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ABSTRACT

Backdoor attacks, which make Convolution Neural Networks (CNNs) exhibit
specific behaviors in the presence of a predefined trigger, bring risks to the usage of
CNNs. These threats should be also considered on Vision Transformers. However,
previous studies found that the existing backdoor attacks are powerful enough
in ViTs to bypass common backdoor defenses, i.e., these defenses either fail to
reduce the attack success rate or cause a significant accuracy drop. In this paper,
we first investigate this phenomenon and find that this kind of achievement is
over-optimistic, caused by the inappropriate adaptation of defenses from CNNs to
ViTs. Existing backdoor attacks can still be easily defended against with proper
inheritance. Furthermore, we propose a more reliable attack: adding a small
perturbation on the trigger is enough to help existing attacks more persistent
against various defenses. We hope our contributions, including the finding that
existing attacks are still easy to defend with adaptations and the new backdoor
attack, will promote more in-depth research into the backdoor robustness of ViTs.

1 INTRODUCTION

Vision Transformers (ViTs) ( , ; , Table 1: The performance
) have demonstrated outstanding performance in various tasks, of FT against Badnets attack

including image classification ( R ; for ResNet-18 and ViT-B on
), semantic segmentatlon ( , ), and 1mage CIFAR-10 ( , ).

generation ( , , ), leading to their

widespread popularity. However strong performance alone is in- ResNetl8  ViT-B

sufficient for ViT to be practically deployable. It must also exhibit
trustworthiness without posing severe security risks, and one of the ASR 148% 881%
most notable ones is the backdoor attacks ( ; ACC 89.96% 42.00%

, ), which implant unexpected behaviors 1ns1de models,
making the victim model produce specific misclassification in the presence of a predefined trigger
while maintaining high performance on benign images. While previous studies mainly focus on
Convolutional Neural Networks (CNNs), there is a growing need for an in-depth investigation of
ViTs to help practitioners better understand the potential risks and deploy them more reliably.

After a long arms race between backdoor attack and defense, for CNNS, a relatively simple defense
has the potential to make backdoor attacks fail. Taking the fine-tuning defense and Badnets attack
in Table 1 as an example, we find that after performing the defense, the attack success rate (ASR)
on ResNet18 only has 1.48% while the benign accuracy (ACC) is 89.96%, indicating a failure of
the attack. Contrastingly, ViTs, when subjected to the same attack, display an increased ASR and
decreased ACC, implying the disruption of the benign utility. Given that Badnets is model-agnostic,
this differential outcome motivates us to explore which factor leads to this underlying disparity
between CNNs and ViTs.

Drawing inspiration from ( ), we distinguish a crucial observation: 1) CNNs are usually
trained by SGD and its fine-tuning defense is also trained by SGD; 2) ViTs are typically trained by
AdamW while its fine-tuning defense is trained by SGD (NOT AdamW, inheriting from earliest work
( , ), which first introduces transformers to computer vision). This discrepancy
in optimizers raises the possibility that the perceived vulnerability of ViTs (with defense) might be
overstated. In this paper, we first conduct a series of experiments to comprehensively investigate the
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above hypothesis, which is further confirmed that the threat posed to ViTs with defense has been
magnified. Upon minor modifications, ViTs with existing backdoor defense methods demonstrate
clear resistance to attacks, mirroring the robustness of CNNs.

To this end, we are wondering whether a more powerful attack exists that can better evade current
defenses. Therefore, we analyze backdoored models and further propose a simple yet effective
attack. We discover that it is easy for backdoor defenses to detect and utilize the differences in
channel activations due to the noticeable difference in the intermediate layers between the inputs
with and without triggers. However, we can reduce this difference by adding small perturbations to
the triggers before training while keeping triggers unchanged during inference, resulting in more
reliable backdoor attacks. Additionally, our method has transferability across different transformer
architectures and is effective for both small and large datasets.

In summary, our contributions are summarized as follows:

* We investigate the existing backdoor defenses on ViTs and find the outstanding performance
of the backdoor attacks to ViTs is over-estimated due to the inappropriate adaptations.
Further, we provide a practical training recipe to improve the performance of current defense
and show that existing attacks on ViTs can still be easily resisted.

* We propose to add small perturbations to the triggers before training to suppress the differ-
ence in the intermediate-level representations between the inputs with and without triggers,
resulting in a more powerful attack, which is termed the channel activation attack in ViT
(CAT).

* Our contributions, including the finding of existing attacks to current defenses and the
development of a new attack, contribute to a reliable baseline for the backdoor robustness of
ViTs. We hope it can be a cornerstone of future studies in improving the backdoor robustness
of ViTs.

2 RELATED WORK

2.1 BACKDOOR ATTACK

Backdoor attacks ( s ; ; ; R ), also known
as Trojan attacks, indicate the behav1ors of 1mplant1ng spec1ﬁc mahclous behavior into machine
learning models, which make the models perform well on benign data while leading to specific
misclassifications on inputs containing triggers (i.e., triggered inputs). The adversary usually poisons

the training data ( , ) or controls the training process ( s ) to achieve this.
Typically, a trigger pattern is added to the input image as follows,
x,=(1-m)Ox+mot, (1)

where t is the trigger pattern and mask m indicates the pixels affected by the trigger pattern. Usually,
the adversary re-labels the triggered input as the predefined target class (i.e. in a dirty-label setting).
Models trained on a mixture of these poisoned data and other benign data are implanted with
an unexpected correlation between the trigger pattern and the target class. To improve the attack
stealthiness, some studies explored less noticeable trigger designs like the semi-transparent ones (
, ), the elastic transformed ones ( , ), and the input-aware ones (

, ). Besides, since incorrect annotation might expose the existence of the porsoned data,
some studles focus on attacks w1th0ut re- labehng (clean-label settings) (

, ). Although most prev1ous backdoor
attacks focus on CNNGs, researchers have started to focus on backdoor attacks on ViT regarding their
popularlty Although ViTs are reported to be more robust against adversarral attacks (

s ) and common corruption ( s ; ),
they are st111 vulnerable to backdoor attacks ( s ; s ). Rehable
attacks are needed to help practitioners properly understand the risks of backdoor threats and deploy
these models reliably.

2.2 BACKDOOR DEFENSE

To mitigate the potential risks caused by backdoor attacks, numerous studies proposed various defense
methods, mainly categorized into defense during training and defense after training. Defense



Under review as a conference paper at ICLR 2026

during training attempts to mitigate the impact of poisoned data in the tralmng set. Some methods
detect and remove poisoned data by treating them as outliers ( , ;
, ), some employ semi- superv1sed learning to bypass the 1ncorrect correlations (
, ), and others utilize differential privacy to ensure that a poisoned portion of training data
is unable to cause severe results ( R ). Meanwhile, the defense after training (
, ) includes those that detect the backdoor samples from the model inputs ( ,
; , ) or purify the model to removes the backdoor behavior inside DNNs. Since
the latter category is closer to the ideal goal, it has received more attention. This can be accomplished
by fine-tuning the model using a small amount of clean data ( s ) (FT) and further
improving it with neuron pruning ( , ) or attention alignment ( , ). Since
the performances of fine-tuning are easy to suffer a substantial decrease when the data is limited,
another popular method is selectlvely removing neurons related to the backdoor behaviors (
s ): Built upon the observation that the backdoor
behav1or can be revealed by the adversarlal neuron perturbation, ANP ( , ) formulates
the following min-max problem with dataset D,, to expose the malicious neuron:

min_ [aLp,(m ©® w,b)
me|[0,1]™

H1-a) max L, ((m+0)ow.(L+Ob),

@

where § and ¢ are the perturbations to the weight w and bias b of all neurons respectively. They
maximize the cross-entropy loss £p, and m is the mask that adversarially preserves the clean
accuracy and covers up the backdoor behavior. Then the neurons corresponding to low mask values
are pruned to purify the backdoor model. As an improved approach based on ANP, AWM in (

, ) proposes to adopt the element-wise weight and perturb the input data instead to
gain better performances on small networks. This paper primarily focuses on defense after training.
Because ViTs demand a large amount of data and extensive training resources, it has become
impractical for most practitioners to train ViTs from scratch, making defense after training a more
realistic scenario. Previous studies ( , ; , ) suggested that directly applying
defenses from CNNs to ViTs fails. For example, ﬁne -tuning decreases natural accuracy from 94.58%
to 42.00% against the Badnets attack and fine-pruning totally collapses in ( , ). At the
meantime, only a few defense methods specially designed for ViT are proposed ( ,

, ) and their performance is lagging far behind the state-of-the-art defense on
CNNs: The adaptive defense proposed in ( , ) only decreases the ASR of TrojViT
(a ViT-specific attack) to 77.13% and the patch processing method in ( , ) fails to
detect 33.2% backdoor examples on CIFAR-10. It seems that existing attacks can already obtain
outstanding performances on resisting defense for ViTs. However, in this paper, after re-investigating
various backdoor defenses with ViTs, we reveal that the achievement obtained by previous attacks
is attributed to the improper adaptation of defenses. Furthermore, we provide a new attack, based
on the empirical observation of the channel activations to help existing attacks evade defenses more
effectively.

3 THE VULNERABILITY OF DEFENSE ON VITS TO EXISTING ATTACKS

In this section, we reevaluate the perceived susceptibility of ViTs to prevailing backdoor attacks
when equipped with potential defenses. We primarily consider two categories of defenses: one is

fine-tuning-based, including Fine-Tuning (FT), Fine-Pruning (FP) ( , ), and Neural
Attention Distillation (NAD) ( s ), Fine-tuning with SAM optimizer (FT-SAM)

( ), Super Fine-tuning (Super-FT) ( ) and the other is pruning-based, including
Adversarial Neuron Pruning (ANP) ( , ) and Adversarial Weight Masking (AWM)
( ) )-

3.1 THREAT MODEL AND BASIC SETTINGS

Threat Model: Consistent with the assumptions made by most attacks ( s ), our threat
model limits the capability of attackers to the access of training data. An unaware third party trains
a ViT model using the poisoned data and helps downstream users who lack the training resources
to solve the downstream tasks. The defenders provides service for the users and ensure that the
downloaded parameters from the third party are free of backdoor threats.
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Table 2: The comparison between SGD and AdamW optimizer on FT. Here, AvgDrop represents the
average drop of six attacks on ASR/ACC after performing FT.

| ACC ASR
Attack
\ No defense SGD  AdamW No defense SGD  AdamW
Badnets 97.85 1432 95.14 10000 502 072
Blend 97.85 1099 9532 10000 7.0 522
CLB 97.83 1567 95.15 96.23 680  3.39
SIG 97.50 1262 9532 90.57 1212 5.66
IAD 9779 1500  95.57 100.00 1380  5.36
SSBA 98.19 1178  96.05 99.23 916  0.50
AvgDrop | - 84.44 241 - 88.67  94.20
Settings: We train a backdoored ViT-B ( , ) with various attack methods.
Specifically, we initialize the model with a pre-trained weight ( , ) on the ImageNet-1k
, ) and then fine-tune it on CIFAR-10" ( s ). Note that a portion

of CIFAR-10 training data is poisoned to implant the backdoor behavior, i.e., some images are added
with the trigger pattern and are re-labeled as the target class if expected. We apply six commonly-used
attack methods: 1) Badnets ( , ), 2) Blend ( , ), 3) CLB ( ,

), 4) SIG ( , ), 5) IAD ( , ), 6) SSBA ( , ). Their
trigger design and poisoning method in the original paper are kept. For dirty-label attacks, we set
the poison rate as 5% and for clean-label attacks, we poisoned 80% images of the target class. To
accommodate the input size of ViT, we first add triggers to CIFAR-10 images (32 x 32) and then
resize them to a larger size (224 x 224). For more detailed information, please refer to Appendix B.
Here, we use accuracy (ACC) to indicate the classification performance on benign data, and attack
success rate (ASR), the percentage of triggered input being classified as the target class, to indicate
the attack performance. Note that we will remove the inputs whose ground-truth label is the target
class, and thus, a successful defense should make ASR as low as 0.

3.2 VITS WITH FINE-TUNING-BASED DEFENSE

Fine-tuning is one of the most basic and model-agnostic defenses. However, as discussed in Section 1,
directly inheriting fine-tuning-based defense strategies from CNNs can potentially lead to suboptimal
outcomes. Note that SGD is the commonly used optimizer for both training and fine-tuning for
CNNs, while for ViTs, the first work ( , ) introducing Transformers to computer
vision, adopts AdamW for pre-training and SGD for fine-tuning. Notably, prior work ( ,
) on backdoor defense naturally inherit this strategy and observes notably diminished accuracy
across multiple backdoor attacks. This discrepancy in optimizers motivates us to study the potential
influence of optimizers on backdoor defense. The initial learning rates for SGD and AdamW are set
to 0.02 and 3e-4, respectively. For the other parameters in AdamW, we use the common settings of
the original ViTs (refer to Appendix C for details). Table 2 illustrates the experimental fine-tuning
(FT) results against various backdoor attacks. For the results on other fine-tuning-based attacks,
please refer to Appendix D. We find that SGD exhibited significant instability on ViTs: Its ACC is
below 20% under all attacks. In contrast, AdamW can achieves not only high ACC and but also low
ASR under all settings. Therefore, simply using SGD for backdoor defense on ViTs will yield highly
unstable performance. In Appendix E, we analyze the reason behind it from an empirical view.

3.3 VITS WITH PRUNING-BASED DEFENSE

Pruning is also a typical defense approach, which attempts to remove backdoor-related neu-
rons/channels and is severely impacted by the architectures. In previous studies, pruning- based
methods have achieved excellent robustness against backdoor attacks with CNNs (

, ). However, when we directly apply these methods to ViTs, we find that they
are unable to effectively defend as shown in Table 3. Specifically, ANP fails to reduce ASR and
cannot remove the backdoor-related neurons. Besides, although AWM reduces ASR, it also largely
decreases ACC, making the model unusable. To explore the potential reason, we look deeply at the
implementation of ANP and find that ANP actually prunes channels inside norm layers rather than
neurons inside convolutional layers. This is because, in CNNs, each neuron is typically surrounded

'0Ony 95% of the original training data on CIFAR-10 are used to train the backdoored model, and the
remaining data are kept for defense.
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Table 3: The Performance of Pruning-based Defense with or without adaptation. Here, AvgDrop
represents the average drop of six attacks on ASR/ACC after performing the defense.

No defense | ANP ANP Adapted | AWM AWM Adapted
ACC  ASR | ACC ASR ACC ASR | ACC ASR ACC ASR

Badnets | 97.85 100.00 97.85 100.00 9426 1.34 8598 1.24 95.02 0.71
Blend 97.85  100.00 97.85 100.00 92.70 23.70 8329 203 9508 1.70
CLB 97.83  96.23 97.83 9623 9571 1271 85.67 348 95.60 1.52
SIG 97.50  90.57 97.50 90.57 92.60 1.48 8722 1.16 9458 3.87
SSBA 98.19  99.23 98.19 1 99.23 9388 0.23 82.60 153 95.64 1.24
IAD 97.79  100.00 97.79 100.00 9291 5.64 88.07 649 9447 638

AvgDrop | - - | 0.00 0.00 419 9016 | 1236 9517 277  95.10

Attack ‘
|

natural examples natural examples natural examples
Emm backdoored examples Emm backdoored examples B backdoored examples

g125 S125
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(a) Before defense (b) After FT (c) After AWM

Figure 1: The average activations for different channels before (a) and after the backdoor defense
(b)-(c). The activations are sorted in descending order of the activations on natural samples.

by at least one norm layer?. However, in ViT, many norm layers are removed, and norm-layer-based
pruning only influences part of neurons and limits the defense performance. Meanwhile, AWM
utilizes element-wise masks for optimization, whose number of parameters is the same as the total
number of parameters of ViT. Since ViTs are typically larger and lack inductive bias, AWM en-
counters the severe overfitting issue, leading to low accuracy. Therefore, to make pruning methods
applicable to ViTs, selecting appropriate granularity and pruning locations is necessary. Here, we
recommend directly pruning all channels of linear projection inside both attention and MLP layers,
which provides better coverage than ANP and requires fewer parameters compared to AWM. As
shown in Table 3, this modification decreases ASR notably and keeps ACC high.

4 PROPOSED BACKDOOR ATTACKS

Following the above analysis, existing defense methods (ViTs adapted) successfully defend against
backdoor attacks in ViTs, just as they do in CNNs. Here, we want to explore whether there exist new
backdoor attacks to beat the newly adapted defense on ViTs.

To obtain a better insight into why defense methods can detect and remove backdoor behaviors,
we investigate the per-channel activations before the MLP head in ViT. We illustrate the average
activations of all channels for a backdoored ViT-B on triggered and benign inputs from the CIFAR-10
test set, respectively. For clarity, we reorganize the channels based on their average activations,
arranging them from largest to smallest with respect to average activations on benign data. In
Figure 1, we find a significant activation difference between benign and triggered inputs, which
is easy to capture. Further, we compare the average activation of all channels for models purified
by FT and AWM, and find that benign and triggered inputs have similar average activation after
defense. This suggests that the naive trigger design (usually predefined universal patterns) for current
backdoor attacks results in a significant difference between benign and triggered data, revealing attack
information to possible defenders. Next, we will study whether we could improve the trigger design
to escape defenses. The general process of our attack is summarized in Figure 2 and we term it as the
Channel Activation attack in ViT (CAT).

Adversarial Loss. Based on our observation, a good trigger design is expected to avoid noticeable
channel activation differences between benign and triggered inputs. Therefore, we require additional
backdoor discriminators (BD) to clarify whether the training input has the predefined trigger during
the training. Specifically, we denote the feature extractor of the backdoored model as g(-)*, and

2Specifically, for Preact-ResNet, the norm layer is always located before the neuron; for ResNet, it is located
after the neuron

3In our method, the extractor will return intermediate features from all layers.
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Figure 2: The illustration of our proposed attack. We illustrate our attack by taking ViT-B as an
example. left: Using the existing poisoned dataset, we firstly train the BD and TC on a surrogate
model (Step 1). right: When the training is over, we perform adversarial attacks on the BD and
TC modules to generate adversarial perturbation (Step 2). In each step during crafting adversarial
perturbations, we manually mask some patches of perturbation to better poison ViTs (Step 3).

the backdoor discriminator d;(g(x)) uses the intermediate feature of the i-th layer to discriminate
whether the input x has the trigger pattern. During backdoor training, we also train these backdoor
discriminators of the last n layers, i.e., d;(g(x)),i = L —n +1,---, L. After training, we could
use these backdoor discriminators to generate adversarial perturbations on the trigger pattern to
minimize the activation difference between benign and triggered inputs. Meanwhile, naive difference
minimization might make the model classify triggered inputs as a non-target label, leading to
the failure of backdoor attacks. To address this issue, we introduce additional target classifiers
fi(g(x)) (TC), which uses the intermediate feature of the i-th layer to make classification between
benign samples, i.e., classifying the benign input as the ground-truth label. Similar to the backdoor
discriminator, we also train these clean classifiers of the last n layers, i.e., f;(g(x)),i = L —

n+1,---, L during training. In conclusion, we craft adversarial perturbation via maximizing the
following loss, L
LE) = > (1=7)-£(di(gx+m®0F)),m)
T 3)

— - [(fz(g(x—l— m® 6))7%0)7

where y4 is the label for the backdoor discriminator, i.e., 1 for triggered data and O for benign data.
Yz 1S the label for the target classifier as the adversary expects, i.e., the ground-truth label for benign
input, and the target label for triggered input. Here -y is a trade-off coefficient to balance the effect
between TC and BD.

Generation Steps. Since the nonlinearity of ViTs, it is mathematically infeasible to obtain the exact
solution for Equation 3. However, we can use the projected gradient descent (PGD) ( ,
) from the normal adversarial attacks to craft the perturbations on the trigger pattern as follows:

VsL(5)

b+ moll,(d+a- ———-—), 4)
SRR FET
where m is the mask for triggers, ® is the Hadamard product, and II(-) is the projection function,
€
() = =0, 5)
[16]]2

Random Masking of Perturbation. In practical situations, the attacker has no access to the model
architecture and its parameters. Usually, the adversary expects to craft these perturbations from
models with known parameters to attack the target models that have various architectures. The
generated perturbations in this situation are expected to be effective across various architectures.
Unfortunately, different ViTs could have various patch sizes for splitting, leading to differences
in the scale of sensitive features. This might lead to low transferability. Therefore, we propose a
method termed Random Masking of Perturbation (RMP). In each step during crafting adversarial
perturbations, we first split perturbation with £ patches and randomly drop a predefined percentage of
perturbation patches. This can create features of varying scales manually and make the perturbations
effective for kinds of ViTs with different patch-splitting approaches.

Once the enhanced version of the poisoning dataset is crafted. Attackers release them to the public to
threaten the security of models.
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Table 4: ASR (%) of our proposed attack with different ViT variants on the CIFAR-10 dataset. The
higher ASR is in bold.

Model  Defense | BadNets BadNets+CAT | Blend Blend+CAT | CLB  CLB+CAT | SIG  SIG+CAT | IAD  IAD+CAT | SSBA SSBA+CAT

Before 100.00 100.00 100.00 100.00 96.23 94.57 90.57 91.19 100.00 100.00 99.23 98.53

FT 0.72 65.01 522 45.02 3.39 23.04 5.66 27.04 5.36 44.51 0.50 18.78

FP 0.91 27.90 0.73 12.49 1.70 26.88 0.81 9.68 8.67 50.74 2.56 12.67

VITB NAD 1.57 86.50 8.94 61.93 727 13.30 3.60 9.07 3.17 52.89 1.78 22.56
FT-SAM 2.57 98.44 1.36 56.57 1.63 26.54 7.87 24.72 6.19 43.56 1.82 9.27

Super-FT 4.60 61.26 2.61 34.61 2.98 3491 0.64 21.82 5.38 80.74 1.44 13.63

ANP 1.34 51.09 23.70 92.23 12.71 14.01 1.48 67.57 5.64 75.39 0.23 60.34

AWM 0.71 6.78 1.70 26.22 1.52 4.40 3.87 38.59 6.38 51.00 1.24 11.72

Before 100.00 100.00 100.00 100.00 95.28 94.04 84.77 88.28 100.00 100.00 96.92 97.90

FT 281 69.91 23.66 64.29 16.56 33.21 0.82 40.98 15.27 69.00 0.84 19.67

FP 33.98 45.09 3.82 14.73 3.87 16.52 2.26 14.79 5.49 31.22 1.37 13.43

DeiT-S NAD 10.20 43.73 1.50 23.30 5.88 19.66 3.99 21.02 15.39 70.41 0.88 12.67
FT-SAM 11.72 45.36 3.88 33.94 3.93 18.11 1.56 25.82 21.74 86.60 0.64 18.67

Super-FT 18.47 79.77 17.82 68.96 12.73 41.54 8.86 42.89 17.44 69.78 0.47 13.11

ANP 6.03 58.17 36.67 79.91 13.18 25.19 20.80 79.91 28.38 90.48 2.56 27.08

AWM 271 6.64 1.27 512 2.19 542 3.30 13.81 9.07 51.04 1.24 9.37

Before 100.00 100.00 100.00 100.00 84.86 90.23 94.99 97.77 100.00 100.00 98.38 99.32

FT 1.51 39.36 37.86 89.75 0.30 19.53 8.62 23.76 28.78 71.711 0.32 2535

FP 11.49 19.52 248 22.67 2.54 5.56 3.81 5.49 2.56 9.11 0.64 18.97

Swin-B NAD 4.26 47.09 5.70 59.32 1.32 11.61 1.27 24.62 32.06 61.53 0.74 24.56
FT-SAM 2.50 24.83 0.28 27.92 1.04 24.08 2.26 12.37 4.06 63.48 0.43 29.56

Super-FT 17.91 38.32 7.93 17.87 3.02 11.07 7.04 14.76 28.16 76.08 3.56 21.67

ANP 2.63 19.47 34.37 99.62 2.78 10.62 21.78 60.26 36.24 59.56 9.27 2717

AWM 4.79 12.76 0.32 27.62 3.16 6.74 29.83 59.82 25.49 54.61 1.01 12.70

Before 100.00 100.00 100.00 100.00 85.71 92.21 80.93 82.26 100.00 100.00 97.71 98.57

FT 2.90 33.06 23.36 79.96 0.89 23.86 4.79 17.92 34.38 64.38 0.56 22.63

FP 15.80 19.96 43.09 90.27 1.59 6.12 8.96 19.23 1.84 24.97 1.07 17.56

CaiT's NAD 3.83 3252 11.89 73.71 3.84 29.66 4.39 18.17 15.08 59.89 0.92 46.22
FT-SAM 13.68 37.92 0.37 21.31 3.13 11.19 6.23 18.27 1.43 35.45 271 17.59

Super-FT | 21.08 75.23 27.43 72.39 18.97 46.86 9.28 43.95 47.50 89.98 233 23.01

ANP 31.24 83.34 59.83 100.00 2.64 23.51 41.88 67.63 26.81 49.89 16.23 30.98

AWM 0.90 10.57 36.00 57.72 0.91 2.66 16.79 23.22 17.17 41.97 7.10 24.76

Before 100.00 100.00 100.00 100.00 100.00 100.00 94.21 96.17 100.00 100.00 97.17 97.18

FT 0.54 37.53 29.91 90.47 330 23.54 2.52 33.30 3527 82.98 0.69 24.67

FP 6.37 14.39 23.82 29.50 13.99 20.49 13.22 16.43 5.36 24.30 2.76 16.45

XciTS NAD 15.20 32.63 18.57 55.90 20.10 36.04 6.16 23.01 15.60 94.70 1.12 31.50
®  FT-SAM 1.30 27.02 1.96 51.10 4.13 39.66 7.81 3331 27.04 81.87 0.80 11.13
Super-FT | 2933 86.06 23.63 56.74 14.42 39.58 14.49 2240 28.48 79.91 1.67 24.11

ANP 6.82 81.57 0.00 99.99 44.53 92.43 21.72 64.52 4229 89.01 5.19 27.38

AWM 231 16.11 88.43 94.56 26.84 40.71 35.99 96.05 35.09 83.91 1.06 8.41

5 EXPERIMENTS

5.1 MAIN RESULTS

Settings: In the practical application of CAT, there are two circumstances that could be met by
attackers: the architecture adopted by CAT is either the same or different from the victim models.
Here we choose ViT-B as the surrogate model to generate perturbations for each poisoned sample.
Then the enhanced version of dataset is applied to train five ViT variants, including ViT-B, DeiT-S
( , ), Swin-B ( , ), Cait-S ( , ) and XciT-S (

, ). In our experiments, we choose the last two layers (i.e., n = 2) to add BD and TC
modules, which are composed of one LayerNorm and Linear layer. For the perturbation generation
step, the adversarial attack is I bounded PGD-10 with budget 16/255, step size 4/255, and the
trade-off parameter -y is set to 0.6. For random masking of perturbation, we split the perturbation into
multiple small pieces, each of which has the shape of 2 x 2. The percentage of dropped patches is
set to 0.1 and 0.05 for the whole-image attacks and trigger-based attacks, respectively. For the basic
hyperparameters for each attack or defense, we keep in line with Section 3 and summarize them in
Appendix B and C. All experiments are performed on CIFAR-10. The ASR of our CAT against seven
defenses is summarized in Table 4. For ACC, please refer to Appendix F.

Results: First, when no defenses are performed, CAT will obtain a comparable ASR compared to
the vanilla settings. In most cases, it even can gain better performance. For example, our method
increases the ASR of SIG attack from 90.57% to 91.19% on ViT-B. Secondly, for the ASR after
defense, CAT achieves better performances in a novel margin. For example, on ViT-B, it increases the
ASR from 0.72% to 65.01% against the badnets attack for FT. Similar observation is also observed on
other architectures: the ASR of SIG attack increases from 3.30% to 13.81% on DeiT-S for the AWM
defenses. In addition, the results in Appendix F show that combining with CAT will have a negligible
impact on ACC. It indicates that our method will only enhance the ASR without compromising the
performance on the benign inputs.

5.2 PERFORMANCE ON IMAGENET WITH COMPARISONS WITH VIT-SPECIFIC METHODS

Attribute to the highly flexible multi-head self-attention mechanism, ViTs can outperform CNNs
when millions of data are provided. Thus in this section, we not only evaluate the performance of our

attack on ImageNet ( , ) but compare it with existing ViT-specific attacks: the Trojan
Insertion attack in ViT (TrojViT) ( , ), the Data-free Backdoor Injection Attack
(DBIA) ( , ) and BadViT ( , ). Following ( , ), here we try

to combine CAT with badnets and blend considering the large computation costs. The robustness
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Table 5: ASR (%) of our attack on ImageNet dataset. The higher ASR is in bold.

| | | Model-Agnostic Defense (Adapted) | ViT-specific Defense
Model |  Attack | Before | FT ~ FP NAD FISAM SuperFT ANP AWM | AB PPD
| TojViT | 9108 | 012 011 016 0.5 018 046 018 |
DeiT-B ™"DRIA | 9958 | 015 007 010 005 003 010 005 |
[ BadViT | 9997 | 779 404 663 3.9 505 468 897 | - -
Badnets | 100.00 | 2804 3.67 2682 1176 1028 1830 2432 | 384 9978
virp | BadnetstCAT | 10000 | 5625 1417 2875 5392 3726 4436 8198 | 1276 9987
Blend 100.00 | 19.56  1.01 6.71 3.92 2.37 1979 39.63 100.00 86.54
Blend+CAT 100.00 | 27.08 3.17 13.44 21.56 17.58 4849 71.29 100.00 92.76
Badnets | 100.00 | 1236 823 682 215 363 508 096 | 2651 998
DeiTs | BadnessCAT | 10000 | 4023 2550 2873 1942 1781 3209 1492 | 3368 9985
Blend 100.00 | 26.69  2.77 5.01 5.09 11.00 20.54 2638 100.00 89.61
Blend+CAT | 100.00 | 5396 1249 2484 1737 4833 4198 5635 | 10000  96.69
Badnets 100.00 | 31.96 2223 42.36 12.83 13.27 4229 3592 23.62 99.86
Swin.p | BAdietstCAT | 10000 | 8237 3596 6LIS 4880 3018 7362 5958 | 4628 9996
Blend 100.00 | 6.36 3.01 18.00 2.96 0.72 10.85  31.96 100.00 94.97
Blend+CAT | 100.00 | 20.56 2232 3511 2880 2463 4384 4592 | 10000 9978
Badnets 100.00 | 0.00 0.01 1.02 1.01 1.22 29.85 033 13.68 80.78
CaiT-S Badnets+CAT | 100.00 | 23.76 10.02 13.17 16.31 24.11 79.90 14.56 20.36 99.21
Blend | 10000 | 037 058 076  0.07 326 2537 1856 | 10000 5604
Blend+CAT | 100.00 | 3827 2378 2302 2012 1899 8396 5772 | 10000  97.08
Badnets 100.00 | 7.28 1570 17.42 4.70 21.31 1.04 5.65 35.63 93.11
XeiT.s | BadnetstCAT | 10000 | 2821 43.12 40.62 2508 4646 2536 2390 | 56.69 9399
Blend | 10000 | 3008 2044 2540 1541 3056 2348 39.14 | 100.00  88.64
Blend+CAT | 100.00 | 8536 67.17 7529 4526 8887  90.68 6390 | 10000  97.03

of attacks is also evaluated against the ViT-specific defenses, including Attention Blocking (AB)
( , ) and Patch Processing Defense (PPD) ( , ). For more details
of our settings, please refer to Appendix G. Following the setting on the CIFAR-10 dataset, we
optimize the perturbations of CAT on ViT-B architectures and evaluate the performances of attacks
on five variants of ViTs. The ASR of attacks is summarized in Table 5.

First, similar to the results on CIFAR-10, the results reveal that CAT can help existing attacks
better bypass the adapted defenses. For example, our approach boosts the ASR of Badnets from
24.32% to 81.98% against AWM on ViT-B model. In addition, we also observe that CAT surpasses
existing ViT-specific attacks against model-agnostic defenses in a novel margin: The highest ASR
of existing ViT-specific attacks is less than 10%. As for ViT-specific defenses, CAT also obtains
better performance: the gains on ASR are observed after combining Badnets or Blend with CAT.
We conjecture this is because our attack reduces the anomalous behavior of backdoor samples on
ViTs. This increases the difficulty of detecting them from the poison dataset. It is worth noting that
AB totally fails to defend Blend or CAT+Blend because it only masks a patch of images, which
will be ineffective when encountering whole-image attacks like Blend. Similar to the finding in
BadViT ( , ), we also observe the unsatisfying performances of PPD on the ImageNet
dataset. This is because ImageNet is a complex dataset and patch transformations will easily lead to
misclassification for both benign and backdoor samples.

5.3 ABLATION STUDY

For our proposed CAT, there are two key components: one is to perform adversarial attacks on
triggers (PA), and the other is to randomly mask patches of perturbation (RMP). To evaluate the
contribution of each component, we test the performances under three combinations: 1) the vanilla
backdoor attacks, 2) backdoor attacks with PA, 3) backdoor attacks with both PA and RMP. We select
ViT-B and Swin-B as the victim models and choose FP and AWM to evaluate the attack performances
since they show the most promising performances in Table 4. Other configurations are the same
as those in section 5.1. Due to the limited space in the main text, we summarize the ASR for all
combinations in Appendix H. It reveals that PA can improve the ASR but applying PA and RMP
together can gain a higher ASR. For example, on ViT-B, the gain of PA for FP against badnets attack
is 13.63% and performing PA and RMP both can further improve the ASR by 26.99%.

5.4 HYPERPARAMETER ANALYSIS

In this section, we test the effect of hyperparameters on our proposed methods. Taking Badnets
attacks as an example, we report the ASR after performing fine-tuning (FT) for ViT-B and Swin-B.

Attack budget: Recalling that in Section 4, we craft the adversarial samples to reduce the differences
in features between the backdoor and benign data. The previous works reveal that the strength of
the attacks plays a vital significance in the adversarial region. Therefore, we first investigate the
effect of the attack strength e on the performance of our method. As shown in Figure 3 (a), the ASR
of our method increases when we increase the budget. This is because more and more features on
the triggers that mismatches the benign data are removed. However, when the attack is too strong
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Figure 3: The effect of hyperparameters on the Figure 4: The activation difference be-
performances of our method. tween vanilla badnets and CAT attacks.

(e > 16/255), the performance of our method will decrease because it makes it too hard for the
network to learn backdoor information from the data.

Trade-off coefficient: v is another important hyperparameter for our method. As shown in Figure 3
(b), the results illustrate that the adversarial information from both additional modules: the backdoor
discriminator and the target classifier can improve the ASR (y = 0 or 1.0). However, mixing the
information from both can gain better performance. When v = 0.6, our method achieves the best
performance by simultaneously enhancing the information of the target class while eliminating the
irrelevant features on the triggers.

5.5 A CLOSER LOOK AT CAT

Time costs: As proposed in Section 4, CAT only requires the availability of the poisoned datasets and
brings not additional computational cost when training the victim model. We perform experiments on
a single RTX3090 to demonstrate that CAT only brings negligible cost to the practical use. As shown
in Table 10 in Appendix I, the preprocessing process of CAT can be completed in a few minutes.
Even on large datasets such as ImageNet, the overall costs are less than 4 minutes. It demonstrates
that it is affordable to perform CAT for most attackers.

Channel activations: We visualize the activation difference with or without performing CAT against
the badnets attack in Figure 4 and sort them in descending order. Here the activation difference
refers to the absolute value of the difference in activation between clean and backdoor samples in
different channels. Compared to vanilla attacks, the results demonstrate that CAT can largely reduce
the differences between the activations of the backdoor and clean samples. Therefore it effectively
increases the stealthiness of the combined attacks, which potentially increases the difficulty to
eliminate their effects with the current defense.

Perceptual Stealthiness: As proposed in Section 5.1, we adopt the ¢5-norm to ensure the stealthiness
of the attack. We set the budget as 16,/255, which is even smaller than the human-imperceptible noise
i.e. 128/255, adopted in the adversarial community ( , ). In Appendix J, we also
calculate the PSNR ( , ) and SSIM ( , ) metrics
between the images before and after performing CAT. The results demonstrate that the stealthiness of
CAT is even better than the imperceptible attack like SSBA.

5.6 RESISTANCE TO BACKDOOR DETECTION

In addmon to purified- based defense, defenders also could apply backdoor detection ( ,
, ) to provide protection. Although in previous works, their
first trlal that apphes detectlon based defense, e.g. Neural Cleanse (NC) ( R ) on ViTs
is shown to be unsuccessful ( , ). But our further studies in Appendix K confirm that
they can be effectiveness in some circumstances. In Appendix K, the results demonstrate that CAT
could also provide resistance to three prevailing backdoor detection methods, including NC (
, ), STRIP ( , ), and UNICORN ( , ).

6 CONCLUSION

In this paper, we conduct a comprehensive evaluation of backdoor methods on ViTs and show that
the illustration of success achieved by current attacks to ViTs is due to inappropriate adaptation of
defense from CNNs to ViTs. We further provide some training recipes to correctly evaluate the
attack, including using AdamW rather than SGD and selecting appropriate granularity for pruning.
Our results demonstrate that existing attacks can not provide reliable performance after defense.
Therefore, we investigate why the defense method easily removes backdoor behavior and find a huge
difference in channel activation in intermediate layers. Inspired by this, we propose a new attack
called CAT for backdoor enhancement. We hope our method, including the proposed recipes in ViTs
and the new attack, could be a cornerstone of future studies on the backdoor robustness of ViTs.
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ETHICS STATEMENT

The popular use of ViTs in multiple vision tasks makes us notice their security concerns and one
of those is backdoor attacks. In this paper, we not only make adaptations for the existing backdoor
defenses but also propose a new backdoor attack based on the differences in dimensional activations.
Our contributions may help the community reliably evaluate the backdoor robustness of ViTs and the
safer application of ViTs in real-world scenarios. In the meantime, the negative impact can not be
simply ignored: our proposed attack could be exploited by malicious attackers to build more powerful
backdoor attacks for ViTs.

REPRODUCIBILITY STATEMENT

In Appendix B and C, we disclose all the information needed to reproduce the experimental results of
this paper. The code will be made publicly available after the acceptance.
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A USAGE OF LLM

We refine the writing of this manuscript with the help of Large Language Models (LLMs). The
authors subsequently re-examined every suggested change to guarantee correctness and clarity.

B DETAILED SETTINGS FOR BACKDOOR ATTACK
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Figure 5: Examples images in the poisoned training set.
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Figure 6: Example images in the poisoned test set.

This section provides detailed information about the settings for the backdoor attacks. As demon-
strated in Section 3.1, we first pre-train the ViT-B on ImageNet-1k and finetune the network on the
poisoned dataset using AdamW optimizer for 20 epochs with a learning rate of 0.0001. Simple data
augmentations, including random crop with padding and horizontal flipping, are adopted for backdoor
training. We assign the Class 0 ("airplane”) of the CIFAR-10 dataset as the target class. Examples of
backdoor images in the training set and poisoned test set are shown in Figure 5 and Figure 6. All
experiments are performed on the NVIDIA 3090 GPUs. The implementation details of each attack
are summarized as follows:

Badnets: Following the original paper (Gu ct al., 2019), we take a 3x3 checkerboard as the trigger.
As shown in Figure 5 (a), the trigger is placed at the bottom right corner of the original image. Given
the target class, 5% of images from the other classes are attached with the trigger and re-labeled as
the target class. For ViT-B, we obtain the ACC of 97.85% and ASR of 100.00%.

Blend: For Blend attack, we take the Gaussian noise (t) as the trigger. In particular, the trigger has
the same size as the original image. For the benign image x, the poisoned image can be given as
X, = (1 — ) - x + « - t. In contrast to the definition shown in Section 2.1, « € [0, 1] denotes as the
blending rate between the benign image and the trigger pattern. Following the original paper (Chen
etal., 2017), a is set to 0.2. Examples of poisoned images in the training and test set are shown in
Figure 5 (b) and Figure 6 (b). Same as Badnets attack, 5% images from the other classes are attached
with the trigger pattern and relabeled as Class 0. For ViT-B, we achieve the ACC of 97.85% and ASR
of 100.00%.

CLB: We select 80% benign images from the target class for data poisoning. Next, we perform a 100-
step PGD attack on the selected images using a pre-trained robust model *. For the hyperparameter
settings, we follow the original paper with the budget 16,/255 and the step size of 2.4/255. As shown
in Figure 5 (c), we attach the trigger, a four-corner 3 x 3 checkerboard, on these selected images.
The poisoned training set combines these poisoned images and the remaining benign images from all
classes. For ViT-B, we obtain the ACC of 97.83% and ASR of 96.23%.

*https://github.com/yaircarmon/semisup-adv
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SIG: We follow the original work in ( , ), which adopts the sinusoidal signal as the
trigger. We also select 80% benign images from the target class for data poisoning. The strength A
and frequency f for SIG attack are set to 40 and 6 respectively following previous studies ( ,

, ). Examples of the poisoned images are shown in Figure 5 (d) and Figure 6
(d). For ViT-B, we obtain the ACC of 97.50% and ASR of 90.57%.

IAD: With the open-source and released checkpoint provided by ( , ), we successfully
poison ViTs with 5% poison rate. Examples of the poisoned images are shown in Figure 5 (e) and
Figure 6 (e). For ViT-B, we obtain the ACC of 97.79% and ASR of 100.00%.

SSBA: With the poisoned dataset provided by ( , ), we perform SSBA attacks on the
ViT models. Examples of the poisoned images are shown in Figure 5(f) and Figure 6(f). For ViT-B,
we obtain the ACC of 98.19% and ASR of 99.23%.

C DETAILED SETTINGS FOR BACKDOOR DEFENSE

This section provides detailed information on the backdoor defenses applied in this paper. The
settings of each defense are summarized as follows:

FT: We use AdamW ( , ) optimizer, the most popular optimizer for ViTs, to
fine-tune the backdoor ViTs for 20 epochs with a weight decay of 0.2. For ViT-B, the learning rate is
set as 3e-4. For other ViTs, it is set as 5e-4. In addition, we adopt the cosine learning rate schedule.
To better maintain the benign utility, we not only perform simple data augmentations but also adopt

strong augmentations, including Mixup ( , ) and CutMix ( , ) in our
experiments.
FP: FP ( , ) first prunes the last layer of CNNs by a predefined pruning threshold and

then fine-tune the network on the clean subset of data. Similarly, we prune the last linear projection
layer of transformer encoder blocks in ViTs. For the pruning partition threshold, we use the tolerance
of clean accuracy reduction to limit the maximum drop of the benign accuracy following ( ,

). In this paper, we set it to 0.9. The other settings are the same as those in the original paper

( ; )-

NAD: NAD ( s ) first makes two copies of the original backdoor models, referred to as
the teacher model and student model respectively. Next, NAD fine-tunes the teacher model with the
benign data. Finally, the finetuning of the student model is guided through neural attention transfer
from the teacher model. For the hyperparameter setting, we mainly keep in line with ( , )
except for two differences: we train the student network for 20 epochs using the AdamW optimizer
instead of hundreds of epochs with SGD optimizer. As for the configuration of learning rate, we
follow FT, set 3e-4 for ViT-B and 5e-4 for other ViTs.

FT-SAM: In ( , ), they find that the fragility of fine-tuning defense is highly correlated
with its slight perturbations for backdoor-related neurons. Motivated by this observation, they further
combine FT with the sharpness-aware optimizer to further enhance its effect. We keep the FT-related
hyperparameters mainly in line with FT. For the hyperparameters related to its specific design, the
perturbation radius and the label-smoothing coefficient are both configured as 0.1.

Super-FT: Compared to complex defenses, Sha et al. in ( , ) propose that simple
defenses like FT can achieve outstanding performances with proper adaptations. Furthermore, they
propose Super-FT, which is composed of two different phases. Firstly, they fine-tune the victim
model with a larger learning rate to mitigate the backdoor effect. Then, in the second phase, a smaller
learning rate is applied to maintain the model utility. Here, on ViTs, we fine-tune the models for 10
epochs in each phase. The max learning rate is set as 4e-4 and 2e-4, respectively.

ANP: Wu et al. in ( , ) observe that backdoor models are prone to output the target labels
when the neurons are perturbed by the adversarial perturbations. Inspired by this, they propose to
optimize the mask of each neuron, a continuous value in [0, 1], under adversarial neuron perturbations
and then prune neurons whose mask values are lower than the threshold, i.e., hardening the continuous
mask values as binary masks. In this paper, we use the same settings as the original paper except
for applying 4000 iterations to avoid under-convergence of large models like ViTs (longer than the
2000 iterations for CNNs in the original paper). Compared to the hardened masks (pruned) applied in
their original paper, we find that soft masks, continuous mask values without hardening, can preserve
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Table 6: The effect of optimizer for other fine-tuning based defense on ACC. AdamW gains a smaller
ACC drop than SGD. The better results are in bold.

Attack \ FP NAD FT-SAM Super-FT
‘ No defense  SGD  AdamW SGD AdamW SGD AdamW SGD AdamW
Badnets 97.85 93.17 93.52 57.59  93.77 22.38 94.33 93.37 91.60
Blend 97.85 93.41 92.59 94.27 94.09 3290  96.25 85.25 91.67
CLB 97.83 2720 9322 94.31 93.88 34.82 95.89 10.44  92.80
SIG 97.50 7734 93.88 94.31 93.86 25.17 94.74 91.53 91.89
IAD 97.79 33.31 92.53 16.49 9321 21.74  95.06 9494  93.26
SSBA 98.19 24.52 93.37 93.61 94.20 30.13 94.46 94.38 93.48
AvgDrop] \ - 39.66 4.65 22.74 4.00 69.98 2.72 19.52 5.39

Table 7: The effect of optimizer for other fine-tuning based defense on ASR. AdamW gains a larger
ASR drop than SGD. The better results are in bold.

Attack ‘ FP NAD FT-SAM Super-FT
\ No defense  SGD  AdamW SGD AdamW SGD  AdamW SGD AdamW
Badnets 100.00 0.90 0.91 4.24 1.57 4.20 2.57 21.60 4.60
Blend 100.00 9.67 0.73 48.57 8.94 2.69 1.36 2.84 2.61
CLB 96.23 8.21 1.70 10.15 7.27 591 1.63 0.04 2.98
SIG 90.57 1.93 0.81 5.00 3.60 7.54 7.87 3.17 0.64
IAD 100 10.99 8.67 1.06 3.17 2.41 6.19 99.87 5.38
SSBA 99.23 3.58 2.56 1.14 1.78 1.43 1.82 24.71 1.44
AvgDrop? | - 91.80  95.12 8599 9346 93.65 94.11 72.31 94.74

ACC better and decrease ASR further. Thus, we apply soft masks in this paper, and these masks are
applied to the channels of linear projection.

AWM: Compared to ANP, AWM ( R ) makes two improvements on CNNs. The
authors apply soft element-wise weight masking instead of neuron pruning (hardened mask values)
to avoid over-cutting beneficial information. Besides, they perturb the data instead of the neurons to
utilize the training data more efficiently. When applied to ViTs, we mask the channel of the linear
projection, similar to ANP. The other hyperparameters are the same as the original paper (

s ) without turning.

D THE EFFECT OF OPTIMIZER ON OTHER FINE-TUNING-BASED DEFENSES

In this section, we compare the performance of SGD and AdamW on the other four fine-tuning-
based methods, including FP, NAD, FT-SAM and Super-FT. As shown in Table 6 and 7, the results
demonstrate that, compared to SGD, AdamW always performs better on those defenses. For example,
SGD results in an average ACC drop of 39.66% in FP, much larger than 4.65% caused by AdamW.
Considering ASR, AdamW can decrease 93.46% ASR on NAD, but SGD can only decrease 85.99%
ASR. This demonstrates the generalization of our conclusion, which is applicable to different
defensive methods.

E THE UNBALANCED DISTRIBUTION OF HARMFUL NEURONS IN THE VIT
ARCHITECTURE

In Section 3.2, we empirically observe that on ViTs, AdamW works better than SGD for the fine-
tuning-based defenses. Here we investigate the reason behind it. Note that for an input image =,
ground truth label y and a model f, the loss £ can be formulated as:

L(z) = —logp(y|r). (6)

According to the Tayler expansion, for the weight W of a linear layer, the importance score of W can
be given as:

OL(x)
oW

IW,z) =W (7N
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Figure 7: The distribution of the top 1% most harmful neurons when training ViT-B with different
optimizers.

We can further take the average over the whole dataset D, to ensure its generality:

0L(x)
. 8

oW ) ®)
For a backdoored model, each neuron potentially serves two function: correctly classifying samples

from the clean dataset D while misclassifying samples from the poisoned dataset D), into a predefined
target class. Therefore, we can define the harmful score of a neuron in the following formulation:

OL(x) 0L(x)
ow ow

After averaging I (W) across different dimensions, we can rank the neurons based on this score, where
higher values indicate stronger relevance to backdoor functionality. In Figure 7 (a), we visualize
the distribution of the top 1% harmful neurons across different architectures. Here, we perform
experiments against the badnets attack on the CIFAR-10 dataset. Interestingly, we observe a severe
unbalanced phenomenon on ViTs. The majority of harmful neurons lie in the first linear layer of
the MLP module (68.8%), followed by the linear layers of the attention mechanism (19.3%). For a
nearly harmless structure, fine-tuning with a small learning rate suffices to maintain the classification
accuracy on clean samples, whereas for a heavily backdoor-compromised structure, a larger learning
rate is required to eliminate the influence from the backdoor attack. Compared to SGD, AdamW
more effectively fulfills this objective by assigning an adaptive learning rate for different architectures.
In Figure 7 (b), we also find that this finding is unrelated to the training optimizer: the unbalanced
phenomenon also exists when training the ViT with SGD. We leave deeper studies in the future work.

I(W) =Eqpop, (WO

I(W) =Eyup, (W ) = Epp, (W O ). )

F THE ACCURACY OF OUR ATTACK ON THE CIFAR-10 DATASET

We have discussed the attack performance of our proposed method as shown in Table 4 of Section
5.1. Here, we continue to explore the effect on the accuracy of our attacks. As shown in Table 8, the
backdoor attacks combined with CAT have comparable accuracy to their baselines (without CAT),
which indicates our method does not influence the utility of the victim model and thus guarantees the
stealthiness of attacks.

G THE SETTING OF OUR ATTACK ON THE IMAGENET DATASET

G.1 ATTACK

Badnets and Blend: Since the huge computational cost, we fine-tune the pre-trained ViT-B on
the poisoned ImageNet with 512 batch size and 10 epochs to insert backdoors. Because ImageNet
is a high-resolution dataset, we increase the trigger size of badnets attacks to 21 x 21 for better
poisoning. For the Blend attack, we resize the image of gaussian noise to 224 x 224 to accommodate
the large input size on ImageNet. In Figure 8 (b) and (c), we show example images of the Badnets
and Blend attacks. For other settings of the vanilla poisoning, we keep the same as our experiments
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Table 8: ACC (%) of our attacks with different ViT variants on the benchmark dataset. The best
results are in bold.

Model  Defense | BadNets BadNets+CAT | Blend Blend+CAT | CLB  CLB+CAT | SIG  SIG+CAT | IAD IAD+CAT | SSBA SSBA+CAT

Before 97.85 98.18 97.85 98.04 97.83 97.88 97.50 97.88 97.79 97.94 98.19 98.04

FT 95.14 95.46 95.32 95.28 95.15 95.27 95.32 95.45 95.57 95.05 96.05 96.07

Fp 93.52 93.67 92.59 93.05 93.22 93.15 93.88 93.75 92.53 93.69 93.37 93.01

ViT-B NAD 93.77 93.82 94.09 94.12 93.88 94.02 93.86 93.95 93.21 93.46 94.20 94.17
FT-SAM 94.33 95.71 96.25 94.61 95.89 95.75 94.74 94.15 95.06 94.74 94.46 94.27

Super-FT | 91.60 92.37 91.67 93.30 92.80 92.74 91.89 91.32 93.26 91.73 93.48 91.22

ANP 94.26 94.40 92.70 95.67 95.71 95.83 92.60 94.62 92.91 94.02 93.88 94.11

AWM 95.02 93.87 95.08 95.06 95.60 95.12 94.58 94.46 92.91 94.02 94.47 94.13

Before 97.67 97.75 97.98 97.86 97.70 97.83 97.44 97.36 97.23 97.85 97.26 97.92

FT 95.81 95.99 95.96 95.98 95.40 95.68 95.78 95.91 94.98 95.17 94.28 95.87

FP 93.40 93.41 94.06 93.96 93.99 94.17 93.36 93.84 93.87 94.76 93.65 94.19

DeiT-S NAD 93.75 94.92 94.20 94.49 94.21 94.82 94.30 94.08 94.01 94.16 93.75 94.53
FT-SAM 92.69 92.79 92.51 92.90 93.33 93.56 93.73 93.91 93.28 92.17 93.80 93.87
Super-FT | 93.08 94.22 94.11 94.28 94.11 94.05 94.12 93.60 94.65 94.48 93.72 94.46

ANP 93.77 94.49 95.92 94.70 94.93 94.37 95.25 94.70 94.22 94.51 94.16 94.17

AWM 94.52 94.91 94.99 94.82 94.94 94.84 94.76 94.43 94.69 94.49 94.36 94.92

Before 98.53 98.69 98.90 98.75 98.41 98.49 98.56 98.67 98.53 98.67 98.57 98.66

FT 97.43 97.43 96.99 97.49 97.49 97.09 96.79 96.73 95.74 96.35 97.10 96.88

Fp 95.84 95.98 95.94 96.11 95.91 95.48 95.97 96.24 95.26 95.04 94.65 95.09

Swin-B NAD 93.62 94.44 94.29 93.81 93.67 94.14 93.90 94.75 95.88 96.01 96.04 96.31
FT-SAM 92.60 92.56 90.87 93.65 91.95 92.73 92.66 93.59 92.28 92.70 92.64 92.96

Super-FT | 94.86 95.25 92.92 93.94 94.60 95.10 93.81 93.96 95.34 95.41 95.45 95.54

ANP 98.05 97.62 94.91 97.48 98.05 97.60 97.79 97.51 97.79 97.96 98.15 97.93

AWM 96.39 96.28 93.00 95.38 95.20 94.22 96.89 96.90 96.14 96.59 96.11 96.29

Before 98.47 98.35 98.62 98.47 98.27 98.27 98.21 98.14 98.21 98.13 97.88 98.52

FT 96.77 97.24 97.12 97.10 97.11 96.80 97.05 97.02 96.17 96.22 96.52 96.44

Fp 95.18 95.29 94.69 95.43 95.36 95.42 95.50 95.20 94.59 94.07 93.63 93.31

CaiT-§ NAD 95.69 95.82 95.22 95.50 95.83 95.67 95.91 95.55 95.41 95.69 94.75 95.79
FT-SAM 90.56 91.63 91.66 92.96 91.36 92.09 91.55 92.73 92.39 92.32 92.56 92.79
Super-FT | 94.68 95.07 94.87 96.19 94.96 94.87 94.99 95.02 95.95 96.50 95.67 96.37

ANP 96.89 97.39 97.27 97.32 97.43 97.41 97.76 96.98 97.44 97.69 97.16 97.11

AWM 95.93 96.18 96.51 96.28 96.17 96.41 96.59 96.57 96.27 96.68 96.38 96.61

Before 97.83 97.90 98.39 98.34 97.65 97.72 98.05 97.89 97.60 98.18 97.38 98.15

FT 96.52 96.51 96.22 96.47 96.03 96.09 96.22 96.38 94.32 96.60 95.02 96.06

Fp 94.57 93.59 94.37 94.79 94.55 94.36 94.54 94.37 94.03 94.18 94.39 94.34

XeiT-S NAD 95.86 95.32 95.69 95.08 95.62 95.87 95.90 95.15 95.29 95.70 95.21 95.23
FT-SAM 90.44 91.57 92.16 92.16 91.69 90.38 92.35 91.78 92.64 92.56 92.30 92.72
Super-FT | 94.61 94.40 95.05 95.10 95.33 95.57 93.78 94.89 94.85 94.90 94.50 95.24

ANP 93.45 95.78 95.42 83.74 85.98 91.26 96.18 96.55 96.01 96.26 95.62 95.71

AWM 95.46 95.43 96.00 94.40 95.33 95.53 96.05 95.80 95.51 95.79 95.28 95.91

(b) Badnets (c) Blend (d) TrojViT (e) DBIA (f) BadViT

Figure 8: Example images of the benign and backdoor attacks on ImageNet dataset.

on CIFAR-10 (Please refer to Appendix B for details.). For the configurations of CAT, we follow the
settings of CIFAR-10 except for the following two points: when generating the perturbations, the
budget and step size are set to 8/255 and 2/255, respectively. In addition, the patch size of RMP is
enlarged to 16 because ImageNet is a high-resolution dataset.

TrojViT (Zheng et al., 2022a): TrojViT is a novel backdoor attack that inserts the backdoor through
parameter distillation. It firstly generates a patch-wise trigger with an attention-target loss and inserts
the trojan by modifying the important parameters. Following their default configuration, we set the
patch size of 16x 16, the patch number of 9 for the trigger generation. Then the trojan is inserted with
a threshold of 0.0005 and a batch size of 16. An example image of the poisoned dataset is shown in
Figure 8 (d).

DBIA (Lv et al., 2021): As the first data-free backdoor attacks for ViTs, DBIA firstly generates
the trigger by maximizing the attention score. Note that the operation is performed on a substitute
dataset and no target data is involved. For backdoor injection, to avoid the overfitting to the target
class, DBIA finetunes a proportion of important weights to insert backdoor. Following their default
configuration, we randomly sample 2000 images from the CIFAR-10 test set as the substitute data.
The trigger size is 48 x 48 and the learning rate for fine-tuning is 0.0001. We show an example image
of DBIA attack in Figure 8 (e).
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BadViT ( , ): Similar to TrojViT, BadViT also optimizes a universal patch-wise
trigger by maximizing the attention score. To ensure the stealthiness, it applies the PGD attack

, ) to constrain the change to the budget €. Following their default configuration, the
patch size of the generated trigger is 16 x 16 and the budget is set as 64/255 under the £, norm. An
example image of the BadViT attack is shown in Figure 8§ (f). To insert the backdoor, we fine-tune a
pre-trained DeiT-B model with 1 epoch and le-5 learning rate.

G.2 DEFENSE

Model-agnostic Defense: To achieve a better acceleration of the experiments on ImageNet, we
adopt a large batch size of images for the model-agnostic defense. In detail, for the fine-tuning-based
defense, the batch size is set to 512. For pruning-based defense, the batch size is set to 128 to avoid
the out-of-memory problem on 4 NVIDIA 3090 GPUs. Other settings are the same as those on
CIFAR-10. Please refer to Appendix C for details.

Attention Blocking (AB) ( , ): AB shows that interpretable methods like
Attention Rollout ( , ) can be applied to identify the appearance of triggers in
the input images. This motivates them to design an image-blocking defense which blocks out the
region that has the largest influence on model decisions. Following their recommendation, we set the
block size to 30 x 30 in our experiments.

Patch Processing Defense (PPD) ( , ): PPD performs the backdoor detection at
the inference stage. It firstly observes that the ACC and ASR will exhibit distinct behavior when
performing patch processing. Thus, they perform a processing-based defense by randomly dropping
(PatchDrop) or shuffling (PatchShuffle) the split patches. As for the hyperparameter configuration,
the patch size of inputs is configured as 16 x 16, and the statistics are calculated over 10 independent
trials. For PatchDrop, we randomly drop 40% patches when evaluating the proportion of the correct
classification.

H ALATION STUDY OF CAT

Table 9: The ASR for different combinations of our technique. The better result is in bold.

| Attack ViT-B Swin-B

\ Badnets Blend CLB SIG IAD SSBA Badnets Blend CLB SIG IAD SSBA
Vanilla 0.91 0.73 1.70  0.81 8.67 2.56 11.49 248 254 3.8l 2.56 0.64

FP +PA 14.54 6.52 750 7.04 2363 7.81 15.19 1497 340 382 633 1275
+PA+RMP  27.90 12.49 26.88 9.68 50.74 12.67 19.52 22,67 556 549 9.11 1897

Vanilla 0.71 1.70 152 387 6.28 1.24 4.97 032 3.16 2983 2549 1.01

AWM +PA 4.78 2326 248 21.52 3265 7.32 1132 2632 439 47.87 3178 9.21
+PA+RMP 6.78 2622 440 38.59 51.00 11.72 12.76  27.62 6.74 59.82 54.61 12.70

To demonstrate the effectiveness of each component, we perform ablation studies on the CIFAR-10
dataset with different combinations. The results in Table 9 reveal that only applying PA can improve
the robustness of attacks against backdoor defenses. But applying both PA and RMP gains better
performances.

I THE TiME CoOST OF CAT

Table 10: The time costs of CAT on the CIFAR-10 and ImageNet dataset.

Dataset \Badnets+CAT Blend+CAT CLB+CAT SIG+CAT IAD+CAT SSBA+CAT

CIFAR-10 1min10s 1min6s 1min50s Imin51s IminSs 2minl3s
ImageNet 3min39s 3min46s - - - -

In Table 10, we evaluate the time cost of CAT on a single RTX3090 GPU. The results show that the
computational cost of CAT is low because it only brings the additional cost of less than 5 minutes.
This demonstrates that CAT is a practical attack which is affordable for most attackers.
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J THE STEALTHINESS OF CAT

Table 11: The comparison of CAT with existing attacks on the attack stealthiness. The best results
are in bold.

Metric | Badnets Blend CLB SIG IAD SSBA | CAT

PSNR 1 | 25.63 2226  19.35 19.41 19.22 2539 | 58.86
SSIM 1 | 0.9997 0.7696 0.9987 0.6215 0.8126 0.8891 | 0.9999

We adopt Peak Signal-to-Noise Ratio (PSNR) ( , ) and Structural Similarity
Index (SSIM) ( . ) as the metrics to measure the attack stealthiness on
the CIFAR-10 dataset. It quantifies the distortion on image quality when applying a given backdoor
attack. The higher score of both metrics means less influence to the image quality. For the baseline
attacks, we calculate the metrics between the images with and without attaching triggers. For CAT,
they are calculated between the poisoned images with and without adding the crafted perturbation
and we report the average over six combinations. The results in Table 11 reveal that CAT can even
achieve better stealthiness than the imperceptible attack, i.e. SSBA in both PSNR and SSIM.

K EVALUATION ON THE DETECTION-BASED DEFENSES

K.1 NEURAL CLEANSE

Table 12: Performance (%) of CAT against NC on the CIFAR-10 dataset.

(a) Anomaly Index (b) ASR after unlearning (c) ACC after unlearning
‘ ViT-B  Swin-B ‘ ViT-B  Swin-B ‘ ViT-B  Swin-B
BadNets 7.45 4.17 BadNets 1.08 11.67 BadNets 96.85 96.87
CAT+BadNets | 5.04 3.25 CAT+BadNets | 99.99 56.69 CAT+BadNets | 97.22 96.35
Blend 3.14 3.80 Blend 0.66 1.24 Blend 96.61 96.97
CAT+Blend 1.60 1.62 CAT+Blend 53.49 21.88 CAT+Blend 97.08 96.84
CLB 7.13 2.99 CLB 0.36 1.28 CLB 96.78  96.88
CAT+CLB 2.48 2.26 CAT+CLB 6.25 9.86 CAT+CLB 96.75 96.90
SIG 2.26 3.47 SIG 5.64 2.36 SIG 96.78 96.01
CAT+SIG 0.90 1.16 CAT+SIG 43.79 15.63 CAT+SIG 97.06  97.03
IAD 3.72 4.05 IAD 39.38 23.75 IAD 96.81 96.99
CAT+IAD 2.88 3.56 CAT+IAD 98.35  100.00 CAT+IAD 96.64 97.01
SSBA 2.34 3.09 SSBA 5.78 9.27 SSBA 96.93 97.08
CAT+SSBA 1.89 1.27 CAT+SSBA 37.86  63.24 CAT+SSBA 96.87  96.59

We firstly evaluate CAT on Neural Cleanse (NC) ( , ) to see whether CAT can help

existing attacks better bypass the detected-based defense. NC is composed of two stages: Firstly, it
reconstructs all possible triggers through optimization and determines whether the victim model is
implanted with a backdoor via outlier detection. Secondly, if the answer is true, it will mitigate the
backdoor behavior through unlearning with the reconstructed trigger, i.e., restoring the performance
even with the presence of the trigger. We examine whether CAT can better bypass NC in these
two stages, and all experiments are performed on the CIFAR-10 dataset with ViT-B and Swin-B
architectures, covering both the architecture-consistency and architecture-inconsistency scenarios.

Detection Stage: NC reconstructs potential triggers for each class and uses the anomaly index metrics
to determine if one of them is a valid trigger. The larger the anomaly index, the more likely it is to be
a real backdoor trigger. Here, we calculate the anomaly indexes of the attack with or without CAT for
comparison. The results in Table 12 (a) show that CAT can always achieve lower anomaly indexes,
making the attack stealthier. For example, the vanilla badnets attack obtains anomaly indexes of 7.45,
which is larger than those after combining CAT (5.04). It means CAT can help existing attacks better
bypass the detection of NC.

Unlearning Stage: Next, the defenders use the reconstructed triggers to mitigate the backdoor
behavior once the reconstructed triggers are identified. Specifically, they fine-tune the model to
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predict ground-truth labels in the presence of the triggers, i.e., unlearning the backdoor behavior.
Here, we explore whether CAT makes existing attacks more resistant to unlearning. According to
previous research ( , ) which observes that the unlearning process of NC with CNNs’
default settings will decrease the benign accuracy a lot (> 50%), we make the following adaptation
based on the observations in our paper: Use AdamW optimizer to unlearn the backdoored models.
We summarize the results in Table 12 (b). The table shows that CAT can make unlearning more
difficult and keeps backdoor behavior inside the model. Therefore, we can conclude that CAT has a
better capability of resisting the NC defense.

K.2 STRIP

Table 13: The difference in average cross-entropy between clean and backdoor samples, where a
lower score indicates greater difficulty in being detected by STRIP. The lower results are highlighted
in bold.

Model | Badnets Badnets+CAT | Blend Blend+CAT | CLB CLB+CAT | SIG  SIG+CAT | IAD IAD+CAT | SSBA SSBA+CAT
ViT-B ‘ 0.169 0.107 ‘ 0.184 0.047 0.218 0.136 ‘ 0.079 -0.046 ‘ 0.245 0.165 -0.015 -0.047

Swin-B | 0.191 0.158 0.201 0.165 0.181 0.125 0.068 -0.029 0.197 0.121 -0.055 -0.076

In ( , ), they propose STRIP, an inference stage defense for backdoor detection. It
firstly blends the benign features with the undetected samples and use the entropy to measure its
probability of being a backdoor sample. Although in ( , ), they adopt the average entropy
of the poisoned test samples to measure the resistance of an attack to STRIP, here we adopt the
“relative entropy”. It is defined as the difference in average entropy between the clean and backdoor
samples. It’s a more reasonable metric because the effectiveness of STRIP relies on the divergence in
entropy between natural and poisoned samples, rather than the absolute entropy values. We perform
experiments on the CIFAR-10 dataset with both ViT-B and Swin-B models.

In Table 13, we observe that attacks combining with CAT always achieve smaller values in relative
entropy. In other words, CAT can effectively improve the robustness of an attack to the STRIP
defense. For example, the relative entropy of the SIG attack is 0.079 on ViT-B. After combining with
CAT, it decreases to a negative value i.e., -0.046. It means that most poisoned samples are even more
sensitive than the benign samples, indicating the ineffectiveness of STRIP in most cases.

K.3 UNICORN

Table 14: The Attack Success Rate of the Inverted trigger (%) for UNICORN on the poisoned models.
The lower results are highlighted in bold.

Model | Badnets Badnets+CAT | Blend Blend+CAT | CLB CLB+CAT | SIG  SIG+CAT | IAD IAD+CAT | SSBA SSBA+CAT
ViT-B 97.42 93.92 ‘ 94.75 89.29 98.47 95.14 ‘ 76.84 62.63 99.72 92.05 99.13 86.34

Swin-B | 96.52 90.78 94.35 90.71 98.20 96.11 77.92 52.38 99.34 93.21 99.25 83.51

In ( , ), they proposed UNICORN, a unified trigger inversion framework for backdoor
detection. UNICORN frames trigger inversion as the discovery of an invertible input-space transfor-
mation and trains two U-nets to learn the mappings. Following the original paper, we adopt the attack
Success Rate of the inverted trigger (ASR-Inv) as the metric. We compute it on the test set of the
CIFAR-10 dataset and perform the experiments on the ViT-B and Swin-B models.

In Table 14, we show that combining with CAT will degrade the performance of Unicorn defense.
For example, the ASR-Inv of SIG on ViT-B will decrease from 76.84% to 62.63% after combining
with CAT, demonstrating an inaccurate reversion.
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