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ABSTRACT

Recently, graph invariant learning has become the de facto approach to tackle the
Out-of-Distribution (OOD) generalization failure in graph representation learning.
They generally follow the framework of invariant risk minimization to capture the
invariance of graph data from different environments. Despite some success, it re-
mains unclear to what extent existing approaches have captured invariant features
for OOD generalization on graphs. In this work, we find that representative OOD
methods such as IRM and VRex, and their variants on graph invariant learning
may have captured a limited set of invariant features. To tackle this challenge, we
propose LIRS, a novel learning framework designed to Learn graph Invariance
by Removing Spurious features. Different from most existing approaches that di-
rectly learn the invariant features, LIRS takes an indirect approach by first learning
the spurious features and then removing them from the ERM-learned features. We
demonstrate that learning the invariant graph features in an indirect way enables
the model to capture a more comprehensive set of invariant features, leading to
better OOD generalization performance in novel environments. Notably, LIRS
surpasses the second-best method by as much as 25.50% across all competitive
baselines, underscoring its efficacy in OOD generalization.

1 INTRODUCTION

Graph representation learning with graph neural networks (GNNs) (Kipf & Welling, 2017; Xu et al.,
2019; Veličković et al., 2017) has proven to be highly successful in tasks involving relational in-
formation (Qiu et al., 2018; Wu et al., 2022b; Yu et al., 2018; Zhang et al., 2022c). Despite their
achievements, GNNs often assume that the training and test data share the same distribution. This
assumption often does not hold in real-world applications (Hu et al., 2020; Huang et al., 2021; Ji
et al., 2022; Koh et al., 2021) due to changes in the underlying data generation process, leading to
distribution shifts. Such phenomenon can severely degrade the performance of GNN models, which
presents a critical challenge for their deployment in practical scenarios (DeGrave et al., 2020).

To address the OOD generalization challenge, graph invariant learning has become the de facto ap-
proach. Inspired by the success of invariance principle (Arjovsky et al., 2020; Kreuzer et al., 2021),
graph invariant learning aims to identify invariant subgraphs that are causally related with the tar-
gets (Yang et al., 2022; Li et al., 2022b; Liu et al., 2022; Zhuang et al., 2023; Chen et al., 2022; Li
et al., 2022a). Typically, they follow the framework of Invariant Risk Minimization (IRM) (Arjovsky
et al., 2020) or Variance-Risk Minimization (VRex) (Krueger et al., 2021), which aim to capture in-
variant features by learning an equipredictive classifier across different environments. Despite some
success, many graph invariant learning methods only perform similarly compared to the traditional
Empirical Risk Minimization (ERM) (Vapnik, 1995) in graph OOD benchmarks (Gui et al., 2022),
it raises a critical yet overlooked question:

To what extent do the graph invariant learning algorithms capture the graph invariance?

In this work, we address this question by investigating two representative OOD algorithms, namely
IRMv1 (Arjovsky et al., 2020) and VRex (Kreuzer et al., 2021), in graph-level OOD classification
scenarios. These algorithms are widely used, and many graph invariance learning algorithms are
based on their variants or extensions (Li et al., 2022b; Liu et al., 2022; Zhuang et al., 2023; Wu
et al., 2022c). Surprisingly, we find that IRM, VRex and their variants on graph invariant learning
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may only learn a subset of invariant features (Sec. 3). In contrast, the learning paradigm that learns
invariant features indirectly by removing spurious features from the ERM-learned features may

GNN

Encoder

(a) Invariant learning directly

(b) Invariant learning indirectly𝑛𝑜𝑑𝑒 𝑖𝑛 𝐺𝑐
𝑛𝑜𝑑𝑒 𝑖𝑛 𝐺𝑠

Figure 1: Illustration of the two graph invariant
learning paradigms. Compared with the invari-
ant learning methodsAInv that adopt the direct
learning paradigm, our proposed method first
adopts a spuriosity learner ASpu to learn spu-
rious features, then learns invariant features by
removing the spurious features using the fea-
ture disentanglement module ADisent.

render learning a more comprehensive set of in-
variant features (Figure 1 and Sec. 3). Motivated
by this observation, we propose a novel learning
framework LIRS: Learning graph Invariance by
Removing Spuriosity. Different from most exist-
ing approaches that directly learn the invariant fea-
tures, LIRS adopts the indirect learning paradigm.
Specifically, LIRS first leverages the biased info-
max principle (Def. 3) to effectively learn graph
spuriosity (Theorem 4.1), then employees class-
conditioned cross entropy loss to effectively learn
graph invariance (Theorem 4.2). Extensive experi-
ments on synthetic datasets demonstrate that LIRS
is able to learn more invariant features compared to
state-of-the-art graph invariant learning methods
that adopt the direct invariant learning paradigm.
Furthermore, LIRS shows superior OOD perfor-
mance on real-world datasets with various types
of distribution shifts, highlighting its effectiveness
in learning graph invariant features. Our contribu-
tions can be summarized as follows:

• We reveal that learning invariant features indirectly i.e., by first learning and then removing
spurious features, can be more effective in capturing invariant features than existing (graph)
invariant learning algorithms that learn invariant features directly.

• We propose LIRS, a novel framework that adopts the indirect learning paradigm for learn-
ing invariant features, which consists of: a) The biased infomax principle, a contrastive
learning algorithm that provably learns graph spuriosity; b) class-conditioned cross-entropy
loss, a learning objective that effectively learns graph invariance by removing spurious fea-
tures from ERM-learned features.

• Extensive experiments demonstrate that LIRS outperforms second-best baseline methods
by up to 25.50% across 17 competitive baselines on both synthetic and real-world datasets
with various distribution shifts.

2 PRELIMINARY

Notations. An undirected graph G with n nodes and m edges is denoted by G := {V, E}, where V
is the node set and E is the edge set. G is also represented by the adjacency matrix A and the node
feature matrix X ∈ Rn×D with D feature dimensions. We use Gc and Gs to denote invariant and
spurious subgraph for graph G respectively, and hc and hs are invariant and spurious features in the
latent space. ĥi and ĥG denote the estimated representations for node vi and graph G respectively.
Finally, we use [K] := {1, 2, . . . ,K} to denote an index set, w to denote a scalar value, w to denote
a vector, W to denote a matrix, W to denote a random variable, and W to denote a set. A more
complete set of notations is presented in Appendix A.

Problem Definition. We focus on OOD generalization in graph classification in hidden environ-
ments. Given a set of graph datasets D = {Ge}e∈Etr⊆Eall , a GNN model f , denoted as ρ ◦ h,
comprises an encoder h : G → RF that learns a representation hG for each graph G, followed by
a downstream classifier ρ : RF → Y to predict the label ŶG = ρ(ĥG). The objective of OOD
generalization on graphs is to learn an optimal GNN model f∗(·) : G → Y using data from train-
ing environments Dtr = {Ge}e∈Etr

that effectively generalizes across all (unseen) environments:
f∗(·) = argminf supe∈Eall

R(f | e), where R(f | e) = Ee
G,Y [l(f(G), Y )] is the risk of the predic-

tor f on the environment e, and l(·, ·) : Y× Y→ R+ denotes a loss function.

Assumption 1. (Stable and predictive subgraphs) Given a graph G ∈ D, there exists a set of
stable (causal) substructure patterns Gc for every class label Y = y, satisfying: a) ∀e, e′ ∈ Etr, Gc ∈

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Gc,Pe (Y | Gc) = Pe′ (Y | Gc); and b) The target Y can be expressed as Y = f∗ (Gc) + ϵ, where
ϵ ⊥⊥ G represents random noise, and ⊥⊥ indicates statistical independence.

Assumption 1 posits that one or more substructure patterns in Gc are not only stably associated
with the target label Y across different environments but also possess sufficient predictive power to
accurately determine Y . This assumption is well-aligned with real-world scenarios. For instance,
in the GOODHIV dataset (Gui et al., 2022; Hu et al., 2020; Wu et al., 2018), a molecule’s ability
to inhibit HIV may depend on the presence of several functional groups interacting with various
parts of the virus. Moreover, recent study also provides empirical evidence for graph applications,
suggesting that multiple substructures remain stable and predictive of the targets (see Appendix E.2
in Bui et al. (2024)), thereby supporting the validity of Assumption 1. Therefore, when the OOD
algorithms are able to learn a broader set of invariant substructures (features), they will generalize
more effectively across different environments.

3 WHY LEARNING INVARIANT FEATURES INDIRECTLY?
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Figure 2: Comparison of the distribution P∆prob
across different

OOD algorithms.

In this section, we motivate our
study by addressing the ques-
tion: Why might learning invari-
ant features indirectly be more
effective than learning them di-
rectly? We begin by presenting
an intuitive hypothesis related to
our research question, followed
by an empirical study on syn-
thetic datasets to support this hy-
pothesis. Consider a dataset D
where each sample G(i) com-
prises invariant features {h(i)

c,j}
nc
j=1 and spurious features {h(i)

s,j}
ns
j=1, with nc and ns denoting

the number of invariant and spurious features respectively. Any subset of the invariant features
{h(i)

c,j}
nc
j=1 maintains stable relationships with Y , consequently OOD objectives that aim to directly

learn invariant features (e.g., IRMv1 and VREx) may only capture a subset of these invariant fea-
tures if a subset of invariant features can already achieve accurate predictions in the training set. In
contrast, an OOD objective that seeks to remove the spurious features {h(i)

s,j}
ns
j=1 from the ERM-

learned features may result in learning a more complete set of invariant features from {h(i)
c,j}

nc
j=1,

thus facilitating OOD generalization in unseen environments.

Empirical Study. To validate our hypothesis that learning invariant features by removing spurious
features may facilitate learning more invariant features, we perform experiments using a variant of
SPMotif datasets (Wu et al., 2022c; Ying et al., 2019). Specifically, for each sample three invariant
subgraphs are attached to the base spurious subgraph in the training and validation sets. In the test
dataset, we perform model inference and record the estimated probability for correctly predicted
samples, denoted as ŷ(i)j . Subsequently, we randomly removed two invariant subgraphs from these

samples and compute the new estimated probability score, denoted as ỹ(i)j . We then fit the distribu-
tion P∆prob

using Kernel Density Estimation (KDE) (Terrell & Scott, 1992), based on the changes
in probability ∆prob := ŷ

(i)
j − ỹ

(i)
j , ∀i, j, as illustrated in Figure 2. If the encoder h(·) can in-

deed learn all invariant features in the test set, then removing two invariant subgraphs should not
change ŷ

(i)
j . Therefore, the closer P∆prob

is to 0, the more it indicates that the encoder has learned
the full set of invariant features. In addition to the density function of ∆prob, we also calculate the
Wasserstein distance of each algorithm to a null distribution, where the probability mass is entirely
centered at 0. As demonstrated in Figure 2, IRMv1 (Arjovsky et al., 2020) and VRex (Krueger et al.,
2021) exhibit significant changes in ∆prob, implying that for some samples, IRMv1 and VRex learn
only a subset of the invariant patterns. GIL (Li et al., 2022b) and GREA (Liu et al., 2022) are two
variants of VRex and IRM that learn invariant features directly by performing environment infer-
ence and environment augmentation respectively. As shown in Figure 2, the Wasserstein distances
for GIL (Li et al., 2022b) and GREA (Liu et al., 2022) are also greater than that of our proposed
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method. This highlights the advantages of the learning paradigm that indirectly learns invariant
features by first learning and then removing spuriosity. However, one may raise concerns that while
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Figure 3: Test accuracy under vary-
ing spurious correlation strengths of the
variant of SPMtoif datasets.

learning invariant features by first removing spurious fea-
tures may indeed lead to capturing a more complete set
of invariant features for the correctly predicted samples,
it may also introduce spurious patterns if the spurious
features are not effectively removed, which could render
such a learning paradigm suboptimal in practice. To ad-
dress this concern, we report test accuracy under vary-
ing strengths of spurious correlations, following previous
experiments. As the strength of the spurious correlation
increases, it becomes more challenging to eliminate the
spurious features. From Figure 3, we have three observa-
tions: a) Our method consistently achieves superior OOD
performance across different correlation strengths; b) Our
method is less sensitive to the increased spurious corre-
lations compared to other representative OOD methods,
which is evident by the flatter curve in Figure 3; c) The
higher test accuracy, combined with the distribution of
probability changes from the previous experiment, suggests that our method enables a larger num-
ber of test samples to learn a more complete set of invariant features. Based on these observations
and analysis, we conclude that indirectly learning invariant features is more effective than learning
them directly.

4 METHODOLOGY

Motivated by the observations in Sec. 3, we now introduce our proposed LIRS framework, which
learns invariant features on graphs indirectly.

4.1 LEARNING GRAPH SPURIOSITY VIA BIASED INFOMAX

The first step of learning invariant features in the LIRS framework is to effectively learn graph
spuriosity. In this section, we first propose a variant of the infomax principle (Hjelm et al., 2019;
Veličković et al., 2019; Linsker, 1988), namely biased infomax, which encourages spuriosity learn-
ing by suppressing invariant signals. We then present a more practical version of biased infomax,
suitable for the real-world datasets. We first formally define spuriosity learning in below:

Definition 1. (Spuriosity Learning) Assuming each data instance G(i) in a dataset D is composed
of two parts h(i)

c and h
(i)
s , an algorithm A is said to be a spuriosity learner if h(i)

s = A(G(i)), ∀i,
i.e., A learns only the spurious features for all instances in D.

One such algorithm to encourage spuriosity learning is the global-local infomax principle (Hjelm
et al., 2019; Veličković et al., 2019; Linsker, 1988), which maximizes the mutual information (MI)
between global representation and local node representations, as defined in the following:

Definition 2. (The Infomax Principle) The infomax principle optimizes the following optimization
objective in Eqn. 1 w.r.t the GNN encoder hθ(·).

max
θ

EG∼G
1

|G|
∑
vi∈G

I
(
ĥi, ĥG

)
, s.t. ĥi = hθ(G), ĥG = READOUT (ĥi). (1)

The encoder hθ(·) will primarily learn spurious features (Yao et al., 2024). However, it will still
be constrained by |Gc|, the size of the invariant subgraph. As |Gc| increases, the learned global
representation ĥG will increasingly capture invariant representations (Yao et al., 2024). To mitigate
this constraint and further facilitate spuriosity learning, we propose the biased infomax principle.

Definition 3. (The Biased Infomax Principle) The biased infomax principle optimizes the following
optimization objective in Eqn. 2 w.r.t the GNN encoder hθ(·).

4
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max
θ

EG∼G
1

|G|

( ∑
vi∈Gs

I
(
ĥi, ĥG

)
−
∑

vi∈Gc

I
(
ĥi, ĥG

))
, s.t. ĥi = hθ(G), ĥG = READOUT(ĥi).

(2)

By maximizing MI across nodes vi ∈ Gs and minimizing MI across nodes vi ∈ Gc, the biased
infomax principle yields an encoder hθ∗(·) that encourages the learning of spurious patterns while
suppressing invariant ones. Formally, we can demonstrate that the biased infomax principle achieves
spuriosity learning.
Theorem 4.1. Given that the invariant subgraph Gc contains invariant patterns that are causally
related to the target labels, and Gs contains only spurious patterns, the biased infomax principle
achieves spuriosity learning, i.e., the encoder hθ∗(·) learns solely the spurious features for each
data sample G in D.

To achieve invariant learning by removing spuriosity, it is crucial to effectively learn the spurious
features first. Theorem 4.1 demonstrates that the biased infomax principle can learn graph spuriosity
more effectively the vanilla infomax, as defined in Def. 2. However, in real-world scenarios, Gc is
often unobservable, which hinders the practicality of the biased infomax principle. To make the
proposed algorithm more practical, we propose an instance-level adaptive biased infomax, which
incorporates a GNN explainer to identify the important nodes first, and then performs instance-wise
counterfactual inference to determine whether the selected nodes should be biased or not.

Instance-level adaptive biased infomax. At first glance, the biased infomax principle appears
impractical due to the necessity of knowing Gc and Gs. To address this limitation, we employ an
approximation algorithm to identify Ĝc, which serves as an estimate for Gc. Subsequently, we treat
nodes vi ∈ Ĝc to realize the biased infomax principle. In practice, we utilize GSAT (Miao et al.,
2022), a GNN explainer e(·) that is robust under distribution shifts, to identify Ĝc and Ĝs = G\ Ĝc.
Nevertheless, the approximation error may inadvertently bias the algorithm by amplifying invariant
signals and suppressing spurious ones, as demonstrated in the following proposition.
Proposition 1. Given an error rate p% in the approximation algorithm for Gc, i.e., Ĝc contains
1 − p% nodes from Gc and p% nodes from Gs, let the learning objectives for the biased infomax
with the ground-truth subgraphs Gc and Gs and with the approximated subgraphs Ĝc and Ĝs be
denoted as L(θ∗;D) and L(θ′;D) respectively. The difference between L(θ∗;D) and L(θ′;D) can
be expressed as:

EG∼G

 2

|G|

 ∑
vi∈pGs

I
(
ĥi; ĥG

)
−

∑
vi∈pGc

I
(
ĥi; ĥG

) .

Here pG denotes p% nodes in graph G. When ĥG learns primarily spurious features, I
(
ĥi; ĥG

)
>

I
(
ĥj ; ĥG

)
,∀vi ∈ Gs, vj ∈ Gc, then Prop. 1 implies that as p% increases, the gap between the

ground-truth learning objective and the learning objective with approximation will also increase,
thus leading to inaccurate graph representations. To reduce the approximation error and mitigate
this issue, we conduct counterfactual inference for a graph G by evaluating the changes in predicted
probability with and without Ĝc derived from the GNN explainer. Assuming Ĝc = e(G, Y ) closely
approximates the ground-truth Gc, the removal of Ĝc should result in a significant change in the
predicted probability score. Under this condition, for graph G, we bias vi ∈ Ĝc. Otherwise, we
employ vanilla infomax without the bias operation. Specifically, we use a pre-defined threshold τ .
For each graph data instance G(i) with target label j, let ŷ(i)j and ỹ

(i)
j denote the predicted probability

scores before and after the removal of Ĝc, respectively. We then bias the infomax for graph G(i) if
ŷ
(i)
j − ỹ

(i)
j > τ using Eqn. 2; otherwise, we use Eqn. 1 to learn the graph representation.

4.2 LEARNING GRAPH INVARIANCE VIA CLASS-CONDITIONED CROSS-ENTROPY LOSS

Class-conditioned cross-entropy loss. So far we have obtained the spurious graph representations
hs for every instance G in the dataset. Next we consider how to learn graph invariance by re-
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moving the spurious features from ERM-learned representations. To solve this challenge, previous
study (Yao et al., 2024) takes spurious features hs and target label Y as inputs to train a linear
classifier using cross-entropy loss to obtain the logits, which capture spurious correlation for each
sample G, and use these (spurious) logits for subsequent spurious feature removing. Although the
input only contains spurious features, we argue that: The logits generated may be inaccurate to cap-
ture the spurious correlation strengths due to the overlapping of spurious patterns across different
classes. To see this, we propose Prop. 2 to demonstrate this issue:
Proposition 2. Given a linear regression model with parameters {θ1, θ2} and spurious features
{x1, x2}, the correlation strength for feature x1 is p and for x2 is 1 − p when Y = 0. Similarly,
the correlation strength for feature x1 is q and for x2 is 1− q when Y = 1. Assuming the spurious
features x1 and x2 can each take values in {0, 1}, we obtain the following parameter estimates using
Mean Squared Error (MSE) loss: θ1 = q

p+q , θ2 = 1−q
2−p−q .

Prop. 2 demonstrates the issue brought by the interference of overlapping spurious features across
different classes. For instance, when p = q, θ1 = θ2 = 1

2 , the generated logits fail to distinguish
different spurious patterns. To mitigate this issue, we propose class-conditioned cross-entropy loss.
Specifically, we first perform clustering within each class based on the spurious features {h(i)

s }ni=1.
The resulted clusters will reflect different spurious patterns and environments accurately given the
spurious features learned by the biased infomax objective. However, employing hard labels can
result in a loss of information regarding the relative positions of samples within a cluster. To address
this, we refit a linear classifier using the cluster labels as targets. This approach ensures that samples
near the cluster boundaries exhibit higher entropy in their spurious logits, thereby preserving the
information about their position within the cluster. Given the estimated spurious logits s(i) ∈ RK

with K clusters in each class, we propose the following learning objective for spurious feature
removing:

Linv := Ey∼Y EG(i)|Y=y −
K∑
j=1

w(i)s
(i)
j log

(
σ(ŝ

(i)
j )
)
, s.t., ŝ(i) = ρ′(ĥ

(i)
G ) ∈ RK . (3)

Here, σ(·) denotes the softmax function, ρ′(·) : RF → RC represents the clustering classifi-
cation head, which takes ĥG from the GNN encoder h(·) as input. The reweighting coefficient
for each sample G(i) is denoted as w(i), which adjusts the weight for samples from the majority
group by reducing it and increases the weight for samples from the minority group. The general-
ized cross-entropy (GCE) method (Zhang & Sabuncu, 2018) is employed to calculate w(i), i.e.,

w(i) =
1−

(
s
(i)
j

)γ

γ , where j is the ground-truth clustering label for sample G(i), and γ is a hyper-
parameter. Finally, The loss objective for feature disentanglement is:

L = LGT + λLinv, (4)

where LGT denotes the ERM loss. Linv , serving as a regularization term, will guide the learning
process to learn invariant features by removing spurious features from the ERM-learned features.
Formally, we present the following theorem.
Theorem 4.2. There exists a suitable γ and clustering number K, such that minimizing the loss
objective L = LGT + λLinv will lead to the optimal encoder h∗(·) which elicits invariant features
for any graph G, i.e., ĥG = h∗(G) = hc.

The proof is included in Appendix D. In the proof of Theorem 4.2, we show that Linv will guide the
ERM-learned features to focus on invariant features by removing or unlearning the spurious ones.
More concretely, given ERM learns both invariant and spurious features (Kirichenko et al., 2023;
Chen et al., 2023b), i.e., ĥG = κ(hc,hs), where κ(·) is a functional mapping to graph representation
ĥG given a set of invariant features hc and a set of spurious features hs, Linv regularizes the learning
process to optimize κ∗(·) such that ĥG contains only hc. While previous OOD methods achieve a
similar goal (to learn only invariant features), our approach differs by first learning the spurious
features and then leveraging them to identify the causal features from the ERM-learned features, a
process we refer to as spurious feature removing or unlearning.
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Table 1: Performance on synthetic and real-world datasets. Numbers in bold indicate the best
performance, while the underlined numbers indicate the second best performance.

Method GOOD-Motif GOOD-HIV OGBG-Molbace OGBG-Molbbbp

base size scaffold size scaffold size scaffold size

ERM 68.66±4.25 51.74±2.88 69.58±2.51 59.94±2.37 75.11±3.03 83.60±3.47 68.10±1.68 78.29±3.76

IRM 70.65±4.17 51.41±3.78 67.97±1.84 59.00±2.92 75.47±2.22 83.12±2.58 67.22±1.15 77.56±2.48

GroupDRO 68.24±8.92 51.95±5.86 70.64±2.57 58.98±2.16 - - 66.47±2.39 79.27±2.43

VREx 71.47±6.69 52.67±5.54 70.77±2.84 58.53±2.88 72.81±4.29 82.55±2.51 68.74±1.03 78.76±2.37

RSC 46.12±3.76 51.70±5.47 69.16±3.23 61.17±0.74 74.59±3.65 84.34±2.65 69.01±2.84 78.07±3.89

DiverseModel 54.24±8.22 41.01±1.98 69.17±3.62 61.59±2.23 73.48±3.56 79.40±1.70 68.04±3.27 77.62±1.90

DropEdge 45.08±4.46 45.63±4.61 70.78±1.38 58.53±1.26 70.81±2.12 76.39±2.29 66.49±1.55 78.32±3.44

FLAG 61.12±5.39 51.66±4.14 68.45±2.30 60.59±2.95 80.37±1.58 84.72±0.88 67.69±2.36 79.26±2.26

LiSA 54.59±4.81 53.46±3.41 70.38±1.45 52.36±3.73 78.05±5.01 83.92±2.52 68.11±0.52 78.62±3.74

DIR 62.07±8.75 52.27±4.56 68.07±2.29 58.08±2.31 75.49±2.80 77.42±7.43 66.86±2.25 76.40±4.43

DisC 51.08±3.08 50.39±1.15 68.07±1.75 58.76±0.91 57.78±3.60 71.13±8.86 67.12±2.11 56.59±10.09

CAL 65.63±4.29 51.18±5.60 67.37±3.61 57.95±2.24 76.29±1.60 79.68±4.06 68.06±2.60 79.50±4.81

GREA 56.74±9.23 54.13±10.02 67.79±2.56 60.71±2.20 77.16±1.37 83.15±9.07 69.72±1.66 77.34±3.52

GSAT 62.80±11.41 53.20±8.35 68.66±1.35 58.06±1.98 72.32±5.66 82.45±2.73 66.78±1.45 75.63±3.83

CIGA 66.43±11.31 49.14±8.34 69.40±2.39 59.55±2.56 76.44±1.72 83.95±2.75 64.92±2.09 65.98±3.31

AIA 73.64±5.15 55.85±7.98 71.15±1.81 61.64±3.37 79.42±2.01 85.11±0.74 70.79±1.53 81.03±5.15

OOD-GCL 56.46±4.61 60.23±8.49 70.85±2.07 58.48±2.94 75.96±2.21 85.34±1.77 67.28±3.09 78.11±3.32

EQuAD 67.11±10.11 59.72±3.69 72.24±0.64 64.19±0.56 79.15±2.32 86.41±5.63 70.22±2.36 80.82±5.28

LIRS 75.51±2.19 74.95±7.69 72.82±1.61 66.64±1.44 81.91±1.98 88.77±1.64 71.04±0.76 82.19±1.57

5 EXPERIMENTS

In this section, we perform empirical study on both synthetic and real-world datasets. More details
about the datasets and experiment setup are included in Appendix H.

5.1 EXPERIMENTAL SETUP

Datasets.We adopt GOODMotif and GOODHIV datasets (Gui et al., 2022), OGBG-Molbace and
OGBG-Molbbbp datasets (Hu et al., 2020; Wu et al., 2018) to comprehensively evaluate the OOD
generalization performance of our proposed framework. For GOODMotif datasets, we adopt base
shift and size shift, for OGBG datasets, in addition to scaffold shift, we also create size shift, fol-
lowing previous studies (Gui et al., 2022; Sui et al., 2023). More details on the datasets used in our
work are included in Appendix H.

Baselines. Besides ERM (Vapnik, 1995), we compare our method against three lines of OOD
baselines: (1) OOD algorithms on Euclidean data, including IRM (Arjovsky et al., 2020),
VREx (Krueger et al., 2021), and GroupDRO (Sagawa et al., 2019); (2) Diverse feature learning
methods, including RSC (Huang et al., 2020), and DiverseModel (Teney et al., 2022). (3) graph-
specific OOD and data augmentation algorithms without requiring environment labels, including
DIR (Wu et al., 2022c), GSAT (Miao et al., 2022), GREA (Liu et al., 2022), DisC (Fan et al., 2022),
CIGA (Chen et al., 2022), AIA (Sui et al., 2023), OOD-GCL (Li et al., 2024a), EQuAD (Yao et al.,
2024), DropEdge (Rong et al., 2019), FLAG (Kong et al., 2022), and LiSA (Yu et al., 2023). Details
of the baselines and their implementation are provided in Appendix H.

Evaluation. We report the ROC-AUC score for GOOD-HIV, OGBG-Molbbbp, and OGBG-
Molbace datasets, where the tasks are binary classification. For GOOD-Motif and SPMotif datasets,
we use accuracy as the evaluation metric. We run experiments 4 times with different random seeds,
select models based on the validation performance, and report the mean and standard deviations on
the test set.

5.2 EXPERIMENTAL RESULTS

In this section, we report the main results on both synthetic and real-world datasets.

Synthetic datasets. For the GOOD-Motif datasets, LIRS demonstrates its superiority by outper-
forming the second-best method by 12.51% and 25.50% in the base and size split respectively.
This substantial margin highlights the effectiveness of LIRS in capturing domain-invariant features
across different types of distribution shifts. Although EQuAD adopts a similar learning paradigm
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by attempting to remove spurious features, LIRS outperforms it by 25.50% in the size split of the
GOOD-Motif datasets. The underlying reason for this performance gap is that in the training set of
GOOD-Motif, the spurious subgraph Gs occupies a significant portion of the graph. The infomax
principle adopted in EQuAD can inadvertently affect the learning of spurious features and hinder the
subsequent invariant learning process. In contrast, LIRS adopts biased infomax, which facilitates
the suppression of invariant signals, thereby allowing it to learn spurious features more effectively.
OOD-GCL (Li et al., 2024a) also utilizes contrastive learning to learn invariant features, however,
it aims to learn invariant features without labeled data, which is inherently more challenging. As
illustrated in Table 1, LIRS outperforms OOD-GCL across all the datasets, likely due to that LIRS
has access to labeled data during training, while OOD-GCL uses labeled data only to fine-tune the
linear layer. We also compare LIRS with RSC Huang et al. (2020) and DiverseModel Teney et al.
(2022), which aim to learn diverse features via ERM. LIRS can be viewed as a diverse feature
learning method, as it seeks to learn more invariant features by removing spurious ones. The key
distinction between LIRS and these two methods lies in that: while RSC and DiverseModel propose
different regularization terms to ERM to capture diverse features, LIRS focuses on removing spuri-
ous features from ERM-learned features. As illustrated in Table 1, although RSC and DiverseModel
perform well on real-world datasets, they achieve suboptimal results on the GOOD-Motif datasets.
This discrepancy may arise from the fact that these methods attempt to capture diverse features,
while in the GOOD-Motif datasets, only one invariant subgraph is causally related to the target.
As a result, these methods may mistakenly capture non-generalizable patterns in Gs. In contrast,
LIRS leverages biased infomax to effectively learn spurious patterns and subsequently identify the
invariant subgraph by unlearning the spurious patterns. Lastly, LIRS significantly outperforms other
OOD methods that aim to directly learn invariant features, showcasing the efficacy of the proposed
learning paradigm.

Real-world datasets. In real-world datasets, which present more complex and realistic distribution
shifts, many graph OOD algorithms exhibit instability, occasionally underperforming ERM. In con-
trast, LIRS adopts an indirect learning paradigm, which may enable the learning of more invariant
features compared to previous graph invariant learning methods, leading to more effective OOD
generalization. Similarly to the results on synthetic datasets, LIRS also demonstrates superior OOD
performance under both scaffold shift and size shift compared to other methods. EQuAD, which
adopts a similar learning paradigm as LIRS, shows a comparable trend, with a more significant
advantage under the size shift relative to other methods. Furthermore, the improvements of LIRS
over EQuAD across various datasets highlights the effectiveness of the biased infomax principle
and the intra-class cross-entropy loss for learning spurious features and invariant features respec-
tively. Compared to other baselines that learns invariant features directly, LIRS outperforms the best
method (AIA) by 4.62% in size shift and 1.95% in scaffold shift respectively.

5.3 IN-DEPTH ANALYSIS

Table 2: Performance on the SPMotif-binary
datasets under varying spurious correlations.

Method SPMotif-binary

b = 0.40 b = 0.60 b = 0.90

ERM 74.93±3.94 72.78±3.15 63.78±4.18

IRM 76.01±4.12 70.85±4.73 66.55±4.80

VREx 79.03±1.02 73.78±1.75 65.27±6.78

GIL 77.15±3.18 73.85±2.76 68.90±7.28

GREA 79.65±6.36 73.01±7.99 69.85±0.35

CIGA 76.93±3.94 71.70±1.55 66.80±5.35

AIA 78.46±3.19 71.83±0.69 64.37±4.14

EQuAD 80.82±0.65 74.20±4.10 69.79±7.81

LIRS 82.17±0.91 75.32±1.65 71.29±2.12

Can LIRS learn more invariant features? To
further validate the quality of invariant features
learned by LIRS, we curated a dataset derived
from the SPMotif dataset. Specifically, we con-
structed a binary classification dataset where
the motifs House and Crane corresponds to la-
bel 0, and Diamond and Cycle corresponds to
label 1. During the construction of each class’s
samples, we attached both invariant subgraphs
to the base subgraph with 50% chance, while
in the remaining 50%, we randomly attached
one invariant subgraph to the base spurious sub-
graph. For the test set, we randomly attached a
single invariant subgraph to the base subgraph.
Similar to the SPMotif dataset, the base spuri-
ous subgraph was correlated with the target la-
bels, maintaining an equal correlation strength with the labels in the test set. In addition to evalu-
ating LIRS against traditional methods such as IRM, VRex and their variants, we also incorporated
strong graph-specific OOD baselines, including CIGA, AIA, and EQuAD for comparisons. The ex-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

perimental results in Table 2 demonstrate that LIRS consistently outperforms other baselines across
varying spurious correlation strengths, indicating its superior ability to learn more invariant features.
Similarly, EQuAD, adopting a similar learning paradigm, also achieves competitive performance in
SPMotif-binary datasets. This demonstrates that learning invariant features indirectly can lead to
learning a more comprehensive set of invariant features and achieving better OOD generalization
ability.

GOODMotif-Base GOODMotif-Size GOODHIV-Sca GOODHIV-Size
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LIRS w/o biased_infomax w/o intra_class_loss

(a) Ablation study on biased infomax and intra-class
cross-entropy loss.

GOODHIV-Sca

GOODHIV-Size

(b) Hyperparameter sensitivity analysis on
GOODHIV datasets.

Figure 4: Ablation and hyperparameter sensitivity studies for LIRS.

Ablation study. We conducted an ablation study on biased infomax and class-conditioned (intra-
class) cross-entropy loss to evaluate their effectiveness in LIRS. As illustrated in Figure 4a, replacing
biased infomax with vanilla infomax to generate spurious features leads to performance degradation
across all datasets. This decline is primarily due to the enhanced capability of biased infomax in
learning spurious features, which is crucial for subsequent steps for learning graph invariance. Fur-
thermore, replacing class-conditioned cross-entropy loss with standard cross-entropy loss also led
to negative effects, which is mainly due to the interference of spurious patterns across different
classes, as discussed in Sec. 4. One typical empirical support arises from the Motif-size dataset,
where each spurious pattern is correlated with different target labels with nearly equal strength. As
a result, even though biased infomax can generate accurate spurious features, the logits generated
using the standard cross-entropy loss are not sufficiently precise, which aligns with Prop. 2. This
limitation significantly constrains the test performance, as illustrated in Figure 4a. In contrast, the
class-conditioned cross-entropy loss is able to generate more accurate spurious logits, thus enhanc-
ing the OOD performance.

Table 3: Performance on OGBG
datasets using a different size split pro-
cedure, where the graphs in the train-
ing set have a smaller number of nodes
compared to those in the test set.

Method OGBG Datasets

OGBG-Molbace OGBG-Molbbbp

ERM 76.31±0.58 87.31±2.37

IRM 79.44±3.05 88.77±2.45

VREx 76.38±1.75 84.20±2.80

GREA 77.46±5.57 86.18±2.54

GSAT 72.29±4.45 87.46±2.67

CIGA 77.89±3.68 87.94±0.86

AIA 78.62±2.88 89.18±1.77

EQuAD 82.34±3.42 88.65±3.83

LIRS 84.62±0.84 90.24±4.14

Hyperparameter Sensitivity. We investigate the impact
of hyperparameters in LIRS, including the reweighting
coefficient γ, the penalty weights λ, and hyperparameters
related to biased infomax. Specifically, we analyze the
effect of the epoch E at which embeddings are derived
from biased infomax and the threshold used to determine
whether a sample should be considered biased or not.
As illustrated in Figure 4b, for both the GOODHIV-Sca
and GOODHIV-Size datasets, LIRS demonstrates stable
performance, highlighting its robustness to variations in
hyperparameter settings. This consistency suggests that
LIRS is agnostic to hyperparameter tuning, which further
emphasizes its applicability in real-world scenarios.

How do different size split methods affect the OOD
performance? For the real-world datasets, the size split
was performed in descending order, where the graphs in
the training set have a larger number of nodes compared
to those in the test set. To evaluate the impact of varying graph sizes on generalization ability
of various OOD methods, we also performed size splits based on ascending order for the OGBG-
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Molbace and OGBG-Molbbbp datasets. The results of these experiments are presented in Table 3.
As shown, LIRS continues to outperform all competitive baselines under this alternative size split.
Specifically, LIRS achieves the highest ROC-AUC scores on both OGBG-Molbace and OGBG-
Molbbbp datasets. This highlights the superiority of LIRS in generalizing to larger graphs when
trained on smaller ones, further confirming its potential for real-world applications.

6 RELATED WORK

Learning invariant features. OOD generalization is a critical challenge in machine learning, where
models trained on a specific data distribution often fail to generalize well to unseen distributions.
Recently invariance learning has been proposed to tackle this issue, which builds upon the theory of
causality (Peters et al., 2016; Pearl, 2009) to learn causally-related representation that remain stable
across different environments (Arjovsky et al., 2020; Parascandolo et al., 2020; Mahajan et al., 2021;
Wald et al., 2021; Ahuja et al., 2020; 2021). Inspired from IRM (Arjovsky et al., 2020), several
invariant learning methods on graphs are proposed (Yang et al., 2022; Li et al., 2022b; Fan et al.,
2022; Liu et al., 2022; Wu et al., 2022c; Chen et al., 2022; 2023a; Gui et al., 2023; Sui et al., 2023;
Li et al., 2024b) to learn graph-level representations that are robust to distribution shifts. Most of
these methods aim to learn invariant features directly by training an equipredictive classifier. Recent
study (Yao et al., 2024) has proposed a new learning paradigm to learn graph invariance indirectly
by learning spurious features first, then disentangle them from the ERM-learned representations. In
this work, we adopt this learning paradigm for learning graph invariance.

Self-supervised learning induces spuriosity. Self-supervised learning (SSL) has emerged as a
potent paradigm for learning representations from unlabeled datasets. The fundamental concept
involves devising pretext tasks that maximize similarity between two augmented views of the same
data point, often utilizing the InfoNCE loss (Oord et al., 2018). This approach has been widely
applied in domains such as images (Chen et al., 2020a;b) and graphs (Veličković et al., 2019; Sun
et al., 2019; Zhu et al., 2020; You et al., 2020). Recent work have shown that SSL may tend to learn
spurious features in both image domain (Hamidieh et al., 2024; Meehan et al., 2023) and graph
domain (Yao et al., 2024). Hamidieh et al. (2024) attempted to enhance SSL model performance
by addressing this issue and promoting the learning of invariant features. In contrast, our goal in
this work is to improve SSL model ability to capture spuriosity, thereby facilitating better feature
disentanglement for invariant learning.

Learning diverse features. Recent studies have shown that ERM tends to encourage models to learn
the simplest predictive features (Hermann & Lampinen, 2020; Kalimeris et al., 2019; Neyshabur
et al., 2014; Pezeshki et al., 2021). This simplicity bias causes the models to rely on simple (spu-
rious) but non-causal features, ignoring more complex patterns that might be equally predictive.
To address this challenge, Huang et al. (2020) employs a self-challenging mechanism to force the
model to learn diverse patterns by discarding dominant features, while Teney et al. (2022) constructs
diverse features by training a collection of classifiers with diversity regularization. Additionally,
Zhang et al. (2022a); Chen et al. (2023b) adopt DRO to iteratively explore new features. While pre-
vious works aim to encourage models to learn a diverse set of predictive patterns, our method takes
a different approach. Specifically, we aim to remove or unlearn spurious features from ERM-learned
features, thereby allowing the model to capture more invariant features.

7 CONCLUSIONS

In this study, we identified a critical limitation in IRM, VRex and their variants on graph invariant
learning, i.e., these methods may only capture a subset of the invariant features, thereby limiting
their OOD generalization performance. To address this issue, we investigate the effectiveness of
learning invariant features indirectly by first learning and then removing spurious features. Our
theoretical and empirical analyses demonstrate that this approach facilitates the learning of a more
comprehensive set of invariant features than traditional (graph) invariant learning methods, thereby
improving generalization to unseen environments. We then propose LIRS that adopts this learning
paradigm, which consists of: a) The biased infomax principle, and b) The class-conditioned cross-
entropy loss, which elicit effective spuriosity learning and invariant learning respectively, aiming
to learn more invariant features. Extensive experiments on both synthetic and real-world datasets
demonstrate the superiority of our proposed method over existing state-of-the-art OOD algorithms.
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APPENDIX

A NOTATIONS

We present a set of notations used throughout our paper for clarity. Below are the main notations
along with their definitions.

Table 4: Notation Table

Symbols Definitions
G a set of graphs

G = (A,X) a graph with the adjacency matrix A ∈ {0, 1}n×n and node feature matrix X ∈ Rn×d

Y random variable for labels
C content factor
S style factor
E environment
hc invariant representations (features)
hs spurious representations (features)
Gc the invariant subgraph with respect to G
Gs the spurious subgraph with respect to G

Ĝc the estimated invariant subgraph
Ĝs the estimated spurious subgraph
ĥG the estimated graph representation for graph G

ĥi the estimated node representation for node i ∈ G

ĥc the estimated invariant graph representation, interchangeably with Ĉ in our paper
ĥs the estimated spurious graph representation, interchangeably with Ŝ in our paper
s
(i)
j The jth entry of the spurious logits derived from h

(i)
s for sample G(i)

ŝ
(i)
j The jth of the estimated spurious logits for sample G(i)

h(·) encoder
ρ(·) classification head for LGT

ρ′(·) classification head for LInv

w(i) reweighting coefficient for sample G(i)

[K] := {1, 2, · · · ,K} index set with K elements
1K all-one (column) vector with K entries
w a vector
W a matrix
W a random variable
W a set

B MORE BACKGROUND AND PRELIMINARIES

Graph Neural Networks. In this work, we adopt message-passing GNNs for graph classification
due to their expressiveness. Given a simple and undirected graph G = (A,X) with n nodes and
m edges, where A ∈ {0, 1}n×n is the adjacency matrix, and X ∈ Rn×d is the node feature matrix
with d feature dimensions, the graph encoder h : G → Rh aims to learn a meaningful graph-
level representation hG, and the classifier ρ : Rh → Y is used to predict the graph label ŶG =

ρ(hG). To obtain the graph representation hG, the representation h
(l)
v of each node v in a graph

G is iteratively updated by aggregating information from its neighbors N (v). For the l-th layer,
the updated representation is obtained via an AGGREGATE operation followed by an UPDATE
operation:

m(l)
v = AGGREGATE(l)

({
h(l−1)
u : u ∈ N (v)

})
, (5)

h(l)
v = UPDATE(l)

(
h(l−1)
v ,m(l)

v

)
, (6)
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where h(0)
v = xv is the initial node feature of node v in graph G. Then GNNs employ a READOUT

function to aggregate the final layer node features
{
h
(L)
v : v ∈ V

}
into a graph-level representation

hG:
hG = READOUT

({
h(L)
v : v ∈ V

})
. (7)

Data Generating Process. The presumed data generating process adopted in this work is similar
to the previous studies (Arjovsky et al., 2020; Ahuja et al., 2020; Chen et al., 2022; 2023a; Wu
et al., 2022a). The dynamics of graph generation are fundamentally grounded upon the principles
of Structural Causal Models (SCM) (Peters et al., 2016), capturing the complex interplay between
latent variables and their influence on observable graph characteristics. This model assumes the
graph generation as a function fgen : Z → G, where Z ⊆ Rn denotes the latent space, and G is
the graph space. Through the lens of SCM, the generation process is decomposed into the invariant
subgraph Gc, the spurious subgraph Gs, and the observed graph G respectively, as formulated in the
following equation:

Gc := fGc
gen(C), Gs := fGs

gen(S), G := fG
gen (Gc, Gs) .

C Y

G

S

E

C Y

G

S

E

(a) PIIF SCM (b) FIIF SCM

Figure 5: Structure causal models for graph data
generation.

Furthermore, the latent interactions among C,
S, and Y can exhibit two types of conditional
independence: (i) Y ⊥⊥ S | C and (ii) Y ̸⊥⊥
S | C. In case (i), the invariant factor C is fully
informative (FIIF) to the target label Y , and the
latent spurious factor S provide no further in-
formation. In case (ii), the invariant factor C is
only partially informative (PIIF) about Y , spu-
rious factor S can further provide additional in-
formation to aid the prediction of Y , however,
as S is directly affected by E, it is not stable
across different environments. The SCMs for
the two scenarios are illustrated in Figure 5. For
the PIIF SCM, the structure equation is:

Y = Xc + n1, Xs = Y + n2 + ϵe, (8)

while for FIIF SCM, the structure equation is:

Y = Xc + n1, Xs = n2 + ϵe. (9)

Here Xc and Xs denote the random variables for invariant factor and spurious factor respectively.
n1 and n2 represent random Gaussian noise, and ϵe stands for an environmental variable, which
causes the spurious correlation between Xs and Y .

C ADDITIONAL RELATED WORK

OOD Generalization. OOD generalization is a critical challenge in machine learning, where mod-
els trained on a specific data distribution often fail to generalize well to unseen distributions. Several
approaches have been proposed to address this issue, including domain generalization, distributional
robustness optimization (DRO), and invariance learning. Domain generalization aims to learn fea-
tures that are invariant across different domains or environments. Previous studies, such as Ganin
et al. (2016); Sun & Saenko (2016); Li et al. (2018); Dou et al. (2019), regularize the learned features
to be domain-invariant. DRO methods focus on training models to perform robust against the worst-
case scenarios among diverse data groups. Namkoong & Duchi (2016); Hu et al. (2018); Sagawa
et al. (2019) regularize models to be robust to mild distributional perturbations of the training dis-
tributions, expecting the models to perform well in unseen test environments. Building upon this,
Liu et al. (2022) Zhang et al. (2022b) and Yao et al. (2022) propose advanced strategies to improve
robustness by assuming that models trained with ERM have a strong reliance on spurious features.
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Invariance learning leverages the theory of causality (Peters et al., 2016; Pearl, 2009) and intro-
duces causal invariance to the learned representations. The Independent Causal Mechanism (ICM)
assumption in causality states that the conditional distribution of each variable given its causes does
not inform or influence other conditional distributions. Despite changes to the intervened variables,
the conditional distribution of intervened variables and the target variable remains invariant. Ar-
jovsky et al. (2020) proposes the framework of Invariant Risk Minimization (IRM) that allows the
adoption of causal invariance in deep neural networks, inspiring various invariant learning works
such as Parascandolo et al. (2020); Mahajan et al. (2021); Wald et al. (2021); Ahuja et al. (2020;
2021); Krueger et al. (2021).

Graph-Level OOD Generalization. Recently, there has been a growing interest in learning graph-
level representations that are robust under distribution shifts, particularly from the perspective of
invariant learning. MoleOOD Yang et al. (2022) and GIL Li et al. (2022b) propose to infer environ-
mental labels to assist in identifying invariant substructures within graphs. DIR Wu et al. (2022c),
GREA Liu et al. (2022) and iMoLD Zhuang et al. (2023) employ environment augmentation tech-
niques to facilitate the learning of invariant graph-level representations. These methods typically
rely on the explicit manipulation of unobserved environmental variables to achieve generalization
across unseen distributions. AIA Sui et al. (2023) employs an adversarial augmenter to explore OOD
data by generating new environments while maintaining stable feature consistency. To circumvent
the need for environmental inference or augmentation, CIGA Chen et al. (2022) and GALA Chen
et al. (2023a) utilizes supervised contrastive learning to identify invariant subgraphs based on the
assumption that samples sharing the same label exhibit similar invariant subgraphs. EQuAD Yao
et al. (2024) adopts self-supervised learning to learn spuriosu efatures first, followed by learning
invariant features by unlearning spurious features. LECI Gui et al. (2023) and G-Splice Li et al.
(2023b) assume the availability of environment labels, and study environment exploitation strategies
for graph OOD generalization. LECI Gui et al. (2023) proposes to learn a causal subgraph selec-
tor by jointly optimizing label and environment causal independence, and G-Splice Li et al. (2023b)
studies graph and feature space extrapolation for environment augmentation, which maintains causal
validity. On the other hand, some works do not utilize the invariance principle for graph OOD gen-
eralization. DisC Fan et al. (2022) initially learns a biased graph representation and subsequently
focuses on unbiased graphs to discover invariant subgraphs. GSAT Miao et al. (2022) utilizes in-
formation bottleneck principle Tishby & Zaslavsky (2015) to learn a minimal sufficient subgraph
for GNN explainability, which is shown to be generalizable under distribution shifts. OOD-GNN Li
et al. (2022a) proposes to learn disentangled graph representation by computing global weights of
all data. Parallel to all previous studies, we propose ELiSD, which utilizes spurious subgraph diver-
sification to provably identify Gc for OOD generalization, and uplift the lower bound of I(G;Y )
to enhance feature learning simultaneously. In this study, we adopt the same learning paradigm as
EQuAD, and we propose instance-level adaptive biased infomax and intra-class cross entropy loss
to enhance the efficacy of learning spurious and invariant features respectively.

Node-Level OOD Generalization. There has also been a substantial amount of work focusing on
the OOD generalization problem on node-level classification tasks. Most of these studies (Wu et al.,
2022a; Liu et al., 2023; Li et al., 2023a; Yu et al., 2023) also focus on environment generation, which
facilitates the subsequent invariant learning. These methods are also likely to learn only a subset of
invariant features, thus limiting their ability to generalize to OOD data.

GNN Explainability. GNN explanation methods can be broadly categorized into instance-
level (Luo et al., 2020; Ying et al., 2019; Pope et al., 2019; Schnake et al., 2021) and model-
level (Azzolin et al., 2022; Yuan et al., 2020; Wang & Shen, 2022) explanations. The main goal
of the instance-level explanation methods is to explain why a certain prediction is made for a par-
ticular instance. Specifically, the important input subgraph and features that contribute the most to
model predictions are identified for a given instance. In this work, we employ instance-level GNN
explanation methods to approximate the invariant subgraph Gc, and utilize off-the-shelf method
GSAT (Miao et al., 2022), that is robust under distribution shifts, to identify the important nodes in
a graph to facilitate the learning of graph spuriosity through adaptive biased infomax in real-world
datasets.
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D THEORETICAL RESULTS

D.1 THEORETICAL DISCUSSION ON VREX IN LEARNING INVARIANT FEATURES

We first outline the objective function of VRex as following:

LV Rex := min
w,ϕ

Ee [L (w ◦ ϕ (X) , Y )] + βVare [L (w ◦ ϕ (X) , Y )] , (10)

here w and ϕ denote the classifier and feature extractor, respectively. β is the hyperparameter to
control regularization strength. Next we prove the following proposition.

Proposition 3. Let w∗, ϕ∗ = argmin
w,ϕ

LV Rex, then ĥG = w∗(X) learns invariant features, however

ĥG may only contain a subset of invariant features, given our PIIF data generating assumption:

Y = Xc + n1, Xs = Y + n2 + ϵe, where Xc :=
∑
i

Xc,i, Xs :=
∑
i

Xs,i, (11)

and FIIF data generating assumption:

Y = Xc + n1, Xs = n2 + ϵe, where Xc :=
∑
i

Xc,i, Xs :=
∑
i

Xs,i, (12)

when using a linear classifier ϕ(X) = w1Xc +w2Xs, and L(w ◦ϕ(X)) := R(e) = (ϕ(X)− Y )2.

Here, we assume an additive model for Xc, i.e., A set of invariant features Xc,i is combined through
summation to obtain the final Xc, and similarly for Xs.

Proof. To prove Prop. 3, we first expand Vare(R(e)) = Ee

[
R2(e)

]
− (Ee[R(e)])

2, then we take
derivative w.r.t. w1 and w2, we then show that Eqn. 10 can elicit w∗ that learns invariant features,
however, it may only learn a subset of them.

Given R(e) = (ϕ(X)− Y )2 and Vare(R(e)) = EeR
2(e)− E2

eR(e), we have:

∂Vare(R(e))

∂w1
=

∂Ee[(ϕ(X)− Y )4]

∂w1
− E2

e[(ϕ(X)− Y )2]

= 4Ee[(ϕ(X)− Y )3Xc]− 4Ee[R(e)] · Ee[(ϕ(X)− Y )Xc].

(13)

Similarly, for ∂ Vare(R(e))
∂w2

, we have:

∂Vare(R(e))

∂w2
= 4Ee

[
(ϕ(X)− Y )3 · (Xc + n1 + n2 + εe)

]
−4Ee[R(e)]·Ee [(ϕ(X)− Y ) · (Xc + n1 + n2 + ϵe)] .

(14)

Now we expand ϕ(X)− Y :

ϕ(X) = w1Xc + w2Xs

Xs = Xc + n1 + n2 + εe

ϕ(X) = (w1 + w2)Xc + w2n1 + w2n2 + w2ε
e

Y = Xc + n1

ϕ(X)− Y = (w1 + w2 − 1)Xc + (w2 − 1)n1 + w2n2 + w2ε
e

(15)

Next, we show that w1 = 1, w2 = 0 is a optimal solution for minimizing Eqn. 10. We set w1 =
1, w2 = 0, and plug into ϕ(X) and ϕ(X)− Y , we get:
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ϕ(X) = w1Xc + w2Xs → ϕ(X) = 1 ·Xc + 0 ·Xs = Xc, (16)

and

Y = Xc + n1

ϕ(X)− Y = Xc − (Xc + n1) = −n1.
(17)

Substitute Eqn. 1617 into Eqn. 13, we get:

4Ee

[
(ϕ(X)− Y )3 ·Xc

]
= 4Ee

[
En1,n2

[
(−n1)

3 ·Xc

]]
= 0 (Ee[n

3
1] = 0)

Ee[R(e)] = Ee

[
n2
1

]
= σ2

n1

Ee [En1,n2
[(−n1) ·Xc]] = 0,

(18)

therefore, we have ∂ Vare(R(e))
∂w1

= 0. For ∂ Vare(R(e))
∂w2

(Eqn. 14), the first term can be expanded as:

Ee

[
(−n1)

3 ·Xc

]
= 0

Ee

[
En1,n2

[
(−n1)

3 · n1

]]
= −Ee

[
En1,n2

[
n4
1

]]
= −3σ4

n1

Ee

[
En1,n2

[
(−n1)

3 · n2

]]
= 0

Ee

[
En1,n2

[
(−n1)

3 · εe
]]

= 0,

(19)

thus:

4Ee

[
En1,n2

[
(−n1)

3 · (Xc + n1 + n2 + εe)
]]

= 4 ·
(
−3σ4

n1

)
= −12σ4

n1. (20)

For the second term in Eqn. 14:

4Ee[R(e)] · Ee [En1,n2
[(−n1) · (Xc + n1 + n2 + εe)]] = 4σ2

n1 ·
(
−σ2

n1

)
= −4σ4

n1, (21)

substitute Eqn. 20 and 21 into Eqn. 14, we get:

∂Vare(R(e))

∂w2
= −8σ4

n1. (22)

As σn1 is the standard deviation of n1, where Xc is causally related with Y , we assume σn1 is a
small value, hence the high-order term O(σ4

n1) ≈ 0. Therefore, we show that w1 = 1, w2 = 0 is
(approxiamately) optimla solution for Eqn. 10, indicating that only the invariant features are used in
the classifier ϕ∗(X). Now we have:

Y = ϕ∗(X) = Xc =
∑
i

Xc,i. (23)

Given a fixed value Xc = x, there may be multiple combinations for {Xc,i} that result in Xc = x.
The set of invariant features {Xc,i} naturally arises from the learning process of deep neural net-
works. Some invariant features might be easier to learn due to their salience or higher frequency in
the dataset. Consequently, although the VRex objective promotes the learning of invariant encoders
(as we have proved above), it does not guarantee the identification of all invariant features {Xc,i}.
For FIIF data generating process, similarly we get:

ϕ(X) = w1Xc + w2Xs, Xs = n2 + ϵe, Y = Xc + n1,⇒
ϕ(X)− Y = (w1 − 1)Xc + w2n2 + w2ϵ

e − n1.
(24)
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The variance of the loss across environments is:

Vare
[
(ϕ(X)− Y )2

]
= Ee

[
(ϕ(X)− Y )4

]
−
(
Ee

[
(ϕ(X)− Y )2

])2
. (25)

Recall that ϕ(X) = w1Xc + w2Xs and Xs = n2 + ϵe, we have:

ϕ(X)− Y = (w1 − 1)Xc + w2n2 + w2ϵ
e − n1. (26)

The squared expected loss term can be expanded as:

Ee

[
(ϕ(X)− Y )2

]
= Ee

[
((w1 − 1)Xc + w2n2 + w2ϵ

e − n1)
2
]

= (w1 − 1)
2 Ee

[
X2

c

]
+ w2

2Ee

[
n2
2

]
+ w2

2Ee

[
(ϵe)

2
]
+ Ee

[
n2
1

]
+ 2 (w1 − 1)w2Ee [Xcn2] .

(27)

Given the independence between Xc, n1, n2 and ϵe, we have:

Ee

[
(ϕ(X)− Y )2

]
= (w1 − 1)

2 Ee

[
X2

c

]
+ w2

2Ee

[
n2
2

]
+ w2

2Ee

[
(ϵe)

2
]
+ Ee

[
n2
1

]
(28)

For Ee

[
(ϕ(X)− Y )4

]
, we have:

Ee

[
(ϕ(X)− Y )4

]
= Ee

[
((w1 − 1)Xc + w2n2 + w2ϵ

e − n1)
4
]

= (w1 − 1)
4 Ee

[
X4

c

]
+ w4

2Ee

[
n4
2

]
+ w4

2Ee

[
(ϵe)

4
]
+ Ee

[
n4
1

]
.

(29)

Taking derivative with respect to w1 and w2:

∂

∂w1
Ee

[
(ϕ(X)− Y )2

]
= 2 (w1 − 1)Ee

[
X2

c

]
,

∂

∂w1
Ee

[
(ϕ(X)− Y )4

]
= 4 (w1 − 1)

3 Ee

[
X4

c

]
,

∂

∂w2
Ee

[
(ϕ(X)− Y )2

]
= 2w2

(
Ee

[
n2
2

]
+ Ee

[
(ϵe)

2
])

,

∂

∂w2
Ee

[
(ϕ(X)− Y )4

]
= 4w3

2

(
Ee

[
n4
2

]
+ Ee

[
(ϵe)

4
])

.

(30)

Setting Eqn. 30 to zero, we get w1 = 1, w2 = 0. In conclusion, for both PIIF and FIIF data
generating scenarios, VRex only learns invariant features, however given an additive model, it may
only learn a subset of invariant features that are significant or frequently appears in the training set.

D.2 THEORETICAL DISCUSSION ON IRMV1 IN LEARNING INVARIANT FEATURES

Using a similar derivation process, we can prove that IRMv1 may only learn a subset of invariant
features. We first outline the objective of IRMv1 as follows:

LIRMv1 := min
w,ϕ

Ee

[
L (w ◦ ϕ (X) , Y ) + β

∥∥∇w|w=1.0L (w ◦ ϕ (X) , Y )
∥∥2
2

]
, (31)

here w and ϕ denote the classifier and feature extractor, respectively.
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Proposition 4. Let w∗, ϕ∗ = argmin
w,ϕ

LIRMv1, then ĥG = w∗(X) learns invariant features, how-

ever ĥG may only contain a subset of invariant features, given our data generating assumption:

Y = Xc + n1, Xs = Y + n2 + ϵe, where Xc :=
∑
i

Xc,i, Xs :=
∑
i

Xs,i, (32)

and FIIF data generating assumption:

Y = Xc + n1, Xs = n2 + ϵe, where Xc :=
∑
i

Xc,i, Xs :=
∑
i

Xs,i, (33)

when using a linear classifier ϕ(X) = w1Xc +w2Xs, and L(w ◦ϕ(X)) := R(e) = (ϕ(X)− Y )2.

Proof. The IRMv1 objective can be simplied into:

LIRMv1 :=
∥∥∇w|w=1.0L(w ◦ ϕ(X), Y )

∥∥2
2
= (ϕ(X)− Y )4, (34)

given:

ϕ(X) = w1Xc + w2Xs

Xs = Xc + n1 + n2 + εe

Y = Xc + n1,

(35)

we get:

ϕ(X) = w1Xc + w2 (Xc + n1 + n2 + εe) = (w1 + w2)Xc + w2n1 + w2n2 + w2ε
e

ϕ(X)− Y = (w1 + w2 − 1)Xc + (w2 − 1)n1 + w2n2 + w2ε
ε.

(36)

Taking gradient w.r.t. w1 and w2 respetively:

∂(ϕ(X)− Y )4

∂w1
= 4(ϕ(X)− Y )3 · ∂(ϕ(X)− Y )

∂w1

= 4(ϕ(X)− Y )3 ·Xc,

(37)

and

∂(ϕ(X)− Y )4

∂w2
= 4(ϕ(X)− Y )3 · ∂(ϕ(X)− Y )

∂w2

= 4(ϕ(X)− Y )3 · (Xc + n1 + n2 + εe) .

(38)

Plugging in w1 = 1, w2 = 0, we get:

ϕ(X) = Xc

ϕ(X)− Y = −n1,
(39)

Substitue Eqn. 39 into Eqn. 37 and Eqn. 38, we get:

Ee

[
∂(ϕ(X)− Y )4

∂w1

]
= Ee

[
En1,n2

[
−4n3

1 ·Xc

]]
= 0, (40)

and
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Ee

[
∂(ϕ(X)− Y )4

∂w2

]
= Ee

[
−4n3

1 · (Xc + n1 + n2 + εe)
]

= −4EeEn1,n2

[
n3
1 ·Xc

]
− 4EeEn1,n2

[
n3
1 · n1

]
− 4EeEn1,n2

[
n3
1 · n2

]
− 4EeEn1,n2

[
n3
1 · εe

]
,

(41)

given that:

En1,n2

[
n3
1 ·Xc

]
= 0

En1,n2

[
n3
1 · n1

]
= En1,n2

[
n4
1

]
= 3σ4

n1

En1,n2

[
n3
1 · n2

]
= 0

En1,n2

[
n3
1 · εe

]
= 0,

(42)

we have Ee

[
∂(ϕ(X)−Y )4

∂w2

]
= −12σ4

n1, with a similar assumption that the standard error σn1 of

the Gaussian noise n1 of the causal variable Xc is small, we conclude that Ee

[
∂(ϕ(X)−Y )4

∂w2

]
=

O(σ4
n1) ≈ 0. Hence IRMv1 learns invariant features under the data generating process. Now we

have:

Y = ϕ∗(X) = Xc =
∑
i

Xc,i. (43)

For FIIF generating process, applying the same technique, we have:

ϕ(X)− Y = w1Xc + w2 (n2 + ϵe)− (Xc + n1) = (w1 − 1)Xc + w2n2 + w2ϵ
e − n1.

∂LIRMv1

∂w1
= 4(ϕ(X)− Y )3 · ∂

∂w1
(ϕ(X)− Y ).

∂

∂w1
(ϕ(X)− Y ) = Xc.

(44)

Therefore:

∂LIRMv1

∂w1
= 4(ϕ(X)− Y )3 ·Xc = 4 ((w1 − 1)Xc + w2n2 + w2ϵ

e − n1)
3
Xc.

∂LIRMv1

∂w2
= 4(ϕ(X)− Y )3 · ∂

∂w2
(ϕ(X)− Y ) = 4(ϕ(X)− Y )3 · (n2 + ϵe)

(45)

Substitute w1 = 1, w2 = 0 into ϕ(X)− Y ,:

ϕ(X)− Y = Xc − (Xc + n1) = −n1. (46)

Taking derivative w.r.t. w1 and w2:

Ee

[
∂LIRMv1

∂w1

]
= −4Ee

[
n3
1Xc

]
= 0, (47)

Ee

[
∂LIRMv1

∂w2

]
= 4Ee

[
n3
1 (n2 + ϵe)

]
= 0. (48)

Therefore we show that for the widely used FIIF and PIIF data generating process, IRMv1 is able
to learn invariant features. However, with a similar reasoning as VRex, there may be multiple
combinations of the assignments for {Xc,i} to lead to a fixed value Xc = x, and the objective of
IRMv1 (Eqn. 31) won’t ensure the learning of all invariant features.
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D.3 PROOF OF THEOREM 4.1

Theorem D.1. [Restatement of Theorem 4.1] Given that the invariant subgraph Gc contains in-
variant patterns causally related to the target labels, and Gs contains only spurious patterns, the
biased infomax principle achieves spuriosity learning. Specifically, the encoder hθ(·) learns solely
the spurious features for each data sample in D.

We begin by stating the assumption underlying our proof, followed by a proof by contradiction.

Assumption 2. (Existence of spuriosity learner) There exists a learning algorithm capable of achiev-
ing spuriosity learning as defined in Def. 2.

Most invariant learning algorithms aim to learn invariant features, and a large collection of literature
has demonstrated the existence of such algorithms (Arjovsky et al., 2020; Kreuzer et al., 2021;
Parascandolo et al., 2020; Mahajan et al., 2021; Wald et al., 2021; Ahuja et al., 2020; 2021; Chen
et al., 2022; Gui et al., 2023; Liu et al., 2022). In contrast, we assume the existence of algorithms that
learn spurious features. One such example is provided by Eastwood et al. (2023), where the method
learns both invariant and spurious features, supporting the plausibility of our assumption. Recent
studies have shown that self-supervised contrastive learning tends to learn spurious features (Yao
et al., 2024; Hamidieh et al., 2024; Meehan et al., 2023). Therefore, self-supervised contrastive
learning would be one form of the spuriosity learner. Based on the above, we first sketch our proof.

Proof sketch. As biased infomax is a more general form of the infomax principle, with exponentially
many node configurations (Def. 4), the encoder hθ′(·) under the optimal node configuration must
result in a spuriosity learner, which also maximizes the learning objective. We then employ proof by
contradiction to demonstrate that the node configuration corresponding to biased infomax in Def 3
leads to a larger mutual information, thereby eliciting a contradiction, leading to the conclusion that
the node configuration corresponding to Def 3 elicits the spuriosity learner.

Definition 4. (Node configurations) Let the general form of biased infomax be:

max
θ

EG∼G
1

|G|

∑
vi∈G̃

I
(
ĥi; ĥG

)
−

∑
vi∈G\G̃

I
(
ĥi; ĥG

) ,

s.t. ĥi = hθ(G), ĥG = READOUT
(
ĥi

)
.

(49)

A node configuration c =
(
c1, c2, . . . , c|V|

)T
, such that ci ∈ {−1, 1}, corresponds to one specific

instantiation in Eqn. 49, where ci = 1 denotes that vi ∈ G̃, and ci = −1 means vi ∈ G \ G̃. The set
of all possible node configurations can be denoted asH := {c : ci ∈ {−1, 1}}.

Given definition 4, the infomax principle (Eqn. 1) is therefore a special case of the biased infomax
principle, where c = 1|V|. For notation simplicity, let c := [c1, c2]

T , c1 ∈ R|Gs|, c2 ∈ R|Gc| be
two vectors for the node configurations of Gs and Gc. Assuming for the optimal node configuration,
there are k elements in c1 with 1, and |Gs|− k elements with−1 (denoted as V1

s and V1
s ), similarly,

there are t elements in c2 with 1, and |Gc| − t elements with −1, denoted as V1
c and V1

c . We then
compare such node configuration c∗ with c′ = [1|Gs|,−1|Gc|]

T .

Proof. First, under the node configuration c∗, the optimal parameter to optimize the learning objec-
tive is:

θ∗ = argmax
θ

EG∼G
1

|G|

 ∑
vi∈V1

s

I
(
ĥi; ĥG

)
+
∑

vi∈V1
c

I
(
ĥi; ĥG

)
−
∑

vi∈V1
s

I
(
ĥi; ĥG

)
−
∑

vi∈V1
c

I
(
ĥi; ĥG

) ,

(50)

and under the node configuration c′, the optimal parameter is:
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θ′ = argmax
θ

EG∼G
1

|G|

( ∑
vi∈Gs

I
(
ĥi; ĥG

)
−
∑

vi∈Gc

I
(
ĥi; ĥG

))
. (51)

Let

f(θ∗;D, c∗) := EG∼G
1

|G|

 ∑
vi∈V1

s

I
(
ĥi; ĥG

)
+
∑

vi∈V1
c

I
(
ĥi; ĥG

)
−
∑

vi∈V1
s

I
(
ĥi; ĥG

)
−
∑

vi∈V1
c

I
(
ĥi; ĥG

)
. Similarly, we can define

f(θ′;D, c′) := EG∼G
1

|G|

( ∑
vi∈Gs

I
(
ĥi; ĥG

)
−
∑

vi∈Gc

I
(
ĥi; ĥG

))
.

According to Eqn. 51, we can conclude that f(θ′;D, c′) > f(θ∗;D, c′), and we also have that
hθ∗(·) = ĥG only learns spurious features as θ∗ is the maximizer for the objective under c∗, and
hθ′(·) = ĥG learns both invariant and spurious features, as θ′ is the maximizer for the objective
under c′. Let hθ∗

G = hθ∗(G), and hθ′

G = hθ′(G), therefore we have:

I
(
ĥi; ĥ

θ∗

G

)
= 0, ∀vi ∈ Gc; (52)

I
(
ĥi; ĥ

θ′

G

)
= c, ∀vi ∈ Gc; (53)

I
(
ĥi; ĥ

θ∗

G

)
= q, ∀vi ∈ Gs; (54)

I
(
ĥi; ĥ

θ′

G

)
= q′, ∀vi ∈ Gs; (55)

Eqn. 52 is due to hθ∗(·) is obtained under c∗, hence only learn spuriosity. Eqn. 53 is due to that
hθ′(·) learns both spurious and invariant features. We also have q > q′ due to the same reason. Now
we compare f(θ′;D, c′) with f(θ∗;D, c′) as follows:

f (θ∗;D, c′)− f (θ′;D, c′) = EG∼G
1

|G|

( ∑
vi∈Gs

q −
∑

vi∈Gc

0

)

−
(
EG∼G

1

|G|
(|Gs| · q′ − |Gc| · c)

)
= EG∼G

1

|G|
(|Gs|(q − q′) + |Gc| · c) > 0,

(56)

leading to a contradiction that f(θ′;D, c′) > f(θ∗;D, c′) for any node configuration c ̸= c′, there-
fore we conclude that c′ is the optimal configuration that elicits the spuriosity learner, which corre-
sponds to the biased infomax objective in Eqn. 2.

D.4 PROOF OF PROPOSITION 1

Proposition 5. [Restatement of Proposition 1] Given an error rate p% in the approximation al-
gorithm for Gc, let the learning objectives for the biased infomax with the ground-truth subgraphs
Gc and Gs and with the approximated subgraphs Ĝc and Ĝs be denoted as L(θ∗;D) and L(θ′;D)
respectively. The difference between L(θ∗;D) and L(θ′;D) can be expressed as:

EG∼G

 2

|G|

 ∑
vi∈pGs

I
(
ĥi; ĥG

)
−

∑
vi∈pGc

I
(
ĥi; ĥG

) .
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Proof. We first expand L(θ∗;D) and L(θ′;D) as follows.

L(θ∗;D) = EG∼G
1

|G|

( ∑
vi∈Gs

I
(
ĥi; ĥG

)
−
∑

vi∈Gc

I
(
ĥi; ĥG

))

= EG∼G
1

|G|

 ∑
vi∈(1−p)Gs

I
(
ĥi; ĥG

)
+

∑
vi∈pGs

I
(
ĥi; ĥG

)
−

∑
vi∈(1−p)Gc

I
(
ĥi; ĥG

)
−

∑
vi∈pGc

I
(
ĥi; ĥG

)
and

L(θ′;D) = EG∼G
1

|G|

 ∑
vi∈(1−p)Gs∪pGc

I
(
ĥi; ĥG

)
−

∑
vi∈(1−p)Gc∪pGs

I
(
ĥi; ĥG

) . (57)

the gap of the two learning objectives ∆L is:

∆L := L(θ∗;D)− L(θ′;D)

= EG∼G
1

|G|

 ∑
vi∈(1−p)Gs

I
(
ĥi; ĥG

)
+

∑
vi∈pGs

I
(
ĥi; ĥG

)
−

∑
vi∈(1−p)Gc

I
(
ĥi; ĥG

)
−

∑
vi∈pGc

I
(
ĥi; ĥG

)
−

EG∼G
1

|G|

 ∑
vi∈(1−p)Gs∪pGc

I
(
ĥi; ĥG

)
−

∑
vi∈(1−p)Gc∪pGs

I
(
ĥi; ĥG

) .

= EG∼G
2

|G|

 ∑
vi∈pGs

I
(
ĥi; ĥG

)
−

∑
vi∈pGc

I
(
ĥi; ĥG

) .

(58)

We conclude the proof.

D.5 PROOF OF PROPOSITION 2

Proposition 6. [Restatement of Proposition 2] Given a linear regression model with parameters
{θ1, θ2} and spurious features {x1, x2}, the correlation strength for feature x1 is p and for x2 is
1 − p when Y = 0. Similarly, the correlation strength for feature x1 is q and for x2 is 1 − q when
Y = 1. Assuming the spurious features x1 and x2 can each take values in {0, 1}, we obtain the
following parameter estimates using Mean Squared Error (MSE) loss: θ1 = q

p+q , θ2 = 1−q
2−p−q .

Proof. The linear model for predicting Y is: Ŷ = θ1x1 + θ2x2, with Mean Square Error (MSE)
loss, for Y = 0 with pn samples, x1 = 1 and x2 = 0; with (1− p)n samples, x1 = 0, x2 = 1; For
Y = 1 with qn samples, x1 = 1, x2 = 0, with (1 − q)n samples, x1 = 0, x2 = 1. The MSE loss
LMSE consists of 4 terms:

LMSE =

pn∑
i=1

(θ1 − 0)
2
+

(1−p)n∑
i=1

(θ2 − 0)
2
+

qn∑
i=1

(θ1 − 1)
2
+

(1−q)n∑
i=1

(θ2 − 1)
2

= pn · θ21 + (1− p)n · θ22 + qn · (θ1 − 1)
2
+ (1− q)n · (θ2 − 1)

2

=
1

4

[
pθ21 + (1− p)θ22 + q (θ1 − 1)

2
+ (1− q) (θ2 − 1)

2
]
.

Taking partial derivative w.r.t. θ1:
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∂LMSE

∂θ1
=

1

4
[2pθ1 + 2q (θ1 − 1)] = 0

⇒ pθ1 + qθ1 − q = 0

⇒ θ1 =
q

p+ q

Similarly for θ2,

∂LMSE

∂θ2
=

1

4
[2(1− p)θ2 + 2(1− q) (θ2 − 1)] = 0

⇒ (1− p)θ2 + (1− q)θ2 − (1− q) = 0

⇒ (2− p− q)θ2 = 1− q

⇒ θ2 =
1− q

2− p− q

As demonstrated in Proposition 2, the presence of spurious feature overlap across different classes
hinders the linear classifier’s ability to generate distinguishable (symmetric) logits. For instance,
when p = q, both θ1 = 0.5 and θ2 = 0.5, resulting in a loss of distinguishability among different
spurious patterns. To mitigate this issue, we propose class-conditioned (intra-class) cross entropy
loss which reduces the interference across different classes. To show that class-conditioned (intra-
class) cross entropy loss is able to maximize the conditional entropy H(s(i)|ĥ(i)

G ), we propose the
following proposition.

Proposition 7. Given the spurious features h
(i)
s ,∀G(i) ∈ D and a suitable clustering number K

that corresponds to the number of environmental groups in each class Y = y, the loss objective
LInv (Eqn. 3) will maximize the conditional entropy H(s(i)|ĥ(i)

G ),∀i ∈ D.

To prove that optimizing LInv maximizes the conditional entropy H(s(i)|ĥ(i)
G ), we show that

P(s(i)|ĥ(i)
c ) ∼ Cat( 1

K ) with K clusters, hence maximizes H(s(i)|ĥ(i)
G ).

Proof. First, we have:

max
θ

H(s(i)|ĥ(i)
G ) = H(s(i)|ρ′(ĥ(i)

G )) = H(s(i) |̂s(i)).

(59)

Here, ρ′(·) is the classification head for cluster labels s(i). For notation simplicity, we will omit
superscript (i), and denote s := s(i) and ŝ := ŝ(i). Now using softmax loss, we have:
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L = −
K∑
j=1

sj log (σ(ŝ)j) , where σ(ŝ)j =
eŝj∑K
k=1 e

ŝk
(60)

∂σ(ŝ)j
∂ŝi

= σ(ŝ)j (δij − σ(ŝ)i) (61)

∂L

∂ŝi
= −

K∑
j=1

sj
∂ log (σ(ŝ)j)

∂ŝi
⇒ (62)

∂L

∂ŝi
= − (si − σ(ŝ)i) . (63)

Taking expectation on both side of Eqn. 63, we get:

E
[
∂L

∂ŝi

]
= E [− (si − σ(ŝ)i)]⇒ (64)

0 = − (E [si]− E [σ(ŝ)i])⇒ (65)

0 = −
(

1

K
− E [σ(ŝ)i]

)
⇒ (66)

E [σ(ŝ)i] =
1

K
(67)

Eqn. 66 is due to that E[si] = 1
K , as each cluster derived from the spurious embedding repre-

sents a environmental group, and with appropriate reweighting within each cluster, the samples will
be weighted equally across clusters, i.e., samples from majority group and minority group will be
weighted equally. Given that this expectation holds over all training samples, one optimal solution
for Eqn. 67 is: σ(ŝ)i = 1

K ,∀i ∈ [K] for K class labels. This aligns with the assumption that within
each class, there exists a stable pattern Gc, and if the encoder is able to effectively capture invariant
patterns Gc while discarding spurious correlations, σ(ŝ)i will be a fixed and constant value. With
this constraint, the solution σ(ŝ(i)) = 1

K1K implies that the model learns invariant features. Further-
more, this stable solution maximizes the conditional entropy H(s(i)|ĥ(i)

G ), as σ(ŝ(i)) is independent
of s(i).

Remark. While σ(ŝ(i)) = 1
K1K is a sufficient condition to minimize Linv, there exists other solu-

tions that exploit spurious features to achieve high training accuracy. To guide the model toward the
stable solution that satisfies H(s(i)|ĥ(i)

G ), an explicit regularization term, such as ∥σ(ŝ(i))− 1
K1K∥22,

can be added to the objective in Eqn. 4. However, our empirical results show that such explicit reg-
ularization does not significantly affect performance. This may be attributed to the limited number
of class labels and node features in graph-level OOD datasets, which inherently enforce σ(ŝ(i)) to
be similar across all training samples, facilitating convergence to the stable solution.

D.6 PROOF OF THEOREM 4.2

Theorem D.2. [Restatement of Theorem 4.2] There exists a suitable γ and clustering number K,
such that minimizing the loss objective L = LGT + λLInv will lead to the optimal encoder h∗(·)
which elicits invariant features for any graph G, i.e., ĥG = h∗(G) = hc.

Proof. We aim to show that minimizing the objective L encourages the encoder h∗(·) to learn rep-
resentations ĥG that contain only invariant features hc. First, consider that under ERM, i.e., mini-
mizing LGT alone, the encoder h(·) learns both invariant and spurious features, given the empirical
and theoretical evidence in previous studies (Kirichenko et al., 2023; Chen et al., 2023b). Now, we
introduce the invariant loss Linv , according to Proposition 7, will maximize the conditional entropy

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

H(s(i)|ĥ(i)
G ) for each sample G(i). This encourages the learned representation ĥ

(i)
G to be uninforma-

tive about the spurious features s(i). In the following proof, we drop superscript i for simplicity.

Next, our goal is to show that minimizing L leads to ĥG = hc. We consider the following three
cases:

Case 1: The encoder learns only spurious features (ĥG = hs). In this case, the representation ĥG

is informative about s but not about hc. The conditional entropy H(s|ĥG) is minimized but not
maximized.

Case 2: The encoder learns both invariant and spurious features (ĥG = κ(hc,hs)). Here, ĥG is
informative about both hc and hs. While this may minimize LGT in the training environments, ĥG

remains informative about hs, thus not maximizing H(s|ĥG).

Case 3: The encoder learns only invariant features (ĥG = hc). In this case, ĥG is uninformative
about hs, therefore, H(s|ĥG) is greater than previous two cases, furthermore ĥG also minimizes
LGT given the invariant features hold the sufficient predictive power for the targets labels (Assump-
tion 1).

Therefore, we conclude that the encoder h∗(·) will only learn invariant features, as conditioning on
spurious features hs will not maximize H(s|ĥG). Additionally, it is important to note that there
exists ”uninformative” features which may also maximize H(s|ĥG) without including hc. This
phenomenon has been demonstrated in EQuAD (Yao et al., 2024), where model performance dete-
riorates when λ > 1. However, when λ < 1, LGT emphasizes useful features that correlate with the
target labels, while Linv acts as a regularization term that encourages the model to remove spurious
features and focus on learning invariant features.

E COMPLEXITY ANALYSIS

We provide time and space complexity analysis for LIRS, followed by empirical running time anal-
ysis on GOODMotif-base and OGBG-Molbbbp datasets.

Space complexity. The space complexity for LIRS isO(|B|Hm), where |B| denotes the batch size,
H denotes the hidden feature dimension, and m denotes the average number of edges. Therefore
the memory overhead is on par with ERM, and may outperform other graph data augmentation
method such as DIR (Wu et al., 2022c) and GREA (Liu et al., 2022), as for each samples, they
generate spurious subgraphs for each sample using |B| samples in the same minibatch, which leads
to O

(
(|B|2 + |B|)Hm

)
.

Time complexity. The time complexity of LIRS is O(kCmF ), where k is the number of layers
in GNN encoder, C > 1 is a constant as LIRS runs GNN encoder multiple times, F is the hidden
dimension size. Notably, most other graph invariant learning algorithms also exhibit a complexity
ofO(CkmF ), as they require multiple GNN encoders for subgraph extraction and feature encoding
respectively. Therefore, the time cost gap between LIRS and other methods is not significant. We
provide a detailed running time analysis using the Motif-base and Ogbg-Molbbbp datasets, as shown
in Table 5.

On the Motif-base dataset, the biased infomax only requires 20 epochs training, making its time
cost comparable to ERM. On the Ogbg-Molbbbp dataset, the time cost of LIRS exceeds that of
other methods since the biased infomax requires training for 100 epochs, and GSAT must be run to
annotate node labels to enable adaptive biased infomax. We provide a breakdown of the time cost
for each stage in LIRS to provide a better understandings in Table 6.

The first three components account for the majority of the time cost in LIRS, however they only
need to be run once. Retraining the GNN encoder is both fast and stable, with less variance as LInv

is merely a cross-entropy loss. This presents a key advantage of LIRS in terms of hyperparameter
selection. Specifically, most of OOD methods require hyperparameter search, and for most methods,
the process must be restarted entirely for each run, incurring significant time costs. In contrast,
for LIRS, only the final GNN retraining step needs to be run multiple times for hyperparameter
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Table 5: Running time analysis (in seconds) on various OOD methods

Method Motif-base OGBG-Molbbbp

ERM 494.34±117.86 92.42±0.42
IRM 968.94±164.09 151.84±7.53
Vrex 819.94±124.54 129.13±12.93

GSAT 1233±396.19 142.47±25.71
GREA 1612.43±177.36 262.47±45.71
CIGA 1729.14±355.62 352.14±93.32
AIA 1422.34±69.33 217.36±11.04

OOD-GCL 10813±28.12 8455.51±68.61
EQuAD 747.87±34.71 278.85±16.64

LIRS 504.87±24.04 421.32±19.86

Table 6: Running time analysis (in seconds) of LIRS

Method Motif-base OGBG-Molbbbp

Biased Infomax 302.12 214.24
MinibatchKmeans+SVM 6.63 3.04±0.35

Mark Nodes - 142.47±25.71
GNN Retraining 196.12±24.04 61.57±6.86

search, leading to a significantly reduced time cost when conducting multiple runs compared to
other methods.

F MORE DISCUSSION ON LIRS

Comparison with EQuAD (Yao et al., 2024). While LIRS and EQuAD share similarities in the
learning paradigm, our study make several distinctions compared with Yao et al. (2024). First,
while EQuAD primarily addresses the limitations of existing OOD methods that are sensitive to
varying spurious correlation strengths, it does not fully explain why the proposed learning paradigm
is effective when spurious correlation strength remains stable. In contrast, our work answer this
important question and demonstrates that this learning paradigm enables learning a broader set of
invariant features; Second, We curate the SPMotif-binary dataset based on the SPMotif datasets,
which can serve as a benchmark for future studies to evaluate the effectiveness of methods in learning
a broader set of invariant features; Third, While EQuAD uses a standard infomax objective to learn
spurious features, we propose a new algorithm that addresses the limitations of the vanilla infomax
approach. Specifically, we introduce the biased infomax to overcome size constraints and further
incorporate additional procedure (i.e., a GNN explainer) to annotate critical nodes with adaptive
thresholding to realize biased infomax in real-world datasets; Finally, We identify the limitations of
the cross-entropy loss in disentangling spurious features and propose a novel loss objective that is
more effective in learning invariant features. Additionally, our proposed loss does not compromise
computational efficiency.

Comparison with Supervised Contrastive Learning (Khosla et al., 2020) and Deep Graph In-
fomax (Veličković et al., 2018). The biased infomax principle also share similarity with Supervised
Contrastive Learning (SCI) and Deep Graph Infomax (DGI). However, SCL and DGI primarily
target in-distribution (ID) data and are designed to improve performance on predictive tasks. In
contrast, our proposed biased infomax is specifically designed for OOD data, with the goal of learn-
ing environment-related features rather than features that directly benefit classification tasks. This
makes our approach conceptually distinct from SCL and DGI; Second, In SCL the contrastive loss
operates at the inter-sample level, where explicit labels are available for each image. However, in
our graph-level OOD setting, biased infomax operates at the node level, where such labels are un-
available. Due to the absence of node labels, we approximate critical nodes using GNN explainer
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with adaptive thresholding. This additional procedure also distinct biased infomax from SCL and
DGI.

Comparison with OOD-GCL (Li et al., 2024a). LIRS and OOD-GCL both utilize contrastive
learning to graph invariant features, however, LIRS relies on labeled data in the subsequent stage
to effectively learn invariant features, in contrast, OOD-GCL aims to learn invariant features with-
out labeled data, followed by fine-tuning a linear classifier on downstream tasks. This distinction
highlights different assumptions and goals in the design of the two methods. Due to the unavail-
ability of labelled data, OOD-GCL underperforms LIRS across all the datasets. In terms of running
time, OOD-GCL is also significantly slower than LIRS and all other methods, as it requires multiple
rounds of clustering in every epoch and additional invariance regularization, which must be applied
for each channel and cluster.

G ALGORITHMIC PSEUDOCODE

We provide pseudocode for the proposed LIRS framework, which consists of 3 stages for learning
spurious features and invariant features respectively. The code will be made publicly available upon
acceptance of our work.

H MORE DETAILS ABOUT EXPERIMENTS

H.1 DATASETS DETAILS

Table 7: Details about the datasets used in our experiments.

DATASETS Split # TRAINING # VALIDATION # TESTING # CLASSES METRICS

GOOD-HIV Scaffold 24682 4113 4108 2 ROC-AUC
Size 26169 4112 3961 2 ROC-AUC

GOOD-Motif Base 18000 3000 3000 3 ACC
Size 18000 3000 3000 3 ACC

OGBG-Molbbbp Scaffold 1631 204 204 2 ROC-AUC
Size 1633 203 203 2 ROC-AUC

OGBG-Molbace Scaffold 1210 152 151 2 ROC-AUC
Size 1211 151 151 2 ROC-AUC

SPMotif-binary Correlation 6000 2000 2000 2 ACC

SPMotif(#Gc = 3) Correlation 9000 3000 3000 3 ACC

In this subsection, we provide a detailed introduction to the datasets used in this work, the dataset
statistics are illustrated in Table 7.

SPMotif dataset. Following Wu et al. (2022c), we generate a 3-class synthetic datasets based on
BAMotif (Ying et al., 2019). In these datasets, each graph comprises a combination of invariant
and spurious subgraphs, denoted by Gc and Gs. The spurious subgraphs include three structures
(Tree, Ladder, and Wheel), while the invariant subgraphs consist of Cycle, House, and Crane. The
task for a model is to determine which one of the three motifs (Cycle, House, and Crane) is present
in a graph. A controllable distribution shift can be achieved via a pre-defined parameter b. This
parameter manipulates the spurious correlation between the spurious subgraph Gs and the ground-
truth label Y , which depends solely on the invariant subgraph Gc. Specifically, given the predefined
bias b, the probability of a specific motif (e.g., House) and a specific base graph (Tree) will co-occur
is b while for the others is (1− b)/2 (e.g., House-Ladder, House-Wheel). When b = 1

3 , the invariant
subgraph is equally correlated to the three spurious subgraphs in the dataset. In SPMotif datasets, S
is directly influenced by C, and C is causally related with Y . For the variant of the SPMotif datasets
used in Section 3, we attach 3 invariant subgraphs Gc to a base spurious subgraph, and in the test
dataset, only 1 invariant subgraph is attached to Gs.

SPMotif-binary dataset. To evaluate the feature learning quality of various OOD methods, We
curate a binary classification dataset based on the SPMotif dataset, which is utilized in Section 5.3.
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Algorithm 1 The LIRS framework

Require: Graph dataset D with labels Y; training epochs E, E′; threshold τ ; hyperparameter γ;
regularization weight λ

Ensure: Trained GNN model f∗ = ρ ◦ h
1: Initialize GNN encoder h(·)
2: for epoch t = 1 to E do ▷ Step 1: Learning spurious features via biased infomax
3: for each graph G(i) in D do
4: Obtain graph representation h

(i)
G ← h(G(i))

5: Use GNN explainer e(·) to identify important nodes Ĝ(i)
c

6: Remove Ĝ
(i)
c from G(i) to get G̃(i)

7: Compute predicted probabilities ŷ(i) ← ρ(h
(i)
G ) and ỹ(i) ← ρ(h(G̃(i)))

8: if |ŷ(i) − ỹ(i)| > τ then
9: Obtain h

(i)
G using Eqn. (2) (biased infomax)

10: else
11: Obtain h

(i)
G using Eqn. (1) (standard infomax)

12: end if
13: end for
14: end for
15: Obtain spurious embeddings {h(i)

s } from the trained encoder h(·)
16: for each class y in Y do ▷ Step 2: Clustering and Re-fitting Classifier
17: Collect spurious embeddings {h(i)

s | y(i) = y}
18: Perform clustering using Minibatch KMeans on {h(i)

s } to get cluster labels {c(i)}
19: Train a linear classifier (e.g., SVM) on {h(i)

s , c(i)} to obtain spurious logits s(i)
20: end for
21: Re-initialize GNN encoder h(·), and classification head ρ(·), ρ′(·) ▷ Step 3: Learning invariant

features
22: for epoch t = 1 to E′ do
23: for each graph G(i) in G do
24: Obtain graph representation ĥ

(i)
G ← h(G(i))

25: Compute estimated spurious logits ŝ(i) ← ρ′(ĥ
(i)
G )

26: Compute reweighting coefficient w(i) =
1− (s

(i)
j )γ

γ
, where j is the cluster label

27: Compute invariant loss using Eqn. 3
28: Update model parameters by minimizing:
29: L = LERM + λLinv
30: end for
31: end for
32: return Trained model f∗ = ρ ◦ h

Specifically, the motifs House and Crane are assigned label 0, and Diamond and Cycle are assigned
label 1. During the construction of each class’s samples, we attached both invariant subgraphs to the
base subgraph with 50% chance, while in the remaining 50%, we randomly attached one invariant
subgraph to the base spurious subgraph. For the test set, we randomly attached a single invariant
subgraph to the base subgraph. Similar to the SPMotif dataset, the base spurious subgraph was
correlated with the target labels where b controls the correlation strengths, and in the test set an
equal correlation strength is assigned for the samples in the same class.

GOOD-HIV is a molecular dataset derived from the MoleculeNet Wu et al. (2018) benchmark,
where the primary task is to predict the ability of molecules to inhibit HIV replication. The molecular
structures are represented as graphs, with nodes as atoms and edges as chemical bonds. Following
Gui et al. (2022), We adopt the covariate shift split, which refers to changes in the input distribution
between training and testing datasets while maintaining the same conditional distribution of labels
given inputs. This setup ensures that the model must generalize to unseen molecular structures that
differ in these domain features from those seen during training. We focus on the Bemis-Murcko
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scaffold Bemis & Murcko (1996) and the number of nodes in the molecular graph as two domain
features to evaluate our method.

GOOD-Motif is a synthetic dataset designed to test structure shifts. Each graph in this dataset
is created by combining a base graph and a motif, with the motif solely determining the label.
The base graph type and the size are selected as domain features to introduce covariate shifts. By
generating different base graphs such as wheels, trees, or ladders, the dataset challenges the model’s
ability to generalize to new graph structures not seen during training. We employ the covariate shift
split, where these domain features vary between training and testing datasets, reflecting real-world
scenarios where underlying graph structures may change.

Open Graph Benchmark. We also use 2 molecule datasets from the graph property prediction task
on Open Graph Benchmark Hu et al. (2020) or known as OGBG. They were originally collected
by MoleculeNet (Wu et al., 2018) and used to predict the properties of molecules, including (1)
blood–brain barrier permeability in MolBBBP; (2) inhibition to human β-secretase 1 in MolBACE.
For all molecule datasets, we use the scaffold splitting procedure as OGBG adopted (Hu et al., 2020).
It attempts to separate structurally different molecules into different subsets, which provides a more
realistic estimate of model performance in experiments (Wu et al., 2018). In addition, we also adopt
size split to evaluate the OOD generalization ability for various OOD methods following Sui et al.
(2023); Gui et al. (2022).

H.2 EXPERIMENTAL SETUP

Encoding spurious features with biased infomax. We adopt MVGRL (Hassani & Khasahmadi,
2020) as the contrastive learning method for learning spurious features. To realize instance-level
adaptive biased infomax, we first utilize GSAT (Miao et al., 2022) as the GNN explainability frame-
work to identify important nodes in a graph. The biased infomax principle is realized using con-
trastive learning, with InfoNCE (Oord et al., 2018) loss as the neural mutual information estimator.
The estimated nodes from GSAT in a graph G is treated as negative samples rather than positive
ones. Consequently, for a graph G, the graph representation is optimized to align closely with nodes
from Gs while diverging from the representation of nodes in Gc. The GNN backbone for GSAT is
5-layer GIN (Xu et al., 2018), the hidden dimension is set to 64 for all the datasets except MolHIV,
where the hidden dimension is 128. During inference stage, we obtain top-K edges with highest
probability in each graph instance and perform counterfactual inference, i.e., after the removal of
the subgraph induced by the top-K edges, we record the change in the prediction score ∆prob, and
compare with a pre-defined threshold τ to decide whether it should be biased or not. The nodes
in a graph will be treated as negative examples during training MVGRL if ∆prob > τ . In all the
experiments, K is searched over: {8, 12}, τ is searched over: {0.2, 0.3}. For SPMotif datasets, we
directly use the ground-truth nodes from Gc, and don’t employ GSAT for approximation.

Generating logits from spurious features and target labels. We useMiniBatch KMeans algorithm
to obtain the clustering label. To generate (soft) logits as targets from spurious features learned via
biased infomax in each cluster, we use linear svm followed by a probability calibrator.

GNN encoder. For SPMotif dataset and SPMotif-binary dataset, we adopt 5-layer GIN (Xu et al.,
2018) as backbone GNN encoder with mean pooling; For GOOD-Motif datasets, we utilize a 4-
layer GIN with sum pooling, and a hidden dimension of 300; For GOOD-HIV datasets, we employ
a 4-layer GIN with sum pooling, and a hidden dimension of 128; For the OGBG-Molbbbp and
OGBG-Molbace dataset, we adopt a 4-layer GIN with sum pooling, and the dimensions of hidden
layers is 64.

Optimization and evaluation. By default, we use Adam optimizer (Kingma & Ba, 2014) with a
learning rate of 1e− 3 and a batch size of 64 for all experiments. we also employ an early stopping
of 10 epochs according to the validation performance for all datasets. Test accuracy or ROC-AUC
is obtained according to the best validation performance for all experiments. All experiments are
run with 4 different random seeds, the mean and standard deviation are reported using the 4 runs of
experiments.

Baseline setup and hyperparameters. In our experiments, for the GOOD and OGBG-Molbbbp
datasets, the results of ERM, IRM, GroupDRO, and VREx are reported from Gui et al. (2022),
while the results for DropEdge, DIR, GSAT, CIGA, GIL, GREA, FLAG, G-Mixup and AIA on
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GOOD and OGBG datasets are reported from Sui et al. (2023). To ensure fairness, we adopt the
same GIN backbone architecture as reported in Sui et al. (2023). For the remaining datasets and
methods, we conduct experiments using the provided source codes from the baseline methods. The
hyperparameter search is detailed as follows.

For IRM and VREx, the weight of the penalty loss is searched over {1e−1, 1, 1e1, 1e2}. The causal
subgraph ratio for DIR is searched across {1e−2, 1e−1, 0.2, 0.4, 0.6}. For RSC, the masking ratio
is searched over {0.2, 0.3, 0.4}. For DiverseModel, the number of classifciation headers is searched
over {5, 10, 20}, and the penalty weight of the diversification loss is searched over {1e − 1, 1e −
2, 1e − 3}. For DropEdge, the edge masking ratio is seached over: {0.1, 0.2, 0.3}. For GREA,
the weight of the penalty loss is tuned over {1e − 2, 1e − 1, 1.0}, and the causal subgraph size
ratio is tuned over {0.05, 0.1, 0.2, 0.3, 0.5}. For GIL, the penalty weight is searched over {1e −
5, 1e− 3, 1e− 1, 1.0}, and the number of environments is searched over {3, 5, 10}. For GSAT, the
causal graph size ratio is searched over {0.3, 0.5, 0.7}. For CIGA, the contrastive loss hinge loss
weights are searched over {0.5, 1.0, 2.0, 4.0, 8.0}. For DisC, we search over q in the GCE loss:
{0.5, 0.7, 0.9}. For LiSA, the loss penalty weights are searched over:{1, 1e−1, 1e−2, 1e−3}. For
FLAG, the ascending steps are set to 3 as recommended in the paper, and the step size is searched
over {1e−3, 1e−2, 1e−1}. For AIA, the stable feature ratio is searched over {0.1, 0.3, 0.5, 0.7, 0.9},
and the adversarial penalty weight is searched over {0.01, 0.1, 0.2, 0.5, 1.0, 3.0, 5.0}. For EQuAD,
the penalty weight is searched over {1e − 1, 1e − 2, 1e − 3}, and the reweighting coefficient is
searched over {0.1, 0.3, 0.5, 0.7, 0.9}.
Hyperparameter search for LIRS. The penalty weight for LInv in LIRS is searched over {1e −
1, 1e−2, 1e−3}. The reweighting coefficient γ is searched over {0.1, 0.3, 0.5, 0.7, 0.9}. The cluster
number C is searched over {3, 5, 10}. The training epoch E at which the spurious embedding is
derived from the biased infomax is searched over {50, 60, 70, 80, 90} for real-world datasets, and
for the synthetic datasets, The training epoch E is searched over {5, 6, 7, 8, 9}.
Implementation of LIRS. We extend the code from GSAT (Miao et al., 2022) to annotate the nodes
in each graph to be biased in real-world datasets. We adopt PyGCL (Zhu et al., 2021) package
and modify the source code in DualBranchContrast to implement the biased infomax to generate
spurious embeddings. To generate logits from the spurious embeddings, we use MiniBatchKMeans,
linearSVC, and CalibratedClassifierCV in Scikit-Learn package (Pedregosa et al., 2011). We use
PyTorch Paszke et al. (2019) and Pytorch-Geometric Fey & Lenssen (2019) for the remaining im-
plementation.

H.3 ADDITIONAL EXPERIMENTAL RESULTS

Visualization of latent features derived from the biased infomax. We provide visualization of the
2d latent embedding derived form the biased infomax. Specifically, we utilize the SPMotif datasets
and GOODMotif datasets to assess the correlation between the learned embeddings after dimen-
sionality reduction and environment labels within each class. We annotate each data sample with
the environment label corresponding to three spurious patterns (Tree, Ladder, and Wheel). We then
use the spurious features obtained from the biased infomax objective, apply t-SNE Van der Maaten
& Hinton (2008) for dimensionality reduction, and use KMeans for clustering and visualization. The
epoch at which the latent embedding is obtained is selected according to the best hyperparameter.
In Figure 6, points of different colors correspond to different environment labels. It can be observed
that within each class, the clusters highly correlate with environments, indicating that the biased
infomax effectively captures different spurious patterns.

H.4 SOFTWARE AND HARDWARE

All the experiments are ran with PyTorch (Paszke et al., 2019) and PyTorch Geometric (Fey &
Lenssen, 2019). We run all the experiments on Linux servers with RTX 4090 and CUDA 12.2.
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Y=0 Y=1 Y=2

(a) GOODMotif-base
Y=0 Y=1 Y=2

(b) SPMotif-0.60 (#Gc = 3)
Y = 0 Y = 1 Y = 2

(c) SPMotif-0.90 (#Gc = 3)
Y=0 Y=1

(d) SPMotif-binary-0.40
Y=0 Y=1

(e) SPMotif-binary-0.60

Figure 6: Clustering visualizations using latent embeddings derived from the biased infomax. The
clusters resulted from latent embeddings obtained from the biased infomax are highly correlated
with the environment labels.
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