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Abstract

Structural MRI-derived features of the cortical surface are known to correlate to phenotypes
such as age, sex and cognitive outcomes. Deep generative modelling of cortical neurode-
velopment can lead to clinically interpretable models of disease or identify atypical cases
for clinical intervention, but deep modelling of non-Euclidean domains, such as surfaces,
poses additional challenges. In this work, we adapt a graph convolutional network (GCN)
to model the neonatal cortical surface, and synthesise realistic, age-conditioned images of
myelination and sulcal depth cortical surface maps. We train our models without longitu-
dinal data, using randomised aging cycles of varying length, which we validate by ablation
and with comparison to a CycleGAN. An independently trained deep regression model
evaluates the accuracy of the generated images as the difference between their apparent
post-menstrual age (PMA) and their respective target ages, obtaining a mean absolute
error (MAE) of 1.02 ± 0.28 weeks (baseline accuracy 0.6 weeks).
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1. Introduction

The human cortex undergoes significant microstructural and functional development around
24-44 weeks post menstrual age (PMA). This process is known to be affected by multiple
factors, and its disruption is associated with poorer neurodevelopmental outcomes. Deep
generative models have the potential to lead to clinically interpretable models of disease,
which can be used to identify atypical cortical neurodevelopment for early clinical inter-
vention. Building such models is complicated by the fact that traditional techniques are
unsuitable for use on non-Euclidean domains such as surfaces, so adapted methods from
the field of geometric deep learning are necessary. Further, cortical surface development is
confounded by two continuous and related variables: PMA at scan and the gestational age
(GA) at birth. We address these challenges in this paper by using a Graph Convolutional
Network (GCN) trained with a continuous 3-point extension to the regular CycleGAN.
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2. Method

We construct discriminator and generator models using a graph convolution operator (Mor-
ris et al., 2019). Our training scheme involves generating a closed cycle of n synthetic images
at randomly chosen PMA as shown in Figure 1(a), regularised with a cycle loss. Our dataset
consists of samples where GA at birth ≈ PMA at scan (correct to an average 1.4 weeks),
so the two will be used interchangeably. An age-dependent discriminator is used to train
the model to classify images as realistically belonging to a given PMA (Figure 1(b)). In
this paper, we focus on a model where n = 3 cycles but this is explored via an ablation
study, and compared against a CycleGAN without continuous age-conditioning (Zhu et al.,
2017; Fawaz et al., 2022). Quantitatively, we validate the models based on their accuracy
in generating images of the target PMA, and the subject specificity. The former is vali-
dated using a pre-trained regressor model based on MoNet (Monti et al., 2017; Fawaz et al.,
2021), with baseline accuracy 0.6 weeks mean absolute error (MAE) on predicting PMA.
For the latter we use image similarity metrics to measure the similarity of the generated
images to the original image. The metrics used include the Mean Square Error (MSE),
the Peak-Signal-to-Noise Ratio (PSNR) and a novel adaptation of the Structural Similarity
Index Measure (SSIM) to the surface.

3. Results

Quantitative results are shown in Table 1, with our model generating accurately aged images
whilst retaining subject specificity. Generated image examples for a single neonate (original
PMA 41 weeks) at different ages are shown in Figure 2. The results match well with expected
neurodevelopmental changes documented in the literature (Williams et al., 2021).

Table 1: A Table comparing generative models on age generation accuracy and image speci-
ficity. n denotes the length of the generative cycle used in training (see Figure 1(a))

Model
Accuracy Structural Similarity
(MAE / Weeks) SSIM PSNR MSE

CycleGAN 2.92 ± 2.1 0.82 16.8 163.1
GCN (n = 2) 2.70 ± 0.70 0.74 17.3 203
Our GCN (n = 3) 1.02 ± 0.20 0.82 17.9 167
GCN (n = 4) 0.8 ± 0.38 0.70 16.1 231
GCN (n = 5) 1.55 ± 0.50 0.74 16.1 208

4. Conclusion

Our GCN model can generate realistic, continuous, age progression/regression images of
a single subject, accurate to a week of the target age on average, whilst retaining subject
specificity.
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(a) A Generative Cycle

(b) Age-Dependent Discriminator

Figure 1: A figure demonstrating our training scheme. (a) a generative cycle involves a
cycle of n synthetic images generated at randomly determined ages x′... ending
at the original image age x0 and regularised with a L1 Cycle loss. (b) Generator
and Discriminator Losses are determined with an age-dependent discriminator

Figure 2: Synthetic images of a neonatal subject (original PMA 41.57 weeks) aged with our
model. The regressor predicted ages are shown below the confounded ages. Only
the lateral view is shown
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