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Abstract

The advent of large language models (LLMs)001
has enabled powerful applications across sev-002
eral domains such as science, healthcare, fi-003
nance, and law. However, LLMs are challenged004
when asked domain-specific questions. In par-005
ticular, the spatial knowlege and spatial infer-006
ence capabilities of LLMs are limited. Our007
goal is to enhance their accuracy for queries008
that reason about spatial data. To this end, we009
leverage the emerging Retrieval Augmented010
Generation (RAG) paradigm via which LLMs011
can enrich their context using external data, dur-012
ing inference. We present a framework that i)013
extracts context from a geospatial database re-014
garding the spatial relations between entities,015
and ii) retrieves the relevant context to a query016
at inference time, forwarding it to the LLM to017
enhance its accuracy. Overall, our framework018
sets the ground for the use of spatial knowledge019
retrieval techniques for improving the effective-020
ness of LLMs.021

1 Introduction022

Retrieval augmented generation (RAG) (Lewis023

et al., 2020) improves the performance of genera-024

tive models, such as large language models (LLMs)025

by retrieving relevant information from external026

sources. RAG has been especially useful when027

we need to generate responses based on large and028

complex sources of knowledge that have not been029

used in the model training process. The success of030

RAG has brought opportunities for new research in031

data management and information retrieval toward032

improving LLM effectiveness (Fan et al., 2024).033

Spatial data collections are typically in struc-034

tured format and stored in database systems such035

as PostgreSQL1 and Oracle Spatial2, or GIS like036

QGIS3. The relations between all pairs of spatial037

1https://www.postgresql.org/
2https://www.oracle.com/database/spatial/
3https://www.qgis.org/

data entities on a map are not explicitly stored or 038

used in the training process of a foundation model, 039

so existing models are not trained with such knowl- 040

edge. Hence, LLMs underperform when it comes 041

to questions that reason about spatial entities. 042

To fill this gap, we propose SpaRAGi, a frame- 043

work that enriches model generation through RAG, 044

with spatially enriched context to help infer spa- 045

tial knowledge without re-training or fine-tuning 046

the model. The main challenge is that this knowl- 047

edge is not explicitly stored in natural language, 048

which would make it comprehensible natively by 049

LLMs, but in record format which carries addi- 050

tional processing costs. To alleviate this, SpaRAGi 051

pre-processes spatial data sources to generate text 052

snippets that succinctly capture non-trivial spatial 053

relations between entities on a map.4 These docu- 054

ments are then encoded and employed by a RAG 055

mechanism to retrieve knowledge that can boost 056

the accuracy of small, open-source LLMs, such as 057

Llama (Touvron et al., 2023) and Mistral (Jiang 058

et al., 2023), in spatial reasoning tasks. 059

The number of pairwise spatial relations between 060

entities on a map is quadratic, making their genera- 061

tion and encoding a challenging task. In SpaRAGi, 062

we address this scalability challenge by i) dividing 063

the map into numerous local partitions, ii) comput- 064

ing non-trivial spatial relations between all pairs of 065

entities within each local region, and iii) structuring 066

the computed relations in a clear and comprehen- 067

sive textual format to enhance the model’s ability 068

to infer non-local relations. 069

We focus on generation tasks involving spatial 070

relations and implement and test our framework 071

using spatial data. Nonetheless, our approach can 072

be generalized to assist any RAG approach that 073

involves complex relations between objects and 074

can be supported by inference rules. An example 075

4The fact that two entities are topologically disjoint is
trivial and can be inferred if no other explicit topological
relation is known for these entities.
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> Using SpaRAGi
> Give a query (type ‘exit’ to quit): Does Stanton County Nebraska contain Zipcode 68779?
> Prompt: Does Stanton County Nebraska contain Zipcode 68779?
> Context: Stanton County Nebraska contains Zipcode 68779 entirely. This means that Zipcode 68779 lies completely inside 
of Stanton County Nebraska’s area and their borders do not intersect at all. Hence, Stanton County Nebraska’s area covers 
more square kilometers than the area of Zipcode 68779. Specifically, Stanton County Nebraska covers about 712.59 square 
kilometers whilst Zipcode 68779 has an area of 263.44 square kilometers.
> Response: Yes, Stanton County Nebraska contains Zipcode 68779.

Figure 1: Example spatial query interaction with SpaRAGi.

usage scenario is illustrated in Figure 1, where076

SpaRAGi helps Llama-3.1-8B-Instruct to respond077

correctly to the query by enriching the original078

prompt with the necessary context for an accurate079

response. In particular, SpaRAGi retrieves encoded080

context which is similar to the prompt, accesses081

the corresponding text, and combines it with the082

prompt before feeding it to the model. The model083

would otherwise hallucinate on the answer, based084

on the general knowledge it might possess.085

Existing literature indicates that LLMs primarily086

utilize spatial data indirectly, relying on external087

tools (Manvi et al., 2024; Singh et al., 2024; Zhang088

et al., 2023) rather than incorporating it directly089

during the prompting process. This approach arises090

due to the inherently complex nature of spatial data091

and its significant differences from text. But since092

LLMs are tailored to handle text data, the research093

question asked in this study is why are there not094

any spatial datasets in text form? To address this095

research question, we decompose it into the follow-096

ing. First, how can spatial text be generated? In097

§3.1, we introduce a synthetic spatial text generator098

designed to extract key spatial information from099

spatial data and convert it into textual form. In §3.2,100

we present the first synthetic spatial text datasets.101

We make these datasets made publicly available to102

facilitate model training and fine-tuning. This nat-103

urally leads to the next question: Can spatial text104

be effectively leveraged by models during inference105

to derive spatial knowledge? In §3.3, we propose106

a method for assisting models in inferring spatial107

information using retrieval-augmented generation.108

Last, in §4, we conduct a comprehensive evalua-109

tion of our approach and test the generated datasets110

across a range of open-source models.111

2 Related Work112

Related work that leverages external spatial infor-113

mation to assist LLMs includes GeoLLM (Manvi114

et al., 2024), GeoLLM-Engine (Singh et al., 2024)115

and GeoGPT (Zhang et al., 2023). GeoLLM fo-116

cuses on regression tasks such as the prediction117

of population density; it uses auxiliary map data118

from OpenStreetMap from which the nearby lo- 119

cations of the given (query) location are fetched 120

and passed to the LLM as a fine-tuned prompt. 121

GeoLLM-Engine is an environment of tool agents 122

for earth observation applications. It capitalizes 123

a LLM in order to convert natural language in- 124

structions into a set of tasks over satellite images. 125

For this, it performs function calls to geospatial 126

APIs, dynamic maps/UIs and external multimodal 127

knowledge bases. GeoGPT employs an LLM for 128

interpreting the users’ demands from the input and 129

calls an external GIS tool from a pool of available 130

ones to solve the task. Some of these tools serve 131

processes that pertain to data collection, data load- 132

ing and data analysis. GeoLLM, GeoLLM-Engine, 133

and GeoGPT employ a distinct methodology from 134

SpaRAGi, focusing on tasks unrelated to spatial 135

reasoning. 136

Another line of research fine-tunes an LLM 137

to enhance its understanding of spatial context. 138

MaaSDB (Qi et al., 2023) envisions a spatial 139

database system for enhanced user accessibility 140

by training LLMs on data retained in a spatial 141

database. In this way, the machine learning models 142

can be utilized as a spatial database, enabling a new 143

generation-based query paradigm that replaces the 144

traditional retrieval-based one. LLM-Geo (Li and 145

Ning, 2023) is a prototype that operates as an au- 146

tonomous GIS that can produce and execute Python 147

code for spatial data loading and visualization. By 148

exploiting the capabilities of the LLM natural lan- 149

guage understanding, reasoning and code genera- 150

tion, it manages to generate at first a step-by-step 151

workflow that is formed as a directed acyclic graph 152

given users’ data and spatial question. The graph 153

consists of a series of connected operations and 154

nodes. The LLM is reused, as the graph is passed 155

to it in order to generate code function in each op- 156

eration node. Then, the generated code is collected 157

and submitted to the LLM along with the graph and 158

the users’ input to create the final program. The 159

program is executed producing the results that can 160

be static maps, charts, new datasets, etc. 161

Concerning how well a LLM exploits informa- 162
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tion beyond of its pre-trained knowledge base, there163

exist several RAG benchmarks for the evaluation164

process. Most of them study the efficiency of the165

retrieval and the response generation by means166

of question-answering instances. Specifically, the167

main aspects that are studied are the context rele-168

vance (how pertinent the retrieved context to the169

query is), the context utilization (the extent of the170

context that is used by the generator to produce the171

response), error handling (ability to handle errors172

that exist in documents) and completeness (how173

well the response incorporates all the relevant in-174

formation in the context). RGB (Chen et al., 2024)175

focuses on data that pertain to news, while RAG-176

Bench (Friel et al., 2024) cover different domains.177

CRAG (Yang et al., 2024) is a comprehen-178

sive factual question-answering benchmarking that179

aims at defining types of questions from different180

domains given their diverse and dynamic nature.181

BERGEN (Rau et al., 2024) emphasizes on the182

LLM-based semantic evaluation of answers, high-183

lighting the importance of using efficient retrievers184

as they can affect the RAG response generation.185

MIRAGE (Xiong et al., 2024) measures the accu-186

racy of the predicted correct answer choices on187

multi-choice questions, but for the medical domain.188

Similarly, LegalBench-RAG (Pipitone and Alami,189

2024) emphasizes in the legal domain measuring190

the effectiveness of the retrieval phase and the legal191

reasoning of LLMs. UDA (Hui et al., 2024) fo-192

cuses on the RAG assessment on lengthy and highly193

unstructured external data such as those found in194

PDFs and HTML tables. MultiHop-RAG (Tang195

and Yang, 2024) assesses multi-hop queries, i.e.196

queries that require retrieving information from197

multiple documents to reason and arrive at an an-198

swer. It evaluates the quality of the retrieved set for199

the query and the reasoning capability of the LLM.200

3 SpaRAGi201

The geometry of a spatial entity is represented by202

a sequence of geographic coordinates (longitude,203

latitude). To compute spatial relations between204

entities from their raw representations, costly oper-205

ations, such as line intersection detection, point-in-206

polygon tests (to detect containment of an object207

into another), and distance calculations (for prox-208

imity detection) must be applied (de Berg, 1997).209

Spatial, domain-specific knowledge is missing210

from foundation models, giving room for improve-211

ment via RAG. LLMs are tailored to handle natural212
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Figure 2: SpaRAGi’s overview, including SpaTex’s
synthetic spatial text generation stage and the embed-
ding and indexing of the generated texts.

language, so the model relies on external special- 213

ized tools to process the spatial data. This is usually 214

expensive on time and resources, leading to added 215

response delays during inference. Additionally, to 216

the best of our knowledge, no spatial datasets in 217

text format currently exist, despite their potential 218

to be more interpretable and accessible to LLMs 219

compared to raw spatial data. 220

We hypothesise that if spatial knowledge is ex- 221

pressed comprehensively (natural language) and 222

concisely (lack of noise, redundancy) in textual 223

form, then the LLM may be able to infer spatial 224

relationships between objects. Also, it may allow 225

the user to query spatial data in natural language, 226

as illustrated in Figure 1. We use RAG to enhance 227

a spatial query with related context, in order to 228

guide models to infer the correct response. Specifi- 229

cally, synthetic spatial texts are first generated from 230

raw spatial data. All texts are then embedded and 231

indexed in a vector database for fast retrieval (ap- 232

proximate k nearest neighbour similarity search). 233

Then, upon a spatial query, all related texts are first 234

retrieved from the index based on their vector sim- 235

ilarity with the query’s embedding. The retrieved 236

texts are added as context to the query and then 237

the contextualized query is given as a prompt to an 238

LLM for the response generation. An overview of 239

this framework is illustrated in Figure 2. 240

3.1 SpaTex: Synthetic Spatial Text 241

Generator 242

Spatial knowledge may contain various different as- 243

pects and metrics, such as the distance between en- 244

tities, their topological relationships (e.g. adjacent, 245

intersect) and the cardinal direction of an entity in 246

relation to another one (e.g. north, southwest). We 247

refer to any type of relation between two geograph- 248

ical entities as a spatial relation. To extract these 249
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spatial relations and generate meaningful synthetic250

spatial text that describes them comprehensively251

and concisely, we introduce SpaTex, a rule-based252

spatial-to-text data generator that takes as input spa-253

tial data collections in raw format (WKT, CSV etc.).254

The output text encapsulates in natural language255

the relations between (nearby) pairs of objects.256

3.1.1 Spatial Relation Detection257

For the detection of topological relations, we258

use the standard Dimensionally Extended 9-259

Intersection model (DE-9IM) (Clementini et al.,260

1993). DE-9IM defines a 3 × 3 matrix where the261

rows and columns represent two objects’ interior,262

boundary and exterior areas. The combination of263

values in the matrix defines the exact topological264

relationship for two objects. Moreover, SpaTex265

calculates the cardinal direction between nearby266

objects in relation to one another, as well as their267

in-between distance and their common area (if any)268

in square kilometres.269

For two input spatial datasets R and S, SpaTex270

performs a spatial join R ▷◁ S between them,271

an operation that identifies all pairs of objects272

⟨(r, s)|r ∈ R, s ∈ S⟩ that intersect with each other.273

For each dataset, a self-join is performed (R ▷◁ R274

and S ▷◁ S), to identify relations between objects275

in the same dataset as well.276

The grand majority of object pairs in real-277

world spatial datasets are disjoint (Georgiadis and278

Mamoulis, 2023), so we only detect and generate279

non-disjoint topological relations, as disjointness280

can be implied. This saves us both the effort and281

the overhead of encoding and retrieving disjoint282

relations. In general, spatial relations between ob-283

jects that are disjoint and far from each other can be284

inferred by LLMs and do not need to be explicitly285

defined in the context. For example, describing two286

entities as adjacent implies that their borders touch287

and thus, LLMs can infer that since they touch,288

they are not disjoint with each other.289

SpaRAGi takes advantage of spatial inference290

as much as possible to reduce the volume of the291

generated text by SpaTex. To this end, we par-292

tition the data space using a uniform grid and as-293

sign each spatial entity to the partitions (i.e., tiles)294

that it spatially overlaps. SpaTex then performs a295

partition-to-partition spatial join (Patel and DeWitt,296

1996) for each cell; hence, we only compute and297

generate the spatial relations between objects of298

the same tile. For any pair of objects in a parti-299

tion, we first compare their Minimum Bounding300

Rectangle (MBR(r)). If the MBRs do not inter- 301

sect, then we only compute the relative cardinal 302

direction between them (e.g., north of) and their 303

distance; otherwise, we compute the DE-9IM ma- 304

trix. For overlapping objects, we only generate the 305

topological relation (e.g., overlaps, inside, covers); 306

if the relation of the objects is adjacent, we also 307

compute their cardinal direction relation. 308

The partitioning approach employed by SpaTex 309

has two advantages. First, we avoid computing 310

an excessive (and redundant) number of spatial 311

relations, which can be inferred; for two entities 312

(e.g., counties) in different partitions, their relation 313

should be disjoint and the cardinal direction rela- 314

tion can be inferred by the cardinal directions of 315

entities that enclose them (e.g., states). Second, 316

each partition is processed independently and in 317

parallel, scaling up the relation generation process. 318

3.1.2 Text generation 319

The spatial-to-text translation rules are of great 320

importance to our framework, as the output must 321

be readable, properly formatted synthetic spatial 322

text that is comprehensible by any LLM. 323

We explore various formats for SpaTex’s out- 324

put, such as generating a single text per unique 325

entity in the data or a separate snippet for each 326

{subject, relation, object} sentence. Another 327

thing to consider is how much “flavour" text is 328

necessary or preferred in the output. In this pa- 329

per, we analyse and compare 3 approaches for the 330

synthetic spatial text format: 331

• Entity: Grouping all spatial relations in a sin- 332

gle text for each unique entity in the datasets. 333

• Triplet: We output all distinct spatial relations 334

between two entities separately, phrased as 335

plainly and simple as possible. 336

• Rich-Triplet: The relations are kept separately 337

again, but each one is expressed using vari- 338

ant phrasing and richer vocabulary than the 339

Triplet approach. 340

Each approach has its pros and cons, for example 341

entity-based grouping generates fewer but larger 342

texts than the other two approaches. If such a text is 343

retrieved to be used as context for a query, it might 344

contain irrelevant information, adding noise to the 345

model during inference. On the other hand, both 346

triplet-based approaches contain more but smaller 347

texts, which increases the threshold for how many 348
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texts should be retrieved regarding a query, as the349

spatial knowledge for a specific entity is spread350

around in multiple texts. SpaTex’s text generation351

process for each format is illustrated in Figure 4.352

The previous stage of detecting the spatial relations353

of Figure 3 is common to all approaches.354

3.2 Generated Spatial Datasets355

We use the TIGER (SpatialHadoop, 2015) datasets356

for the States (50 entities), Counties (3225 entities)357

and Zip-codes (33144 entities) in the USA. We358

performed one self-join for each dataset as well359

as their cross-join, to capture all possible relations360

between any related Counties, States and Zip-codes.361

The overall time for the SpaTex generation and362

the encoding of the produced texts in a commodity363

machine was less than 3 minutes. We generated the364

following synthetic spatial text datasets:365

1. CSZe (36.4K entities): each text corresponds366

to a unique entity in the datasets exclusively.367

All of the entity’s relations with other entities368

are contained in this text.369

2. CSZt (487K entities): instead of being370

grouped by entity, relations are stored371

as separate texts in the triplet form372

{subject, relation, object}. Sentences373

are kept plain and simple.374

3. CSZt-r (487K entities): this is a modified ver-375

sion of CSZt, but all of the texts have richer376

text, describing the same relations using more377

words and different phrasing.378

CSZe has the fewest number of texts compared379

to the other two datasets; this results to lengthy380

texts that contain more words as shown in Table 1.381

CSZt and CSZt-r have the same number of texts,382

differentiating in the counted words and the length383

of the texts. Since CSZt-r is a phrase-enriched ver-384

sion of CSZt, each of its texts have greater length385

and are composed by more words on average. No-386

tice that even though that CSZt-r incorporates more387

phrases, it still has in average fewer words and388

lower length per text compared to the CSZe dataset.389

Dataset Word count Length
avg min max std avg min max std

CSZe 235 28 60755 835 1459 166 326K 4762
CSZt 11.6 8 29 3.2 63.3 40 177 17.9

CSZt-r 65.2 40 118 8.2 385 233 777 45.4

Table 1: Statistics of the three generated datasets.

3.3 Retrieval for Spatial Inference 390

All generated texts are encoded to vectors through 391

a pre-trained encoder. The embeddings are then 392

added to a vector DB and indexed for fast retrieval. 393

This way, the texts generated by SpaTex are used 394

in the model as context relevant to a given query. 395

A spatial query q (e.g., Does Stanton County Ne- 396

braska contain Zip-code 68779?) passed to the 397

model, is first embedded using the same text en- 398

coder we used to embed the texts. Then, through 399

approximate k nearest neighbour (AkNN) similar- 400

ity search, the k most relevant texts to the query 401

are retrieved and added as context to it (Figure 1 402

shows query q with k = 1). The formatted prompt 403

then is given to the model and it has a Question 404

part and a Question Context part, so that the model 405

can respond to the contextualized query in a single 406

pass. A few examples of SpaRAGi’s prompts are 407

shown in Table 4 of the Appendix. 408

For high values of k the context may grow out 409

of control. For example, dataset CSZe has an av- 410

erage word count of 235 in its texts. This may 411

lead to large amounts of noise (i.e. information 412

unrelated to the query) to be added as context for 413

a query. Various mechanisms can be employed 414

at this stage to filter out unnecessary information 415

from the retrieved texts. For this preliminary analy- 416

sis, we follow the naive approach of appending the 417

retrieved texts as context in their entirety. 418

4 Experimental Analysis 419

Queries To assess the performance of SpaRAGi, 420

we generated a query set with 1000 random spa- 421

tial relation queries. To do so, we sampled ran- 422

dom texts from our datasets and generated yes/no 423

questions from them with 50-50 chance for each. 424

For example, sampling the text "Stanton County 425

Nebraska contains Zip-code 68779." can generate 426

either the "Does Stanton County Nebraska contain 427

Zip-code 68779?" query (yes) or the "Is Stanton 428

County Nebraska inside of Zip-code 68779?" query 429

(no). This query set was used in all of our experi- 430

ments, regardless of which dataset was loaded for 431

retrieval. Each generated query is accompanied 432

by a ’yes’ or ’no’ answer that is used to measure 433

the correctness of the responses, as well as the text 434

ID from which the query originated which we call 435

ground truth. We opted to run each query three 436

times and the response with the highest occurrence 437
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Morris County Kansas is adjacent to and north of Chase County Kansas.
Chase County Kansas is adjacent to and south of Morris County Kansas.
Morris County Kansas is adjacent to and northeast of Marion County Kansas.
Marion County Kansas is adjacent to and southwest of Morris County Kansas.
Morris County Kansas is adjacent to and east of Dickinson County Kansas.
Dickinson County Kansas is adjacent to and west of Morris County Kansas.
…

Figure 3: The Spatial relation identification process by SpaTex that uses a global grid to group nearby entities and
compute their spatial relations.

Morris County Kansas is adjacent to and north of Chase County 
Kansas.
Morris County Kansas is adjacent to and northeast of Marion 
County Kansas.
Morris County Kansas is adjacent to and east of Dickinson 
County Kansas.
…

“Morris County” document

Per-entity grouping

Morris County Kansas is adjacent to and north of Chase 
County Kansas.

Chase County Kansas is adjacent to and south of Morris 
County Kansas.
…

Separate document per triplet

Triplets

Morris County Kansas and Chase County Kansas are adjacent
to each other. This means that their borders share at least one 
common point. Another way of phrasing this would be that...

…

Separate document per triplet with enriched text

Rich Triplets

…

Chase County Kansas and Morris County Kansas are adjacent 
to each other. This means that their borders share at least one 
common point. Another way of phrasing this would be that...

Figure 4: Synthetic spatial text generation process by SpaTex, generating from left to right: i) a separate text for
each unique entity, grouping all of its relations together ii) a text per triplet {subject, relation, object} in plain
sentences and iii) a text per triplet but with each text enriched and the relation expressed using multiple phrasings.

frequency was selected as the final result.5438

Embeddings & Indexing In our implementation,439

all dataset and query embeddings were created us-440

ing the mixedbread-ai/mxbai-embed-large-v1 sen-441

tence embedder (Li and Li, 2023). We use FAISS442

(Johnson et al., 2019) to index the embeddings,443

which achieves a very good throughput in AkNN444

queries while preserving good retrieval accuracy.6445

Models In all of our experiments, we use meta-446

llama/Llama3.1-8B-Instruct quantized to 4 bits447

and without any fine-tuning. We use an NVIDIA448

GeForce RTX 3060 with 12GB of memory for all449

of our experiments.450

4.1 SpaRAGi Retrieval Evaluation451

To measure SpaRAGi’s retrieval accuracy, we test452

whether the ground truth of each query was re-453

trieved for that query and if yes, with what rank454

among the top-k retrieved texts (i.e. rank of similar-455

ity). Note that during inference, even if the ground456

truth is not retrieved, a correct response to the query457

may be inferred from the rest of the retrieved texts.458

However, to benchmark the retrieval, we only take459

into account the ground truth and do not measure460

the rest of the retrieved texts’ relativity to the query.461

We perform each experiment for varying re-462

trieval size k to thoroughly analyse its effect. To463

5Running the query set three times takes 1 hour on an
NVIDIA GeForce RTX 3060, 30 minutes on an A100, and 10
minutes on an H200 on average for each model.

6The retrieval cost of FAISS for k up to 10 was 10-15ms.

evaluate retrieval, we use the following measures: 464

• Mean Reciprocal Rank (MRR) evaluates the 465

rank of the ground truth within the list of re- 466

trieved texts, calculated as the reciprocal of its 467

rank and averaged across all queries. 468

• Precision-at-One (P@1) measures the propor- 469

tion of queries for which the ground truth is 470

retrieved as the top-ranked text, irrespective 471

of the value of k. 472

• Success Rate (SR) indicates whether the 473

ground truth was retrieved at all, without con- 474

sidering its rank in the results. 475

• Mean Rank (MR) computes the average rank 476

of the ground truth text across all queries 477

where it was successfully retrieved, focusing 478

only on successful retrievals. 479

Figure 5 analyses SpaRAGi’s retrieval accuracy 480

for each dataset. Specifically, Figures 5a and 5b 481

showcase that MRR and P@1 remain unaffected by 482

the increasing value of k. This is the default when 483

measuring P@1, whilst a steady MRR indicates 484

that the rank of the ground truth does not necessar- 485

ily change much in the list of the retrieved texts as 486

k increases. This indicates that the correct text is 487

either retrieved at the highest rank or not retrieved 488

at all (for k = 10). In both metrics, CSZt-r per- 489

forms the best, exceeding CSZt by approximately 490

0.2 and CSZe by even more. 491
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Figure 5: MRR (a), P@1 (b), Success Rate (c), MR (d)
of SpaRAGi’s retrieved texts per dataset and k.

In Figure 5c, SR increases with k for all three492

datasets, which is expected as more texts are re-493

trieved and by extension, it is more possible that494

the ground truth is retrieved among them. CSZt-r495

achieves the highest success overall, with its SR496

reaching 94% for k = 10 while CSZt peaks at497

76% and CSZe at 70%. Note that CSZt-r reaches a498

high success rate (88%) very fast for k = 2, while499

for the other two datasets SR gradually improves500

with k. This suggests that a low value of k is suffi-501

cient for dataset CSZt-r to retrieve the ground truth,502

which can help minimize context noise by avoiding503

the retrieval of less relevant or unrelated texts.504

Similarly, Figure 5d shows the average rank of505

the ground truth in the retrieved texts (if it exists in506

the list) growing with k. A low MR indicates that507

the ground truth can be successfully retrieved with508

a small value of k. However, as k increases, the509

ground truth is retrieved in more cases, leading to510

an increase in the MR. The MR of the ground truth511

converges quickly for CSZt-r, reinforcing the asser-512

tion that a relatively low k is sufficient to achieve513

high retrieval accuracy in CSZt-r.514

In summary, all metrics confirm that CSZt-r has515

the best retrieval accuracy among the datasets we516

used in our experiments. On the other hand, CSZe’s517

per-entity compression of all related relations per-518

forms the worst in terms of retrieval, indicating that519

its texts’ embeddings are distorted by noise and af-520

fect the ground truth similarity search negatively.521
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Figure 6: Classification performance of SpaRAGi’s gen-
erated responses (yes/no) per dataset and k.

4.2 SpaRAGi Generation Evaluation 522

To assess SpaRAGi’s performance in successfully 523

responding to spatial queries, we perform a binary 524

classification task on the generated responses. A re- 525

sponse to a query is considered correct if it matches 526

the query’s correct answer (yes or no), otherwise it 527

is considered incorrect. Example prompts, along 528

with their responses and their evaluation, are shown 529

in Table 4 of the Appendix. 530

We measured the classification performance us- 531

ing Precision, Recall and F1 score for increasing 532

k, shown in Figures 6a, 6b and 6c, respectively. 533

Note that for all datasets, the Precision is gradually 534

increases k, which means reduction of false posi- 535

tives (i.e. queries whose correct answer is ‘no’ and 536

are answered as ‘yes’) as more texts are retrieved. 537

This increase of Precision, combined with the rel- 538

atively steady MRR of Figure 5a, shows that the 539

additional, seemingly unrelated, texts that are being 540

retrieved as k increases, actually contribute posi- 541

tively when added as context, assisting the model 542

into responding correctly to more queries. 543

As concluded in §4.1, CSZe performed the worst 544

in terms of retrieval accuracy among our datasets. 545

This is mirrored in CSZe’s generation evaluation as 546

well, performing worse than the rest of the datasets 547

in terms of Precision, Recall and F1 score. 548

Even though CSZt-r has the best retrieval accu- 549

racy, it is eventually outperformed in response gen- 550

eration by CSZt for high k. This is correlated with 551

CSZt’s high Recall (i.e., fewer cases of respond- 552
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(a) Correct response cases (b) Incorrect response cases

Figure 7: Proportional breakdown (%) of correct and
incorrect response cases, based on whether the ground
truth was retrieved (light-coloured stacked bars) or not
retrieved (dark-coloured stacked bars).

ing ‘no’ to queries whose correct answer is ‘yes’),553

combined with its relatively good Precision. The554

high Recall can be attributed to CSZt’s plain and555

simple sentences, with little noise that might mis-556

lead the generation. On the other hand, CSZt-r’s557

Recall drops as k increases; the noise of the richer558

text, sometimes negatively affects generation. Al-559

though CSZt-r quickly reaches a high F1 score,560

CSZt eventually outperforms CSZt-r for k = 10.561

To assess how much the retrieved texts assisted562

the model in responding correctly to the queries,563

in Figure 7, we study the correlation between the564

ground truth retrieval and the correctness of the565

response. Specifically, for queries where the model566

responded correctly (Figure 7a), we separate cases567

where the ground truth was successfully retrieved568

(light-coloured bars) to those where the ground569

truth is missing from the context (dark-coloured570

bars). Respectively, we perform the same for the571

queries to which the model responded incorrectly,572

shown in Figure 7b. We observe in the correct re-573

sponse cases that the phrase-enriched per-triplet574

dataset (CSZt-r) benefits to a greater extent than575

the other two datasets, as in every case the propor-576

tional percentage of the contained ground truth is577

higher and increasing with k. The same is observed578

for the incorrect response cases, but for k higher579

than 1, indicating that even with the ground truth580

as context, the model can still infer an incorrect581

response to certain queries. Furthermore, both the582

SR of retrieval (Figure 5c) and the F1 score of the583

generation (Figure 6c) are increased with k, verify-584

ing that in general, the added context to the query585

helps to improve its generation for the queries.586

4.3 Model Comparison587

Table 2 performs a baseline comparison between588

various models on our spatial queries, to identify589

Model # of Parameters F1 score
mistralai/Mistral-7B-Instruct-v0.1 7B 0.45

ibm-granite/granite3.2-8b-instruct-preview 8B 0.19
meta-llama/Llama3.1-8B-Instruct 8B 0.58

mistralai/Ministral-8B-Instruct-2410 8B 0.35
mistralai/Mistral-Nemo-Instruct-2407 12.2B 0.18

microsoft/phi-4 14.7B 0.44
meta-llama/Llama3.1-70B-Instruct 70B 0.61

Table 2: The models that we tested on our query set
and how they performed in our response generation
benchmark based on their F1 scores.

Framework F1 score
Llama-8B 0.58

Llama-8B + SpaRAGi (CSZt) 0.78
Llama-70B 0.61

Llama-70B + SpaRAGi (CSZt) 0.91

Table 3: SpaRAGi’s response generation improvement
(in terms of F1 score) on small (Llama3.1-8B-Instruct)
and relatively large (Llama3.1-70B-Instruct) models for
our query set. SpaRAGi was deployed using the CSZt
dataset and k = 10.

which model has the best out-of-the-box perfor- 590

mance, measured by their F1 scores. All models 591

ran without SpaRAGi, on a A100 GPU, with the 592

exception of meta-llama/Llama3.1-70B-Instruct 593

which we ran on a H200 due to its large memory 594

requirement. Llama3.1-70B-Instruct, the largest 595

model we evaluated, achieved the best performance 596

among all models, with Llama3.1-8B-Instruct fol- 597

lowing closely in second place. 598

As seen in Table 3, SpaRAGi employed on a 599

small model like Llama3.1-8B-Instruct and with 600

the CSZt dataset as context, outperforms the sig- 601

nificantly bigger Llama3.1-70B-Instruct in terms 602

of response generation accuracy by 0.17. When 603

combined with Llama3.1-70B-Instruct, SpaRAGi 604

improved its performance by 0.3, increasing its F1 605

score to 0.91 for our spatial queries. 606

5 Conclusions 607

This study presented SpaRAGi, a novel approach 608

for generating synthetic spatial text and assisting 609

large language models in answering spatial queries 610

through retrieval-augmented generation. Our exper- 611

imental analysis shows that employing SpaRAGi 612

on models (small or large), leads to improving their 613

response generation for spatial queries by 35% to 614

almost 50%. The ultimate goal of this work is to 615

study the spatial inference capabilities of LLMs 616

on open-ended spatial questions rather than yes/no 617

queries. In the future, we will explore how can 618

RAG facilitate better spatially-informed discussion 619

between the user and the model in natural language. 620
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Limitations621

This preliminary version of SpaRAGi has the fol-622

lowing limitations: 1) due to resource limitations,623

we were unable to perform most of our experi-624

ments on large models that require high-end GPUs625

to run. However, we included one large model626

(meta-llama/Llama3.1-70B-Instruct) to support our627

claim that SpaRAGi helps smaller models match or628

surpass large models in terms of spatial inference.629

2) the synthetic spatial text generation is not auto-630

mated in terms of spatial data retrieval. This means631

that spatial datasets need to be manually collected632

and then pre-processed by our SpaTex generator633

to generate the synthetic spatial text datasets that634

are actually used in the RAG mechanism. Addi-635

tionally, many publicly available real-world spa-636

tial datasets lack metadata (name, description etc.),637

which creates the need for some data curation be-638

fore being able to be used.639
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Appendix 749

Query Prompt Response Evaluation
Is Carroll County
Maryland southwest
of Zipcode 17349?
Respond with yes or
no. Do NOT provide
an explanation.

Question: Is Carroll County Maryland south-
west of Zipcode 17349? Respond with yes or
no. Do NOT provide an explanation. Question
Context: Carroll County Maryland is southwest
of Zipcode 17349. Additionally Carroll County
Maryland is approximately 36.259572 kilome-
ters away from Zipcode 17349 to the southwest.
This means that Carroll County Maryland and
Zipcode 17349 do not share a border or have
common area. Topologically it is the same to
say that Zipcode 17349 is to the northeast of
Carroll County Maryland.

yes TP

Is Zipcode 08042 ad-
jacent to and south of
Zipcode 08068? Re-
spond with yes or no.
Do NOT provide an
explanation.

Question: Is Zipcode 08042 adjacent to and
south of Zipcode 08068? Respond with yes or
no. Do NOT provide an explanation. Question
Context: Zipcode 08068 and Zipcode 08042 are
adjacent to each other. This means that their
borders share at least one common point. An-
other way of phrasing this would be that Zip-
code 08068 and Zipcode 08042 spatially meet
with each other touch or that they are neighbors.
Additionally Zipcode 08068 is south of Zipcode
08042. It is the same to say that Zipcode 08042
is to the north of Zipcode 08068.

no TN

Table 4: Prompting and response examples for various queries on SpaRAGi, on Llama3.1-8B-Instruct using the
CSZt dataset and k = 1. The Query is what is asked by the user. The Prompt is what SpaRAGi generates as the
contextualized prompt, after the retrieval is finished. The response is the model’s response for the Query. In the
Evaluation column we show whether the Response is correct (True Positive or True Negative) or incorrect (False
Positive or False Negative).
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