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Abstract

The advent of large language models (LLMs)
has enabled powerful applications across sev-
eral domains such as science, healthcare, fi-
nance, and law. However, LLMs are challenged
when asked domain-specific questions. In par-
ticular, the spatial knowlege and spatial infer-
ence capabilities of LLMs are limited. Our
goal is to enhance their accuracy for queries
that reason about spatial data. To this end, we
leverage the emerging Retrieval Augmented
Generation (RAG) paradigm via which LLMs
can enrich their context using external data, dur-
ing inference. We present a framework that i)
extracts context from a geospatial database re-
garding the spatial relations between entities,
and ii) retrieves the relevant context to a query
at inference time, forwarding it to the LLM to
enhance its accuracy. Overall, our framework
sets the ground for the use of spatial knowledge
retrieval techniques for improving the effective-
ness of LLMs.

1 Introduction

Retrieval augmented generation (RAG) (Lewis
et al., 2020) improves the performance of genera-
tive models, such as large language models (LLMs)
by retrieving relevant information from external
sources. RAG has been especially useful when
we need to generate responses based on large and
complex sources of knowledge that have not been
used in the model training process. The success of
RAG has brought opportunities for new research in
data management and information retrieval toward
improving LLM effectiveness (Fan et al., 2024).
Spatial data collections are typically in struc-
tured format and stored in database systems such
as PostgreSQL! and Oracle Spatial?, or GIS like
QGIS?. The relations between all pairs of spatial

1https ://www.postgresql.org/
2https ://www.oracle.com/database/spatial/
Shttps://www.qgis.org/

data entities on a map are not explicitly stored or
used in the training process of a foundation model,
so existing models are not trained with such knowl-
edge. Hence, LLMs underperform when it comes
to questions that reason about spatial entities.

To fill this gap, we propose SpaRAGI, a frame-
work that enriches model generation through RAG,
with spatially enriched context to help infer spa-
tial knowledge without re-training or fine-tuning
the model. The main challenge is that this knowl-
edge is not explicitly stored in natural language,
which would make it comprehensible natively by
LLMs, but in record format which carries addi-
tional processing costs. To alleviate this, SpaRAGi
pre-processes spatial data sources to generate text
snippets that succinctly capture non-trivial spatial
relations between entities on a map.* These docu-
ments are then encoded and employed by a RAG
mechanism to retrieve knowledge that can boost
the accuracy of small, open-source LLMs, such as
Llama (Touvron et al., 2023) and Mistral (Jiang
et al., 2023), in spatial reasoning tasks.

The number of pairwise spatial relations between
entities on a map is quadratic, making their genera-
tion and encoding a challenging task. In SpaRAGd,
we address this scalability challenge by i) dividing
the map into numerous local partitions, ii) comput-
ing non-trivial spatial relations between all pairs of
entities within each local region, and iii) structuring
the computed relations in a clear and comprehen-
sive textual format to enhance the model’s ability
to infer non-local relations.

We focus on generation tasks involving spatial
relations and implement and test our framework
using spatial data. Nonetheless, our approach can
be generalized to assist any RAG approach that
involves complex relations between objects and
can be supported by inference rules. An example

*The fact that two entities are topologically disjoint is
trivial and can be inferred if no other explicit topological
relation is known for these entities.
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> Using SpaRAGi

> Give a query (type ‘exit’ to quit): Does Stanton County Nebraska contain Zipcode 68779?

> Prompt: Does Stanton County Nebraska contain Zipcode 68779?

> Context: Stanton County Nebraska contains Zipcode 68779 entirely. This means that Zipcode 68779 lies completely inside
of Stanton County Nebraska’s area and their borders do not intersect at all. Hence, Stanton County Nebraska’s area covers
more square kilometers than the area of Zipcode 68779. Specifically, Stanton County Nebraska covers about 712.59 square
kilometers whilst Zipcode 68779 has an area of 263.44 square kilometers.

> Response: Yes, Stanton County Nebraska contains Zipcode 68779.

Figure 1: Example spatial query interaction with SpaRAGi.

usage scenario is illustrated in Figure 1, where
SpaRAGI helps Llama-3.1-8B-Instruct to respond
correctly to the query by enriching the original
prompt with the necessary context for an accurate
response. In particular, SpaRAGi retrieves encoded
context which is similar to the prompt, accesses
the corresponding text, and combines it with the
prompt before feeding it to the model. The model
would otherwise hallucinate on the answer, based
on the general knowledge it might possess.

Existing literature indicates that LLMSs primarily
utilize spatial data indirectly, relying on external
tools (Manvi et al., 2024; Singh et al., 2024; Zhang
et al., 2023) rather than incorporating it directly
during the prompting process. This approach arises
due to the inherently complex nature of spatial data
and its significant differences from text. But since
LLMs are tailored to handle text data, the research
question asked in this study is why are there not
any spatial datasets in text form? To address this
research question, we decompose it into the follow-
ing. First, how can spatial text be generated? In
§3.1, we introduce a synthetic spatial text generator
designed to extract key spatial information from
spatial data and convert it into textual form. In §3.2,
we present the first synthetic spatial text datasets.
We make these datasets made publicly available to
facilitate model training and fine-tuning. This nat-
urally leads to the next question: Can spatial text
be effectively leveraged by models during inference
to derive spatial knowledge? In §3.3, we propose
a method for assisting models in inferring spatial
information using retrieval-augmented generation.
Last, in §4, we conduct a comprehensive evalua-
tion of our approach and test the generated datasets
across a range of open-source models.

2 Related Work

Related work that leverages external spatial infor-
mation to assist LLMs includes GeoLLM (Manvi
et al., 2024), GeoLLM-Engine (Singh et al., 2024)
and GeoGPT (Zhang et al., 2023). GeoLLM fo-
cuses on regression tasks such as the prediction
of population density; it uses auxiliary map data

from OpenStreetMap from which the nearby lo-
cations of the given (query) location are fetched
and passed to the LLM as a fine-tuned prompt.
GeoLLM-Engine is an environment of tool agents
for earth observation applications. It capitalizes
a LLM in order to convert natural language in-
structions into a set of tasks over satellite images.
For this, it performs function calls to geospatial
APIs, dynamic maps/UIs and external multimodal
knowledge bases. GeoGPT employs an LLM for
interpreting the users’ demands from the input and
calls an external GIS tool from a pool of available
ones to solve the task. Some of these tools serve
processes that pertain to data collection, data load-
ing and data analysis. GeoLLM, GeoLLM-Engine,
and GeoGPT employ a distinct methodology from
SpaRAGI, focusing on tasks unrelated to spatial
reasoning.

Another line of research fine-tunes an LLM
to enhance its understanding of spatial context.
MaaSDB (Qi et al.,, 2023) envisions a spatial
database system for enhanced user accessibility
by training LLMs on data retained in a spatial
database. In this way, the machine learning models
can be utilized as a spatial database, enabling a new
generation-based query paradigm that replaces the
traditional retrieval-based one. LLM-Geo (Li and
Ning, 2023) is a prototype that operates as an au-
tonomous GIS that can produce and execute Python
code for spatial data loading and visualization. By
exploiting the capabilities of the LLM natural lan-
guage understanding, reasoning and code genera-
tion, it manages to generate at first a step-by-step
workflow that is formed as a directed acyclic graph
given users’ data and spatial question. The graph
consists of a series of connected operations and
nodes. The LLM is reused, as the graph is passed
to it in order to generate code function in each op-
eration node. Then, the generated code is collected
and submitted to the LLM along with the graph and
the users’ input to create the final program. The
program is executed producing the results that can
be static maps, charts, new datasets, etc.

Concerning how well a LLM exploits informa-



tion beyond of its pre-trained knowledge base, there
exist several RAG benchmarks for the evaluation
process. Most of them study the efficiency of the
retrieval and the response generation by means
of question-answering instances. Specifically, the
main aspects that are studied are the context rele-
vance (how pertinent the retrieved context to the
query is), the context utilization (the extent of the
context that is used by the generator to produce the
response), error handling (ability to handle errors
that exist in documents) and completeness (how
well the response incorporates all the relevant in-
formation in the context). RGB (Chen et al., 2024)
focuses on data that pertain to news, while RAG-
Bench (Friel et al., 2024) cover different domains.

CRAG (Yang et al., 2024) is a comprehen-
sive factual question-answering benchmarking that
aims at defining types of questions from different
domains given their diverse and dynamic nature.
BERGEN (Rau et al., 2024) emphasizes on the
LLM-based semantic evaluation of answers, high-
lighting the importance of using efficient retrievers
as they can affect the RAG response generation.
MIRAGE (Xiong et al., 2024) measures the accu-
racy of the predicted correct answer choices on
multi-choice questions, but for the medical domain.
Similarly, LegalBench-RAG (Pipitone and Alami,
2024) emphasizes in the legal domain measuring
the effectiveness of the retrieval phase and the legal
reasoning of LLMs. UDA (Hui et al., 2024) fo-
cuses on the RAG assessment on lengthy and highly
unstructured external data such as those found in
PDFs and HTML tables. MultiHop-RAG (Tang
and Yang, 2024) assesses multi-hop queries, i.e.
queries that require retrieving information from
multiple documents to reason and arrive at an an-
swer. It evaluates the quality of the retrieved set for
the query and the reasoning capability of the LLM.

3 SpaRAGi

The geometry of a spatial entity is represented by
a sequence of geographic coordinates (longitude,
latitude). To compute spatial relations between
entities from their raw representations, costly oper-
ations, such as line intersection detection, point-in-
polygon tests (to detect containment of an object
into another), and distance calculations (for prox-
imity detection) must be applied (de Berg, 1997).
Spatial, domain-specific knowledge is missing
from foundation models, giving room for improve-
ment via RAG. LLMs are tailored to handle natural
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Figure 2: SpaRAGi’s overview, including SpaTex’s
synthetic spatial text generation stage and the embed-
ding and indexing of the generated texts.

language, so the model relies on external special-
ized tools to process the spatial data. This is usually
expensive on time and resources, leading to added
response delays during inference. Additionally, to
the best of our knowledge, no spatial datasets in
text format currently exist, despite their potential
to be more interpretable and accessible to LLMs
compared to raw spatial data.

We hypothesise that if spatial knowledge is ex-
pressed comprehensively (natural language) and
concisely (lack of noise, redundancy) in textual
form, then the LLM may be able to infer spatial
relationships between objects. Also, it may allow
the user to query spatial data in natural language,
as illustrated in Figure 1. We use RAG to enhance
a spatial query with related context, in order to
guide models to infer the correct response. Specifi-
cally, synthetic spatial texts are first generated from
raw spatial data. All texts are then embedded and
indexed in a vector database for fast retrieval (ap-
proximate k£ nearest neighbour similarity search).
Then, upon a spatial query, all related texts are first
retrieved from the index based on their vector sim-
ilarity with the query’s embedding. The retrieved
texts are added as context to the query and then
the contextualized query is given as a prompt to an
LLM for the response generation. An overview of
this framework is illustrated in Figure 2.

3.1 SpaTex: Synthetic Spatial Text
Generator

Spatial knowledge may contain various different as-
pects and metrics, such as the distance between en-
tities, their topological relationships (e.g. adjacent,
intersect) and the cardinal direction of an entity in
relation to another one (e.g. north, southwest). We
refer to any type of relation between two geograph-
ical entities as a spatial relation. To extract these



spatial relations and generate meaningful synthetic
spatial text that describes them comprehensively
and concisely, we introduce SpaTex, a rule-based
spatial-to-text data generator that takes as input spa-
tial data collections in raw format (WKT, CSV etc.).
The output text encapsulates in natural language
the relations between (nearby) pairs of objects.

3.1.1 Spatial Relation Detection

For the detection of topological relations, we
use the standard Dimensionally Extended 9-
Intersection model (DE-9IM) (Clementini et al.,
1993). DE-9IM defines a 3 x 3 matrix where the
rows and columns represent two objects’ interior,
boundary and exterior areas. The combination of
values in the matrix defines the exact topological
relationship for two objects. Moreover, Spal'ex
calculates the cardinal direction between nearby
objects in relation to one another, as well as their
in-between distance and their common area (if any)
in square kilometres.

For two input spatial datasets R and S, SpaT'ex
performs a spatial join R <1 S between them,
an operation that identifies all pairs of objects
((r,s)|r € R,s € S) that intersect with each other.
For each dataset, a self-join is performed (R <t R
and S > 5), to identify relations between objects
in the same dataset as well.

The grand majority of object pairs in real-
world spatial datasets are disjoint (Georgiadis and
Mamoulis, 2023), so we only detect and generate
non-disjoint topological relations, as disjointness
can be implied. This saves us both the effort and
the overhead of encoding and retrieving disjoint
relations. In general, spatial relations between ob-
jects that are disjoint and far from each other can be
inferred by LLMs and do not need to be explicitly
defined in the context. For example, describing two
entities as adjacent implies that their borders touch
and thus, LLMs can infer that since they touch,
they are not disjoint with each other.

SpaRAGi takes advantage of spatial inference
as much as possible to reduce the volume of the
generated text by SpaTex. To this end, we par-
tition the data space using a uniform grid and as-
sign each spatial entity to the partitions (i.e., tiles)
that it spatially overlaps. SpaT'ex then performs a
partition-to-partition spatial join (Patel and DeWitt,
1996) for each cell; hence, we only compute and
generate the spatial relations between objects of
the same tile. For any pair of objects in a parti-
tion, we first compare their Minimum Bounding

Rectangle (MBR(r)). If the MBRs do not inter-
sect, then we only compute the relative cardinal
direction between them (e.g., north of) and their
distance; otherwise, we compute the DE-9IM ma-
trix. For overlapping objects, we only generate the
topological relation (e.g., overlaps, inside, covers);
if the relation of the objects is adjacent, we also
compute their cardinal direction relation.

The partitioning approach employed by SpaTex
has two advantages. First, we avoid computing
an excessive (and redundant) number of spatial
relations, which can be inferred; for two entities
(e.g., counties) in different partitions, their relation
should be disjoint and the cardinal direction rela-
tion can be inferred by the cardinal directions of
entities that enclose them (e.g., states). Second,
each partition is processed independently and in
parallel, scaling up the relation generation process.

3.1.2 Text generation

The spatial-to-text translation rules are of great
importance to our framework, as the output must
be readable, properly formatted synthetic spatial
text that is comprehensible by any LLM.

We explore various formats for SpaTl’ex’s out-
put, such as generating a single text per unique
entity in the data or a separate snippet for each
{subject, relation,object} sentence. Another
thing to consider is how much “flavour" text is
necessary or preferred in the output. In this pa-
per, we analyse and compare 3 approaches for the
synthetic spatial text format:

* Entity: Grouping all spatial relations in a sin-
gle text for each unique entity in the datasets.

* Triplet: We output all distinct spatial relations
between two entities separately, phrased as
plainly and simple as possible.

* Rich-Triplet: The relations are kept separately
again, but each one is expressed using vari-
ant phrasing and richer vocabulary than the
Triplet approach.

Each approach has its pros and cons, for example
entity-based grouping generates fewer but larger
texts than the other two approaches. If such a text is
retrieved to be used as context for a query, it might
contain irrelevant information, adding noise to the
model during inference. On the other hand, both
triplet-based approaches contain more but smaller
texts, which increases the threshold for how many



texts should be retrieved regarding a query, as the
spatial knowledge for a specific entity is spread
around in multiple texts. SpaT'ex’s text generation
process for each format is illustrated in Figure 4.
The previous stage of detecting the spatial relations
of Figure 3 is common to all approaches.

3.2 Generated Spatial Datasets

We use the TIGER (SpatialHadoop, 2015) datasets
for the States (50 entities), Counties (3225 entities)
and Zip-codes (33144 entities) in the USA. We
performed one self-join for each dataset as well
as their cross-join, to capture all possible relations
between any related Counties, States and Zip-codes.
The overall time for the SpaTex generation and
the encoding of the produced texts in a commodity
machine was less than 3 minutes. We generated the
following synthetic spatial text datasets:

1. CSZe (36.4K entities): each text corresponds
to a unique entity in the datasets exclusively.
All of the entity’s relations with other entities
are contained in this text.

2. CSZt (487K entities): instead of being
grouped by entity, relations are stored
as separate texts in the triplet form
{subject, relation, object}. Sentences
are kept plain and simple.

3. CSZt-r (487K entities): this is a modified ver-
sion of CSZt, but all of the texts have richer
text, describing the same relations using more
words and different phrasing.

CSZe has the fewest number of texts compared
to the other two datasets; this results to lengthy
texts that contain more words as shown in Table 1.
CSZt and CSZt-r have the same number of texts,
differentiating in the counted words and the length
of the texts. Since CSZt-r is a phrase-enriched ver-
sion of CSZt, each of its texts have greater length
and are composed by more words on average. No-
tice that even though that CSZt-r incorporates more
phrases, it still has in average fewer words and
lower length per text compared to the CSZe dataset.

D Word count Length
ataset - -

avg |min| max | std | avg [min| max | std
CSZe | 235 | 28 |60755|835|1459|166 326K |4762
CSZt | 11.6 | 8 29 32163340 | 177 | 179
CSZtr | 652 |40 | 118 |82 385 (233| 777 |45.4

Table 1: Statistics of the three generated datasets.

3.3 Retrieval for Spatial Inference

All generated texts are encoded to vectors through
a pre-trained encoder. The embeddings are then
added to a vector DB and indexed for fast retrieval.
This way, the texts generated by SpaTex are used
in the model as context relevant to a given query.
A spatial query ¢ (e.g., Does Stanton County Ne-
braska contain Zip-code 68779?) passed to the
model, is first embedded using the same text en-
coder we used to embed the texts. Then, through
approximate k nearest neighbour (AkNN) similar-
ity search, the k most relevant texts to the query
are retrieved and added as context to it (Figure 1
shows query g with k£ = 1). The formatted prompt
then is given to the model and it has a Question
part and a Question Context part, so that the model
can respond to the contextualized query in a single
pass. A few examples of SpaRAGi’s prompts are
shown in Table 4 of the Appendix.

For high values of k the context may grow out
of control. For example, dataset CSZe has an av-
erage word count of 235 in its texts. This may
lead to large amounts of noise (i.e. information
unrelated to the query) to be added as context for
a query. Various mechanisms can be employed
at this stage to filter out unnecessary information
from the retrieved texts. For this preliminary analy-
sis, we follow the naive approach of appending the
retrieved texts as context in their entirety.

4 Experimental Analysis

Queries To assess the performance of SpaRAGI,
we generated a query set with 1000 random spa-
tial relation queries. To do so, we sampled ran-
dom texts from our datasets and generated yes/no
questions from them with 50-50 chance for each.
For example, sampling the text "Stanton County
Nebraska contains Zip-code 68779." can generate
either the "Does Stanton County Nebraska contain
Zip-code 687797" query (yes) or the "Is Stanton
County Nebraska inside of Zip-code 687797" query
(no). This query set was used in all of our experi-
ments, regardless of which dataset was loaded for
retrieval. Each generated query is accompanied
by a ’yes’ or 'no’ answer that is used to measure
the correctness of the responses, as well as the text
ID from which the query originated which we call
ground truth. We opted to run each query three
times and the response with the highest occurrence
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Morris County Kansas is adjacent to and north of Chase County Kansas.
Chase County Kansas is adjacent to and south of Morris County Kansas.
Morris County Kansas is adjacent to and northeast of Marion County Kansas.
Marion County Kansas is adjacent to and southwest of Morris County Kansas.
Morris County Kansas is adjacent to and east of Dickinson County Kansas.

Dickinson County Kansas is adjacent to and west of Morris County Kansas.

Figure 3: The Spatial relation identification process by SpaTex that uses a global grid to group nearby entities and

compute their spatial relations.

Per-entity grouping

Morris County Kansas is adjacent to and north of Chase County

Triplets

Rich Triplets

Morris County Kansas and Chase County Kansas are adjacent

Kansas.
Morris County Kansas is adjacent to and northeast of Marion

County Kansas.

Morris County Kansas is adjacent to and north of Chase

to each other. This means that their borders share at least one
common point. Another way of phrasing this would be that...

County Kansas.

Morris County Kansas is adjacent to and east of Dickinson

County Kansas. County Kansas.

Chase County Kansas is adjacent to and south of Morris

Chase County Kansas and Morris County Kansas are adjacent
to each other. This means that their borders share at least one

“Morris County” document

Separate document per triplet

common point. Another way of phrasing this would be that...

Separate document per triplet with enriched text

Figure 4: Synthetic spatial text generation process by SpaTex, generating from left to right: i) a separate text for
each unique entity, grouping all of its relations together ii) a text per triplet { subject, relation, object} in plain
sentences and iii) a text per triplet but with each text enriched and the relation expressed using multiple phrasings.

frequency was selected as the final result.’
Embeddings & Indexing In our implementation,
all dataset and query embeddings were created us-
ing the mixedbread-ai/mxbai-embed-large-v1 sen-
tence embedder (Li and Li, 2023). We use FAISS
(Johnson et al., 2019) to index the embeddings,
which achieves a very good throughput in AKNN
queries while preserving good retrieval accuracy.®
Models In all of our experiments, we use meta-
llama/Llama3.1-8B-Instruct quantized to 4 bits
and without any fine-tuning. We use an NVIDIA
GeForce RTX 3060 with 12GB of memory for all
of our experiments.

4.1 SpaRAGi Retrieval Evaluation

To measure SpaRAGi’s retrieval accuracy, we test
whether the ground truth of each query was re-
trieved for that query and if yes, with what rank
among the top-k retrieved texts (i.e. rank of similar-
ity). Note that during inference, even if the ground
truth is not retrieved, a correct response to the query
may be inferred from the rest of the retrieved texts.
However, to benchmark the retrieval, we only take
into account the ground truth and do not measure
the rest of the retrieved texts’ relativity to the query.

We perform each experiment for varying re-
trieval size k to thoroughly analyse its effect. To

SRunning the query set three times takes 1 hour on an
NVIDIA GeForce RTX 3060, 30 minutes on an A100, and 10
minutes on an H200 on average for each model.

®The retrieval cost of FAISS for k up to 10 was 10-15ms.

evaluate retrieval, we use the following measures:

* Mean Reciprocal Rank (MRR) evaluates the
rank of the ground truth within the list of re-
trieved texts, calculated as the reciprocal of its
rank and averaged across all queries.

* Precision-at-One (P@1) measures the propor-
tion of queries for which the ground truth is
retrieved as the top-ranked text, irrespective
of the value of k.

* Success Rate (SR) indicates whether the
ground truth was retrieved at all, without con-
sidering its rank in the results.

* Mean Rank (MR) computes the average rank
of the ground truth text across all queries
where it was successfully retrieved, focusing
only on successful retrievals.

Figure 5 analyses SpaRAGi’s retrieval accuracy
for each dataset. Specifically, Figures 5a and 5b
showcase that MRR and P@1 remain unaffected by
the increasing value of k. This is the default when
measuring P@1, whilst a steady MRR indicates
that the rank of the ground truth does not necessar-
ily change much in the list of the retrieved texts as
k increases. This indicates that the correct text is
either retrieved at the highest rank or not retrieved
at all (for £ = 10). In both metrics, CSZt-r per-
forms the best, exceeding CSZt by approximately
0.2 and CSZe by even more.
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Figure 5: MRR (a), P@1 (b), Success Rate (c), MR (d)
of SpaRAG:i’s retrieved texts per dataset and k.

In Figure 5c, SR increases with k for all three
datasets, which is expected as more texts are re-
trieved and by extension, it is more possible that
the ground truth is retrieved among them. CSZt-r
achieves the highest success overall, with its SR
reaching 94% for £ = 10 while CSZt peaks at
76% and CSZe at 70%. Note that CSZt-r reaches a
high success rate (88%) very fast for & = 2, while
for the other two datasets SR gradually improves
with k. This suggests that a low value of k is suffi-
cient for dataset CSZt-r to retrieve the ground truth,
which can help minimize context noise by avoiding
the retrieval of less relevant or unrelated texts.

Similarly, Figure 5d shows the average rank of
the ground truth in the retrieved texts (if it exists in
the list) growing with k. A low MR indicates that
the ground truth can be successfully retrieved with
a small value of k. However, as k increases, the
ground truth is retrieved in more cases, leading to
an increase in the MR. The MR of the ground truth
converges quickly for CSZt-r, reinforcing the asser-
tion that a relatively low k is sufficient to achieve
high retrieval accuracy in CSZt-r.

In summary, all metrics confirm that CSZt-r has
the best retrieval accuracy among the datasets we
used in our experiments. On the other hand, CSZe’s
per-entity compression of all related relations per-
forms the worst in terms of retrieval, indicating that
its texts’ embeddings are distorted by noise and af-
fect the ground truth similarity search negatively.
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Figure 6: Classification performance of SpaRAGi’s gen-
erated responses (yes/no) per dataset and k.

4.2 SpaRAGi Generation Evaluation

To assess SpaRAGi’s performance in successfully
responding to spatial queries, we perform a binary
classification task on the generated responses. A re-
sponse to a query is considered correct if it matches
the query’s correct answer (yes or no), otherwise it
is considered incorrect. Example prompts, along
with their responses and their evaluation, are shown
in Table 4 of the Appendix.

We measured the classification performance us-
ing Precision, Recall and F1 score for increasing
k, shown in Figures 6a, 6b and 6¢c, respectively.
Note that for all datasets, the Precision is gradually
increases k, which means reduction of false posi-
tives (i.e. queries whose correct answer is ‘no’ and
are answered as ‘yes’) as more texts are retrieved.
This increase of Precision, combined with the rel-
atively steady MRR of Figure 5a, shows that the
additional, seemingly unrelated, texts that are being
retrieved as k increases, actually contribute posi-
tively when added as context, assisting the model
into responding correctly to more queries.

As concluded in §4.1, CSZe performed the worst
in terms of retrieval accuracy among our datasets.
This is mirrored in CSZe’s generation evaluation as
well, performing worse than the rest of the datasets
in terms of Precision, Recall and F1 score.

Even though CSZt-r has the best retrieval accu-
racy, it is eventually outperformed in response gen-
eration by CSZt for high k. This is correlated with
CSZt’s high Recall (i.e., fewer cases of respond-



w/0 Ground Truth %

w/ Ground Truth s

CSZt CSZt-r
—

1
0.8
0.6
0.4

Percentage (%)
Percentage (%)

0.2

1 2 5 10
k k

(a) Correct response cases  (b) Incorrect response cases

Figure 7: Proportional breakdown (%) of correct and
incorrect response cases, based on whether the ground
truth was retrieved (light-coloured stacked bars) or not
retrieved (dark-coloured stacked bars).

ing ‘no’ to queries whose correct answer is ‘yes’),
combined with its relatively good Precision. The
high Recall can be attributed to CSZt’s plain and
simple sentences, with little noise that might mis-
lead the generation. On the other hand, CSZt-r’s
Recall drops as k increases; the noise of the richer
text, sometimes negatively affects generation. Al-
though CSZt-r quickly reaches a high F1 score,
CSZt eventually outperforms CSZt-r for £ = 10.
To assess how much the retrieved texts assisted
the model in responding correctly to the queries,
in Figure 7, we study the correlation between the
ground truth retrieval and the correctness of the
response. Specifically, for queries where the model
responded correctly (Figure 7a), we separate cases
where the ground truth was successfully retrieved
(light-coloured bars) to those where the ground
truth is missing from the context (dark-coloured
bars). Respectively, we perform the same for the
queries to which the model responded incorrectly,
shown in Figure 7b. We observe in the correct re-
sponse cases that the phrase-enriched per-triplet
dataset (CSZt-r) benefits to a greater extent than
the other two datasets, as in every case the propor-
tional percentage of the contained ground truth is
higher and increasing with k. The same is observed
for the incorrect response cases, but for k higher
than 1, indicating that even with the ground truth
as context, the model can still infer an incorrect
response to certain queries. Furthermore, both the
SR of retrieval (Figure 5¢) and the F1 score of the
generation (Figure 6¢) are increased with k, verify-
ing that in general, the added context to the query
helps to improve its generation for the queries.

4.3 Model Comparison

Table 2 performs a baseline comparison between
various models on our spatial queries, to identify

Model # of Parameters | F1 score
mistralai/Mistral-7B-Instruct-v0.1 7B 0.45
ibm-granite/granite3.2-8b-instruct-preview 8B 0.19
meta-llama/Llama3.1-8B-Instruct 8B 0.58
mistralai/Ministral-8B-Instruct-2410 8B 0.35
mistralai/Mistral-Nemo-Instruct-2407 12.2B 0.18
microsoft/phi-4 14.7B 0.44
meta-llama/Llama3.1-70B-Instruct 70B 0.61

Table 2: The models that we tested on our query set
and how they performed in our response generation
benchmark based on their F1 scores.

[ Framework | F1score |
Llama-8B 0.58
Llama-8B + SpaRAGi (CSZt) 0.78
Llama-70B 0.61
Llama-70B + SpaRAGi (CSZt) 0.91

Table 3: SpaRAGi’s response generation improvement
(in terms of F1 score) on small (Llama3.1-8B-Instruct)
and relatively large (Llama3.1-70B-Instruct) models for
our query set. SpaRAGi was deployed using the CSZt
dataset and k£ = 10.

which model has the best out-of-the-box perfor-
mance, measured by their F1 scores. All models
ran without SpaRAGiI, on a A100 GPU, with the
exception of meta-llama/Llama3.1-70B-Instruct
which we ran on a H200 due to its large memory
requirement. Llama3.1-70B-Instruct, the largest
model we evaluated, achieved the best performance
among all models, with Llama3.1-8B-Instruct fol-
lowing closely in second place.

As seen in Table 3, SpaRAGi employed on a
small model like Llama3.1-8B-Instruct and with
the CSZt dataset as context, outperforms the sig-
nificantly bigger Llama3.1-70B-Instruct in terms
of response generation accuracy by 0.17. When
combined with Llama3.1-70B-Instruct, SpaRAGi
improved its performance by 0.3, increasing its F1
score to 0.91 for our spatial queries.

5 Conclusions

This study presented SpaRAGiI, a novel approach
for generating synthetic spatial text and assisting
large language models in answering spatial queries
through retrieval-augmented generation. Our exper-
imental analysis shows that employing SpaRAGi
on models (small or large), leads to improving their
response generation for spatial queries by 35% to
almost 50%. The ultimate goal of this work is to
study the spatial inference capabilities of LLMs
on open-ended spatial questions rather than yes/no
queries. In the future, we will explore how can
RAG facilitate better spatially-informed discussion
between the user and the model in natural language.



Limitations

This preliminary version of SpaRAGi has the fol-
lowing limitations: 1) due to resource limitations,
we were unable to perform most of our experi-
ments on large models that require high-end GPUs
to run. However, we included one large model
(meta-llama/Llama3.1-70B-Instruct) to support our
claim that SpaRAGi helps smaller models match or
surpass large models in terms of spatial inference.
2) the synthetic spatial text generation is not auto-
mated in terms of spatial data retrieval. This means
that spatial datasets need to be manually collected
and then pre-processed by our SpaT’ex generator
to generate the synthetic spatial text datasets that
are actually used in the RAG mechanism. Addi-
tionally, many publicly available real-world spa-
tial datasets lack metadata (name, description etc.),
which creates the need for some data curation be-
fore being able to be used.
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Appendix

Query

Prompt

Response

Evaluation

Is Carroll County
Maryland southwest
of Zipcode 173497
Respond with yes or
no. Do NOT provide
an explanation.

Question: Is Carroll County Maryland south-
west of Zipcode 17349? Respond with yes or
no. Do NOT provide an explanation. Question
Context: Carroll County Maryland is southwest
of Zipcode 17349. Additionally Carroll County
Maryland is approximately 36.259572 kilome-
ters away from Zipcode 17349 to the southwest.
This means that Carroll County Maryland and
Zipcode 17349 do not share a border or have
common area. Topologically it is the same to
say that Zipcode 17349 is to the northeast of
Carroll County Maryland.

yes

TP

Is Zipcode 08042 ad-
jacent to and south of
Zipcode 080687 Re-
spond with yes or no.
Do NOT provide an
explanation.

Question: Is Zipcode 08042 adjacent to and
south of Zipcode 08068? Respond with yes or
no. Do NOT provide an explanation. Question
Context: Zipcode 08068 and Zipcode 08042 are
adjacent to each other. This means that their
borders share at least one common point. An-
other way of phrasing this would be that Zip-
code 08068 and Zipcode 08042 spatially meet
with each other touch or that they are neighbors.
Additionally Zipcode 08068 is south of Zipcode
08042. It is the same to say that Zipcode 08042
is to the north of Zipcode 08068.

no

TN

Table 4: Prompting and response examples for various queries on SpaRAGi, on Llama3.1-8B-Instruct using the
CSZt dataset and k = 1. The Query is what is asked by the user. The Prompt is what SpaRAGi generates as the
contextualized prompt, after the retrieval is finished. The response is the model’s response for the Query. In the
Evaluation column we show whether the Response is correct (True Positive or True Negative) or incorrect (False
Positive or False Negative).
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