
CHOP: Mobile Operating Assistant with Constrained High-frequency
Optimized Subtask Planning

Anonymous ACL submission

Abstract001

The advancement of visual language mod-002
els (VLMs) has enhanced mobile device op-003
erations, allowing simulated human-like ac-004
tions to address user requirements. Current005
VLM-based mobile operating assistants can006
be structured into three levels: task, subtask,007
and action. The subtask level, linking high-008
level goals with low-level executable actions,009
is crucial for task completion but faces two010
challenges: ineffective subtasks that lower-011
level agent cannot execute and inefficient sub-012
tasks that fail to contribute to the completion013
of the higher-level task. These challenges014
stem from VLM’s lack of experience in de-015
composing subtasks within GUI scenarios in016
multi-agent architecture. To address these,017
we propose a new mobile assistant architec-018
ture with constrained high-frequency optimized019
planning (CHOP.) Our approach overcomes the020
VLM’s deficiency in GUI scenarios planning021
by using human-planned subtasks as the “ba-022
sis vector”. We evaluate our architecture in023
both English and Chinese contexts across 20024
Apps, demonstrating significant improvements025
in both effectiveness and efficiency. Our dataset026
and code is available at https://anonymous.027
4open.science/r/CHOP_-CFEA.028

1 Introduction029

Mobile operating assistants (Wang et al., 2024c;030

Zhang et al., 2024a; Nguyen et al., 2024; Hu et al.,031

2024) automate mobile App control by simulating032

human actions like clicking or typing. These as-033

sistants are widely used in recommendation (Sun034

et al., 2022), task automation (Liu et al., 2024), and035

user assistance (Zhang et al., 2023; Wang et al.,036

2024a; Zhu et al., 2024). Early assistants, based on037

slot-filling and neural networks (Sun et al., 2022;038

Zhang and Zhang, 2023; Zhu et al., 2023), strug-039

gle with generalization. LLMs (OpenAI, 2021)040

improve this through multitask learning and cross-041

domain integration (Brown et al., 2020), while042

Instruction

User

…

…

Apply VLM

Apply
Grounding

Task Level

Subtask Level

Action Level

Step 1 Step 2 Step n Step n+1…

VLM

Phone

Operate

Feedback

Figure 1: Execution flowchart for VLM-based assistant.

VLMs (Yang et al., 2024a; OpenAI, 2023) advance 043

assistants by incorporating visual processing, mak- 044

ing them the dominant approach in modern mobile 045

environments (Wang et al., 2024c; Zhang et al., 046

2024a; Nguyen et al., 2024; Hu et al., 2024). 047

In mobile App operations, we structure the VLM- 048

based assistant architecture into three hierarchical 049

levels: instruction, task, and action, as shown 050

in Figure 1. An instruction refers to the origi- 051

nal user command, which may involve interactions 052

across multiple apps (e.g., “Send Bob the playlist 053

and ask for his feedback”.) To execute such in- 054

structions, the system decomposes them into one 055

or more tasks, each corresponding to operations 056

within a single app (e.g., “Play Bob’s songs” in a 057

music app.) Each task is further divided into sub- 058

tasks (Zhu et al., 2024), which are context-specific 059

steps (e.g., “Search Bob” on the music app’s inter- 060

face,) and finally into atomic actions (Lin et al., 061

2024; Yang et al., 2024b) (e.g., tapping the search 062

bar.) This hierarchical architecture enables the as- 063

sistant to coordinate modules at different granulari- 064

ties to complete complex instructions. 065

Although recent work in mobile assistants has 066

attempted to improve subtask execution success 067

by constraining the granularity of task decompo- 068

sition (Zhu et al., 2024), subtask-level operations 069

still face two main challenges: (1) Ineffective sub- 070

1

https://anonymous.4open.science/r/CHOP_-CFEA
https://anonymous.4open.science/r/CHOP_-CFEA
https://anonymous.4open.science/r/CHOP_-CFEA

tasks, where the subtask cannot be executed due071

to the VLM’s lack of real-world knowledge (Ahn072

et al., 2022). For instance, “Go to Bob’s office” in073

response to “Ask Bob to attend the meeting” is un-074

achievable, whereas “Send Bob an email” is more075

feasible. (2) Inefficient subtasks, where sequential076

actions unnecessarily delay task completion with-077

out contributing to progress. For example, “Wait078

for Bob’s feedback” stalls the task without advanc-079

ing it. These challenges stem from VLM’s lack of080

experience in decomposing sub-tasks within GUI081

scenarios in multi-agent frameworks.082

To address these challenges, we propose CHOP083

(Constrained High-frequency Optimized Subtask084

Planning,) a method that optimizes subtask plan-085

ning by using basis subtasks as constraints during086

task decomposition. Specifically, in GUI scenarios,087

the same subtasks across different Apps share com-088

mon operational logic, allowing users to quickly089

adapt to new Apps. This allows us to collect such090

subtasks and apply them to the task decomposition091

of the plan agent, meaning any task can be de-092

composed into a combination of “basis subtasks”,093

inspired by “basis vectors”. Meanwhile, we en-094

sure the orthogonality of different basis subtasks095

by merging similar subtasks (Wu et al., 2024). Fur-096

thermore, to better leverage the fixed-flow nature097

of basis subtasks, we provide documentation for098

each subtask to enhance effectiveness and allow the099

action agent to generate multiple steps in a single100

forward pass, thereby improving efficiency.101

We evaluate CHOP in both English and Chi-102

nese contexts. CHOP-En, the English dataset, is103

based on Mobile-Agent-V2 (Wang et al., 2024a),104

covering 10 apps with three difficulty levels each.105

To extend this work to a broader linguistic con-106

text, we introduce CHOP-ZH, the first Chinese107

dataset with user planning processes. CHOP-ZH108

is created by hiring 10 annotators to complete 200109

daily usage instructions across 10 apps, with an-110

notators providing a plan and reasoning for each111

action. This allows us to evaluate the quality of the112

subtasks generated by the agent. We assess CHOP113

in terms of both effectiveness and efficiency, intro-114

ducing new metrics to measure the inference cost115

of the action agent, grounding model, and overall116

architecture. Experimental results show that CHOP117

achieves state-of-the-art (SOTA) performance, out-118

performing mainstream VLM-based assistants.119

Our summarized contributions are as follows:120

(1) We propose a new architecture, CHOP, which121

introduces “basis subtasks” for the first time and122

addresses the lack of planning capability in VLMs 123

for GUI scenarios. (2) We construct the first Chi- 124

nese dataset with user planning processes and in- 125

troduce three new metrics for evaluating efficiency. 126

(3) CHOP achieves SOTA performance on both 127

English and Chinese datasets, with experimental re- 128

sults showing it generates higher-quality subtasks. 129

2 Related Work 130

GUI Agent. GUI agents have evolved from rule- 131

based control to multimodal and reasoning-driven 132

approaches. Early methods rely on predefined 133

scripts but struggle in dynamic environments (Li 134

et al., 2017, 2019). Multimodal pre-trained mod- 135

els enabled end-to-end learning by integrating dia- 136

logue, screenshots, and operation history (Bai et al., 137

2021; Burns et al., 2022, 2024; Li and Li, 2023; Li 138

et al., 2021; Wang et al., 2021; Sun et al., 2022). 139

With the rise of VLMs, recent agents incorporate 140

complex reasoning and tool use (Qu et al., 2025, 141

2024; Qu et al.), often leveraging view hierarchies 142

for efficient UI grounding (Lee et al., 2024; Zhang 143

et al., 2024b, 2023). Image-only approaches han- 144

dle hierarchy-free settings but remain brittle in dy- 145

namic environments (Hong et al., 2024b; Wang 146

et al., 2024a; Zhu et al., 2024; Zhang et al., 2024c). 147

While end-to-end agents (Hong et al., 2024b) unify 148

perception, reasoning, and execution, their perfor- 149

mance heavily depends on backbone scale. In con- 150

trast, modular agents (Wang et al., 2024a; Zhu et al., 151

2024; Zhang et al., 2023) offer better control and 152

clearer attribution of improvements. We build on 153

this line by incorporating structured human plan- 154

ning without model fine-tuning. 155

Multi-agent Application. LLMs possess 156

strong comprehension and reasoning abilities, en- 157

abling LLM-based agents to autonomously execute 158

tasks (Wang et al., 2024b; Guo et al., 2024). In- 159

spired by human collaboration, multi-agent frame- 160

works are widely adopted, such as Smallville (Park 161

et al., 2023) and role-playing-based frameworks (Li 162

et al., 2023). Recent advances include expert- 163

agent coordination (Chen et al., 2024), meta- 164

programming (Hong et al., 2024a), and multi-agent 165

debating (Chan et al., 2024). In GUI agents, multi- 166

agent frameworks (Wang et al., 2024a; Zhu et al., 167

2024) often involve a plan agent for task planning, 168

an action agent for interaction, and a grounding 169

model that maps outputs to executable commands. 170

However, these methods focus on introducing new 171

modules while overlooking coordination among 172

2

1
2

N

Subtask Actions

Search {S1,S2,…}

Share {…}

… …

Commend {SN,…}

SubtaskName: Search

Workflow: …

.
..𝐢𝐟 𝑹𝒂𝒏𝒌 ≤ 𝒌

𝐢𝐟 𝑹𝒂𝒏𝒌 > 𝒌

Save

Discard

Step2: Synonym Clustering

Subtask1:
 Search News

Action Sequence1:
1. Click search button

2. Type news …

.
..

Subtask Actions

Search {S1}

Lookup {S2}

… …

Commend {SN}

Step1: Verb Extraction

Human Examples Verb Mapping

Step3: Summarization

GPT-4oDocumentation

Clustered Mapping

Summarize

Step4: Frequency Filtering

…

…

Basis Subtask

Documentation

Basis Subtask Extraction

Task Grounding Model

… 1. CLICK (Search Bar)

2. TYPE (Today News)

3. CLICK (Search Button)
Plan Agent Action Agent

Subtask
One Step

Operate

Phone

System Workflow

Subtask Level Action Level

Planning Workflow

Prompt：
You need to break the
{task} down into the
following set of {basis
subtasks}.…

Basis 1: Search()

Basis 2: OpenApp()

Basis N: Commend()

Basis N+1: Share()

…

Share today's news with Bob.

Output:
Observation{…}
Thought{…}
Subtasks{…}

1. OpenApp(Google)

2. Search(Today News)

3. Share(Bob)

4. Commend(Look!)

Plan Agent

Figure 2: Illustration of the VLM-based GUI assistant framework with basis subtask extraction.

modules. Moreover, although Moba (Zhu et al.,173

2024) also considers decomposing tasks multiple174

times to ensure the generated subtasks can be exe-175

cuted by the action agent, the issues of ineffective176

and inefficient subtasks we mentioned still persist.177

Instead, we propose constraining subtask-level out-178

puts to improve executability by action-level agents179

and better facilitate task-level goals.180

3 Method181

CHOP is an end-to-end pipeline that executes user182

instructions on real-world mobile devices, similar183

to (Zhang et al., 2023; Wang et al., 2024a; Zhu184

et al., 2024). As shown in Figure 2, we present the185

CHOP and the extraction processes of its basis sub-186

tasks. § 3.1 first introduces the problem setup and187

environment construction. Then, § 3.2 outlines the188

extraction of basis subtasks used in task decomposi-189

tion. Finally, § 3.3 describes how CHOP integrates190

basis subtasks into its architecture, which consists191

of both the plan agent for task decomposition and192

the action agent for executing actions.193

3.1 Problem Setup194

A mobile operating task consists of a screen s and195

an instruction q (e.g., “Send an email to Bob”.)196

Given a tuple (s, q), a mobile operating assistant197

f decides and performs a sequence of actions198

a = {a1, a2, . . . , at, . . . } to interact with the An-199

droid environment E on the mobile device. This200

task execution is modeled as a sequential decision-201

making process. The formal definitions of the ac-202

tion and state spaces are as follows:203

Action Type Attributes Description

CLICK (x, y): Screen coordinates Click at an element
SCROLL (direction): One of up, down, left, right Scroll the page
TYPE (text): Text input Type text
BACK - Back to previous page
EXIT - Task complete
WAIT (time): Wait time in seconds Stop for a while

Table 1: The supported action space for CHOP.

Action Space A: We define an action as a func- 204

tion call (Niu et al., 2024). When the assistant out- 205

puts an action in the required format, it is parsed 206

and executed by the environment. This includes 207

various action types such as click, scroll, and type. 208

Table 1 provides a detailed list of action types 209

and their corresponding attributes. State Space 210

S: Since CHOP is an image-only architecture, it 211

does not use textual information such as XML to 212

assist decision-making. Instead, the state space is 213

defined solely by the current screenshot st, which 214

represents the environment at time step t. 215

At each time step t, the assistant selects an ac- 216

tion at based on the current state st and the accu- 217

mulated history Ht = {s0, a0, . . . , st−1, at−1}, as 218

determined by the policy function: at = f(st, Ht). 219

The action at leads to a state transition, where the 220

Android environment E updates the state from st 221

to st+1 by the transition function T , reflecting the 222

environmental changes resulting from the action: 223

st+1 = T (st, at). At the same time, the history 224

Ht is updated to incorporate the most recent action 225

at and the previous state st−1, which results in: 226

Ht+1 = concat(Ht, st−1, at). 227

In summary, the decision-making process begins 228

with the initial state S0, which represents the home- 229

3

page of the mobile phone, and the initial history230

H0, which is empty at the start. The assistant then231

proceeds by iterating through the policy f and the232

transition function T , selecting an action at each233

time step t and updating the state st and history234

Ht. This continues until the action is EXIT or the235

maximum number of rounds is reached.236

3.2 Basis Subtask Extraction237

We first find two issues with subtask generation in238

the current multi-agent architecture: Ineffective239

subtasks and Inefficient subtasks. To address240

these issues, ideal subtasks should meet two crite-241

ria: High Effectiveness – Executable by the action242

agent: The plan agent must generate subtasks that243

the action model can execute (Ahn et al., 2022).244

High Efficiency – On the critical path: Any miss-245

ing subtasks should lead to task failure, ensuring246

they are essential for task completion.247

Inspired by human task planning (Correa et al.,248

2023), where individuals typically break down249

tasks based on familiar operations rather than meth-250

ods perceived as the most efficient but not neces-251

sarily aligned with the individual’s familiar opera-252

tions, we introduce basis subtasks—high-frequency253

subtasks commonly performed by humans. These254

subtasks enhance effectiveness (as they are familiar255

to humans due to their frequent use, making them256

easier to execute) and efficiency (since they are257

typically on the critical path of the task.)258

Specifically, given the high cost of manually259

annotated data and the expensive fine-tuning of260

VLMs (Lai et al., 2024), rather than training a261

new model, we focus on directly collecting these262

common subtasks from human-executed app com-263

mands to construct a “basis subtask” space. The264

collection process consists of four steps: Verb Ex-265

traction, Synonym Clustering, Summarization, and266

Frequency Filtering (Figure 2.) Clustering en-267

sures that each basis subtask independently han-268

dles different task types, while filtering makes269

these “basis subtasks” easier to execute than270

others. In summary, such subtasks can be seen as271

“basis vectors”. Any task can be decomposed into272

a combination of independent basis subtasks, with273

their fixed nature enabling easier handling.274

Verb Extraction. We extract verbs from user in-275

structions in the AITZ dataset (Zhang et al., 2024c)276

using spaCy to represent the core action of each277

subtask. Synonym Clustering. We group semanti-278

cally similar verbs using WordNet synsets to reduce279

redundancy in subtask representation. Summariza-280

tion. We use GPT-4 to summarize action sequences 281

of each subtask into standardized processes for con- 282

sistency across GUIs. Frequency Filtering. Due 283

to the long-tail distribution of subtasks, we retain 284

the top 10 most frequent basis subtasks, which to- 285

gether cover over 80% of user instructions in the 286

AITZ dataset. This ensures that common and es- 287

sential operations are efficiently captured, while 288

rare cases are handled by prompting GPT-4 to gen- 289

erate task-specific subtasks outside this fixed set. 290

Detailed procedures can be found in Appendix A. 291

All the basis subtasks can be found in Table 10 in 292

the Appendix. An example of a basis subtask and 293

corresponding documentation is provided below: 294

A Basis Subtask with Documentation

Basis subtask: Search Item (parameter: search term)
Standardized process: 1. Click on the search bar
located at the designated area of the screen. 2. Type
in the content specified by the search term parameter.
3. If applicable, select a search suggestion from the
dropdown list that appears after typing. 4. Press enter
or click on the search button to execute the search.
Boundary conditions: 1. If the search term is not
found, check for spelling errors. 2. If selecting a
suggestion, ensure it is the correct item before pro-
ceeding. 3. If navigating to a specific website, ensure
the URL is entered correctly in the address bar.

295

3.3 CHOP: The Multi-Agent Architecture 296

To guide the assistant f in multi-step tasks, 297

VLMs (OpenAI, 2023; Yang et al., 2024a) are a 298

strong candidate due to their visual understand- 299

ing in mobile environments. However, applying 300

VLMs to real-world screenshots with thousands 301

of tokens is inefficient. Recent work (Zhu et al., 302

2024) uses a two-stage architecture: decomposing 303

tasks into subtasks and executing them, reducing 304

sequence length, and improving accuracy (Wang 305

et al., 2024a). However, without subtask con- 306

straints, ineffective and inefficient subtasks arise. 307

To address these issues, we introduce basis subtasks 308

during planning and limit outputs to predefined 309

tasks, which incorporate human-designed heuris- 310

tics to overcome VLM’s limitations in GUI scenar- 311

ios. The process is described below. 312

The Plan Agent. Given a user instruction q, the
plan agent fplan decomposes it into a sequence of
subtasks, each executable by the action agent:

{q1, q2, ..., qn} = fplan(q,Qbasis)

where Qbasis is the set of predefined basis subtasks, 313

and each qi must be selected from it. To enhance 314

4

execution, the plan agent also generates the purpose315

and stopping condition for each subtask. If a neces-316

sary subtask is missing from Qbasis, a placeholder317

is used, prompting the model to define, structure,318

and refine new subtasks as needed. This ensures319

all generated subtasks are well-defined, actionable,320

and contribute effectively to task completion.321

The Action Agent. For each subtask qi, the ac-
tion agent faction determines the next executable
action. At step t, it generates an action at+1 based
on the user task q, the current subtask qi, the
execution documentation di, the current screen-
shot st, and the accumulated summary memories
m = {m1, . . . ,mi−1}. The selected action is then
executed, updating the environment state:

at+1 = faction(q, qi, di, st,m,)

st+1 = T (st, at+1.)

To guide the execution of these actions, the agent322

generates observation, thought, and summariza-323

tion. The summarization extracts key task-related324

details, such as weather information for the sub-325

task “Check today’s weather”, which is stored as326

memory mt for future tasks. Since VLMs output327

actions like CLICK without coordinates, we inte-328

grate Aria-UI (Yang et al., 2024b) to map these329

commands to precise locations (e.g., CLICK(Search330

Bar) → CLICK(200, 300.)) To improve efficiency,331

di provides standardized execution steps, and for332

basis subtasks with fixed workflows (e.g., “Search333

item”,) the agent generates the full action sequence334

in one step, minimizing latency and reducing the335

need for multiple action agent calls, which are a336

key source of computational bottleneck.337

4 Experiments338

In this section, we evaluate the performance of339

CHOP by answering the following research ques-340

tions: RQ1: Can the basis subtask improve overall341

task performance? RQ2: Can the basis subtask342

enhance the quality of task planning? RQ3: Can343

the basis subtask improve performance under cer-344

tain conditions? RQ1 investigates whether adding345

the basis subtask constraint improves the execution346

of user instructions. RQ2 examines how the basis347

subtask affects the quality of subtasks generated by348

the plan agent. RQ3 analyzes the conditions under349

which the basis subtask demonstrates effectiveness350

in real-world, complex environments.351

4.1 Settings 352

Test set. We evaluate our method using two real- 353

life scenario test datasets: CHOP-En and CHOP- 354

ZH. The CHOP-En dataset, constructed based on a 355

publicly available benchmark (Wang et al., 2024a), 356

consists of 30 English-language instructions de- 357

signed to test operating assistants in real-world 358

mobile applications. It covers 10 widely used 359

Apps with tasks of varying difficulty levels: easy, 360

medium, and difficult. The CHOP-ZH dataset con- 361

sists of 200 Chinese instructions across 10 Apps, 362

with 20 instructions per app. This is the first real- 363

life Chinese test set for mobile devices. In addi- 364

tion to instruction-action pairs, it enables a deeper 365

evaluation of task decomposition. Due to resource 366

constraints, we sample 3 instructions per app, as in 367

CHOP-En. Further details on the dataset and the 368

annotation procedure can be found in Appendix B. 369

Baselines. To evaluate our method, we compare 370

it with several baseline approaches, including the 371

Human Baseline and agent-based automation meth- 372

ods. Human Baseline represents the ideal so- 373

lution, reflecting the best performance achieved 374

by a human. AppAgent (Zhang et al., 2023) em- 375

ploys an exploration-deployment framework where 376

the agent learns app functions and uses these to 377

plan and select actions. Mobile Agent(v2) (Wang 378

et al., 2024a) is a multi-agent system that integrates 379

planning, decision-making, and reflection agents 380

for mobile task automation, using screenshots and 381

additional models like OCR and Qwen-VL-Plus. 382

Moba (Zhu et al., 2024) uses a two-level agent 383

architecture (Global Agent and Local Agent,) com- 384

bining visual inputs and XML view hierarchy data 385

for task planning and action execution. Detailed 386

descriptions can be found in the Appendix C. 387

Evaluation Metrics. To evaluate agent perfor-
mance, we define two action sequences for each
task q: aqhuman = {a1, . . . , an} (human actions)
and aqagent = {a1, . . . , am} (agent actions,) with
lengths n and m. Based on these, we assess Effec-
tiveness and Efficiency. Effectiveness. We use
two metrics. Success Rate (SR) denotes the pro-
portion of tasks successfully completed within 20
actions. Completion Rate (CR) (Zhu et al., 2024)
measures the ratio of correctly executed steps, us-
ing human actions as ground truth:

CR =

∑
q∈Q

∣∣aqhuman ∩ aqagent
∣∣∑

q∈Q
∣∣aqhuman

∣∣ .

5

Efficiency. We consider three metrics. Map-
ping Efficiency (ME) quantifies how efficiently
the agent generates action sequences:

ME =

∑
q∈Q

∣∣aqhuman

∣∣∑
q∈QCa

.

Action Efficiency (AE) compares the lengths of
human and agent action sequences:

AE =

∑
q∈Q

∣∣aqhuman

∣∣∑
q∈Q

∣∣aqagent
∣∣ .

Average API Cost (AAC) reflects the overall API
usage per correctly completed human action, in-
cluding calls from planning, memory, and reflec-
tion modules (Zhu et al., 2024; Wang et al., 2024a):

AAC =
APIcount∑

q∈Q
∣∣aqhuman ∩ aqagent

∣∣ .
Experimental Setup. All experiments are con-388

ducted using the GPT-4o model version to ensure389

a fair comparison. The maximum output length is390

set to 4096, and the temperature during generation391

is set to 0.0 to ensure reproducibility. The start-392

ing point for all instruction executions is set to the393

Homepage to ensure consistent evaluation. Due394

to the Moba method requiring additional tools to395

open the app, which are not available in our dataset,396

we use Aria-UI to handle app launching, as it en-397

sures 100% accuracy. Unless specified, we will use398

CHOP-CH for the analysis experiments.399

4.2 RQ1: Task Performance Improvement400

Main Results. In RQ1, we investigate whether in-401

corporating the basis subtask Qbasis and correspond-402

ing documentation Dbasis into the plan agent’s sub-403

task generation improves the effectiveness and ef-404

ficiency of CHOP. The main results are shown in405

Table 2, with human-executed trajectories serving406

as the ground truth. We compare CHOP with main-407

stream methods and draw the following conclu-408

sions:409

(1) CHOP achieves the highest effectiveness:410

CHOP outperforms other methods in SR and CR411

across most instruction sets. However, Mobile412

Agent(v2) outperforms CHOP on the Hard part413

of the Chinese dataset, likely due to CHOP’s use of414

English documentation. (2) CHOP demonstrates415

superior efficiency: By generating multi-actions416

in one step for specific basis subtasks, CHOP417

achieves the best ME performance. It minimizes418

model calls with a single request to the plan agent. 419

The high AAC confirms CHOP’s efficiency, us- 420

ing the fewest API calls and reducing resource 421

consumption. (3) Other methods show a trade- 422

off between effectiveness and efficiency: Mobile 423

Agent(v2) offers comparable performance but re- 424

quires at least three API calls per action, limiting 425

practicality. AppAgent and Moba, though less effi- 426

cient, perform well with good resource utilization. 427

Ablation Study. We draw two key conclusions 428

from our experiments in Table 3 on removing doc- 429

umentation and the basis subtask constraint during 430

subtask generation. 431

(1) Removing documentation and the basis 432

subtask both reduce performance, highlighting 433

the importance of these components. Specifi- 434

cally, experiments show that CHOP’s performance 435

decreases when documentation is excluded, and 436

performance worsens further without the basis sub- 437

task. Additionally, CHOP’s AE score drops, likely 438

due to the variants adopting simpler behaviors (e.g., 439

searching for contacts directly instead of clicking 440

avatars,) requiring fewer actions. (2) The basis 441

subtask improves CHOP’s performance even on 442

out-of-domain Apps, demonstrating its gener- 443

alizability. Although basis subtasks are collected 444

from AITW (which includes four app types,) ex- 445

periments on both in-domain (same app types) and 446

out-of-domain datasets show that the basis subtask 447

benefits performance across both. This supports the 448

idea that similar subtasks across Apps share com- 449

mon operational logic. Furthermore, compared to 450

AppAgent which collects whole-app documenta- 451

tion, our approach reduces size to the subtask level, 452

improving generalization and data efficiency. 453

4.3 RQ2: Task Planning Improvement 454

Subtask Evaluation To better assess the qual- 455

ity of generated subtasks, we adopt two comple- 456

mentary evaluation approaches: (1) Token-Level 457

Matching: We use BLEU (Papineni et al., 2002) 458

and ROUGE-L (Lin, 2004) to measure the overlap 459

between generated subtasks and human annotations 460

in CHOP-CH. While these metrics offer a straight- 461

forward comparison, they are limited in capturing 462

semantic equivalence—small token-level changes 463

can lead to large score variations without mean- 464

ingfully affecting the execution quality. (2) LLM- 465

Based Evaluation: To overcome these limitations, 466

we further employ GPT-4o to compare the seman- 467

tic quality of the generated subtasks. For each in- 468

6

Language Model
Easy Medium Hard

Effectiveness Efficiency Effectiveness Efficiency Effectiveness Efficiency

SR↑ CR↑ ME↑ AE↑ AAC↓ SR↑ CR↑ ME↑ AE↑ AAC↓ SR↑ CR↑ ME↑ AE↑ AAC↓

English

Human 1.00 1.00 1.00 1.00 - 1.00 1.00 1.00 1.00 - 1.00 1.00 1.00 1.00 -

AppAgent 0.50 0.62 0.84 0.84 1.19 0.40 0.64 0.80 0.80 1.25 0.10 0.22 0.99 0.99 1.01
Mobile Agent(v2) 0.50 0.81 0.83 0.83 3.62 0.50 0.73 0.82 0.82 3.65 0.40 0.41 0.68 0.68 4.42
Moba 0.50 0.69 0.97 0.97 1.07 0.30 0.50 0.99 0.99 1.04 0.20 0.46 0.98 0.98 1.05
Ours 0.80 0.90 1.36 1.00 0.76 0.70 0.89 1.20 0.94 0.85 0.60 0.59 1.10 1.00 0.93

Chinese

Human 1.00 1.00 1.00 1.00 - 1.00 1.00 1.00 1.00 - 1.00 1.00 1.00 1.00 -

AppAgent 0.40 0.56 0.78 0.78 1.28 0.30 0.51 1.07 0.78 1.29 0.20 0.41 0.96 0.96 1.04
Mobile Agent(v2) 0.80 0.75 0.70 0.70 4.26 0.20 0.46 1.00 0.87 3.44 0.30 0.51 0.76 0.70 4.31
Moba 0.40 0.61 0.90 0.90 1.14 0.30 0.75 0.95 0.84 1.22 0.10 0.35 0.85 0.85 1.23
Ours 1.00 1.00 1.30 0.95 0.79 0.80 0.95 1.10 0.95 0.93 0.10 0.59 1.09 0.93 0.95

Table 2: Performance evaluation of different GUI agents on English and Chinese tasks, categorized by difficulty. Met-
rics include effectiveness (Success Rate, Completion Rate) and efficiency (Mapping Efficiency, Action Efficiency,
Average API Counts), with human as the baseline. Best results are bolded, and second-best are underlined.

Model
All (10 Apps) In-domain (4 Apps) Out-of-domain (6 Apps)

Effectiveness Efficiency Effectiveness Efficiency Effectiveness Efficiency

SR↑ CR↑ ME↑ AE↑ SR↑ CR↑ ME↑ AE↑ SR↑ CR↑ ME↑ AE↑

CHOP 0.67 0.85 1.15 0.91 0.75 0.92 1.31 0.92 0.61 0.83 1.03 0.80
CHOP w/o Dbasis 0.47 0.74 1.00 1.00 0.50 0.73 1.00 1.00 0.44 0.76 1.00 1.00
CHOP w/o Qbasis&Dbasis 0.33 0.57 1.00 1.00 0.50 0.59 1.00 1.00 0.22 0.56 1.00 1.00

Table 3: Ablation study on CHOP-ZH comparing the full method with two variants: one excluding the documentation
Dbasis (CHOP w/o Dbasis) and the other excluding both the basis subtask Qbasis and Dbasis (CHOP w/o Qbasis&Dbasis).
Experiments are conducted on three app sets: All (10 Apps), In-domain (4 Apps, where Qbasis is collected), and
Out-of-domain (6 Apps). The best results are bolded, second-best underlined.

0.0

0.1

0.2

Va
lu

e

0.19 0.18
BLEU

0.0

0.5

1.0 0.83 0.81
ROUGEL

0.0

0.5

1.0 0.79

0.21

LLM as Evaluator
CHOP CHOP w/o Qbase

Figure 3: Subtask quality comparison with and without
basis subtask on matching and LLM-based evaluation.

struction, we compare two versions of the subtask469

plan—one generated with the basis subtask and470

one without—based on three criteria: completeness471

(whether the subtasks collectively fulfill the instruc-472

tion), efficiency (whether redundant or irrelevant473

steps are avoided), and effectiveness (whether each474

step is executable and clearly articulated). This475

evaluation reflects both semantic soundness and476

practical executability. To reduce token order and477

position bias (Dai et al., 2024), we randomly shuf-478

fle the order of comparison and report the win rates.479

The full evaluation prompt and format are provided480

in Appendix D.481

As shown in Figure 3, both evaluation methods482

consistently show that adding the basis subtask483

constraint leads to higher-quality subtask plans.484

Case Study. The plan agent is not only tasked485

with generating basis subtasks but also has the flex-486

ibility to create custom subtasks when the basis 487

subtask is unavailable. As demonstrated in Ap- 488

pendix E, we present two examples showing the 489

task and its corresponding subtasks. These exam- 490

ples highlight that, in addition to effectively se- 491

lecting basis subtasks, our method CHOP can also 492

generate high-quality custom subtasks that effec- 493

tively complement the basis subtasks. In addition, 494

we also demonstrate with two examples that adding 495

the constraint of basis subtasks can address the is- 496

sues of ineffective and inefficient subtasks. 497

4.4 RQ3: Conditions for Improvement 498

Improvement on Various App. RQ3 analyzes 499

which tasks benefit most from the basis sub- 500

task. We first calculate the CR metric for all 501

methods across 10 different application categories. 502

As shown in Figure 4, our method consistently 503

achieves a high CR across various applications. 504

In contrast, other methods like AppAgent struggle 505

with app types such as Shopping and Map due 506

to XML parsing issues, while our vision-based 507

method bypasses this problem. 508

Improvement on Complex Instruction. We 509

also measure SR on instructions of varying com- 510

plexity, defined by step count. As shown in Fig- 511

7

Mail

Search

VideoMap

Shopping

Chat

Social

News Travel

Music

AppAgent
Mobile-Agent(v2)

Moba
Ours

Figure 4: Performances of CHOP with other methods.

Short Medium Long
Task Complexity

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

AppAgent
Mobile-Agent(v2)
Moba
Ours

Figure 5: SR of different methods across tasks of vary-
ing complexities, where complexity is defined by task
length, with segments based on consecutive echo points.

ure 5, we group instructions into three length seg-512

ments. The results show that our method performs513

particularly well with short and medium-length in-514

structions, with the largest improvement seen in515

medium-length tasks. However, the improvement516

is smaller for both short and long instructions. For517

short instructions, the bottleneck seems to lie out-518

side task planning, likely in visual capabilities. For519

long instructions, the challenge is the higher re-520

quirement for successful subtask decomposition,521

but our method still outperforms others.522

Error on Different Types. As shown in Table 4,523

we analyze failure reasons for various methods fol-524

lowing the settings in (Lai et al., 2024). Both AppA-525

gent and Moba depend on XML files, so XML pars-526

ing errors lead to failures, while text-based output527

parsing errors also contribute. We categorize these528

as “XML/Model Output Parse Error.” AppAgent529

is most affected by XML parsing, highlighting the530

need for image-only solutions. Mobile-Agent(v2)531

and Moba show high “Misinterpretation of Task532

Context” rates, pointing to planning-level issues.533

In contrast, our approach has a low rate of this error,534

indicating that the basis subtask improves planning.535

Improvement under Different Backbone Models.536

To test robustness across model capacities, we re-537

Error Type AppAgent Mobile-Agent(v2) Moba Ours

Hallucinations 4.8% 5.9% 9.1% 0.0%
Poor Graphical Recognition 9.5% 29.4% 9.1% 54.6%
Misinterpretation of Task Context 23.8% 47.1% 63.6% 45.5%
Exceeds Max Iterations 4.8% 17.7% 4.6% 0.0%
XML/Model Output Parse Error 57.1% 0.0% 13.6% 0.0%

Table 4: Error distribution in mobile operating assistant.

place the backbone with a smaller model, GPT-4o- 538

mini, and evaluate on medium-length CHOP-En 539

instructions. As shown in Table 5, our method con- 540

sistently outperforms others with both GPT-4o and 541

GPT-4o-mini. Notably, our SR drops by only 0.2 542

with the smaller model, less than AppAgent and 543

MobA. While Mobile Agent(v2) shows a similar 544

drop, it still underperforms overall. These results 545

confirm the robustness and generalizability of our 546

subtask design. 547

Model SR↑ CR↑ ME↑ AE↑ AAC↓

GPT-4o
AppAgent 0.40 0.64 0.80 0.80 1.25
Mobile Agent (v2) 0.50 0.73 0.80 0.82 3.65
MobA 0.30 0.50 0.99 0.99 1.04
Ours 0.70 0.89 1.20 0.94 0.85

GPT-4o-mini
AppAgent 0.20 0.56 0.72 0.72 1.35
Mobile Agent (v2) 0.40 0.65 0.75 0.75 3.83
MobA 0.20 0.45 0.98 0.98 1.10
Ours 0.50 0.80 1.10 0.89 0.91

Table 5: Performance comparison under two different
backbone models.

Case Study. Finally, we demonstrate that our 548

method enables agents to follow a more structured 549

execution pattern, reducing errors and improving 550

efficiency by generating multi-step actions in a sin- 551

gle call. This leads to smoother task execution and 552

faster completion times. A detailed explanation 553

and figures can be found in Appendix F. 554

5 Conclusion 555

We present CHOP, a mobile operating assistant 556

that enhances task execution by leveraging basis 557

subtasks extracted from high-frequency human- 558

executed sequences. CHOP identifies these basis 559

subtasks through four key steps: verb extraction, 560

synonym clustering, summarization, and frequency 561

filtering. By integrating basis subtasks into the 562

planning process, CHOP ensures that generated 563

subtasks are both executable and aligned with key 564

task pathways, leading to improved task effective- 565

ness and efficiency. Experimental results on En- 566

glish and Chinese datasets demonstrate significant 567

gains in execution quality over existing methods, 568

highlighting CHOP as a robust solution. 569

8

Limitations570

We believe the proposed CHOP method represents571

a significant step forward in advancing GUI agent572

research in the LLM era. However, several limi-573

tations remain that should be addressed in future574

work. First, the current evaluation process relies575

on manual assessments, which results in a rela-576

tively small dataset. Future research should aim to577

develop an automated evaluation pipeline to han-578

dle large-scale data and provide more stable and579

reproducible results. Second, our work currently580

focuses on the issues between the planning agent581

and the action agent in a multi-agent architecture,582

without exploring the potential challenges between583

the action agent and the grounding model. Fu-584

ture efforts should investigate how to better enable585

the action agent to effectively utilize the ground-586

ing model. Finally, the current architecture en-587

hances VLM’s planning capabilities in GUI sce-588

narios through prompts, as searching for planning589

data is computationally expensive. However, fine-590

tuning directly on data offers a more reliable ap-591

proach. Future research should explore the use of592

synthetic data for fine-tuning to further strengthen593

VLM’s planning capabilities.594

References595

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen596
Chebotar, Omar Cortes, Byron David, Chelsea Finn,597
Chuyuan Fu, Keerthana Gopalakrishnan, Karol Haus-598
man, et al. 2022. Do as i can, not as i say: Ground-599
ing language in robotic affordances. arXiv preprint600
arXiv:2204.01691.601

Chongyang Bai, Xiaoxue Zang, Ying Xu, Srinivas602
Sunkara, Abhinav Rastogi, Jindong Chen, et al.603
2021. Uibert: Learning generic multimodal rep-604
resentations for ui understanding. arXiv preprint605
arXiv:2107.13731.606

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie607
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind608
Neelakantan, Pranav Shyam, Girish Sastry, Amanda609
Askell, et al. 2020. Language models are few-shot610
learners. In NIPS, pages 1877–1901.611

Andrea Burns, Deniz Arsan, Sanjna Agrawal, Ranjitha612
Kumar, Kate Saenko, and Bryan A Plummer. 2022.613
A dataset for interactive vision-language navigation614
with unknown command feasibility. In European615
Conference on Computer Vision, pages 312–328.616
Springer.617

Andrea Burns, Kate Saenko, and Bryan A Plummer.618
2024. Tell me what’s next: Textual foresight for619
generic ui representations. In ACL (Findings).620

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu, 621
Wei Xue, Shanghang Zhang, Jie Fu, and Zhiyuan Liu. 622
2024. Chateval: Towards better llm-based evaluators 623
through multi-agent debate. In ICLR. 624

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, 625
Chenfei Yuan, Chi-Min Chan, Heyang Yu, Yaxi Lu, 626
Yi-Hsin Hung, Chen Qian, et al. 2024. Agentverse: 627
Facilitating multi-agent collaboration and exploring 628
emergent behaviors. In ICLR. 629

Carlos G Correa, Mark K Ho, Frederick Callaway, 630
Nathaniel D Daw, and Thomas L Griffiths. 2023. 631
Humans decompose tasks by trading off utility and 632
computational cost. PLoS computational biology, 633
19(6):e1011087. 634

Sunhao Dai, Chen Xu, Shicheng Xu, Liang Pang, Zhen- 635
hua Dong, and Jun Xu. 2024. Bias and unfairness in 636
information retrieval systems: New challenges in the 637
llm era. In SIGKDD, pages 6437–6447. 638

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, 639
Shichao Pei, Nitesh V Chawla, Olaf Wiest, and Xi- 640
angliang Zhang. 2024. Large language model based 641
multi-agents: A survey of progress and challenges. 642
arXiv preprint arXiv:2402.01680. 643

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu 644
Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, 645
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. 646
2024a. Metagpt: Meta programming for a multi- 647
agent collaborative framework. In ICLR. 648

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng 649
Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang, 650
Yuxiao Dong, Ming Ding, et al. 2024b. Cogagent: 651
A visual language model for gui agents. In CVPR, 652
pages 14281–14290. 653

Xueyu Hu, Tao Xiong, Biao Yi, Zishu Wei, Ruixuan 654
Xiao, Yurun Chen, Jiasheng Ye, Meiling Tao, Xi- 655
angxin Zhou, Ziyu Zhao, et al. 2024. Os agents: A 656
survey on mllm-based agents for general computing 657
devices use. 658

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yux- 659
uan Chen, Pengbo Shen, Hao Yu, Hanchen Zhang, 660
Xiaohan Zhang, Yuxiao Dong, et al. 2024. Au- 661
towebglm: Bootstrap and reinforce a large language 662
model-based web navigating agent. arXiv preprint 663
arXiv:2404.03648. 664

Sunjae Lee, Junyoung Choi, Jungjae Lee, Munim Hasan 665
Wasi, Hojun Choi, Steve Ko, Sangeun Oh, and Insik 666
Shin. 2024. Mobilegpt: Augmenting llm with human- 667
like app memory for mobile task automation. In 668
MobiCom, pages 1119–1133. 669

Gang Li and Yang Li. 2023. Spotlight: Mobile ui under- 670
standing using vision-language models with a focus. 671
In ICLR. 672

Guohao Li, Hasan Abed Al Kader Hammoud, Hani 673
Itani, Dmitrii Khizbullin, and Bernard Ghanem. 2023. 674
Camel: communicative agents for" mind" exploration 675

9

of large language model society. In NIPS, pages676
51991–52008.677

Toby Jia-Jun Li, Amos Azaria, and Brad A Myers. 2017.678
Sugilite: creating multimodal smartphone automa-679
tion by demonstration. In CHI, pages 6038–6049.680

Toby Jia-Jun Li, Lindsay Popowski, Tom Mitchell, and681
Brad A Myers. 2021. Screen2vec: Semantic embed-682
ding of gui screens and gui components. In CHI,683
pages 1–15.684

Toby Jia-Jun Li, Marissa Radensky, Justin Jia, Kirielle685
Singarajah, Tom M Mitchell, and Brad A Myers.686
2019. Pumice: A multi-modal agent that learns con-687
cepts and conditionals from natural language and688
demonstrations. In UIST, pages 577–589.689

Chin-Yew Lin. 2004. Rouge: A package for automatic690
evaluation of summaries. In Text summarization691
branches out, pages 74–81.692

Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan693
Yang, Zechen Bai, Weixian Lei, Lijuan Wang, and694
Mike Zheng Shou. 2024. Showui: One vision-695
language-action model for generalist gui agent. In696
NeurIPS 2024 Workshop on Open-World Agents.697

Zhe Liu, Cheng Li, Chunyang Chen, Junjie Wang,698
Boyu Wu, Yawen Wang, Jun Hu, and Qing Wang.699
2024. Vision-driven automated mobile gui testing700
via multimodal large language model. arXiv preprint701
arXiv:2407.03037.702

Dang Nguyen, Jian Chen, Yu Wang, Gang Wu, Namy-703
ong Park, Zhengmian Hu, Hanjia Lyu, Junda Wu,704
Ryan Aponte, Yu Xia, et al. 2024. Gui agents: A705
survey. arXiv preprint arXiv:2412.13501.706

Runliang Niu, Jindong Li, Shiqi Wang, Yali Fu, Xiyu707
Hu, Xueyuan Leng, He Kong, Yi Chang, and708
Qi Wang. 2024. Screenagent: A vision language709
model-driven computer control agent. arXiv preprint710
arXiv:2402.07945.711

OpenAI. 2021. Chatgpt. https://openai.com/712
research/chatgpt.713

OpenAI. 2023. Gpt-4 technical report. Accessed on714
May 20, 2025.715

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-716
Jing Zhu. 2002. Bleu: a method for automatic evalua-717
tion of machine translation. In ACL, pages 311–318.718

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Mered-719
ith Ringel Morris, Percy Liang, and Michael S Bern-720
stein. 2023. Generative agents: Interactive simulacra721
of human behavior. In UIST, pages 1–22.722

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai,723
Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-Rong724
Wen. From exploration to mastery: Enabling llms to725
master tools via self-driven interactions. In The Thir-726
teenth International Conference on Learning Repre-727
sentations.728

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, 729
Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-Rong 730
Wen. 2024. Towards completeness-oriented tool re- 731
trieval for large language models. In Proceedings of 732
the 33rd ACM International Conference on Informa- 733
tion and Knowledge Management, pages 1930–1940. 734

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, 735
Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-Rong 736
Wen. 2025. Tool learning with large language mod- 737
els: A survey. Frontiers of Computer Science, 738
19(8):198343. 739

Christopher Rawles, Alice Li, Daniel Rodriguez, Ori- 740
ana Riva, and Timothy P Lillicrap. 2024. An- 741
droidinthewild: A large-scale dataset for android de- 742
vice control. In NIPS. 743

Liangtai Sun, Xingyu Chen, Lu Chen, Tianle Dai, 744
Zichen Zhu, and Kai Yu. 2022. Meta-gui: Towards 745
multi-modal conversational agents on mobile gui. 746
arXiv preprint arXiv:2205.11029. 747

Bryan Wang, Gang Li, Xin Zhou, Zhourong Chen, Tovi 748
Grossman, and Yang Li. 2021. Screen2words: Au- 749
tomatic mobile ui summarization with multimodal 750
learning. In UIST, pages 498–510. 751

Junyang Wang, Haiyang Xu, Haitao Jia, Xi Zhang, 752
Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, 753
and Jitao Sang. 2024a. Mobile-agent-v2: Mo- 754
bile device operation assistant with effective navi- 755
gation via multi-agent collaboration. arXiv preprint 756
arXiv:2406.01014. 757

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao 758
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang, 759
Xu Chen, Yankai Lin, et al. 2024b. A survey on large 760
language model based autonomous agents. FCS, 761
18(6):186345. 762

Shuai Wang, Weiwen Liu, Jingxuan Chen, Weinan Gan, 763
Xingshan Zeng, Shuai Yu, Xinlong Hao, Kun Shao, 764
Yasheng Wang, and Ruiming Tang. 2024c. Gui 765
agents with foundation models: A comprehensive 766
survey. arXiv preprint arXiv:2411.04890. 767

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, 768
Qiushi Sun, Chengyou Jia, Kanzhi Cheng, Zichen 769
Ding, Liheng Chen, Paul Pu Liang, et al. 2024. Os- 770
atlas: A foundation action model for generalist gui 771
agents. arXiv preprint arXiv:2410.23218. 772

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, 773
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, 774
Fei Huang, Haoran Wei, et al. 2024a. Qwen2. 5 775
technical report. arXiv preprint arXiv:2412.15115. 776

Yuhao Yang, Yue Wang, Dongxu Li, Ziyang Luo, Bei 777
Chen, Chao Huang, and Junnan Li. 2024b. Aria-ui: 778
Visual grounding for gui instructions. arXiv preprint 779
arXiv:2412.16256. 780

Chaoyun Zhang, Shilin He, Jiaxu Qian, Bowen Li, 781
Liqun Li, Si Qin, Yu Kang, Minghua Ma, Qingwei 782
Lin, Saravan Rajmohan, et al. 2024a. Large language 783

10

https://openai.com/research/chatgpt
https://openai.com/research/chatgpt
https://openai.com/research/chatgpt

model-brained gui agents: A survey. arXiv preprint784
arXiv:2411.18279.785

Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang,786
Bo Qiao, Si Qin, Minghua Ma, Yu Kang, Qingwei787
Lin, Saravan Rajmohan, et al. 2024b. Ufo: A ui-788
focused agent for windows os interaction. arXiv789
preprint arXiv:2402.07939.790

Chi Zhang, Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin791
Chen, Zebiao Huang, Bin Fu, and Gang Yu. 2023.792
Appagent: Multimodal agents as smartphone users.793
arXiv preprint arXiv:2312.13771.794

Jiwen Zhang, Jihao Wu, Yihua Teng, Minghui Liao,795
Nuo Xu, Xiao Xiao, Zhongyu Wei, and Duyu Tang.796
2024c. Android in the zoo: Chain-of-action-thought797
for gui agents. arXiv preprint arXiv:2403.02713.798

Zhuosheng Zhang and Aston Zhang. 2023. You only799
look at screens: Multimodal chain-of-action agents.800
arXiv preprint arXiv:2309.11436.801

Zichen Zhu, Liangtai Sun, Jingkai Yang, Yifan Peng,802
Weilin Zou, Ziyuan Li, Wutao Li, Lu Chen, Yingzi803
Ma, Danyang Zhang, et al. 2023. Cam-gui: A con-804
versational assistant on mobile gui. In MMSP, pages805
302–315. Springer.806

Zichen Zhu, Hao Tang, Yansi Li, Kunyao Lan, Yixuan807
Jiang, Hao Zhou, Yixiao Wang, Situo Zhang, Liang-808
tai Sun, Lu Chen, et al. 2024. Moba: A two-level809
agent system for efficient mobile task automation.810
arXiv preprint arXiv:2410.13757.811

11

A Basis Subtask Details812

Verb Extraction. To capture subtasks, we use813

the AITZ dataset (Zhang et al., 2024c), a subset of814

AITW (Rawles et al., 2024), covering four Apps.815

Each entry in the dataset contains an instruction and816

its step-by-step actions with the thought process. In817

AITW, raters annotate shorter sequences (at least818

K ≥ 3 actions) as single-step demonstrations like819

“Add item to cart,” which are considered subtasks.820

Since verbs can represent actions, we use spaCy821

for part-of-speech tagging, retaining only the verb822

to represent each instruction.823

Synonym Clustering. Although verb extraction824

groups similar actions, synonyms with different825

expressions often serve the same function (e.g.,826

“search news” vs. “lookup news”.) Merging them827

reduces computational cost when generating sub-828

tasks (Wu et al., 2024). To cluster words by se-829

mantic similarity, we use WordNet1 to group them830

into synonym sets (synsets.) Words are clustered831

based on shared synsets, reflecting their semantic832

similarity. After manual review, we retained verbs833

that represent meaningful actions and merged their834

corresponding action sequences.835

Summarization. In GUIs, consistent logic is836

applied across software to enhance user experience.837

For example, “Search” in browsers and email Apps838

follows similar steps: “1. Click search box, 2. En-839

ter content, 3. Click search button.” Thus, action840

sequences within the same basis subtask should841

have similar representations. We standardize these842

sequences for the downstream action agent to im-843

prove performance. Specifically, for each basis sub-844

task, we use GPT-4 to summarize its corresponding845

action sequences with the prompt: “Please summa-846

rize the following action sequence into a standard-847

ized process and specify boundary conditions.”848

Frequency Filtering. To reduce inference la-849

tency and mitigate performance degradation from850

long input sequences, we filter out low-frequency851

basis subtasks. As the more frequently used sub-852

tasks in the AITZ dataset are likely to appear on853

the critical path of task execution, we rank all can-854

didate basis subtasks by their frequency and retain855

the top 10 most common ones. As shown in Ta-856

ble 6, these subtasks collectively account for 81%857

of user actions in the dataset. This selection ensures858

broad coverage while maintaining high efficiency859

and generalizability to unseen applications. Less860

frequent subtasks outside the top 10 are handled by861

1https://github.com/argilla-io/spacy-wordnet

GPT-4 through on-the-fly generation. 862

Table 6: Top 10 Most Frequent Basis Subtasks in AITZ

Rank Basis Subtask Frequency (%)

1 Interact 18.4
2 Search Item 15.2
3 Send Text Message 10.8
4 Open Section 8.3
5 View Content 6.7
6 Modify Settings 5.9
7 Check Notifications 4.5
8 Share Content 4.1
9 Manage Collections 3.7
10 Create or Edit Entry 3.4

Total (Top 10) 81.0

B Test Set Details 863

To conduct an in-depth comparison of the ability 864

of our method and other assistants to handle com- 865

plex user instructions and task execution efficiency 866

on mobile devices, we evaluate them on two real- 867

life scenario test datasets, namely, CHOP-En and 868

CHOP-ZH. 869

The CHOP-En dataset consists of 30 instruc- 870

tions used to assess the performance of assistants 871

in real-world mobile applications with a diverse 872

set of English tasks. This dataset is collected fol- 873

lowing the setup of the dataset used in Mobile 874

Agent(v2) (Wang et al., 2024a), where 10 widely 875

used applications in China are selected, covering 876

various everyday scenarios. For each application, 877

three tasks of different levels of difficulty were 878

included: easy, medium, and difficult. The easy- 879

level instructions explicitly specify the app to be 880

used and typically require fewer than five steps to 881

complete. Medium-level instructions necessitate 882

more actions to be executed, while difficult-level in- 883

structions are presented in natural language without 884

specifying the app to be used. 885

The CHOP-ZH dataset consists of 200 human- 886

curated and annotated Chinese instructions. The 887

dataset is constructed by selecting 10 applications 888

that cover a broad range of daily usage scenarios. 889

For each application, annotators who are in-house 890

data labelers first provide 20 instructions based on 891

daily tasks and execute them on mobile phones. Be- 892

fore execution, annotators are asked to create a sub- 893

task plan for each task and describe their thought 894

process before performing each action. Addition- 895

12

https://github.com/argilla-io/spacy-wordnet

Dataset Name CHOP-En CHOP-ZH (Sampled) CHOP-ZH (Full)

#Instructions 30 30 200
#Task Steps 5.57 5.53
Language English Chinese Chinese
Screen Image × ✓ ✓
Plan Thought × ✓ ✓
Action Thought × ✓ ✓

Table 7: Dataset details, including instruction count,
task steps, and availability of supporting data.

ally, we anonymized all the data by replacing all896

personal information with placeholders. Compared897

to similar English task sets (Zhang et al., 2023;898

Wang et al., 2024a), the CHOP-ZH dataset is the899

first real-life Chinese test set designed for mobile900

devices. Additionally, while these datasets only901

provide instructions and corresponding actions for902

each step, the CHOP-ZH dataset offers a compre-903

hensive task plan. This allows us not only to as-904

sess the overall performance of the architecture905

based on task execution but also to evaluate the906

plan agent’s ability to decompose tasks, providing907

a more targeted evaluation. Due to the high cost of908

GPT-4o, we sample 3 instructions per app and as-909

sign them difficulty levels (easy, medium, hard) as910

in CHOP-En. The test instructions and CHOP-ZH911

details are in Table 7.912

To enhance clarity, we provide additional details913

about the human annotation process. All anno-914

tations were conducted by in-house data labelers915

with undergraduate-level education, specifically re-916

cruited for this task. Prior to executing each instruc-917

tion, annotators developed a subtask plan outlining918

the necessary steps, guided by predefined examples919

to ensure consistency. To maintain data quality, a920

dedicated review team manually inspected the an-921

notations and removed incomplete instructions or922

those that could not be executed by the agent.923

C Baseline Details924

To provide a comprehensive evaluation, we also925

implement several baseline methods for compari-926

son with our method to demonstrate its effective-927

ness and efficiency. These methods include the Hu-928

man Baseline as well as some sophisticated agent-929

based automation approaches.930

Human Baseline records the process of a human931

completing the instructions and is considered the932

golden solution for solving each task, as it reflects933

the best method based on human performance.934

AppAgent (Zhang et al., 2023) introduces a935

framework with two phases: exploration and de-936

ployment. In the exploration phase, an agent learns937

app functions through self-learning or observation 938

of humans, storing the knowledge in app-specific 939

documents. During deployment, the agent uses 940

these documents, along with the view hierarchy 941

and screenshots, to plan and select actions. Each 942

interactive element is labeled with bounding boxes 943

and a unique index, improving the agent’s accuracy 944

in task execution. 945

Mobile Agent(v2) (Wang et al., 2024a) is a 946

multi-agent system for mobile device operation 947

assistance, comprising planning, decision, and re- 948

flection agents. The system takes screenshots as 949

input and utilizes additional modules such as the 950

OCR model and qwen-vl-plus API, enabling more 951

effective action generation in complex mobile op- 952

eration tasks. 953

Moba (Zhu et al., 2024) utilizes a two-level 954

agent architecture with a Global Agent (GA) and 955

a Local Agent (LA) to enhance mobile task au- 956

tomation. The GA interprets user commands and 957

manages task planning, while the LA executes spe- 958

cific actions on the screen. The system takes as 959

input both visual information and XML view hier- 960

archy data to understand the mobile interface. For 961

action execution, it employs a combination of OCR 962

for text recognition and target localization to guide 963

the selection of interactive elements. 964

D LLM-Based Evaluation Prompt 965

We use GPT-4o to compare two subtask plans for 966

each instruction based on a structured prompt. The 967

evaluation focuses on completeness, efficiency, and 968

clarity. The full prompt is shown below: 969

Listing 1: Prompt used for LLM-based evaluation
970

Now I will give you an instruction and its 971
corresponding two step-by-step solution 972
strategies. I need your help to determine 973
which strategy is better. There are three 974
criteria for evaluation. 975

1. Whether it is complete and whether the 976
instruction can be fully executed according 977
to the step-by-step strategy. 978

2. Whether it is redundant, that is, whether 979
there are useless steps in the generated 980
strategy. 981

3. Whether it is clear, that is, whether the 982
generated steps clearly express the intended 983
purpose. 984

985
This is the instruction: {instruction}. 986
This is Plan One: {sub1}. 987
This is Plan Two: {sub2}. 988

989
The output format is: 990
Reflection ###: Reflection on Two Solutions. 991
Select ###: Option X. 992993

13

Task Subtasks

Search for videos about Stephen Curry on
Bilibili and open ’Comments’ to comment
’Oh, chef, your basketball spirit has
always inspired me’

1. Find App (Bilibili)
2. Search Item (Stephen Curry videos)
3. Open Video (Stephen Curry)
4. Access Comments (Stephen Curry video)
5. Post Comment (’Oh, chef, your basketball spirit has
always inspired me.’)

Open the Calendar and look at today’s
date, then go to Notepad and create a new
note to write ’Today is [today’s date]’

1. Find App (Calendar)
2. Check Date (today’s date)
3. Back Home
4. Find App (Notepad)
5. Create New Note (Today is [today’s date])

Table 8: Two task examples with corresponding subtasks, with custom subtasks in red.

Task Subtasks

Share the latest video from Bilibili content
creator Johnny with Bob on WeChat.

1. Open the Bilibili app or website.
2. Find the latest video from content creator Johnny.
3. Click the share button and select WeChat.
4. In the sharing interface, choose the contact Bob and
send the video link.
1. Find App (Bilibili).
2. Search Item (Johnny).
3. Open Section (Johnny).
4. Share Content (WeChat, Bob).

Could you please check my search history
on Baidu?

1. Open the Baidu browser or Baidu app.
2. Log in to your Baidu account (if not already logged in).
3. Access the history option and open it to view your
Baidu search history.
1. Find App (Baidu)
2. Open Section (search history)
3. Check Notifications (search history)

Table 9: Task examples with corresponding subtasks, without the basis subtask restriction. Ineffective subtasks are
in blue, and inefficiency is in orange.

E Subtask Case994

In Table 8, we present two examples, each con-995

taining a task and the corresponding subtasks de-996

composed by the plan agent in CHOP. As shown,997

our output not only includes basis subtasks but also998

features custom subtasks, highlighted in red. This999

demonstrates that our method can compensate for1000

cases where the basis subtask cannot handle cer-1001

tain tasks by generating custom subtasks, thereby1002

improving the quality of the generated subtasks.1003

In Table 6, we further present two examples1004

showing that our basis subtasks can address both1005

ineffectiveness and inefficiency issues. Specifically,1006

in the first example, the task highlighted in blue1007

is too complex to be executed by the downstream1008

action agent. Our method breaks this blue subtask1009

into two basis subtasks, making them simpler to 1010

execute, thus solving the ineffective subtask. Ad- 1011

ditionally, our method ensures more appropriate 1012

subtask granularity, such as using a single subtask 1013

for the sharing action, while without the restric- 1014

tion, two steps would be required. In the second 1015

example, the subtask highlighted in orange does 1016

not affect the task progression. Our method re- 1017

solves this inefficiency by introducing a subtask in 1018

the critical path, thereby avoiding the inefficient 1019

subtask. 1020

F Case Study 1021

We present an example of the subtasks we executed 1022

in Figure 6. In this example, our method, due to the 1023

basis subtask, does not directly click “Live” on the 1024

14

Basis Subtask Explanation

Search Item (parameter) Click on the search bar, type in the item name, and press enter. The
parameter is the name of the item you want to search for. This action can
be performed on any website with a search functionality. Output format is
“Search Item (XXX)”.

Send Text Message (parameter) This action involves typing a specific message into a designated text input
area. The parameter is the content of the message to be sent. Output
format is “Send Text Message (XXX)”.

Open Section (parameter) Find and enter the specified section or feature in the application. The
parameter is the name of the section, such as “Hot List”, “Messages”,
“Settings”, etc.

View Content (parameter) View the specified content in the application. The parameter describes the
content to be viewed, such as “Latest News”, “Posts”, etc.

Interact (parameter1, parame-
ter2)

Interact with the content in the application, such as “Like” or “Comment”.
The parameter1 is the content to interact with, such as “Video” or “Song”.
The parameter2 is the action of interaction, such as “Like content”, “Post
a comment”, etc.

Manage Collections (parame-
ter1, parameter2)

Manage personal collections or shopping carts, etc. The parameter1 in-
cludes actions such as “Add to Favorites”, “Delete”, and parameter2
includes items such as “Product”, “Video”, etc.

Share Content (parameter1, pa-
rameter2)

Share content from the application to other platforms or users. The param-
eter1 includes the sharing platform and parameter2 includes the recipient,
such as “WeChat”, “Lucky”.

Check Notifications (parame-
ter)

View notifications or messages in the application. The parameter is the
section of the app, such as “System Notifications”, “Private Messages”,
etc.

Modify Settings (parameter1,
parameter2)

Modify the settings in the application. The parameter1 includes the setting
item and parameter2 includes its changes, such as “Theme Skin”, “Notifi-
cation Method”, etc.

Create or Edit Entry (parame-
ter1, parameter2)

Create or edit entries in the application. The parameters include the entry
type and name, such as “Playlist”, “Contact”, etc.

Table 10: Description of various basis subtasks and their explanations.

homepage to find relevant streams. Instead, it uses1025

the “Search” basis subtask to perform the search.1026

Although this approach may involve more steps1027

than directly navigating to the live page, it is more1028

structured and reliable, reducing the chances of1029

execution errors. Additionally, since the “Search”1030

process is relatively fixed, we can have the action1031

agent generate the entire action sequence for the1032

search subtask in one call, reducing the number of1033

action agent invocations.1034

15

1. Open app
2. Search live stream
3. Open live stream

Open a King of Glory live stream

User Task

…

…

Obersvation: The current screen
displays the Bilibili app‘s main
interface. At the top, you see a
search bar with the text “研究
生过于刻苦寒假”…

Thought: To complete the
task "在哔哩哔哩中搜索‘王者
荣耀直播’," I need to enter
the search term into the
search bar.

Action: click (search bar
with text "权志龙分猪肉")

Obersvation: The search history
includes past searches such as "
战狼1" and "王者荣耀" …

Thought: To proceed with the
task of searching "王者荣耀直播
", I need to input the new
search term "王者荣耀直播".
This action was necessary to
update the search query as per
the task requirements

Action: type (“王者荣耀直播”）

Obersvation: The search bar
contains the text "and input 王者
荣耀直播". Further to the right is
a "search" (搜索) button.

Thought: To complete the task
of searching for "王者荣耀直播",
you should click the "search"
(搜索) button to execute the
search query. The next step is
to initiate the search.

Action: click (哔哩哔哩王者荣耀
直播间)

Obersvation: At the top, there is
a search bar with the text “哔哩
哔哩王者荣耀直…”. Below it,
there is a navigation bar with
multiple tabs: “综合,” “番
剧,”“直播(99+) ,”“用户,”影视.”

Thought: To proceed, I need to
interact with the “直播(99+)"
tab to navigate to that section
the search.

Action: click (直播(99+))

Subtasks

Plan Agent

Figure 6: Subtask: Search live stream.

16

	Introduction
	Related Work
	Method
	Problem Setup
	Basis Subtask Extraction
	CHOP: The Multi-Agent Architecture

	Experiments
	Settings
	RQ1: Task Performance Improvement
	RQ2: Task Planning Improvement
	RQ3: Conditions for Improvement

	Conclusion
	Basis Subtask Details
	Test Set Details
	Baseline Details
	LLM-Based Evaluation Prompt
	Subtask Case
	Case Study

