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Abstract

Accurate particle size distribution (PSD) measurement
is important in industries such as mining, pharmaceuti-
cals, and fertilizer manufacturing, significantly influenc-
ing product quality and operational efficiency. Tradi-
tional PSD methods like sieve analysis and laser diffrac-
tion are manual, time-consuming, and limited by particle
overlap. Recent developments in convolutional neural net-
works (CNNs) enable automated, real-time PSD estimation
directly from particle images. In this work, we present
a CNN-based methodology trained on realistic synthetic
particle imagery generated using Blender’s advanced ren-
dering capabilities. Synthetic data sets using this method
can replicate various industrial scenarios by systematically
varying particle shapes, textures, lighting, and spatial ar-
rangements that closely resemble the actual configurations.
We evaluated three CNN-based architectures—ResNet-50,
InceptionV3, and EfficientNet-B0—for predicting critical
PSD parameters (d10, d50, d90). Results demonstrated
comparable accuracy across models, with EfficientNet-B0
achieving the best computational efficiency suitable for
real-time industrial deployment. This approach shows the
effectiveness of realistic synthetic data for robust CNN
training, which offers significant potential for automated in-
dustrial PSD monitoring.

1. Introduction

Accurate particle size distribution (PSD) directly impacts
material properties, process efficiency, and product consis-
tency across multiple industries, including mining, pharma-
ceuticals, and agriculture. Pharmaceutical manufacturing
relies heavily on accurate PSD control for drug uniformity,
bioavailability, and effectiveness [8], while fertilizer pro-
duction requires consistent PSD management for optimal
nutrient release and spreading performance [5]. Given these
implications, accurate and reliable real-time PSD measure-

ment methods are essential.
Conventional PSD measurement approaches, such as

sieve analysis and laser diffraction [5], have significant lim-
itations. Sieving is straightforward but struggles with ac-
curacy, especially for fine particles [5]. Laser diffraction
provides precise measurements but relies heavily on the as-
sumption of spherical particles, limiting its effectiveness for
irregular particle shapes common in practical scenarios [2].
While microscopy-based methods can deliver detailed par-
ticle morphology, they remain labor-intensive, slow, and
prone to human annotation errors [10].

Recent advancements in convolutional neural networks
(CNNs) have opened new opportunities for automating PSD
estimation directly from particle images [9, 14]. Unlike
traditional segmentation-based computer vision methods,
CNNs are robust to overlapping particles and variations in
lighting and texture, significantly reducing annotation com-
plexity and improving accuracy. However, CNN training
generally requires large, well-annotated datasets, which are
expensive and challenging to obtain through manual label-
ing.

Synthetic data generation addresses this issue by en-
abling scalable creation of fully annotated datasets with pre-
cise control over particle characteristics [4, 13]. Earlier syn-
thetic approaches, such as discrete element method (DEM)
simulations, accurately captured particle physics but often
lacked visual realism, limiting model generalization [13].
Modern graphics engines like Blender [3] provide sophis-
ticated physics simulations and photorealistic rendering ca-
pabilities, enabling generation of highly realistic synthetic
particle imagery. Recent studies also emphasize the signifi-
cant impact of particle shape and size distribution on mate-
rial properties [6], further motivating the creation of realis-
tic synthetic datasets.

In this work, we leverage Blender’s advanced ren-
dering engine to generate realistic synthetic datasets
closely matching actual fertilizer granulation scenarios,
with a particular focus on critical PSD metrics (d10, d50,
d90). We comprehensively evaluate three popular CNN



architectures—ResNet-50, InceptionV3, and EfficientNet-
B0—for their ability to accurately predict PSD parameters
directly from these synthetic images.

Our key contributions include: (i) introducing a robust
CNN-based PSD estimation method optimized for real-
time industrial monitoring; (ii) developing a flexible, au-
tomated synthetic data generation pipeline using Blender,
capable of replicating diverse industrial scenarios with high
fidelity; (iii) providing comprehensive evaluations demon-
strating CNN performance comparable to traditional PSD
measurement methods; and (iv) highlighting the practical
feasibility and computational efficiency of deploying CNN
models, especially EfficientNet-B0, in resource-constrained
environments.

The remainder of this paper is structured as follows:
Section 2 reviews related PSD estimation methods. Sec-
tion 3 details our synthetic data generation pipeline. Sec-
tion 4 outlines CNN training and model selection strategies.
Section 5 presents experimental results and analyses. Sec-
tion 6 discusses practical implications and domain adapta-
tion strategies, and Section 7 provides concluding remarks.

2. Background and Related Works

2.1. Classical PSD Measurement Methods
Classical methods for measuring PSD remain widely
adopted despite inherent limitations [5]. Sieve analysis is
the most common method due to its simplicity and low cost,
yet it struggles with accurately handling fine particles or
scenarios involving significant overlap [5]. Laser diffraction
provides higher accuracy and a broader measurable range
but assumes spherical particle shapes, leading to inaccura-
cies when analyzing irregularly shaped particles [2]. Sed-
imentation methods and Coulter counters offer precision,
particularly for fine particle ranges, but both methods re-
quire meticulous sample preparation and extensive analysis
time, thus limiting their application in real-time industrial
scenarios [1, 8].

2.2. Computer Vision Methods for PSD Estimation
Computer vision-based methods provide solutions to many
challenges posed by classical PSD techniques, enabling au-
tomated and rapid analysis directly from images [10, 14].
Early vision-based PSD estimation relied heavily on ex-
plicit particle segmentation from images. However, these
methods frequently failed under challenging conditions
such as overlapping particles, varied lighting, or complex
backgrounds [5].

Recent advances using CNNs address these limitations
by learning to directly estimate PSD metrics (e.g., d10,
d50, d90) from raw image data without explicit segmen-
tation [9, 14]. CNN-based regression models have shown
significant robustness to common real-world issues such as

overlapping particles, irregular shapes, and variable lighting
conditions [8, 9]. However, training effective CNN models
typically requires large annotated datasets, which are diffi-
cult and costly to acquire from real-world scenarios [13].

2.3. Synthetic Data Generation for PSD
Synthetic data generation has emerged as a practical solu-
tion to overcome the data acquisition bottleneck by allow-
ing researchers to generate large-scale annotated datasets
through computational simulations [13]. Previous synthetic
generation methods, such as those based on DEM simula-
tions, produced accurately annotated data but often lacked
visual realism in particle appearance and texture [13].

Recent progress by Dahmen et al. [4] highlighted the po-
tential of neural rendering techniques for generating realis-
tic synthetic scanning electron microscopy (SEM) images
efficiently. This approach significantly improved realism
while maintaining low computational costs compared to tra-
ditional methods. Motivated by these developments, our
work adopts Blender, a 3D graphics engine [3], to generate
synthetic particle images with detailed particle geometries,
realistic textures, and highly controllable environmental pa-
rameters. By incorporating advanced rendering techniques
and systematic randomization of particle properties such
as size distribution and spatial arrangements, we produce
synthetic datasets closely aligned with real-world particle
imaging scenarios. This capability significantly enhances
the effectiveness of CNN-based PSD estimation methods,
enabling robust and accurate predictions in practical appli-
cations.

3. Synthetic Data Generation

Manually annotating large-scale datasets for PSD analysis
is costly, error-prone, and challenging to scale. To over-
come these limitations, we developed a fully automated
synthetic data generation pipeline using Blender, an open-
source 3D graphics software [3]. Blender makes it possible
to have detailed control over particle geometries, materials,
and environmental conditions, enabling the creation of di-
verse and realistic particle scenes.

All the configuration values that we will present in this
section are just specific to our generated dataset and can be
changed to simulate any given environment from particles
shape and size to the environment setup.

3.1. Simulation Environment
Our virtual simulation environment replicates a realistic
setup for taking sample images from processes such as fer-
tilizer granulation or aggregate handling. The scene in-
cludes a flat square surface for particle deposition measur-
ing 300 mm × 300 mm, and invisible collision walls sur-
rounding the table to ensure particles remain within the



simulation area, consistent with the generated metadata
(Fig. 1).

Particles were modeled using detailed 3D meshes im-
ported as FBX files with physically accurate textures, in-
cluding base color, metallic properties, roughness, and nor-
mal maps. The complexity of these particle models, shown
in Fig. 2, significantly enhances the realism of the synthetic
data, surpassing traditional DEM-based simulations, which
typically lack such visual fidelity.

3.2. Automated Dataset Generation Pipeline
The dataset generation involves two interconnected Python
scripts integrated within Blender’s Python API:
1. Metadata Generation: This script randomly selects pa-

rameters for each simulation, including particle count,
particle sizes, and positions. Particle sizes follow a trun-
cated normal distribution defined as:

size ∼ TruncNormal(a, b, µ, σ), (1)

• (a, b) : Truncation bounds.
• (µ) : Mean particle size.
• (σ) : Standard deviation.
For our dataset we used the configuration ranges shown
in Table 1:

Ranges
(µ) [6 mm, 12 mm]
(σ) [6 mm, 8 mm]

(a, b) [0.1 mm, 20 mm]
Particle count [700, 1000]

Table 1. Data configuration

The metadata for each simulation are stored as structured
JSON files containing the following information: shape
type, mean and standard deviation of particle sizes, ta-
ble dimensions, particle count, and a list of individual
particle parameters (size and x-y coordinates). Listing 1
shows an example of a sample metadata file.

Listing 1. Example JSON metadata describing a synthetic particle
scene.

1 {
2 "shape_type": "crushed_rock",
3 "size_mean": 10.5,
4 "size_sigma": 7.2,
5 "table_size": 300,
6 "samplesize": 920,
7 "particles": [
8 {"size": 11.80, "x": -11.12, "y": -2.31},
9 {"size": 7.97, "x": -118.32, "y": 119.38},

10 ...
11 ]
12 }

2. Scene Construction and Rendering: The second script
reads the generated JSON metadata, places particles
accordingly, and initiates Blender’s rigid-body physics
simulation. Once particles settle, the final scene state is
rendered using Blender’s Cycles rendering engine with
GPU (CUDA) acceleration, significantly enhancing ren-
dering efficiency. The rendered images accurately reflect
their corresponding metadata annotations.
This pipeline was executed on a High Performance Com-

puting (HPC) system using NVIDIA A100 GPUs, facilitat-
ing rapid and scalable dataset generation. For our training
dataset, we rendered approximately 4500 images (4668 im-
ages across three rendering jobs), each taking in average
one minute to render, depending on the sample size.

3.3. Dataset Realism and Diversity
Our synthetic images exhibit realistic lighting, detailed tex-
tures, and diverse particle arrangements (Fig. 3). Com-
pared to previous DEM-based synthetic datasets [13], our
Blender-based dataset achieves significantly greater visual
realism, closely approximating real-world scenarios and
thus enhancing CNN model generalizability.

3.4. Advantages over Previous Methods
Our Blender-based synthetic data generation method offers
several key advantages:
• Enhanced Realism: Complex particle geometries and de-

tailed textures produce visually realistic datasets.
• Flexibility and Control: Adjustable parameters (lighting,

particle properties, environment) enable replication of a
broad range of real-world conditions.

• Scalable Automation: GPU-accelerated rendering com-
bined with automated metadata handling allows efficient
large-scale dataset creation.

• Accurate Annotation: Automated metadata generation
ensures consistent and precise annotations, eliminating
manual labeling errors.
This pipeline efficiently generates realistic synthetic

datasets essential for training robust and reliable CNN mod-
els for practical PSD estimation tasks.

4. CNN Model Selection and Training
To evaluate the effectiveness of our synthetic dataset for
PSD estimation, we selected CNNs known for strong per-
formance, computational efficiency, and suitability for re-
gression tasks. Our primary goal was to accurately predict
critical PSD parameters (d10, d50, d90) directly from parti-
cle images.

4.1. Model Selection
We selected three widely-adopted CNN architectures, each
chosen for specific strengths relevant to particle analysis:



(a) Setup inside the Blender interface. (b) Rendered image depicting particle deposition before fall.

Figure 1. Simulation environment setup in Blender.

(a) Rendered particle models with realistic textures. (b) Wireframe mesh showing particle geometric complexity.

Figure 2. Particle model geometry and texture realism.

• ResNet-50 [7]: Chosen for its robust feature extraction ca-
pabilities, using residual connections to effectively learn
complex visual patterns without suffering from vanishing
gradients.

• EfficientNet-B0 [12]: Selected because of its balanced
trade-off between computational efficiency and predictive
accuracy, making it particularly suitable for real-time in-
dustrial monitoring scenarios.

• InceptionV3 [11]: Included for its ability to extract multi-
scale features via parallel convolutional operations, effec-
tively capturing variations in particle sizes, shapes, and
textures.

4.2. Training Procedure

All models were pretrained on the ImageNet dataset, as pre-
liminary experiments demonstrated improved convergence
speed and predictive accuracy compared to training from
scratch.

The models were fine-tuned to perform regression di-
rectly on the PSD parameters (d10, d50, d90). After some
experimentation, we ended up using these Training hyper-
parameters:

• Loss Function: Mean Squared Error (MSE).

• Optimizer: Adam optimizer with an initial learning rate of
1×10−4, adaptively reduced with respect to the validation
plateau.

• Data Augmentation: Random rotations (0°, 90°, 180°,
270°), horizontal flipping were employed to improve gen-
eralization and mitigate overfitting.

• Epochs: Training ran up to 50 epochs which showed sat-
isfactory convergence.

TensorBoard was utilized throughout training to moni-
tor convergence, facilitating real-time hyperparameter tun-
ing and performance analysis.

4.3. Computational Resources

Model training was conducted on an HPC cluster. Specif-
ically, GPU-accelerated training was performed on nodes
equipped with NVIDIA A100 GPUs, enabling rapid itera-
tion, efficient experimentation, and significant reductions in
overall training duration which took approximately 3 hours
for each model.

The effectiveness of this model selection and training ap-
proach is evaluated in detail in the following experimental
section.



Figure 3. Examples of synthetic images demonstrating realistic variability in particle sizes, shapes, textures, and spatial distributions.

5. Experimental Results and Analysis
In this section, we compared the predictive accuracy and
computational efficiency between the three CNN architec-
tures (ResNet-50, InceptionV3, and EfficientNet-B0) using
our synthetic dataset comprising approximately 5,000 an-
notated images. The evaluation focused on the prediction
of key PSD parameters: d10, d50, and d90.

The performance of the models was quantitatively as-
sessed using the coefficient of determination (R2), mean
squared error (MSE), and mean absolute error (MAE), pro-
viding robust measures of accuracy and consistency.

5.1. Detailed Quantitative Results
Table 2 presents detailed predictive performance metrics
(R², MSE, MAE) for each CNN model across individual
PSD parameters and overall. Although ResNet-50 showed
marginally better predictive performance, the differences
between the three models’ results are minor (less than ≈
0.1mm error), indicating similar predictive capabilities.

Figure 4 visualizes the predicted versus ground truth
PSD values for each model, we can see that the ResNet-50

model is more aligned, with minor variations in prediction
quality with the other models.

Figure 5 shows training and validation loss curves mon-
itored via TensorBoard. EfficientNet-B0 demonstrates effi-
cient and rapid convergence behavior, which got close final
validation loss to ResNet-50 and InceptionV3.

5.2. Computational Efficiency

Given the importance of computational speed for real-time
PSD monitoring in industrial settings, we tested the infer-
ence speed of each CNN model under realistic hardware
conditions. We conducted inference tests using a consumer-
grade laptop equipped with an NVIDIA RTX 3060 GPU
and an AMD Ryzen 7 5800H CPU, providing a practical
and accessible benchmark scenario.

Inference speeds are summarized in Table 3. Although
ResNet-50 showed slightly better accuracy, EfficientNet-
B0 significantly outperformed other models in inference
speed on both GPU and CPU. Specifically, EfficientNet-
B0 can process approximately 37.75 frames per second
(FPS) on GPU and 21.51 FPS on CPU, markedly faster



Table 2. Detailed performance comparison for CNN models on synthetic test data (GPU inference). The best results are in Bold.

CNN Model Overall d10 d50 d90
R2 MSE MAE R2 MSE MAE R2 MSE MAE R2 MSE MAE

ResNet-50 0.9987 0.0204 0.0773 0.9591 0.0315 0.0913 0.9904 0.0160 0.0747 0.9888 0.0137 0.0660
InceptionV3 0.9966 0.0550 0.1796 0.8933 0.0821 0.2212 0.9738 0.0438 0.1651 0.9680 0.0391 0.1525
EfficientNet-B0 0.9959 0.0660 0.1973 0.8777 0.0941 0.2357 0.9667 0.0555 0.1841 0.9604 0.0484 0.1721

Figure 4. Predicted vs. ground truth PSD comparison.

compared to ResNet-50 (27.31 FPS GPU, 14.66 FPS
CPU) and InceptionV3 (23.18 FPS GPU, 12.00 FPS CPU).
This substantial improvement in inference speed, com-
bined with its considerably lower parameter count, under-
scores EfficientNet-B0’s practical advantage, particularly in
resource-constrained environments.

Thus, despite minor accuracy trade-offs, EfficientNet-B0
offers the optimal balance between accuracy and compu-
tational efficiency, making it particularly suitable for real-
time PSD estimation tasks in industrial applications.

Table 3. Inference speed comparison and model complexity on
realistic laptop hardware (RTX 3060 GPU, AMD Ryzen 7 5800H
CPU). The best results are in Bold.

CNN Model GPU FPS CPU FPS GPU Time/Image (s) Parameters (M)
ResNet-50 27.31 14.66 0.0366 25.6
InceptionV3 23.18 12.00 0.0431 23.9
EfficientNet-B0 37.75 21.51 0.0265 5.3

6. Discussion
This study demonstrates the potential of using CNNs
trained on realistic synthetic data generated via Blender to

accurately estimate PSD. Our approach leverages Blender’s
advanced rendering capabilities, allowing precise control
over particle geometries, textures, spatial arrangements,
and lighting conditions. This meticulous control enables
the creation of synthetic images that closely match real-
world industrial scenarios, thereby significantly improving
model robustness compared to previous approaches relying
on simplified particle representations.

One key advantage of our method is the ease with which
diverse scenarios can be generated. By adjusting parameters
such as particle shape, size distribution (through truncated
normal distributions), lighting intensity, and camera per-
spectives, the synthetic data pipeline becomes highly adapt-
able to various industrial processes or materials. Addition-
ally, automation within Blender facilitates rapid, scalable,
and cost-effective dataset generation, removing the reliance
on labor-intensive manual annotations typically required for
training robust CNN models.

In evaluating three popular CNN architectures—ResNet-
50, InceptionV3, and EfficientNet-B0—we found minor
differences in predictive performance. Although ResNet-50
achieved slightly better numerical results, EfficientNet-B0
stood out in computational efficiency, offering substantially
faster inference speeds, particularly on CPU hardware. This
computational advantage suggests that EfficientNet-B0 pro-
vides the most practical balance between accuracy and real-
time processing, making it highly suitable for deployment
in resource-constrained industrial environments or edge de-
vices.

The realism of our synthetic dataset substantially nar-
rows the traditional ”domain gap” between synthetic and
real-world imagery, yet minor discrepancies inevitably re-
main. Integrating targeted domain adaptation methods,
such as incremental fine-tuning on limited real data or em-
ploying adversarial training techniques, offers promising
ways to further enhance model generalization. These strate-
gies can be seamlessly incorporated into the synthetic data
pipeline, helping to continuously refine and align synthetic
scenarios more closely with real-world operational condi-
tions.

In practical terms, while high-performance computing
resources such as GPU clusters accelerate synthetic dataset
creation, our methodology does not inherently require such
infrastructure. The pipeline remains operationally feasible
on standard GPU-equipped workstations, but with longer
rendering times. which means that computational resources



(a) ResNet50 (b) Inception V3 (c) EfficientNet-B0

Figure 5. Training and validation loss curves showing model convergence for (a) ResNet50, (b) Inception V3, and (c) EfficientNet-B0.

should not pose a barrier to adopting our approach broadly,
although they directly influence dataset generation speed.

To encourage trust in industrial deployment, we suggest
initially validating CNN models alongside conventional
PSD measurement techniques. This hybrid approach allows
comprehensive verification and fosters confidence in auto-
mated systems, paving the way for full integration into real-
time process control loops. Further enhancing model in-
terpretability, such as employing explainability techniques
(e.g., saliency maps), can also support industrial adoption
by increasing transparency in model predictions.

Ultimately, the flexibility, realism, and automation of-
fered by synthetic data generation position CNN-based PSD
estimation as a highly promising alternative to traditional
measurement methods, presenting substantial opportunities
for improving quality control, optimizing production effi-
ciency, and reducing operational costs across various indus-
tries.

7. Conclusion

This study introduced an efficient and accurate approach to
the estimation of PSD in real time using CNNs trained ex-
clusively on synthetic datasets. Using Blender’s advanced
rendering capabilities, we generated highly realistic parti-
cle imagery, addressing critical limitations associated with
traditional PSD measurement techniques, such as manual
sampling, offline analysis, and challenges related to over-
lapping particles.

Experimental evaluations demonstrated that CNN
architectures—ResNet-50, InceptionV3, and EfficientNet-
B0—can effectively predict PSD parameters (d10, d50,
and d90) directly from images. Among these models,
EfficientNet-B0 emerged as particularly well suited for
industrial deployment due to its superior inference speed,
especially on resource-constrained hardware, despite
marginal and statistically insignificant accuracy differences
compared to ResNet-50.

The flexibility of the synthetic data generation pipeline

allows rapid adaptation to various industrial scenarios by
simply adjusting particle properties, textures, and environ-
mental settings, significantly improving training robustness
and reducing data acquisition costs.

Further integration of targeted domain adaptation strate-
gies, incremental fine-tuning on limited real-world data, and
enhanced model interpretability techniques hold promise
for further narrowing the synthetic-to-real gap. In gen-
eral, the proposed method offers a practical, scalable, and
cost-effective path to automated PSD monitoring, improv-
ing process control and product consistency in various in-
dustrial applications.
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