1 1 1 4
The output would be 6+4=10?
Yes, that would be the maximum. Because course2 and course3 can be taken.
But what if another combination? For example, course2 (t=6) and course3 (t=4) is 10.
Alternatively, course2 and course3 is allowed. Then that’s the correct answer.
Now, the test input would be:
Test Input:
3 3 2

26

0 1 1 5
0 2 1 6
1 1 1 4
Then the output is 10. So that’s a valid test case.
But I need to check whether the courses don’t overlap. Course1 is Monday 1, course2 is
Monday 2. So they don’t conflict. However, course2 and course1 are on the same day, but
different periods, so they can be taken together if L is larger than 1. But in this case, L is 2.
But wait, the problem says that each student can take up to L subjects that do not overlap.
But in the above example, course1 and course2 are on the same day, same day, but different
periods, but since the course starts from ai and runs for ki frames, they are consecutive.
So course1 is Monday, period 1. It’s for 1 frame. So the course is from Monday period 1.
Course2 is Monday period 2, so it runs for 1 frame. So they are on the same day but not
overlapping. So they can be selected as two different courses. But in that case, if the L=2,
then the maximum would be 5+6=11? Wait, that’s a mistake in the previous analysis. Oh,
right! Because in this case, course1 and course2 can both be selected if they are on the same
day, and not overlapping. So the maximum would be 5+6=11.
But then that would be a better selection. So the test case needs to have courses that are
non-overlapping. So why would the answer be 10? That suggests that I made a mistake in the
test case.
Wait, this is a problem. Let me think again.
So if the courses are on the same day, but their periods are non-overlapping, then they can be
taken together. For example, course1 is on Monday, period 1, runs for 1 frame. Course2 is
on Monday, period 2, runs for 1 frame. So they can be selected together. So the maximum
is course1 + course2 (t=5+6=11) instead of course2 and course3 (t=6+4=10). So this is a
problem.
Ah, I think my earlier test case is flawed because the maximum would be 5+6 = 11, which is
higher than the previous thought. That suggests I need to adjust the test case to avoid such
cases.
So, what’s the correct way to create a test case where the maximum is not selecting overlap-
ping courses on the same day.
Let me re-construct the test case. Let’s have courses that cannot be selected together, even if
they are on the same day.
For example, course1 is on Monday (d=0), ai=1, ki=2. That would cover periods 1 and 2 on
Monday. Then course2 is on Monday (d=0), ai=2, ki=1. So the course1 starts on ai=1, runs
for 2 frames. So it’s periods 1 and 2. So course2 starts on period 2 and runs for 1 frame. That
would overlap with course1, so they can’t be taken together. So the user can’t take course1
and course2 together.
So for that scenario, if L is 2, the maximum would be course1 (t=5) + course3 (t=4) = 9.
Let me try this.
Let’s have:
N=3 (so periods are 1-3 each day)
M=3 courses:
Course1: d=0 (Monday), a=1, k=2, t=5. Runs on Monday 1 and 2.
Course2: d=0 (Monday), a=2, k=1, t=6. So starts on Monday 2. It overlaps with course1.
So cannot be selected with course1.
Course3: d=1 (Tuesday), a=1, k=1, t=4. No overlap with course1. So if L is 2, then the best
would be course1 (5) + course3 (4) = 9. Or course2 (6) + course3 (4) = 10, but course2 is on
Monday 2, and course3 is on Tuesday. So that’s allowed. But course1 and course2 can’t be
selected together. So the maximum is 6+4=10. Or course2 and course3.
But that’s better than course1 and course3.
So in that case, the correct answer would be 10.
Now, this scenario makes sense. So the input would be:
N=3, M=3, L=2.
Then three courses:
0 1 2 5
0 2 1 6
1 1 1 4

27

Now, the courses are as follows:
course1: d=0 (Monday), starts period 1, runs for 2 frames (periods 1 and 2). So course1
covers Monday periods 1 and 2.
course2: d=0, a=2, k=1: period 2 of Monday, runs 1 frame. So this overlaps with course1.
course3: d=1 (Tuesday), period 1, runs 1 frame.
So, possible selections:
- course2 and course3: t=6+4=10.
- course3 and course1: 5+4=9.
- course2 and course3 is better.
So the correct answer would be 10.
In this case, the test case would be:
Test Input:
3 3 2
0 1 2 5
0 2 1 6
1 1 1 4
Then the Output is 10.
So this should be a valid test case, and the output is 10. That test case would allow the code
to correctly distinguish between overlapping and non-overlapping courses.
I need to verify that each course’s ai and ki are valid. For example, for course1, ai is 1, ki is 2.
Then ai+ki-1 is 1+2-1=2. Which is <=3 (since N=3). So yes, valid.
For course2, ai=2, ki=1: ai + ki -1 = 2+1-1=2, which is within N=3.
So that’s correct.
So this test case should be valid and the output is 10.
Therefore, the final test case is: </think>
Test Input:
3 3 2
0 1 2 5
0 2 1 6
1 1 1 4
Test Output:
10
Explanation: We have three courses. The first course runs for two periods (Monday, periods
1 and 2) and provides a happiness of 5. The second course runs for one period (Monday,
period 2) and provides a happiness of 6, but overlaps with the first course. The third course
runs for one period (Tuesday, period 1) and provides 4. The best combination is the second
and third courses, which are non-overlapping. Their total happiness is 6 + 4 = 10, which is
the maximum possible.

28

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and the last paragraph of the introduction directly highlight the
contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work at the end of the discussion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

29

Justification: The assumption is clearly stated in the main article, and the complete proof is
provided in Appendix A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Detailed guidelines for reproducing the experimental results are provided in
both the experimental setup section of the main paper and Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

30

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will provide the data and code used in our experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experiments details, such like paramter choosing, and data splits are all
provided in the experimental setup section of the main paper and Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide the error analysis in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

31

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computation resource used is written in the experiment setting section of
main article.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research presented in this paper fully complies with the NeurIPS Code of
Ethics in all respects.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In the introduction, we state that our work—focusing on improving the coding
abilities of LLMs—is an essential step toward advancing AI, which we believe has positive
implications for society.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

32

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not foresee any ethical or safety risks, as both the data and models used
in our work are open-sourced and have already been widely adopted without known issues.
Furthermore, our model adheres to standard safety practices and poses no additional risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All models and datasets used in our work have been properly cited in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

33

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The derived model is well documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:[NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

34

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The usage of LLM is written in details in the experiment setting part, as well
as the Appendix B.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

35

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Method
	Motivation: Using Unit Tests for Inference
	Analysis on Reward Precision
	Co-evolving Coder and Unit Tester with RL
	Improve Efficiency of Long-CoT Unit Tester

	Experiments
	Settings
	Results

	Discussions
	Proofs of Theoretical Results
	Additional Experimental Results
	Details of Experiments
	Detailed Algorithm
	Prompt Design
	Preprocess Data
	Test-time Scaling and Agentic Coding
	Agentic Unit Test Generation Methods
	Generated Unit Test Examples

