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ABSTRACT

Augmentations are crucial components in modern computer vision. While various
augmentation techniques have been devised to enhance model generalization and
robustness, they are conventionally applied uniformly to all dataset samples dur-
ing training. In this paper, we introduce “Self-Paced Augmentations (SPAug),” a
novel approach that dynamically adjusts the augmentation intensity for each sam-
ple based on its training statistics. Our approach incurs little to no computational
overhead and can be effortlessly integrated with existing augmentation policies
with just a few lines of code. We integrate our self-paced augmentations into es-
tablished uniform augmentation policies such as AugMix, RandomAugment, and
AutoAugment. Our experiments reveal sizeable improvements, with about 1%
enhancement on CIFAR10-C and CIFAR100-C datasets and a 1.81% improve-
ment on ImageNet-C over AugMix, all while maintaining the same natural ac-
curacy. Furthermore, within the context of augmentations designed to enhance
model generalization, we demonstrate a 0.4% improvement over AutoAugment
on CIFAR100, coupled with a 0.7% enhancement in model robustness.

1 INTRODUCTION

Data augmentations play a pivotal role in training Deep Neural Networks (DNNs) Shorten & Khosh-
goftaar (2019); Perez & Wang (2017). They serve a dual purpose: firstly, as a regularization mech-
anism to counteract the tendency of models to overfit to the training dataset, and secondly, as a
means to boost the model’s robustness and generalization capability to previously unseen data Re-
buffi et al. (2021); Van Dyk & Meng (2001); Wang et al. (2017). Considerable research efforts
has been dedicated to finding optimal augmentation strategies, encompassing specific augmentation
types and their associated magnitudes of application. These strategies result in improved model per-
formance and robustness when applied during training. Prominent augmentation techniques such as
AugMix Hendrycks et al. (2019), MixUp Zhang et al. (2017), CutMix Yun et al. (2019), CutOut De-
Vries & Taylor (2017), AutoAugment (AA) Cubuk et al. (2018), and RandomAugment (RA) Cubuk
et al. (2020) have been introduced as mechanisms to achieve these objectives.

The augmentation parameters, comprising different augmentation types and their intensity of ap-
plication, are typically determined based on a specific dataset in order to achieve a certain objec-
tive Shorten & Khoshgoftaar (2019). Additionally, over the course of training, these augmentation
parameters remain uniform and are usually not tailored for individual data instances Müller & Hut-
ter (2021); Zhang et al. (2018); Cubuk et al. (2018); Hendrycks et al. (2019); Cubuk et al. (2020).
We argue that employing the same set of augmentation parameters for all data instances may not
be optimal, given the diversity inherent in the dataset. For instance, certain samples, referred to
as “easy-samples,” rapidly converge to a lower loss (see blue curve in Figure 1), thereby allowing
considerable room for synthetic augmentations of higher intensity. Conversely, other samples, de-
noted as “hard-samples,” take longer time to fit during training – even in the absence of synthetic
augmentations – which leaves minimal scope for incorporating synthetic augmentations (see green
curve in Figure 1). As such, it is intuitive to consider adjusting the augmentation parameters to align
with the training characteristics of each individual data instance over the course of training.

In this work, we explore the effectiveness of having data instance-dependent augmentation param-
eters, in contrast to conventional augmentation policies with uniform augmentation parameters for
all data instances. One of our design choices is to enable instance-level augmentation intensities
with minimal computation overhead. Solving all augmentation parameters per data instance cre-
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ates a complex optimization problem. Hence, in this work, our focus is exclusively on adapting the
augmentation intensity as the data instance parameter. During the training process, we regulate the
intensity of augmentation infused into each sample by weighted-mixing of the original sample with
its augmented counterpart. The data instance parameters controlling the augmentation intensity of
each sample are updated during training, guided by the sample’s training statistics. We employ the
mixed sample’s training loss as a proxy measure to gauge the augmentation intensity for the forth-
coming epoch, thereby enabling the data instance parameter to fluctuate in accordance with training.
We term this approach “Self-Paced Augmentations” (SPAug) because it dynamically adjusts the
augmentation intensity based on the sample’s convergence behavior.

Figure 1: Convergence of training loss for an
“easy”, a “medium”, and a “hard” sample. Easy
samples converge rapidly and can accommodate
higher levels of augmentation, while hard sam-
ples take longer to converge; applying the same
level of augmentations as with easy samples can
slower overall training convergence. We regu-
late the extent of augmentations applied to each
sample based on its easiness. If the sample ex-
hibits a low training loss, the intensity of aug-
mentation will be increased in the subsequent
epoch; conversely, if the loss is high, the inten-
sity will be reduced.

Throughout our experiments, we demonstrate
that SPAug not only accelerates convergence
and enhances performance on clean test sam-
ples, it also exhibits noticeable robustness gains
on common corruptions encountered during test-
ing. SPAug introduces negligible computational
overhead compared to training with uniform
augmentation policies, and does not involve a
complicated optimization phase. The improve-
ments observed with corrupted test data high-
light the efficacy of SPAug in enhancing model
robustness. We integrate SPAug into a range
of established fixed augmentation policies, in-
cluding AugMix, (Hendrycks et al., 2019) Au-
toAugment (Cubuk et al., 2018), RandomAug-
ment (Cubuk et al., 2020), and Adversarial Train-
ing (Madry et al., 2017) (See Appendix). In
many instances, the addition of SPAug consis-
tently leads to improved performance in terms
of both clean and corrupted test error rates com-
pared to the baseline, demonstrating its potential
in being adapted as a common practice for train-
ing deep neural networks.

2 RELATED WORK

2.1 UNIFORM AUGMENTATION POLICIES

Data augmentation policies involve applying a sequence of augmentations to a given sample during
training. These augmentations can either be handcrafted or automatically optimized. Handcrafted
augmentations, like AugMix (Hendrycks et al., 2019), are manually designed and inspired, with
their hyperparameters tuned using the validation set. Conversely, automatic augmentations, such
as AutoAugment (Cubuk et al., 2018), learn to dynamically determine the probabilities and mag-
nitudes of applying different augmentation operations as a policy through reinforcement learning
(RL) (Wiering & Van Otterlo, 2012; Kaelbling et al., 1996). The AutoAugment policy generator
is updated by training a child model, with the validation accuracy serving as the reward. How-
ever, the search phase is computationally demanding. To address the large computational overhead,
alternatives like Fast AutoAugment (Lim et al., 2019) rely on Bayesian optimization. In contrast,
population-based training (PBT) (Ho et al., 2019) concurrently trains multiple child models in paral-
lel, employing an evolutionary approach to discover the optimal augmentation policy. To streamline
the search space, RandomAugment (Cubuk et al., 2020) suggests uniformly applying augmentation
operations. RandomAugment involves parameterizing the search space solely with the count of aug-
mentation operations and a global augmentation intensity. As opposed to using a validation set for
evaluating augmentation policy quality, studies such as Adversarial AutoAugment (Zhang et al.,
2019) employ adversarial objectives for learning the augmentation policy. All these aforementioned
augmentation policies treat all the samples in a dataset uniformly. In contrast, we demonstrate that
adjusting these uniform augmentation policies based on a sample’s training statistics, such as its
individual loss, can yield further performance enhancements.
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Figure 2: The formulation of our Self-Paced Augmentation (SPAug) policy. The parameters mi can
be determined using hand-crafted functions like binary mapping function or polynomial mapping
function, or it can be learned automatically during training alongside model parameters.

2.2 ADAPTIVE AUGMENTATION POLICIES

While uniform augmentation policies are most common, various efforts have been made to tailor
augmentation policies to specific classes or subgroups. Hauberg et al. (2016) suggests adapting
augmentation policies on a per-class basis by learning class-specific probabilistic generative models
for transformations within a Riemannian submanifold (Chen, 2000) of the Lie group of diffeomor-
phisms. These learned augmentation policies, however, are confined to spatial transformations and
deformations. Moreover, they assume that data must be locatable and alignable, rendering them less
suitable for natural image datasets like CIFAR and ImageNet. A subsequent work called CAMEL
(Goel et al., 2020) adopts a data-generation approach by addressing classifiers that struggle with
a subgroup within a class. It trains a classifier using data augmentations intentionally designed to
manipulate subgroup features. This is accomplished by employing a CycleGAN (Zhu et al., 2017)
to learn intra-class, inter-subgroup augmentations. However, CAMEL necessitates manual specifi-
cation of subgroup information and assumes that subgroups exist exclusively within the same class.
MetaAugment (Zhou et al., 2021) introduces a meta-learning approach for adaptively adjusting
augmented image loss weights on a per-sample basis and a global probability parameter that con-
trols augmentation sampling. The task network is optimized by minimizing a weighted training
loss, while the policy network aims to enhance the task network’s performance on a validation set
by tuning loss weights. In a more recent work, AdaAug (Cheung & Yeung, 2021) proposes class-
dependent adaptive augmentation policies achieved through a policy network. The policy projection
network is updated to minimize validation loss. However, the notably expansive search space –
expanding with the number of training data samples – and the computationally demanding opti-
mization of the policy network pose challenges for implementation on larger datasets. In contrast to
all the above works, our method employs the augmented samples loss at the current epoch as a surro-
gate measure for adjusting augmentation intensity in its subsequent iteration. Our approach incurs
little to no computational overhead, and can be effortlessly integrated with existing uniform aug-
mentation policies, such as AugMix (Hendrycks et al., 2019), AutoAugment (Cubuk et al., 2018),
RandomAugment (Cubuk et al., 2020), and Adversarial Training (Zhang et al., 2019; Shafahi et al.,
2019), using just a few lines of code.

3 METHOD
3.1 SELF-PACED AUGMENTATION (SPAUG) FORMULATION

The conventional practice of applying uniform augmentation policies indiscriminately to all samples
in a dataset often fails to account for the inherent disparities in the convergence rates of individual
examples. While some samples readily converge during training, others require extended iterations
to reach convergence (see Figure 1). The indiscriminate application of uniform augmentations can
impede the efficiency of model training, particularly for challenging samples.

To address these challenges, we propose a dynamic augmentation strategy rooted in the concept
of self-pacing. Our approach aims to adaptively adjust the intensity of augmentations for each
sample during training, as illustrated in Figure 2. In this formulation, we assume a base uniform
augmentation policy denoted as T . For each sample i in the training set, we introduce a single
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parameter mi ∈ [0, 1] that controls the blending of the original (unaugmented) input xorig
i and the

augmented input xaug
i = T (xorig

i ). This blending process yields the final input for model training,
xi, and is expressed as:

xi = mi · xorig
i + (1−mi) · xaug

i , (1)
The conventional training approach, which applies a uniform policy T (e.g., AugMix, AutoAug-
ment, etc.), can be regarded as a special case where mi = 0 for all instances in the training set.

The key innovation of our method lies in the adaptive nature of mi. Specifically:
• For samples displaying a low training loss, indicating ease of convergence, we increase the

augmentation intensity in the subsequent training iteration,
• Conversely, for samples with a high loss, suggesting slower convergence, we decrease the

augmentation intensity for that sample in the next iteration.

This adaptive strategy optimizes training convergence for both easy and hard samples, ensuring
that each example receives a customized level of augmentation tailored to its unique characteris-
tics. Sample easiness is determined by various metrics, including loss value (Bengio et al., 2009),
entropy (Graves & Schmidhuber, 2008), distance from the decision boundary (Hacohen & Wein-
shall, 2019), and human expert annotations (Nili et al., 2014). In this work, we employ the primary
loss value, typically Cross-Entropy (CE) (De Boer et al., 2005) for supervised classification, as the
simplest proxy for easiness.

3.2 HAND-CRAFTED FUNCTIONS FOR PER-INSTANCE PARAMETER ESTIMATION

To implement the concept of self-pacing, we need functions that map sample easiness (i.e., low loss
values) to values of mi. As aforementioned, these functions are crafted to augment easy examples
more intensely than hard ones, thus promoting balanced convergence during training. We draw
inspiration from curriculum learning literature to formulate these functions (Bengio et al., 2009;
Wang et al., 2021; Jiang et al., 2014).

Binary Mapping Functions. One of the simplest mapping functions is binary, which assigns
mi = 1 if sample i is considered hard and mi = 0 if it is regarded as easy. This binary mapping
function can be expressed mathematically as (Kumar et al., 2010):

mi = H(Li) =

{
1, if Li ≥ τ

0, otherwise,
(2)

In this context, the hyperparameter τ acts as the threshold distinguishing easy from hard samples.
The variable Li represents the primary loss of xi, specifically the CE loss for classification. The
pseudocode for SPAug with binary mapping function is given in Algorithm 1. As demonstrated,
SPAug with binary mapping function can be added to the training code only using 5 lines of code.

Continuous Mapping Functions. In a more flexible scenario, per-instance augmentation param-
eters may take non-binary values, allowing for a fine-grained adjustments. We utilize polynomial
mapping functions for this purpose (Gong et al., 2018):

mi = P (Li) =

{
1− (1− Li

τ )
1

t−1 , if Li ≥ τ

0, otherwise,
(3)

Here, τ represents the threshold for distinguishing easy samples from hard ones, while t governs the
shape of the polynomial mapping function.

3.3 LEARNING PER-INSTANCE PARAMETERS

Figure 3: Understanding the regu-
larization loss in learnable SPAug.

We extend our SPAug by optimizing the augmentation parame-
ters mi alongside model parameters. We achieve this objective
with the following loss function:

L = Li − σ(mi) · Sign (Li − [Lmin + τ · (Lmax − Lmin)])
(4)

Here, Li represents the primary loss (CE loss) of sample i, σ(·)
denotes the Sigmoid function, Lmin and Lmax are the minimum and maximum loss values within the
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batch, and τ is the threshold that distinguishes easy samples from hard ones in the minibatch. The
second term in Equation (4) is the regularization term which we parameterize as Lr. To ensure the
final blending weight for xorig

i and xaug
i remains between 0 and 1, we apply the Sigmoid activation

to the instance parameter mi. Consequently, Equation (1) is adopted for learnable SPAug as: xi =

σ(mi)·xorig
i +(1−σ(mi))·xaug

i . During optimization of Equation (4), model weights receive updates
based on gradients from the primary loss Li, while the instance parameters are updated using both
loss terms: Li and Lr. As illustrated in Figure 3.3, Equation (4) can be divided into two scenarios.
When a sample i is considered as easy (i.e., Li is less than the threshold loss Lτ – determined based
on the batch’s loss values), we minimize L = Li + σ(mi). In this scenario, the regularization
term guides mi towards lower values, preventing mi’s to converge to degenerate solutions where
mi = ∞. Conversely, for hard samples, we minimize L = Li − σ(mi), resulting in lower levels
of augmentations in the subsequent epoch. It’s important to note that the classification of samples
as easy or hard is determined by comparing the loss values within the current minibatch. Over the
course of training, the state (i.e., easiness/hardness) of these samples evolve based on how quickly
they converge relative to other samples and the statistics of the minibatch. To optimize data-instance
parameters and model parameters separately, we utilize two distinct optimizers. Since the number
of instance parameters to optimize in a given batch is relatively small (equal to the batch size), this
introduces minimal computational overhead compared to standard training.

Algorithm 1 Self-Paced Augmentation w/ Binary Mapping Functions’ Pseudo-Code

1 m = torch.ones(len_dataset) # SPAug
2 tau = 0.5 # SPAug
3

4 for epoch in range(epochs):
5 for i, x, y in loader:
6 mi = (m[i] > tau).float().view((-1, 1, 1, 1)) # SPAug
7 x_final = mi * x + (1 - mi) * aug(x) # SPAug
8

9 main_loss = loss(model(x_final), y)
10 main_loss.mean().backward()
11 optimizer.step()
12 optimizer.zero_grad()
13

14 m[i] = main_loss.clone().detach() # SPAug
15

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

In our experiments, we focus on CIFAR (Krizhevsky, 2009) and ImageNet1K (Deng et al., 2009)
datasets and assess the impact of our SPAug method in conjunction with established uniform aug-
mentation policies. Specifically, we employ the following uniform augmentation strategies T : Aug-
Mix (Hendrycks & Dietterich, 2019), AutoAugment (Cubuk et al., 2018), RandomAugment (Cubuk
et al., 2020), and Adversarial Training1. These augmentation policies have been proven effec-
tive in enhancing model robustness and generalization. For evaluating model performance, we
consider both clean test data and corrupted test sets (CIFAR10-C, CIFAR100-C, and ImageNet-
C) (Hendrycks & Dietterich, 2019). It’s worth noting that AugMix training results are reported un-
der two scenarios: training solely with cross-entropy loss and training with an additional regularizer
called Jenson-Shannon-Divergence loss (JSD). Hence, our experiments with AugMix encompass a
comprehensive comparison of these scenarios. In the case of AutoAugment (Cubuk et al., 2018), we
apply our self-paced augmentations alongside the optimal augmentation policy designed for CIFAR
datasets. Additionally, we investigate scenarios where a mismatched augmentation policy is used, a
practical choice at times due to the extensive search process required by AutoAugment. For Ran-
domAugment we use parameters N = 3 and M = 4 when training with CIFAR datasets, and we
incorporate SPAug into the training pipeline. For CIFAR experiments, our main network architec-
ture is based on WideResNets (WRN) Zagoruyko & Komodakis (2016). 2 Our choice of architecture

1Proof-of-concept experiments for adversarial training can be found in the supplementary materials.
2We include experiments with other architecture choices in the Appendix.
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for ImageNet experiments is ResNet50 (He et al., 2016). For CIFAR experiments, all networks are
trained with an initial learning rate of 0.1, which undergoes decay following a cosine learning rate
schedule (Loshchilov & Hutter, 2016). We apply standard preprocessing to input images, includ-
ing random horizontal flipping and cropping, before any augmentations are introduced (denoted
as original image xorg). Training is carried out using SGD with Nesterov momentum (Sutskever
et al., 2013) and use weight decay of 0.0005 (Zhang et al., 2017; Guo et al., 2019). In cases where
learnable instance parameters are used within the SPAug framework, we employ the AdamW opti-
mizer (Kingma & Ba, 2014) with a learning rate of 0.01 and a weight decay of 0.0005 for optimizing
mi. All experiments are repeated three times, and average classification error and standard deviation
are reported.

4.2 A TOY EXPERIMENT

Table 1: Results from the CIFAR100 toy experiment highlighting the significance of SPAug-Binary.
Applying T = Th to all samples (τ = ∞) or to no samples (τ = 0) during training yields models
with higher clean and corrupted (abbreviated as corr.) errors compared to those using SPAug-Binary.

Epochs Err. Threshold - τ
0 0.1 0.2 0.4 0.6 0.8 ∞

50 clean 25.8 ±.4 25.8 ±.5 25.3 ±.2 26.0 ±.2 26.3 ±.4 26.5±.2 32.7±.2

corr. 54.9±.3 51.4±.4 51.5±.2 52.0±.2 52.1±.2 52.6±.4 56.6±.6

100 clean 24.4±.2 24.0±.1 24.2±.1 24.6±.2 24.4±.5 24.9±.2 29.6±.4

corr. 53.6±.3 51.0±.2 50.9±.3 51.1±.1 51.5±.2 51.3±.3 54.3±.2

We begin our analysis with a simple toy experiment to demonstrate the importance of having data-
instance augmentation parameters when training a DNN. We train a WideResNet-40-2 on CIFAR-
100 with a hand-crated augmentation policy Th, which includes CIFAR100 basic augmentations
followed by random rotation and random color transformations. We use simple binary mapping
function (parameterized by threshold τ ) to determine the data instance parameters (mi ∈ {0, 1}).
Results are summarized in Table 1.

In Table 1, τ = 0 corresponds to training with only basic augmentations, while τ = ∞ corresponds
to training with uniform augmentation policy. When, 0 < τ < ∞, only samples with CE-loss
below the threshold τ in the previous iteration, undergo Th in the subsequent iteration; otherwise,
they train with basic augmentations. In Table 1 we observe that the lowest clean and corrupted test
error is observed for threshold of 0.1 or 0.2, which implies that frequently adding augmentation to
easy samples (samples with low loss) while rarely adding augmentations to hard samples results in
a robust model which perform well on both natural and corrupted data. Noticeably, we observe,
considerable improvement in corruption error (e.g., up to 3.5% in absolute terms), preliminary
demonstrating the potential for improving the model robustness while not sacrificing clean accuracy.

To gain further insight into how the binary mapping function governs the extent of augmentations
incorporated into a given sample during the training process, we present a visual representation
in Figure 4. Easy samples, as shown in Figure 4-(a) and (b), experience augmented images more
frequently. Moderate samples, shown in Figure 4-(c), require more time to converge than easy
samples, resulting in training with augmented images only halfway in training. Conversely, hard
samples, shown in Figure 4-(d), which inherently possess natural augmentations that make them
challenging to fit, are rarely exposed to the synthetic augmentation policy.

4.3 RESULTS WITH AUGMIX POLICY

Building upon the encouraging results outlined in Section 4.2, our objective is to improve the perfor-
mance of established uniform augmentation strategies. Our approach revolves around dynamically
adjusting the extent of augmentation applied to each training sample, guided by their individual
training loss. To kick off our investigation, we begin by analyzing the AugMix policy (Hendrycks
et al., 2019), which was initially designed to enhance model robustness against corrupted data while
preserving clean accuracy.

Hendrycks et al. (2019) present results under two scenarios: (1) training with CE loss, and (2) train-
ing with CE loss supplemented by an additional regularizer, known as Jenson-Shannon Divergence
(JSD) loss (Menéndez et al., 1997). To maintain consistency, we report results for both of these se-
tups in Table 2. The table summarizes outcomes for various configurations, including the baseline,
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Figure 4: How the binary mapping function governs the extent of augmentations applied to each
sample during training for (a-b) easy, (c) moderate, and (d) hard samples.

Table 2: Comparison of corrupted error results for AugMix augmentation policy used as base policy
with WRN-40-2 and WRN-28-10.

Dataset JSD ? Baseline AugMix SPAug-Binary SPAug-Poly SPAug-Learnable
WRN-40-2

Cifar-10 ✗ 27.2±.3
14.0±.4 13.2±.1 13.2±.1 13.0±.2

✓ 11.2±.3 11.5±.2 11.0±.2 11.0±.1

Cifar-100 ✗ 53.2±.3
40.0±.1 39.5±.2 39.1±.3 39.0±.1

✓ 36.1±.1 35.4±.1 35.2±.4 35.0±.1

WRN-28-10

Cifar-10 ✗ 23.3±.3
10.7±.2 10.2±.1 10.1±.2 10.0±.1

✓ 9.3±.0 9.1±.1 8.8±.2 8.7±.0

Cifar-100 ✗ 48.0±.2
33.6±.3 33.4±.3 33.3±.2 33.3±.0

✓ 31.9±.2 31.7±.1 31.5±.2 31.3±.1

default AugMix, AugMix with Binary mapping SPAug, AugMix with polynomial mapping SPAug,
and AugMix with learnable SPAug. Since AugMix primarily targets reduction of corrupted errors,
we emphasize this metric in Table 2 (for clean error rates, see the supplementary material.)

The observed results affirm that integrating AugMix augmentation significantly enhances perfor-
mance on the corrupted test set. Note that the adaptive adjustment of augmentation intensity, based
on sample loss using binary mapping and polynomial panning functions, improves model robust-
ness against corrupted test data. The polynomial mapping function outperforms the binary map-
ping function in terms of reduced corrupted test error. This outcome is intuitive, as the polynomial
mapping function enables a spectrum of augmentation intensities based on loss unlike the binary
mapping function. In addition, learning instance intensity parameters, rather than relying on hand-
crafted mapping functions, leads to enhanced performance, particularly evident in the corrupted test
set. Thus, the results from the AugMix augmentation policy suggest that incorporating sample-
dependent intensity parameters based on loss evaluation can improve model performance. As learn-
able instance parameters demonstrate effectiveness over hand-crafted mapping functions, we adopt
it as our default setting for subsequent experiments.

Table 3: Clean Error (Err.) and Corrupted
Error (C-Err.) for ResNet50 ImageNet
models trained with AugMix policy.

Err. C-Err.
AugMix 23.1±.1 74.35±.1

SPAug-Learnable 23.1±.1 72.54±.1

To demonstrate the applicability of our approach on
larger datasets, we perform similar experiments using
AugMix on ImageNet. We use a ResNet50 architec-
ture and train for 270 epochs. We use the AugMix
without the JSD regularization. The results are sum-
marized in Table 3.

4.4 RESULTS WITH AUTOAUGMENT

In this section, we conduct experiments with the AutoAugment augmentation policy, a widely
adopted uniform augmentation strategy. As discussed in the related work section, AutoAugment de-
termines the optimal augmentation policy via reinforcement learning, maximizing performance on
the validation set. We employ the default AutoAugment policy for CIFAR and introduce our learn-
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Table 4: Comparison of results for AutoAugment Cubuk et al. (2018) with WRN-28-10.

Dataset # epochs Baseline AA SPAug-Learnable
Err. C-Err. Err. C-Err. Err. C-Err.

CIFAR datasets with AutoAugment CIFAR policy

CIFAR-10 100 3.9±.1 24.1±.1 3.3±.2 16.2±.2 3.3±.1 14.8±.2

200 3.8±.0 23.5±.9 3.0±.2 15.6±.3 2.9±.1 14.3±.3

CIFAR-100 100 19.2±.1 48.3±.2 18.1±.2 40.5±.1 17.9±.1 39.3±.2

200 18.5±.3 47.5±.3 17.6±.1 39.6±.0 17.2±.2 38.9±.1

CIFAR datasets with AutoAugment ImageNet policy

CIFAR-10 100 3.9±.1 24.1±.1 3.8±.0 14.2±.3 3.6±.1 12.1±.2

200 3.8±.0 23.5±.9 3.5±.0 13.1±.0 3.4±.0 12.0±.2

CIFAR-100 100 19.2±.1 48.3±.2 19.5±.6 37.3±.4 19.0±.3 35.7±.2

200 18.5±.3 47.5±.3 19.2±.2 36.4±.4 18.8±.5 35.5±.2

CIFAR datasets with AutoAugment SVHN policy

CIFAR-10 100 3.9±.1 24.1±.1 3.6±.1 16.3±.1 3.5±.1 12.7±.2

200 3.8±.0 23.5±.9 3.4±.1 15.9±.1 3.3±.2 13.0±.0

CIFAR-100 100 19.2±.1 48.3±.2 19.4±.2 42.0±.1 19.4±.3 36.5±.2

200 18.5±.3 47.5±.3 18.5±.2 41.1±.6 18.6±.2 37.8±.3

able instance parameters to dynamically regulate the augmentation intensity for each sample during
training, departing from uniform application. The results are summarized in Table 4, considering
two scenarios: (1) training CIFAR with CIFAR policy, and (2) training CIFAR with mismatched
AutoAugment policies optimized for ImageNet and SVHN datasets.

Let’s first examine the case of training CIFAR datasets with their optimal policy. It becomes evident
that incorporating SPAug-Learnable enhances the default AutoAugment outcomes for both the clean
and corrupted test sets, for both CIFAR-10 and CIFAR-100, regardless of training for 100 or 200
epochs. Notably, the application of SPAug a significant improvement in the performance on the
corrupted test set (denoted as C-Err.).

We also explore the implications of training CIFAR datasets with mismatched augmentation policies.
Given the computationally intensive nature of the AutoAugment search process, a known mismatch
policy might be adopted when training a model on a new dataset. This experiment emulates such
behavior. Expectedly, we observe a decrease in model performance on natural test images when
trained with a mismatched AutoAugment policy. However, in some instances, the performance
on corrupted test images sees an improvement. Nonetheless, incorporating SPAug-Learnable to
control the augmentation intensity for each sample further enhances performance for both natural
and corrupted test sets. This showcases SPAugs applicability across a broad spectrum of scenarios.

Figure 5: Visualization of how augmentation instance parameters (mi) vary during training with AA
augmentations for different sample types (“easy”, “medium”, and “hard”) in CIFAR-10.
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To illustrate the evolving nature of learnable instance parameters during the training process for var-
ious samples of the CIFAR-10 dataset, we provide visualizations in Figure 5. As depicted, instance
parameter values for easy samples (automobile) consistently decline, nearing a value close to 0. This
trend suggests a preference for training with heightened levels of AA augmentations. Conversely,
certain samples like deer exhibit a gradual decline, followed by an increase that stabilizes at a mod-
erately high value before ultimately dropping to 0 by the training’s conclusion. Conversely, for
samples like bird, and dog, characterized by inherent natural augmentations and greater complexity,
converge very slowly. Consequently, training with AA augmentation of significant magnitude only
occurs towards the end of the training process for those harder samples.

4.5 RESULTS WITH RANDOMAUGMENT

Table 5: Comparison of results for RandomAugment (Cubuk et al., 2020) augmentation policies
with WRN-28-10. The reported results are the average of 3 random trials.

Dataset # epochs RA SPAug-Learnable
clean corr. clean corr.

Cifar-10 100 3.7±.1 14.4±.3 3.8±.1 12.5±.0

200 3.3±.1 13.6±.2 3.5±.1 13.3±.2

Cifar-100 100 19.6±.1 41.4±.3 19.4±.1 38.0±.2

200 19.1±.2 40.3±.1 19.1±.1 38.4±.1

In this section, we conduct experiments involving the RandomAugment augmentation policy. Ran-
domAugment was introduced as a means to circumvent the costly and expansive search space as-
sociated with AutoAugment. RandomAugment operates by adopting two augmentation parameters:
the count of applied augmentations and a global magnitude parameter for each augmentation. We
incorporate our adaptive data instance augmentation parameters onto the RandomAugment strategy
to regulate the intensity of application for each sample. The outcomes are summarized in Table 4.

Similar to our observations with other augmentation policies, we note an enhancement in perfor-
mance across both natural and corrupted test sets when employing learnable instance parameters.
While RandomAugment occasionally yields superior results in natural accuracy, it’s particularly
noteworthy that we witness a substantial boost in corrupted test set performance when integrating
learnable instance parameters. This highlights its efficacy in fortifying the model against diverse
forms of corruption.

5 CONCLUSION

In this paper, we introduced self-paced augmentations (SPAug), a technique for controlling the aug-
mentation intensity experienced by individual training samples based on their training statistics. Our
approach diverges from complex and computationally expensive inner loop optimization that typi-
cally relies on a validation set to determine instance-specific augmentation parameters. Instead, we
employ the sample’s training loss as a proxy measure to ascertain the level of augmentations in the
subsequent iteration. We applied our self-paced augmentations on top of existing uniform augmen-
tation policies, including AugMix, AutoAugment, RandomAugment, and Adversarial Training. The
results demonstrate performance improvements, both in terms of natural test accuracy and corrupted
test accuracy. Notably, we observed significant enhancements in corrupted test accuracy, show-
casing our method’s effectiveness in enhancing model robustness against unseen corruptions while
preserving natural accuracy. One of the key advantages of adopting any of the SPAug variations is
their ease of integration into any existing uniform augmentation policy, requiring just a few lines
of code adjustments. Computationally, SPAug introduces minimal overhead, rendering it highly
suitable for practical implementation in day-to-day deep learning model training.
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