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Parallel Scan on Ascend AI Accelerators
BARTŁOMIEJ WRÓBLEWSKI∗, GIOELE GOTTARDO∗, and ANASTASIOS ZOUZIAS, Com-

puting Systems Lab, Huawei Zurich Research Center, Switzerland

We design and implement parallel prefix sum (scan) algorithms using Ascend AI accelerators. Ascend acceler-

ators feature specialized computing units—the cube units for efficient matrix multiplication and the vector

units for optimized vector operations. A key feature of the proposed scan algorithms is their extensive use of

matrix multiplications and accumulations enabled by the cube unit. To showcase the effectiveness of these

algorithms, we also implement and evaluate several scan-based operators commonly used in AI workloads,

including sorting, tensor masking, and top-𝑘 / top-𝑝 sampling.

Our single-core results demonstrate substantial performance improvements, with speedups ranging from

5× to 9.6× compared to vector-only implementations for sufficiently large input lengths. Additionally, we

present a multi-core scan algorithm that fully utilizes both the cube and vector units of Ascend, reaching up

to 37.5% of the theoretical memory bandwidth. Furthermore, our radix sort implementation, which utilizes

matrix multiplications for its parallel splits, showcases the potential of matrix engines to enhance complex

operations, offering up to 3.3× speedup over the baseline.
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Ascend, AI accelerators
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1 Introduction
Parallel scan is a fundamental parallel computing paradigm with many applications [7, 28]. Due

to its importance, parallel scan has been studied in several models of computation, including the

circuit (work and depth) and the Parallel Random-Access Machine (PRAM) model [8]. In the circuit

model, the depth and size trade-offs for parallel optimal prefix circuits are well-understood for

binary operations [44, 50], but other models are yet to be explored, especially in the heterogeneous

computing domain [12, 51].

Despite many attempts, there is a large gap between abstract parallel machine models and

the current state-of-the-art accelerators that contain heterogeneous computing units, see[35]

and [2, 25, 43]. For example, hardware vendors have manufactured accelerators with specialized

compute engines known as matrix engines or tensor core units. A list of such specialized hardware

units includes Google’s TPUs [22, 23], Nvidia’s Tensor Cores [39], AMD’s Matrix Cores [1] and

Huawei’s Ascend Cube Unit [32, 33] to name a few. Moreover, in the CPU domain, examples

of such units (or extensions) are ARM’s Scalable Matrix Extension (SME) [3], Intel’s Advanced

Matrix Extensions (AMX) [20] and IBM’s POWER10 Matrix-Multiply Assist (MMA) [46]. Therefore,

today’s high-performance processors contain matrix engines that allow efficient multiplication of
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2 Bartłomiej Wróblewski, Gioele Gottardo, and Anastasios Zouzias

constant-sized matrices, making ideas from the early 1980s [27, 45] a reality and initiating fruitful

debates within the community [13].

Given the presence of matrix engines in computing products, a model of computation was

recently proposed to capture matrix multiplication accelerators called the Tensor Core Unit (TCU)

model [10, 11]. The authors of [11] initiated the study of TCU algorithms and revisited classical

paradigms in the TCUmodel. From the perspective of hardware-aware algorithmic implementations,

the seminal paper of [12] proposed and implemented parallel scan (and reduction) kernels tailored

to GPU accelerators. We drew inspiration from both these works [11, 12] to advance the study of

parallel scans on matrix multiplication accelerators. As a case study and an evaluation environment,

we use Huawei’s Ascend AI accelerators and the Compute Architecture for Neural Networks

(CANN) software ecosystem of Ascend to evaluate our proposals [31].

Our main contributions are listed below:

• We design, implement, and evaluate parallel scan algorithms specialized for the Ascend AI

accelerator. The distinguishing feature of the proposed algorithms is the extensive use of the

Ascend matrix multiplication engines (“Cube cores”). In particular, we implement several

scan variants, including single-core and multi-core scans, scans on multiple arrays (batched

scan), inclusive/exclusive scans and specialized scan implementations for boolean (mask)

inputs using the cube unit’s 8-bit integer capabilities.

• We evaluated the proposed scan algorithms that use a single cube and vector units, demon-

strating a 5× up to 9.6× speed-up compared to the baseline scan (vector unit only) for

sufficiently large input lengths.

• We present a multi-core scan (MCScan) algorithm that fully utilizes both the cube and vector

units of the Ascend 910B4 accelerator, reaching up to 37.5% of the theoretical memory

bandwidth. MCScan achieves a 15.2× speedup compared to the single cube algorithm when it

uses all available (20) cube cores and vector cores.

• We implement a list of computational kernels (operators), including parallel split, compress/-

compact and top-𝑝 (nucleus) sampling essential to AI workloads. In all of these cases, we

demonstrate significant performance improvements.

• Lastly, we implement radix sort, whose parallel splits take advantage of the cube units. The

radix sort implementation provides up to 3.3× speed-up over baseline sorting that does not

utilize the cube units.

Next, we briefly emphasize the key distinction between the above contributions and prior art.

First, the multi-core scan algorithm is novel (to the best of our knowledge) since it performs

partial recomputation of the reduction values on both the cube and vector units in its first phase.

This recomputation strategy is different compared to all previously known scan strategies on

accelerators, see Section 2.1. Such a recomputation strategy could be of interest to other matrix

multiplication accelerators as well.

Second, our radix sort implementation yields an intriguing result: in practice, multiple small dense

matrix multiplications can be leveraged to improve the end-to-end performance of parallel sorting.

Although the algorithmic ideas and techniques underlying this result are well-established [9], we

believe that it paves the way for interesting research directions in the future. As an example, we

pose the following question. Is it possible to utilize the multiple-add capabilities of the matrix

multiplications units to improve further the performance of parallel sorting? A similar question of

"Can we sort with matrix multiplications?" was raised during the presentation of [10]. Note that

although the parallel splits of our radix sort implementation heavily use matrix multiplications to

perform scans, they do not use the multiply-add capabilities of the matrix multiplication unit.
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Parallel Scan on Ascend AI Accelerators 3

2 Background
In this section, we give an overview of related work in computing parallel scans using accelerators,

focusing mostly on matrix multiplication accelerators. We also present the Tensor Core Unit (TCU)

model of computation, and we give a summary of a selected list of scan-based primitives. The

(inclusive) prefix sum or scan of a sequence is a new sequence where each term at index i is the

cumulative sum of all terms from the beginning of the original sequence up to index i.

2.1 Scan Strategies on Accelerators
Numerous parallel scan implementations and libraries have been proposed in the literature [4, 5,

14, 18, 36, 38, 42, 48]. Here, we discuss the most relevant work focusing on scan implementations

targeting accelerators, most notably Graphics Processing Units (GPUs). Horn was one of the first

to implement parallel scans in GPUs [41, Chapter 36], followed up with several improvements.

In a nutshell, GPU scan implementations primarily follow a two-level hierarchical approach

where the highest level of the hierarchy is the block level. An efficient scan implementation follows

one of these scan strategies: Scan-Scan-Add (SSA), Reduce-Scan-Scan (RSS), or Stream-scan according
to the state-of-the-art decouple lookback scan approach of [36]. Scan-Scan-Add (SSA) means that the

(local) scans are initially computed per block. Second, the values of the largest index of each block

are collected and scanned. Third, the collected per-block scan values are broadcast-added to their

corresponding blocks. Similarly, the RSS approach makes a block-level reduction first, followed by

a scan of the block-level reductions and a final scan of each block. We refer the interested reader

to [36, Section 3] for a more detailed discussion.

Scan is a memory-bound operation and, hence, the main drawback of the SSA and RSS scan

strategies is the high number of elements that are read and written to global memory. In particular,

for input length 𝑁 , SSA reads/writes ≈ 4𝑁 elements, whereas RSS reads/writes ≈ 3𝑁 elements.

Such a reduction in the memory access size is critical for improving the performance of scans.

StreamScan and decouple look-back strategies access only 2𝑁 memory elements but need to

efficiently handle the sequential data dependency of the scan computation using adjacent (block)

synchronization, see [19, Chapter 11.7]. StreamScan is a single-pass approach in which each thread

block is assigned a tile of input, and a serial dependency between the blocks exists [48]. The critical

feature of StreamScan is that it requires synchronization between adjacent blocks only (without

global block-level synchronization). The decoupled look-back strategy of [36] aims to alleviate the

drawbacks of the serial dependency of StreamScan by performing redundant work to “dissociate”

local computation from the latency of global prefix propagation. Both StreamScan and decouple

look-back strategies require only 2𝑁 data movement to global memory: 𝑁 input elements are read,

𝑁 output elements are written.

2.2 Scan using Matrix Multiplications
The study of accelerating prefix sum (and reduction) operations using matrix multiplication units

was first initiated in the seminal paper of [12]. The authors of [12] designed scan algorithms for

the GPU architecture by providing highly optimized CUDA kernels and, hence, use the terms of

warp/block/grid of the CUDA programming model. They proposed a warp-level scan algorithm [12,

Algorithm 6], and a block-level scan algorithm [12, Algorithm 7]. Moreover, they mentioned that

the device/grid level algorithm is based on a textbook approach [18].

A follow-up work presented a parallel scan algorithm in the TCU model of computation where

only matrix multiplication operations are required and, more importantly, the depth of the compu-

tation is logarithmic in the input size [51]. Although the main algorithm of [51] has linear work
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4 Bartłomiej Wróblewski, Gioele Gottardo, and Anastasios Zouzias

and logarithmic depth/span, its strided memory access patterns are typically hard to translate to

efficient memory access operations.

2.3 Tensor Core Unit (TCU) Model
To the best of our knowledge, the Tensor Core Unit (TCU) model is the only model of computation

that has been recently proposed to capture matrix multiplication accelerators [10]. The TCU

model is a standard RAM model with an additional circuit, named tensor core unit, that performs

matrix multiplication between constant-size matrices. Although the TCU model captures well a

single matrix multiplication computational unit of today’s accelerators, it ignores other essential

features: the presence of vector processing units and, more critically, the multi-core nature of these

accelerators. Since the TCU model considers only a single matrix multiplication unit, it does not

allow its users to conduct a work/depth algorithmic analysis [8]. Due to the above limitations, any

algorithmic analysis in the TCU model will not correspond to a realistic execution in Ascend, i.e.,

ignoring parallelism and the vector units. Nevertheless, we discuss the work/depth asymptotic

analysis of the proposed algorithms, assuming the presence of multiple matrix engines and vector

units, considering their operations as basic operations.

2.4 Applications of Parallel Scan
Parallel scan has a plethora of applications [7, 28]. Here, we restrict our attention to scan applications

that enable us to generate efficient computational kernels (operators) that appear in AI workloads.

In particular, we have identified that sorting, weighted sampling, masking of tensors, and top-

𝑘/top-𝑝 sampling are essential. All these applications of the parallel scan are well-known, but

the observation that top-𝑝 sampling can benefit from scan seems to be new (to the best of our

knowledge).

3 Ascend AI Accelerators
In this section, we briefly discuss the DaVinci architecture of Ascend accelerators consisting of

the cube and vector computing units, mostly following [33]. Moreover, we discuss the AscendC

programming model of Ascend, a recently proposed programming model for Ascend operator

development. All the material presented here is available online at https://www.hiascend.com.

3.1 Ascend Hardware
Huawei Ascend 910B is a recent series of Huawei chips designed to accelerate neural network

training and inference. For the scope of the paper, an accelerator can be seen as a grid of computing

units called AI Cores and a global High Bandwidth Memory (HBM) with L2 cache.

In the Ascend 910B series, an AI Core consists of one AI Cube (AIC) core and multiple, usually

two, AI Vector (AIV) cores. Each AIC and AIV core contains a scalar unit for basic arithmetic

operations, program flow control, calculating addresses, and dispatching instructions. Each core

also includes computing engines (either vector or cube ones), local memory buffers, and Memory

Transfer Engines (MTEs). MTEs are responsible for moving data between global and local memory

buffers. Both MTEs and computing engines have separate instruction queues and work in parallel,

so it is the programmer’s responsibility to ensure synchronization.

An AI Vector core performs vector operations similar to traditional SIMD operations. The input

and output data of an AI Vector core must be allocated to the local scratchpad/buffer called Unified

Buffer (UB). AIV cores support simple arithmetic operations such as vector addition and more

complex ones such as gather and reduce.

An AI Cube core is primarily responsible for matrix multiplication operations. The AI Cube core

contains a hierarchical scratchpad memory structure (L1, L0A, L0B, L0C, BT, FP buffers) and a cube

, Vol. 1, No. 1, Article . Publication date: May 2025.
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Parallel Scan on Ascend AI Accelerators 5

Fig. 1. Architecture of Ascend 910B Training series accelerators. Each AI core contains one cube and two
vector units.

computing engine. An AIC core can be configured to multiply two matrices of almost arbitrary sizes.

It also supports result accumulation, selected activation functions, and quantization operations.

The cube core supports both floating point and low-precision integer data types, i.e. float16 (with

float32 output) and int8 (with int32 output).

Figure 1 shows the Ascend architecture where the Cube and Vector units are separate cores. In

the 910B architecture, data can only be exchanged using global memory and/or L2 cache. This

approach dramatically simplifies the implementation logic, but each data transfer between the AIC

and AIV cores might be expensive in terms of performance.

3.2 AscendC Programming Model
Recently, a pipeline-based programming model for Ascend called AscendC has been developed. As-

cendC allows its users to build high-performance computational kernels for the Ascend architecture.

Such kernels are usually called AscendC operators. The AscendC programming model is built on

top of C++, and it allows its users to have fine-grained control of Ascend’s hardware components,

such as MTEs, scalar, vector, and cube compute engines. At the same time, AscendC eliminates

many potential problems, such as the need to explicitly synchronize hardware components within

AIC and AIV cores.

The AscendC programming model is based on a multiple pipeline abstraction model. AscendC

provides users with some abstractions, including a context manager object, tensors, queues, and

buffers.

AscendC provides tensor structures as wrappers over data allocated in the global or core’s local

memory. GlobalTensor is a structure that represents a buffer in global memory. In all operators,

both input and output data come from global tensors. On the other hand, LocalTensor represents
a buffer in the core’s local memory. Users can allocate local tensors in one of multiple possible

hardware buffers (UB, L1, L0A, L0B, etc.).

AscendC also provides the queues API – data structures used for managing tensors and resolving

data dependencies between different hardware components which work on the same tensors.

After a hardware component interacts with a tensor the Enque method is called, that saves the

pointer into the queue. Then when the next hardware component needs to interact with the same

, Vol. 1, No. 1, Article . Publication date: May 2025.



6 Bartłomiej Wróblewski, Gioele Gottardo, and Anastasios Zouzias

tensor the Deque method is called, that waits for the corresponding Enque to be called, ensuring
synchronization, and returns the pointer to the local tensor. This way, all data dependencies are

explicit, and the computational pattern is consistent across all local tensors and all physical buffers.

Queues can contain more than one tensor at a time – in many cases, implementing double buffering

comes down to changing the queue capacity from the default value one to two.

Naturally, the model also defines dozens of possible operations on tensors; we only mention

some of the most frequently used here:

• DataCopy. MTE’s function that copies data from an input to an output tensor. The basic

version copies a number of continuous elements but can also be configured for strides and

automatic layout transformations.

• Mmad. AIC core’s function that multiplies two input matrices (local tensors) and writes the

result to the output matrix (a local tensor). The result can be accumulated with existing values

in the output tensor.

• Adds. AIV core’s function that adds a scalar to an input local tensor and writes the result to

the output local tensor.

• GatherMask. AIV core’s function that takes an input local tensor and a binary mask, also a

local tensor, and gathers all the elements from the input tensor for which the corresponding

value in the mask is equal to 1. Gathered elements are stored in the contiguous form in the

output local tensor.

An operator is executed using multiple blocks – block is the smallest logical execution unit. The

user specifies the number of blocks to be used when running the kernel. Another critical function

AscendC provides is hardware synchronization among computing units – SyncAll allows the user to
synchronize all blocks. The execution is continued only after each unit reaches the synchronization

point.

4 Scan Algorithms on Ascend
In this section, we discuss the design and implementation of parallel scan algorithms using ma-

trix multiplication accelerators. Although the Ascend AI accelerator is used as a case study for

the implementations, we aim to decouple the fundamental algorithmic ideas from the intricate

architectural details of the Ascend accelerator as much as possible.

Matrix multiplication is an essential operator in our discussions here; hence, we introduce some

linear algebraic notation that will be used throughout the paper. We denote matrices using boldface

font and capitals, i.e., 𝑨,𝑩, 𝑪 . We use 𝑠 to denote the size of square matrices, i.e., 𝑨𝑠 , and define

ℓ := 𝑠2. We drop the subscript on the matrices when the dimension is clear from the context. We

denote matrix multiplication between𝑨 and𝑩 by 𝑪 := 𝑨@𝑩. We denote by 𝑼𝑠 the upper-triangular
all-ones square matrix of size 𝑠 , including ones on the main diagonal. 𝑳𝑠 is the lower triangular
all-ones of size 𝑠 . 𝑳−𝑠 is the strictly lower triangular all-ones of size 𝑠: 𝑳−𝑠 has zeroes on the main

diagonal. 1𝑠 denotes the all-ones square matrix of size 𝑠 . We denote one-dimensional arrays using

boldface font and lower-case: 𝒓 , 𝒙,𝒚, 𝒛. We frequently partition an array 𝒙 into tiles of length ℓ , i.e.,

tiles are contiguous blocks of ℓ entries of 𝒙 . We note an arbitrary ℓ-tile of 𝒙 by 𝒙ℓ . We also view a

tile 𝒙ℓ as a row-major matrix 𝑨 having 𝑠 rows and 𝑠 columns (pad with zeroes if necessary).

In Section 4.1, we present two scan algorithms (Algorithm 1 and Algorithm 2) that use a single

matrix multiplication unit; we call these algorithms respectively ScanU and ScanUL1, based on

which constant matrices they use. The key ingredient here is to utilize Ascend’s cube unit effectively.

In particular, Algorithm 2 performs multiple matrix multiplications and utilizes the accumulation

buffer of the Cube unit to compute the scan of an input tile of length ℓ , whereas Algorithm 1

computes 𝑠 consecutive scans of smaller tiles of length 𝑠 using a single matrix multiplication.

, Vol. 1, No. 1, Article . Publication date: May 2025.



Parallel Scan on Ascend AI Accelerators 7

Next, in Section 4.2, we build on top of the ScanU and ScanUL1 algorithms and extend them into

batched scan variants that operate on multi-dimensional arrays (tensors). Here, we discuss issues

that arise when scheduling several scan operations into multiple cores, including padding, better

load balancing on vector/cube units with a ratio of 2:1, etc.

Last but not least, in Section 4.3, we present a multi-core scan algorithm (MCScan, Algorithm 3)

tailored for the Ascend AI accelerator. A key feature of MCScan is that it utilizes all the available
cube and vector cores. MCScan is designed for scenarios involving very large one-dimensional

arrays.

4.1 Warm-up: single cube scans
In this section, we present two scan algorithms that utilize a single cube and vector units. Both

algorithms are tailored to the DaVinci architecture and are based on the linear algebra fact that if

𝑨 is the row-major matrix view with 𝑠 columns of a vector 𝒙 then:

Matrix multiplication 𝑨@ 𝑼𝑠 computes “local” scans of tiles of size 𝑠 of 𝒙 .

1
0

Us

x

+
+
+

+

x

y

Cube unit

Vector unit
Global Memory

L0A L0B

L1C

xl

yl

UB

Fig. 2. Diagram that shows the data path from an input tile 𝒙ℓ to an output tile𝒚ℓ of the ScanU (Algorithm 1).
Blue and green denote the input and output array, respectively.

The critical path or span of both proposed algorithms is linear on the input length for constant

values of 𝑠 , since there is a sequential dependency on the partial sums. Therefore, these kernels

are more effective when the input array to be scanned has a relatively short length. Additionally,

designing and developing scan algorithms that use a single cube core is a building block for

extending these ideas to a multi-core scenario, as seen in Sections 4.2 and 4.3.

The first algorithm, ScanU (Algorithm 1), computes 𝑠 consecutive local scans of tiles of size 𝑠

using the cube unit and then propagates the partial sums using a single vector unit. More precisely,

once the cube unit has computed the local row scans of a matrix tile of size ℓ , the tile is sent to

a vector core for further processing. The vector core will add a scalar to each row to correct the

prefix sum. It is important to note that to obtain the correct prefix sum, the vector core keeps track

of the last value of each ℓ-tile and propagates it to the next tile.

Figure 2 depicts the data movements and the memory view of ScanU. The input vector 𝒙 is

shown in blue. A tile 𝒙ℓ of 𝒙 and 𝑼𝑠 are loaded into the cube unit where the matrix multiplication

occurs. The matrix multiplication result is written to global memory. The vector unit reads the
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8 Bartłomiej Wróblewski, Gioele Gottardo, and Anastasios Zouzias

cube unit output tile and propagates the prefix sum in place. The whole process, which consists

of memory transfers and cube/vector operations, is pipelined over the input tiles using AscendC

software pipeline capability.

Algorithm 1 Scan Cube-Vector (ScanU)

1: procedure ScanU(𝒙 , 𝑠)
2: Let 𝒚 be the output array

3: partial← 0 ⊲ Accumulation value (Vector Unit)

4: Load 𝑼𝑠 in L0B
5: for each 𝑠2-tile of 𝒙 : 𝒙ℓ do ⊲ Pipelined execution

6: Load 𝒙ℓ to L0A
7: 𝑪 ← 𝑨𝑠 @ 𝑼𝑠 ⊲ acc. off, free L0A
8: Copy 𝑪 from L0C to 𝒚ℓ in GM
9: Vector core waits for Cube core

10: Copy 𝒚ℓ from GM to UB ⊲ Vector unit

11: for each 𝑠-tile of 𝒚ℓ : 𝒚𝑠 do
12: 𝒚𝑠 ← 𝒚𝑠 + partial ⊲ In-place add

13: partial← last entry of 𝒚𝑠
14: end for
15: Copy 𝒚ℓ from UB to GM
16: end for
17: Return 𝒚
18: end procedure

The second algorithm, ScanUL1 (Algorithm 2), is an Ascend adaptation of [12, Algorithm 6]

and is based on a matrix identity that expresses the scan of an array 𝒛 of length ℓ using matrix

operations. View 𝒛 as a square row-major matrix 𝑨 of size 𝑠 = ⌈
√
ℓ⌉ (pad with zeroes if needed).

Given 𝒛, the inclusive scan of 𝒛 (scan(𝒛)) can be computed as:

scan(𝒛) = 𝑨𝑠 @ 𝑼𝑠 + 𝑳−𝑠 @ 𝑨𝑠 @ 1𝑠 , (1)

ignoring any padded values. Equation 1 first appeared in [12]. ScanUL1 uses Equation 1 to scan

each consecutive tile of size ℓ (Lines 6-12 of Algorithm 2), and then propagates the last value of the

partial sums sequentially. In a high-level, for each tile of size ℓ , the cube unit evaluates Equation 1

with the following sequence of matrix operations:

𝑪1 = 𝑨𝑠 @ 1𝑠
𝑪2 = 𝑨𝑠 @ 𝑼𝑠

𝑪2 = 𝑪2 + 𝑳−𝑠 @ 𝑪1 .

The above sequence of matrix operations has two advantageous properties with respect to data

movements. The first two steps of the above sequence share the left matrix operand 𝑨, allowing us

to load 𝑨 only once in L0A. Moreover, the third step effectively utilizes the accumulation buffer

of the cube unit since 𝑪2 is reused in the last two steps. Once the local scan of a tile of size ℓ is

computed, a single vector core adds the last value of the previous scanned tile to the current tile

(see Lines 14 − 16 of Algorithm 2).

, Vol. 1, No. 1, Article . Publication date: May 2025.



Parallel Scan on Ascend AI Accelerators 9

Algorithm 2 ScanUL1 is an Ascend adaptation of [12, Algorithm 6]

1: procedure ScanUL1(𝒙 , 𝑠)
2: Let 𝒚 be the output array

3: partial← 0 ⊲ Accumulation value (Vector Unit)

4: Load 𝑼𝑠 , 𝑳−𝑠 , 1𝑠 in L1
5: for each 𝑠2-tile of 𝒙 : 𝒙ℓ do ⊲ Pipelined execution

6: Load 𝒙ℓ to L0A and 1𝑠 to L0B
7: 𝑪1 ← 𝑨𝑠 @ 1𝑠 ⊲ acc. off, no free inputs

8: Copy 𝑪1 from L0C to L1
9: Load 𝑼𝑠 to L0B
10: 𝑪2 ← 𝑨𝑠 @ 𝑼𝑠 ⊲ acc. off, no free inputs

11: Load 𝑳−𝑠 in L0A and 𝑪1 in L0B
12: 𝑪2 ← 𝑪2 + 𝑳−𝑠 @ 𝑪1 ⊲ acc. on, free all buffers
13: Copy 𝑪2 from L0C to 𝒚ℓ in GM
14: Vector unit waits for cube unit

15: Copy 𝒚ℓ from GM to UB ⊲ Vector unit

16: 𝒚ℓ ← 𝒚ℓ + partial
17: partial← last entry of 𝒚ℓ

18: Copy 𝒚ℓ from UB to GM
19: end for
20: Return 𝒚
21: end procedure

Does cube utilization imply performance? Although the above scan algorithms demonstrate that it

is possible to utilize the cube units for scan, it is unclear if cube utilization translates to performance

improvements compared to “vector only” scan algorithms. We provide an experimental evaluation

demonstrating the benefits of using the Cube unit. We developed a vector-only kernel that uses the

CumSum AscendC API
1
with CumSumInfo parameters set to 128 and 128. We also set 𝑠 = 128 on the

cube scan algorithms to ensure a fair comparison. Figure 3 compares the cube scan algorithms and

the vector-only algorithm provided by AscendC. The figure demonstrates a significant performance

improvement (5× for ScanU, and 9.6× for ScanUL1) compared to the vector-only CumSum algorithm.

Moreover, the figure shows that the ScanUL1 scan algorithm has roughly a 2× speedup compared to

ScanU. The critical insight here is that a more sophisticated usage of the computational capabilities

of the cube unit can deliver further significant performance improvements.

4.2 Multiple (Batched) Scans
The batched scan computes the prefix sum of a batch of input arrays of equal length in parallel.

Given a scan algorithm for a 1D array, a corresponding batched scan algorithm could be defined by

deciding how to schedule the cube and vector computations into the multiple cores.

Let’s discuss, as an example, a particular case where ScanU is used as a building block. The

batched algorithm uses the same principles as the Algorithm 1 but also considers the 2-to-1 ratio

between the vector and cube cores in the split Ascend architecture (910B). Figure 4 depicts the

main ideas behind our batched scan algorithm in this case. The algorithm starts by computing the

local scans of size 𝑠 of 𝒙 of all input arrays. Each cube core computes the local scans of a tile of

size ℓ in two batches at the same time; once the tiles of the first two batches are ready, two distinct

1
CumSum API documentation available at https://www.hiascend.com (accessed on 25 August 2024).
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Fig. 3. Execution time of CumSum AscendC API (vec_only) versus ScanU and ScanUL1 (log-log scale).
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Fig. 4. Batched scan algorithm based on ScanU. Blue and green denote the input and output array, respectively.

vector cores will complete the scans independently over each batch by propagating the partial

sums within the tiles. This process is pipelined through AscendC to efficiently use all available

hardware (vector) resources. The second batched scan algorithm extends ScanUL1 (Algorithm 2)

so that each AI core computes a scan on a separate array in the batch. Figure 5 compares the

two batched scan algorithms presented for varying input batch size and array length. The first

batched scan algorithm, based on ScanU (Algorithm 1), is used as our reference/baseline. Both

algorithms have the same tiling strategy based on the input shapes to ensure a fair comparison.

The figure demonstrates that the algorithms perform well in different cases and, more importantly,

complement each other. In particular, ScanU is superior when the batch size is greater than 18, and

the input length is smaller than 4𝐾 . On the other hand, ScanUL1 is superior when the batch size is

smaller than 18 and the input length larger than 4𝐾 .

, Vol. 1, No. 1, Article . Publication date: May 2025.
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Fig. 5. Execution time ratio between ScanUL1 and ScanU batched scan algorithms for various array length
(𝑥-axis) and batch sizes (𝑦-axis). Baseline is ScanU.

4.3 Multi-core Scan
This section presents a multi-core scan algorithm (MCScan, Algorithm 3) to compute the prefix

sum of large input arrays. For the sake of a clearer explanation, the presented algorithm uses a

vector-to-cube ratio of 1-to-1. However, our implementation takes advantage of the 2-to-1 ratio of

910B, but we consider it an implementation detail.

MCScan is similar to the Scan-Scan-Add (SSA) paradigm of computing scans using a hierarchical

partition of the input into blocks (top-level of the hierarchy) and tiles within each block as discussed

in Section 2.1. MCScan consists of two phases separated by a global synchronization barrier across all
cores (blocks). Figure 6 depicts these two phases of the algorithm. In contrast to previous methods,

MCScan performs partial re-computation of the block-level reductions during its first phase, as we

will explain shortly.

In the first phase, the cube and vector units work in parallel to partially compute the first scan part

of SSA simultaneously. The cube units compute the local prefix sums of all consecutive tiles of size

𝑠 and write them back to global memory. In parallel with the cube units, the vector units compute

the reduction over the tiles and then hierarchically reduce the tile reductions on a block-level

granularity. The result of these reductions is written in an array 𝒓 where the 𝑖-th entry equals the

sum of all the values of the 𝑖-th block. By definition, 𝒓 has length equal to the number of blocks, 𝐵.

In the second phase, the vector units read the local 𝑠-tile scans and reduction values per block 𝒓
from global memory. First, every vector core independently computes the prefix sum of the array 𝒓
in its local scratchpad memory UB, i.e., performs a “small” scan on the block-level reduction. Next,

each vector core uses the scanned reduction values to propagate (add) the results of the local 𝑠-tiled

scans.

Exclusive scan and int8 support. Here, we discuss a few extensions of themulti-core scan algorithm

that we have implemented. In particular, we added support for exclusive scans and integer inputs.

Typically, AI accelerators support low-precision arithmetic since inference of deep learning models

is robust to extreme levels of quantization [34]. In particular, Ascend supports input matrices of

8-bit integer data type with output/accumulation in 32-bit integer data type. Since the scan is a

memory-bound operator, there is an opportunity to improve performance in terms of elements per

, Vol. 1, No. 1, Article . Publication date: May 2025.
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Algorithm 3Multi-core Scan (MCScan)

1: procedure MCScan(𝒙 , 𝑠 , 𝐵) ⊲ 𝐵: number of blocks

2: Let 𝒚 be the output array

3: Let 𝒓 be an array of length 𝐵 in GM
4: parfor 𝑖-th block of 𝒙 : 𝒙 [𝑖] do ⊲ Phase I

5: Load 𝑼𝑠 in L0B ⊲ Cube Units

6: for each ℓ-tile of 𝒙 [𝑖]: 𝒙ℓ do
7: Load 𝒙ℓ from GM to L0A ⊲ Cube Units

8: 𝑪 ← 𝑨𝑠 @ 𝑼𝑠 ⊲ Cube Units

9: Copy 𝑪 in 𝒚[𝑖] in GM ⊲ Cube Units

10: end for
11: Load 𝒙 [𝑖] to UB ⊲ Vector Units

12: 𝑟𝑖 ← ReduceSum(𝒙 [𝑖]) ⊲ Vector Units

13: Write 𝑟𝑖 on 𝑖-th entry of 𝒓 in GM ⊲ Vector Units

14: end parfor
15: SyncAll: Synchronize all cube/vector cores

16: parfor 𝑖-th block of 𝒚: 𝒚[𝑖] do ⊲ Phase II

17: Load 𝒓 from GM to UB
18: partial← Sum first 𝑖 entries of 𝒓
19: for each ℓ-tile of 𝒚[𝑖]: 𝒚ℓ do
20: for each 𝑠-tile of 𝒚ℓ : 𝒚𝑠 do
21: 𝒚𝑠 ← 𝒚𝑠 + partial ⊲ In-place add

22: partial← last entry of 𝒚𝑠
23: end for
24: Copy 𝒚ℓ from UB to GM
25: end for
26: end parfor
27: Return 𝒚
28: end procedure

second processed; see Figure 9. We have implemented a specialization of Algorithm 3 for integers

with 8 bits.

We implemented exclusive scan by writing the output of inclusive scan to global memory shifted

by one element, discarding the last value and writing zero to the first position by a single block.

5 Operators based on Scan
In this section, we revisit several computational parallel primitives based on parallel scans [6, 42].

Scan-based primitive include weighted sampling, split and compress/compact (equivalent to the

masked_select Pytorch operator). It is well-known that radix sort can be implemented on top of

split [7, Section 1.3]. Also top-k can be implemented on top of split using a partial quick-sort/select

approach [8].

Interestingly enough, current AI workloads like Large Language Model (LLM) inference make

implicitly heavy use of scan-based computational primitives, including top-𝑘 and top-𝑝 (nucleus)

sampling [16], see also [15]. The top-𝑝 sampling implementation of the popular open-source model

Llama3 [47] contains a batched sorting and prefix sum operation as the first two PyTorch operations,

see [37].

, Vol. 1, No. 1, Article . Publication date: May 2025.
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Tile (s)

Local scan
(cube unit)

Reduction
(vector unit)

Barrier

Scan (vector
unit)

Complete scan
(vector unit)

Core 0 Core 1

Fig. 6. Multi-core scan (Algorithm 3) consists of two phases synchronized by a global barrier. The first phase
computes tile-level (size 𝑠) local scans on cube units and block-level reductions in vector units. The second
phase reads local scans and reductions from global memory to the vector cores where the scan computation
is completed.

Fig. 7. A diagram of well-known parallel scan applications considered here along with their dependencies.

In the rest of the section, we describe the split, compress, radix sort, top-𝑘 , top-𝑝 sampling

and weighted sampling operators in more detail. Figure 7 depicts the dependencies between the

scan-based primitives. Top-𝑝 sampling extensively uses multiple scan operations, as discussed in

Section 5.

Split. The split operation takes as input an array 𝒙 and a boolean flag array 𝒇 of the same length.

Split reorganizes the elements of 𝒙 into an output array 𝒛 as follows. It places all items of 𝒙 where

the corresponding flag is true at the beginning of the output array, followed by all items where

the corresponding flag is false. One crucial property of split is the relative order of the elements is

preserved, i.e., stable ordering.

, Vol. 1, No. 1, Article . Publication date: May 2025.
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We implemented a split AscendC operator SplitInd that also returns the output indices corre-

sponding to the original input locations. The output indices of SplitInd allow us to implement a

sorting algorithm that satisfies the PyTorch API of sort(), which also returns the indices. SplitInd
takes as input an array of 16-bit elements and a 0/1 mask array (flags are stored in int8). SplitInd
executes an exclusive scan using MCScan on the mask array. Afterwards, it gathers the correct input

elements and their indices, using vector core’s GatherMask instruction and it stores them in global

memory at the offsets calculated by the scan.

Compress. Compress is a particular case of split in which only the first part of the output elements

of the split are returned. We have implemented a compress kernel that internally uses the exclusive

MCScan algorithm on the mask array whose data type is 8-bit integers. Compress is equivalent

to the PyTorch torch.masked_select operator that we use as a baseline for comparison in the

experimental section.

Radix sort. Radix sort is a well-known application of the split operator [7, 9]. A radix sort

algorithm loops over the bits of the input elements, starting at the least significant bit and executes

a split where the mask is obtained by reading the corresponding bit (radix) on each iteration.

We implement a Least-Significant Bit (LSB) radix sort in AscendC using the split operator based

on the MCScan algorithm. We implemented an additional vector-only kernel, RadixSingle, that
extracts the radices of the inputs before the execution of the split. RadixSingle makes use of the

AscendC vector instructions ShiftRight and Not to create the input mask for split. Additional

pre-processing and post-processing phases are needed to support floats; see Exercises 8 and 9 in [24,

Section 5.2.5]. The pre-processing phase encodes all the input elements by inverting the Most

Significant Bit (MSB) of positive numbers and all the bits of the negative numbers. Applying an

unsigned integer radix sort on the encoded elements will correctly order them. The post-processing

phase is needed to decode the elements back to the original value. We have implemented the pre-

and post-processing steps using AscendC bit-wise vector instructions, and thus, we support sorting

of fp16 data types.

The paper on evaluating radix sort using the ConnectionMachine (CM-2) came to our attention in

the later stages of our radix sort development [9]. In this work, the authors share several important

implementation details that were not known to us a priori. For example, the fact that radix sort

works with floats is interesting and is quite useful when working with low bit-width floats.

Top-𝑘 . Top-𝑘 selection is an essential operation in various settings, including similarity search

queries [21] and Large Language Models (LLMs) inference where the output tokens are typically

sampled from the 𝑘 tokens having the highest probability for the given context [26]. The interested

reader is referred to a recent survey on parallel top-𝑘 [49]. A recent work on top-𝑘 is Radik, a

Radix-based GPU implementation that scales well for large values of 𝑘 [29, 30].

We implemented a top-𝑘 kernel using the selection (partial quicksort) algorithm based on our

SplitInd operator and compared it against the baseline top-𝑘 operator. Unfortunately, although

improving the performance of the top-𝑘 operator was a primary motivation for this work, we could

not improve the performance of the baseline top-𝑘 for small values of 𝑘 (𝑘 ≤ 4096).

Top-𝑝 or nucleus Sampling. Top-𝑝 sampling in Large Language Model inference is an additional

operation that applies sort and scan on the token probability vector [16]. These operations are

usually batched with a constant batch size. Interestingly, if the sorting step is implemented using

radix sort, the top-𝑝 sampling operator becomes a scan-intensive operator! Indeed, top-𝑝 executes

17 scans for each batch: 16 scan operations for radix sort (one scan per bit, fp16) and an additional

scan required by the algorithm.
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Weighted Sampling. We implement a parallel weighted sampling kernel using the well-known

inverse transform sampling approach and a scan to compute the cumulative distribution. Given

an array𝒘 of 𝑛 positive weights, the goal is to draw a sample with proportional probability to the

weights. The output is an index 𝑖 of 𝒘 with probability proportional to 𝑤𝑖 . First, we scan 𝒘 , and
then, given a uniform sample 𝜃 ∈ [0, 1], we invoke the SplitInd kernel with input scan(𝒘) and
the element-wise predicate ? > 𝜃 ∗∑𝑖 𝑤𝑖 . The last entry of the output indices array of SplitInd
contains the weighted sample. For more advanced parallel weighted sampling techniques, see [17].

The performance improvement of our proposed weighted sampling kernel is not significant

compared to the baseline for a single sample. However, our implementation does provide a functional

improvement compared to the baseline operator. Indeed, the baseline Ascend weighted sampling

operator torch.multinomial supports discrete distributions with support size up to 2
24
elements,

whereas our approach can support distributions with arbitrary support size. We leave as future work

any further possible improvements on parallel weighted sampling. In particular, for the multiple

sample generation scenario, the parallel alias table construction of [17] seems to be a promising

direction.

6 Experimental Evaluation
In this section, we evaluate the performance of a selective list of parallel scan algorithms and

applications presented in the previous sections using Ascend AI Accelerators.

We evaluate the multi-core scan, compress, radix sort, batch scan, and top-𝑝 sampling. We

have implemented all proposed algorithms in C++17 using the AscendC programming framework

discussed in Section 3.2. We used the Ascend CANN toolkit 8.0.RC3.alpha002 with Ascend firmware

and drivers versions 1.0 and 23.0.0, respectively. All evaluations are performed on Huawei’s Ascend

910B4 accelerator. In particular, 910B4 contains 20 Cube Units and 40 Vector Units (the vector-to-

cube units ratio is 2-to-1). The host CPU is an AMD EPYC processor running on Ubuntu 22.04.

All timing measurements are collected using the PyTorch profiler functionality in Python. We

used Ascend’s PyTorch adapter
2
with version v2.1.0 to report all our PyTorch-related measurements.

To wrap our custom AscendC operators in PyTorch, we used the open-sourced operator plugin

framework at https://gitee.com/ascend/op-plugin. op-plugin allows its users to easily define

a custom PyTorch operator. Before wrapping our operators using the op-plugin, we used the

msopgen3 tool to wrap the AscendC operators.

Evaluation against other accelerators/architectures. In this work, our primary motivation is to

improve the performance of parallel scans and their applications on Ascend. In particular, our

main objective is to design and implement algorithms that saturate Ascend’s memory bandwidth.

Comparing our results with architectures like GPUs or TPUs would likely translate to comparing the

hardware specifications, i.e. memory bandwidth, rather than actually evaluating our algorithms. In

addition, a comparison between accelerators that are not manufactured using the same technology

node could lead the reader to wrong conclusions. Nevertheless, we present all our results in terms

of bandwidth (GB/s or GElems/s), which allows for easy comparison with other architectures for

the interested reader.

6.1 Multi-core Scan (MCScan)
Figure 8 depicts the performance of MCScan (Algorithm 3) on Ascend 910B4 versus the state-of-the-

art (torch.cumsum). We integrated the multi-core algorithm in PyTorch to ensure a fair comparison

2
https://gitee.com/ascend/pytorch

3
https://www.hiascend.com/document/detail/en/canncommercial/700/operatordev/tbeaicpudevg/atlasopdev_10_0024.

html
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Fig. 8. Bandwidth of MCScan (Algorithm 3) for 𝑠 = 32, 64, 128. In addition, the copy operator (torch.clone)
is depicted for comparison. Memory bandwidth (910B4) is 800 GB/s.

and expose it as a custom PyTorch operator. The custom PyTorch operator statically pre-allocates

an upper triangular all-ones matrix 𝑼𝑠 for all 𝑠 = 32, 64, 128. The baseline operator doesn’t use

the cube unit, while MCScan takes advantage of all the computing units reaching up to 37.5%

of theoretical memory bandwidth (peak bandwidth is 800GB/s for 910B4). To have a more solid

evaluation of our implementation, we compare it to a copy kernel that performs a memory copy;

we used the torch.clone(). This shows us that for sizes smaller than the L2 cache, we almost

approach the theoretical limit given by the memory bandwidth. A clear trend is that the larger the

matrix multiplication dimension 𝑠 is, the better the performance of the multi-core scan. 𝑠 = 128

maximises the utilization of the level-0 scratchpad memories L0A and L0B of the cube unit. We

have measured the speed-up between MCScan and ScanUon 910B4 (20 AI cores), and it saturates at

15.2× for large input sizes. We foresee that increasing the matrix multiplication tile size could lead

to further performance improvements, but we leave this investigation as future work.

Next, we investigate the additional performance benefits of taking advantage of the lower-

precision input data (int8) capability of the cube unit. Figure 9 depicts the performance of the

multi-core scan algorithm in terms of giga elements per second for input data types float16 and

8-bit integers (int8). As it is depicted, there is a performance improvement of the order of 10% for

the case of integer inputs. Such an improvement is crucial since the split and compress operators

take as input boolean mask arrays that are stored
4
in int8 format.

6.2 Compress
Figure 10 depicts the performance comparison between compress versus the baseline PyTorch

masked_select. We set the mask so that each mask entry is independently set to true or false uni-

formly at random. The figure indicates that the baseline masked_select operator is not optimized

on Ascend, and a code investigation reveals that the baseline does not use the vector or cube units.

On the other hand, our Compress kernel reaches up to 160GB/s (20% of peak memory bandwidth).

4
This is due to the PyTorch framework, see for example https://github.com/pytorch/pytorch/issues/41571.
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Fig. 9. Giga elements per second comparison of MCScan for float16 (fp16) and 8-bit integers (int8) input data
types.

Fig. 10. Bandwidth of the compress operator based on MCScan (𝑠 = 32, 64, 128) and the baseline
torch.masked_select operator.

6.3 Radix sort
We modified the radix sort operator to additionally return indices that correspond to the input

index of each output element. This modification ensures a fair comparison with the sort operator

provided by the PyTorch Ascend adapter. The modification is based on the SplitInd operator by
keeping track of the output indices on each split application. Our radix sort implementation is

stable and supports unsigned (or signed) integers and floats (fp16).

Figure 11 depicts the performance of a parallel fp16 radix sort implementation using MCScanwith
input data type int8 (Algorithm 3) to perform the parallel split step. For input lengths greater than

525K, our “textbook” implementation of radix sort delivers a speedup between 1.3× up to 3.3×
compared to the torch.sort() baseline.
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Fig. 11. Comparison between radix sort and torch.sort() for floating-point numbers in half-precision (16
bits).

We expect additional performance improvements for low-precision data types (low bit-width)

since the number of radix sort iterations equals the input bit-width. Indeed, the trend in AI

accelerators is to introduce low-precision formats like 8-bit floats or 4-bit integers (int4) [40].

Therefore, an additional performance improvement (2×) for sorting in low-precision 8-bit scenarios

is expected without further development effort.

6.4 Batched Scan
Figure 12 depicts the performance of the batched scan kernels on Ascend for varying input batch

sizes and input lengths equal to 65𝐾 . We depict the memory bandwidth achieved for tiling parame-

ters 𝑠 = 16, 32, 64 and 128. Our proposed batch scan operators for 𝑠 = 64 and 128 reach up to 400

GB/s. Interestingly enough, for smaller values of 𝑠 = 16, 32, the performance of the proposed batch

scan kernels is poor. In addition, the performance of our proposed batch scan kernel for 𝑠 = 16 and

the baseline is similar.

6.5 Top-𝑝 Sampling
Figure 13 depicts the execution time of drawing one sample using the top-𝑝 sampler as it is

implemented in the Llama3 model, see [37]. PyTorch corresponds to the Ascend implementation

using the baseline sort and cumsum operators. The lineplots with labels 𝑠 = 32, 64, 128 are similar

to the baseline by replacing the sort() and cumsum() operators with the proposed radix sort and

multi-core scan, respectively. The figure shows that the baseline top-𝑝 sampling implementation

scales poorly, mainly because the baseline torch.cumsum operator is not optimized for Ascend.

7 Conclusion & Future Work
We developed and evaluated efficient parallel scan algorithms tailored to the Ascend architecture by

leveraging the power of the cube (matrix multiplication) unit. Our results demonstrate substantial

performance improvements, with speedups ranging from 5× to 9.6× compared to vector-only

implementations for sufficiently large input lengths. Additionally, we presented a multi-core

Ascend scan algorithm that fully utilizes both the cube and vector units of Ascend, reaching up to

37.5% of the theoretical memory bandwidth.
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Fig. 12. Bandwidth of batched scan based on Algorithm 1 for increasing batch sizes and 𝑠 = 16, 32, 64, 128.
Input length is 65𝐾 . Memory bandwidth (910B4) is 800 GB/s.

Fig. 13. Execution time (in milliseconds) of top-𝑝 sampling of Llama3 operator for a single batch. The baseline
is labeled PyTorch and supports only discrete distributions with at most 224 elements.

Last, we extended our contributions to include crucial computational kernels for AI workloads,

such as parallel split, compress/compact, and top-𝑝 (nucleus) sampling, all exhibiting significant

performance gains. Furthermore, our optimized implementation of radix sort, which utilizes matrix

multiplications for parallel splits, showcases the potential of matrix engines in enhancing complex

operations, offering up to 3.3× speedup over the baseline.
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