
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SEAL: SEMANTIC-AUGMENTED IMITATION LEARN-
ING VIA LANGUAGE MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Hierarchical Imitation Learning (HIL) is a promising approach for tackling long-
horizon decision-making tasks. While it is a challenging task due to the lack
of detailed supervisory labels for sub-goal learning, and reliance on hundreds
to thousands of expert demonstrations. In this work, we introduce SEAL, a
novel framework that leverages Large Language Models (LLMs)’s powerful se-
mantic and world knowledge for both specifying sub-goal space and pre-labeling
states to semantically meaningful sub-goal representations without prior knowl-
edge of task hierarchies. SEAL employs a dual-encoder structure, combining
supervised LLM-guided sub-goal learning with unsupervised Vector Quantization
(VQ) for more robust sub-goal representations. Additionally, SEAL incorporates a
transition-augmented low-level planner for improved adaptation to sub-goal tran-
sitions. Our experiments demonstrate that SEAL outperforms state-of-the-art HIL
methods and LLM-based planning approaches, particularly in settings with small
expert datasets and complex long-horizon tasks.

1 INTRODUCTION

The advancement of LLMs brings transformative change to how agents learn to interact and make
decisions (Brohan et al., 2023; Wang et al., 2023). LLMs like GPT-4 (Achiam et al., 2023) possess
remarkable semantic understanding ability (Liu et al., 2023), human-like reasoning capability (Wei
et al., 2022), and rich common sense knowledge (Bubeck et al., 2023), enabling them extracting
insights from language instructions to support decision-making agents (Eigner & Händler, 2024).

A promising path towards LLM-assisted decision-making is to improve Deep Reinforcement Learn-
ing (DRL) agents through reward design (Kwon et al., 2023; Ma et al., 2023). Yet DRL often suffers
from sample inefficiency and still requires extensive interactions with the environment particularly
for tasks with long planning horizons and sparse rewards, where agents are rewarded only upon task
completion (Zhang et al.). Alternatively, Imitation Learning (IL) can be trained to learn generaliz-
able policies from expert demonstrations (Schaal, 1996). By learning from successful state-action
pairs, IL avoids the sample-expensive exploration and exploitation required in DRL. While IL per-
formance can still be limited in long-horizon tasks due to compounding errors with accumulated
errors leading to significant deviations from desired trajectories (Nair & Finn, 2019). Hierarchical
Imitation Learning (HIL) (Le et al., 2018a) leverages the sub-goal decomposition of long-horizon
tasks into a multi-level hierarchy and reduces the relevant state-action space for each sub-goal such
as goal-states (Ding et al., 2019) and Task IDs (Kalashnikov et al., 2021). To address this, lan-
guage instruction has come as an aid for sub-goal specification, as such instruction can be both
informative and flexible (Stepputtis et al., 2020). Language-conditioned HIL approaches either
train the high-level sub-goal encoder and low-level policy agent separately (Prakash et al., 2021)
or jointly (Hejna et al., 2023). Though both methods have achieved impressive results, learning
language-based sub-goals remains challenging, as it requires a large number of expensive sub-goal
labels (Chevalier-Boisvert et al., 2018a). To overcome this, various methods have been proposed to
infer both sub-goal boundaries and supervision-free representations (Garg et al., 2022; Jiang et al.,
2022; Kipf et al., 2019; Simeonov et al., 2021). Despite these efforts, these language instructions are
unstructured, and often fall short of generalization to newer tasks while not seamlessly integrated
into IL policy training (Wang et al., 2019a; Mees et al., 2022).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

The capabilities brought by Large Language Models (LLMs) spark new promises for tackling such
instruction challenges in IL and especially HIL settings. It has shown leveraging LLM’s strong
reasoning and semantic abilities help break down complex, ambiguous language instructions into
manageable steps for a high-level plan (Huang et al., 2022; Ahn et al., 2022; Huang et al., 2023).
LLM excels at emulating human-like task decomposition, (Huang et al., 2022; Wei et al., 2022) This
ability has already been harnessed by researchers to produce high-level plans based on textual task
instructions (Ahn et al., 2022; Prakash et al., 2023; Huang et al., 2023). However, while these plans
reflect some task hierarchy, they are not directly executable due to the reliance on pre-trained low-
level policy agents for primitive actions (Prakash et al., 2023). Moreover, most high-level plans are
static and require frequent LLM calls to update as states change, which is highly costly (Song et al.,
2023). These challenges limit applicability of LLM-based approaches in assisting HIL. Motivated by
these promises and challenges, we want to address the following question: “Can pre-trained LLMs
serves as a prior to define task’s hierarchical structure, establish sub-goal library autonomously,
and use them to closely guide both high-level sub-goal learning and low-level agent?”

In this paper, we explore the possibility of using LLM-generated high-level plans to assist both
sub-goal learning and policy training in Hierarchical Imitation Learning. We introduce SEmantic-
Augmented Imitation Learning (SEAL), a novel hierarchical imitation learning framework that uti-
lizes pretrained LLMs to generate semantically meaningful sub-goals. Give the fact that sub-goal
are also oftenwise labeled by human and understandable by LLMs, SEAL represents each sub-
goal with one-hot latent vectors, and employs these representations to convert expert demonstration
states into supervisory labels for high-level latent variable learning. To enhance the learning process,
SEAL features a dual-encoder structure for sub-goal representation. One encoder learns sub-goal
vectors in a supervised manner using LLM-provided labels, while the other leverages unsupervised
Vector Quantization (VQ) (Wang et al., 2019b) to map expert demonstration states to latent sub-
goal representations. The effectiveness of the learned latent variables is evaluated within the task
environment by comparing their contribution to selecting optimal actions, with success rate as the
confidence metric. We design a weighted combination of the two encoders’ outputs as the final sub-
goal representation, thereby reducing over-reliance on a weaker encoder, mitigating over-fitting, and
improving overall robustness. Additionally, we present a transition-augmented lower-level policy
agent that prioritizes intermediate states corresponding to sub-goal transitions by assigning higher
weights, reflecting the hierarchical structure of long-horizon tasks. Extensive experiments on two
tasks KeyDoor and Grid-World and show that SEAL can outperform several state-of-the-art super-
vised and unsupervised HIL approaches. To summarize, our main contributions include:

• We propose SEAL, a novel hierarchical imitation learning framework that leverages Lan-
guage Models to generate high-level plans and provide semantically meaningful sub-goal
representations without any prior knowledge of task hierarchical structure.

• To enhance SEAL’s effectiveness, we introduce a dual-encoder structure that combines su-
pervised LLM-based sub-goal learning with unsupervised VQ-based representations, en-
suring reliability and robustness in sub-goal learning. Additionally, SEAL incorporates a
transition-augmented low-level planner for better adaptation to challenging intermediate
states where sub-goal transitions occur.

• We demonstrate that SEAL outperforms several state-of-the-art HIL approaches, particu-
larly on small expert datasets, and shows superior adaptability to longer-range composition
tasks and task variations.

2 RELATED WORKS

Imitation Learning. Imitation Learning encompasses two primary approaches: Behavioral Cloning
(BC) (Bain & Sammut, 1995) and Inverse Reinforcement Learning (IRL) (Ng et al., 2000). BC re-
lies on a pre-collected expert dataset of demonstrations, where the agent learns to mimic the actions
in an offline manner. While BC is simple to implement, it is prone to compounding errors, partic-
ularly when the agent encounters states not present in the expert’s demonstrations (Zhang, 2021).
In contrast, IRL methods (Ho & Ermon, 2016; Reddy et al., 2019; Brantley et al., 2019) involve
interacting with the environment to collect additional demonstrations, aiming to infer the underly-
ing reward function that the expert is optimizing. The agent then learns by optimizing this inferred
reward. However, IRL approaches are more challenging to implement (Kurach et al., 2018), typ-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

ically requiring more computational resources and data. In this work, we primarily adopt the BC
architecture in a hierarchical setting, while incorporating insights from IRL by using environment
interactions to validate the reliability of learned latent sub-goal variables.

Bi-Level Planning and Execution. Hierarchical Imitation Learning (HIL) enhances the ability of
imitation learning agents to tackle complex, long-horizon tasks by breaking them down into smaller
sub-goals and conditioning the agent’s behavior on those sub-goals. The high-level agent chooses
the sub-goals, while the low-level agent learns to accomplish specific controls under selected sub-
goals (Jing et al., 2021). Many HIL approaches, such as Hierarchical Behavior Cloning (Le et al.,
2018a) and Thought Cloning (Hu & Clune, 2024), rely on supervisory labels for sub-goal learning,
but such annotations are often difficult to obtain. To address this limitation, unsupervised methods
like Option-GAIL (Jing et al., 2021), LOVE (Jiang et al., 2022), SDIL (Zhao et al., 2023), and
CompILE (Kipf et al., 2019) have been developed to infer sub-goals directly from expert trajectories.
However, the lack of labeled guidance in these approaches makes meaningful sub-goal discovery
more challenging and hence reduces the reliability of the learned policies.

LLMs for Planning. Large Language Models (LLMs) have demonstrated significant potential in
decision-making processes. Direct generation of action sequences usually do not lead to accurate
plans (Silver et al., 2022; Valmeekam et al., 2023; Kambhampati et al., 2024). Recent studies have
successfully utilized LLMs to decompose natural language task instructions into executable high-
level plans, represented as a sequence of intermediate sub-goals (Ahn et al., 2022; Prakash et al.,
2023; Huang et al., 2023). While LLMs can be also applied to translate user-given language in-
structions to symbolic goals (Mavrogiannis et al., 2024; Xie et al., 2023) Additionally, LLMs can
function as encoders, identifying current sub-goals based on both observations (sometimes images)
and language task descriptions to facilitate high-level plan execution (Fu et al., 2024; Malato et al.,
2024; Du et al., 2023). However, these approaches typically still depend on pre-trained low-level
planners for generating executable primitive actions. In this work, we leverage LLM-generated
high-level plans to assist in learning both sub-goals and low-level actions simultaneously.

3 PRELIMINARY

In this paper, we look into the long-horizon, compositional decision-making problem as as a
discrete-time, finite-step Markov Decision Process (MDP). MDP can be represented by a tuple
(S,A, T , r, γ), where S,A denotes the state and action space, T (st+1|st, at) : S ×A → S denotes
the transition function, r : S ×A → R is the reward function and γ ∈ [0, 1] is the discount factor.

In standard settings of Hierarchical Imitation Learning (HIL), instead of having access to the reward
function r, the agent has access to a dataset of expert demonstrations D = {τe1 , τe2 , ..., τeN}, which
contains N expert trajectory sequences consisting of state-action pairs {(st, at)}, where st ∈ S,
at ∈ A, T is the time horizon for planning, 0 ≤ t ≤ T . In this paper, the expert trajectories are not
labeled with any rewards nor subhorizon segments. We assume HIL agents operate in a two-level
hierarchy though our method can also be applied to problems with more levels:

• High-level Sub-goal Encoder πH(gt|st): Selects a sub-goal gt ∈ G based on the current
states st, where G is the space of sub-goals.

• Low-level Policy Agent πL(at|gt, st): Executes actions conditioned on both the current
state st and sub-goal gt.

In this work, we focus on settings where agents lack access to the sub-goal space G, relying in-
stead on an oracle full task instructionM in natural language. While well-defined G aids efficient
HIL agent learning (Hauskrecht et al., 2013), its acquisition is difficult due to missing task-specific
knowledge (Nachum et al., 2018; Kim et al., 2021). Natural language task instructions, though eas-
ier to obtain as they are common-used commands from human (Stepputtis et al., 2020), are hard to
map to hierarchical structures due to their complex and ambiguous nature (Zhang & Chai, 2021;
Ahuja et al., 2023; Ju et al., 2024). In this work, we investigate leveraging LLMs to parameterize G
from language instructions with its powerful semantic and world knowledge, and pre-label states in
D to guide effective learning of πH and πL in hierarchical imitation learning.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: Overview of SEAL Architecture: The LLM aids in discovering sub-goal spaces for the
task by semantically decomposing the full-task instruction and labeling each state with a reference
latent vector that represents its corresponding sub-goal. These reference labels are then used to train
a high-level sub-goal encoder, which works in conjunction with an unsupervised VQ encoder.

4 SEAL FOR HIERARCHICAL IMITATION LEARNING

The key idea of SEAL is to learn high-level sub-goal representations using supervisory labels gen-
erated by LLMs. In previous works, such labels were typically provided by human experts via
instructions (Pan et al., 2018; Le et al., 2018a), making them expensive to obtain. However, with
the assistance of LLMs, we introduce an efficient and reliable method to automatically generate
labels that map states to sub-goals. Specifically, LLMs are used to semantically extract a high-
level plan from the full-task language instruction M and map states in expert demonstrations to
sub-goals within this plan. Using these learned sub-goal representations, the model then learns the
corresponding low-level actions. An overview of our SEAL framework is illustrated in Fig. 1.

4.1 PRETRAINED LLMS FOR GUIDING SUB-GOALS LEARNING

Our key design of leveraging LLMs to guide high-level sub-goals learning can be divided into two
stages: (i) Use LLM-generated high-level plan based on full-task instruction as sub-goal space (ii)
Use LLMs to encode states in expert demonstrations to sub-goal representations.

Derive Sub-goal Space of Task Prior works have demonstrated that LLMs can establish a mean-
ingful chain of sub-tasks from task instruction as high-level plan (Huang et al. (2022); Prakash et al.
(2023); Singh et al. (2023)). Yet few of them incorporate it with Hierarchical Imitation Learning
(HIL). In SEAL, we use LLMs to specify the unknown sub-goal space G in HIL formulations. Feed-
ing LLMs with the full-task language instructionM, we notice that the decomposed sub-goals in
high-level plan naturally consist of a language-based sub-goal set: {ĝ1, ĝ2, ..., ĝK} = fllm(M),
where K is the total number of generated sub-goals. We treat this estimated sub-goal dataset as the
finite sub-goal space: G = {ĝ1, ĝ2, ..., ĝK}.
Labeling Sub-goals for States in Expert Dataset After devising the sub-goal space G with LLM-
generated sub-goals, we use them to map states st ∈ D to a sub-goal latent space. These LLM-
defined labels guide the high-level encoder to learn task-relevant sub-goal representations. To pa-
rameterize the language-based sub-goals ĝi ∈ G and facilitate learning, we establish a codebook
C = {z1, z2, ..., zK}, where each latent variable zi ∈ RK is a one-hot vector (i.e. i-th element in
zi equals to 1, others equal to 0, i = 1, 2, ...,K) representing sub-goal ĝi in G. We then prompt
the same LLM to perform a encoding function hllm, which map st to latent vector z(ref)t ∈ C by
checking whether it belongs to sub-goal ĝi ∈ G: z(ref)t = hllm(st,G). We stipulate the output of
LLM must be ‘yes’ or ‘no’ and then convert it to integer 1 or 0, as this form of answer has shown to
be more reliable than the open-ended answer (Du et al. (2023)). By repeatedly asking K times we
can finally establish the K-dim latent variable z

(ref)
t which represents the sub-goal for all st in D.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

We use these LLM-given latent representations z(ref)t as supervisory labels for high-level sub-goal
encoder training in HIL. Once we obtain these labels, we have no need to interact to LLMs later.

4.2 DUAL-ENCODER FOR SUB-GOAL IDENTIFICATION

Naturally, we consider using these LLM-generated labels for sub-goal representations to train a
high-level sub-goal encoder πH(st) in a supervised manner. Compared to previous unsupervised
approaches, this supervised method helps reduce the randomness of output sub-goals by leveraging
the guidance provided by the labels. However, it is prone to over-fitting on the training dataset.
To address this challenge, inspired by (Ranzato & Szummer (2008); Le et al. (2018b)), we pro-
pose a Dual-Encoder structure for high-level sub-goal identification. This design integrates both a
supervised learning encoder and an unsupervised learning encoder, producing a weighted-average
sub-goal representation. The weighted combination allows for flexibility, prioritizing the encoder
that performs better for a particular task or dataset, ultimately enhancing robustness and improving
generalization.

Supervised LLM-Label-based Encoder Considering that the codebook C, representing the sub-
goal space G, is discrete and finite, we formulate the supervised sub-goal learning as a multi-class
classification problem. To train this supervised learning encoder π

(llm)
H , we define the sub-goal

learning objective by maximizing the log-likelihood of the labels generated by the LLMs:

L(llm)
H = E

(st,z
(ref)
t)∼D − log π

(llm)
H (z

(ref)
t |st). (1)

Unsupervised VQ Encoder Given the codebook C = {z1, z2, ..., zK}, we apply Vector Quantiza-
tion (VQ) (Van Den Oord et al. (2017)) to design the unsupervised sub-goal encoder in our SEAL
framework. It is a widely used approach that can map the input state st to a finite, discrete latent
space like C. In VQ, the encoder π(vq)

H first predicts a continuous latent vector: z(con)t = π
(vq)
H (st).

This latent vector is then matched to the closest entry in C:

z
(vq)
t = argminzi∈C ∥z(con)t − zi∥22. (2)

The learning objective of π(vq)
H , named commitment loss, encourages the predicted continuous latent

vector z(con)t to cluster to the final output sub-goal representation z
(vq)
t :

L(vq)
H = E(st)∼D ∥sq(z(vq)t)− z

(con)
t ∥22; (3)

where sq(·) denotes stop-gradient operation.

4.3 TRANSITION-AUGMENTED LOW-LEVEL POLICY

We compute a weighted-average vector zt over z(llm)
t ,z(vq)t obtained by dual-encoders to finalize

the predicted sub-goal representation:

zt = Wvqz
(vq)
t +Wllmz

(llm)
t ; (4)

where the weights Wvq and Wllm quantifies how the predicted sub-goal representations z(vq)t and
z
(llm)
t contribute to the task completion success rate. The weights are updated by validations during

the training process. The update details will be demonstrated in Section 4.4.

Given the predicted sub-goal representations zt for each st in the expert dataset, normally the low-
level policy agent follows a goal-conditioned behavioral cloning (GC-BC) architecture. It is trained
by maximizing the log-likelihood of the actions in the expert dataset, using the sub-goal representa-
tions as auxiliary inputs:

LGC−BC = E(st,at,zt)∼D − log πL(at|st, zt). (5)

However, this low-level policy design overlooks the imbalanced distribution and importance of the
hierarchical structure captured by high-level sub-goal encoders. Several studies have highlighted
that certain states, where transitions between sub-goals occur in long-horizon demonstrations, have
a significant impact on the policy agent’s performance (Jain & Unhelkar, 2024; Zhai et al., 2022;

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Wen et al., 2020). Despite their critical role, these states make up only a small portion of expert
demonstrations. Successfully reaching these intermediate states and taking appropriate actions im-
proves sub-goal completion, thereby increasing the overall task success rate. We formally define
these states as intermediate states:

Definition 4.3.1. (Intermediate States). Let st ∈ S, 0 ≤ t ≤ T be a state observed when running
the HIL agent, zt is its corresponding latent variable learnt by high-level encoder πH that represents
sub-goal. st+1 is the following state. The state st is defined as an intermediate state only when
the sub-goal changes: zt+1 ̸= zt. Due to the scarcity of these intermediate states, it becomes very
challenging to imitate the correct behavior in such states. To address this issue, inspired by the
practice of assigning extra rewards to sub-goal transition points in hierarchical RL (Ye et al. (2020);
Berner et al. (2019); Zhai et al. (2022); Wen et al. (2020)), we augment the importance of these
intermediate states by assigning higher weights to them in the low-level policy training loss:

LL = E(st,at,zt)∼D − e∥zt+1−zt∥2
2 log πL(at|st, zt); (6)

where the term e∥zt+1−zt∥2
2 measures the L2-distance between the current sub-goal representation

zt and the next sub-goal zt+1. Given that zt is a one-hot vector, we have the term:

e∥zt+1−zt∥2
2 =

{
e, if zt+1 ̸= zt

1, if zt+1 = zt
(7)

Thus, this term can serve as an adaptive weight to enhance the imitation of expert behavior at inter-
mediate states. By incorporating this transition-augmented low-level policy design, we emphasize
the importance of sub-goal transitions, and in simulations we also observe this design can greatly
help agents make transitions across each sub-goal.

4.4 TRAINING

We train our SEAL model end-to-end, jointly updating parameters of πH and πL by minimizing the
loss function L = βLH + LL, where β is a hyper-parameter that controls the weight of high-level
sub-goal learning in relation to the overall training process. Additionally, in order to evaluate the
reliability of the latent variables predicted by the VQ encoder and LLM-Label-based encoder and
determine the weight combination that can better improve task performance, we keep validating the
success rates of those two different latent variables in the environment during training. Based on the
validation results, we dynamically update the weights Wvq and Wllm in Eq. 4.

For validation, we simultaneously execute actions conditioned on both the VQ-encoder and the
LLM-label-based encoder: a

(vq)
t = πL(st, z

(vq)
t) and a

(llm)
t = πL(st, z

(llm)
t). We then run

episodes to test the different success rates, SRvq and SRllm, for completing the full task. The
updated weights Wvq and Wllm are then computed as Wvq = SRvq/(SRllm + SRvq); Wllm =
SRllm/(SRllm + SRvq) respectively. Wvq , Wllm measure the relative task-completion perfor-
mance of the policy agent under the guidance of z(vq)t and z

(llm)
t , respectively. We refer to these

weights as confidences, indicating the preference for trust between z
(vq)
t and z

(llm)
t .

We also use these weights to finalize the overall training loss of SEAL as a weighted combination
of two end-to-end losses under guidance z

(llm)
t and z

(vq)
t . We finalize the overall training loss of

SEAL by using a weighted combination of two end-to-end losses, conditioned on z
(llm)
t and z

(vq)
t ,

with the same weights Wvq , Wllm determining the contribution of each loss:

Lvq = βL(vq)
H (st) + LL(st, z

(vq)
t);Lllm = βL(llm)

H (st) + LL(st, z
(llm)
t);LSEAL = WvqLvq +WllmLllm.

(8)

Since the low-level policy agent’s actions are conditioned on the latent sub-goal representations,
minimizing this weighted-combination loss LSEAL allows our SEAL to adapt the trainable param-
eters of the low-level policy based on task-completion performance. This approach helps the agent
make better decisions by adjusting to updated latent predictions zt = Wvqz

(vq)
t +Wllmz

(llm)
t dur-

ing training process. As a result, our SEAL framework can continuously adapt both the high-level
sub-goal encoders and the low-level policy agent, leading to more reliable and robust sub-goal rep-
resentations, as well as improved decision-making for action selection. The complete algorithm for
SEAL is illustrated in Algorithm 1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 SEmantic-Augmented Imitation Learning (SEAL) via Language Model

1: Input: Expert Trajectory Dataset D, Natural Language Task InstructionM, Pre-trained LLM
llm for sub-goal decomposition and labeling.

2: Initialize VQ-encoder π(vq)
H (st; θ1), LLM-Label-based encoder π(llm)

H (st; θ2), Low-level pol-
icy agent πL(st, zt; θ3), Wvq = Wllm = 0.5 .

3: (LLM Guiding Sub-goal Learning)
4: Specify sub-goal space withM: G = {ĝ1, ĝ2, ..., ĝK} = fllm(M) .
5: Labeling st ∈ D to latent sub-goal representations z(ref)t : z(ref)t = hllm(st,G) (z(ref)t ∈ C =
{z1, z2, ..., zK}) .

6: (Training)
7: for Iteration j (j = 1, 2, ..., Jmax) do
8: For st ∈ D, z(llm)

t ← π
(llm)
H (st), z

(vq)
t ← π

(vq)
H (st).

9: Get L(llm)
H and L(vq)

H using Eq. 1 and Eq. 3.
10: L(llm)

L ← LL(st, at, z
(llm)
t),L(vq)

L ← LL(st, at, z
(vq)
t), using Eq. 6.

11: LSEAL ←Wllm(L(llm)
H + L(llm)

L) +Wvq(L(vq)
H + L(vq)

L)

12: Update θ1, θ2, θ3: θi ← θi − ∂LSEAL

∂θi
(i = 1, 2, 3)

13: Validate for: SR(llm), SR(vq)

14: Update: Wvq =
SRvq

SRllm+SRvq
,Wllm = SRllm

SRllm+SRvq
.

15: end for

5 EXPERIMENTS

In this section, we evaluate the performance of SEAL on two long-horizon compositional tasks:
KeyDoor and Grid-World. We compare SEAL’s performance with various baselines, including non-
hierarchical, unsupervised, and supervised hierarchical IL methods, in both large and small expert
dataset scenarios. Following this, we analyze how SEAL enhances task completion performance.

5.1 SIMULATION ENVIRONMENTAL SETUP

KeyDoor The MiniGrid Dataset (Chevalier-Boisvert et al., 2018b) is a collection of grid-based envi-
ronments designed for evaluating reinforcement learning and imitation learning algorithms in tasks
requiring navigation, exploration, and planning. Among these environments, we start with KeyDoor,
an easy-level compositional task that requires the player to move to the key and pick up it to unlock
the door. To add complexity, we enlarge the original 3 × 3 grid environment to 10 × 10 size, and
randomly initialize the locations of player, key and door for each episode. To facilitate understand-
ing by LLMs, we convert the environment into a vector-based state, with elements including the
coordinates of the player, key, and door, as well as the different statuses of the key (picked or not)
and door (locked or not). The maximum time-steps T of one episode is set to 100. We evaluate our
SEAL on expert datasets with 30, 100, 150, 200 demonstrations generated by an expert bot.

Grid-World The environment is a 10x10 grid world with a single player and multiple objects ran-
domly distributed at various locations. The player’s objective is to visit and pick up these objects in
a specific order. This task is more challenging than KeyDoor due to its longer-range compositional
nature, involving more sub-goals. In this work, we set the number of objects in the grid world to
range from 3 to 5, to test SEAL’s effectiveness in solving longer-range tasks. Similar to KeyDoor,
the fully observed environment is converted into a vector-based state, with elements representing
the coordinates of the player and objects, as well as their statuses (picked or not). The maximum
time-steps per episode is set to 100. We evaluate SEAL on expert datasets with 200, 300, and 400
demonstrations generated by an expert bot.

5.2 BASELINES

We compare our SEAL with one non-hierarchical learning approach: Behavioral Cloning (BC)
(Bain & Sammut, 1995), two unsupervised learning approaches: LISA (Garg et al., 2022) and SDIL

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(Zhao et al., 2023), and one LLM-enabled supervised learning approaches Thought Cloning (Hu &
Clune, 2024). The detailed settings are listed below:

Behavioral Cloning (BC): The classical imitation learning method with non-hierarchy. We train
the policy agent π(at|st) by maximizing the log-likelihood: LBC = E(st,at)∈D − logπ(at|st).
LISA: A HIL approach with unsupervised VQ-based sub-goal learner. We implement the low-level
policy agent with only current state st as input, rather than a sequence of previous states in original
settings, since we assume the task is MDP.
SDIL:A HIL approach with an unsupervised sub-goal learner by implementing only the skill
discovery component of SDIL, omitting the skill optimality estimation since our expert bot
generating demonstrations is optimal. SDIL selects the final sub-goal representation zt by:

argmaxi
1/D(zi,z

′
t)∑K

i=1 1/D(zi,z
′
t)

, where D denotes the Euclidean distance, z
′

t is the continuous output

vector of πH , zi ∈ C. To make this selection differentiable for gradient back-propagate, we adopt
Gumbel-Softmax (Jang et al., 2016) to replace argmax operation.
Thought Cloning (TC): A HIL approach with supervised sub-goal learner. TC consists of a thought
generator πu(tht|st, tht−1) (where tht equals to our zt) and an action generator πl(at|st, tht). πu

requires supervisory labels training. We apply the LLM-generated sub-goal representations z
(ref)
t

as labels.

We also present results from two variants of SEAL: SEAL-L, which relies entirely on the LLM-
label-based high-level sub-goal encoder, and SEAL, which uses the dual-encoder design. SEAL-L
is compared with TC to highlight the effectiveness of the low-level transition-augmented design in
supervised learning, while SEAL demonstrates the superiority of the dual-encoder approach com-
pared with SEAL-L.

5.3 MAIN RESULTS

We first evaluate the effectiveness of our SEAL approach in two environments: KeyDoor and Grid-
World with 3 objects. These environments are compositional in nature, and the relatively small
number of sub-goals simplifies high-level sub-goal encoder learning in HIL settings. To break down
the full task instructions into sub-goals, we utilize the latest OpenAI-developed LLM, GPT-4o (Is-
lam & Moushi (2024)). The sub-goal count for KeyDoor is K = 4, and for Grid-World with 3
objects, it is K = 6. These identified sub-goals are then used to label states in the expert dataset for
supervised high-level encoder training. For a fair comparison, we set the number of sub-goals K in
the unsupervised baselines LISA and SDIL to match the LLM-determined sub-goal numbers used
in SEAL. Additional details are provided in the Appendix.

Task # Traj BC LISA SDIL TC SEAL-L SEAL

KeyDoor

30 0.09±0.02 0.09±0.02 0.23±0.05 0.26±0.02 0.27±0.06 0.30±0.04
100 0.50±0.06 0.53±0.05 0.45±0.04 0.50±0.03 0.52±0.02 0.56±0.03
150 0.67±0.05 0.66±0.03 0.63±0.05 0.69±0.05 0.68±0.03 0.75±0.04
200 0.74±0.02 0.69±0.04 0.70±0.04 0.70±0.02 0.76±0.04 0.82±0.04

GridWorld
200 0.26±0.04 0.24±0.03 0.43±0.04 0.44±0.03 0.39±0.04 0.29±0.03
300 0.31±0.04 0.44±0.05 0.48±0.01 0.52±0.07 0.65±0.04 0.61±0.02
400 0.48±0.04 0.53±0.03 0.62±0.04 0.62±0.04 0.83±0.02 0.85±0.02

Table 1: Simulation Results: Success rates (ranging from 0 to 1) for completing the tasks of Key-
Door and Grid-World (3 Objects), averaged over 5 random seeds. Our SEAL approach outperforms
others in most cases. The best-performing method is highlighted in bold.

We train the models using randomly sampled expert demonstrations, with 30, 100, 150, and 200
samples for the KeyDoor environments, and 200, 300, and 400 samples for Grid-World with 3 ob-
jects. Since Grid-World is a more complex compositional task, we collect additional expert data for
this environment. The task success rates from the simulations are presented in Table 1. The results
show in most cases, our approach either outperforms or is competitive with the other baselines.

We observe that with fewer training demonstrations, both the HIL baselines and our SEAL outper-
form non-hierarchical behavior cloning (BC), as they benefit from the additional information learned
from hierarchical sub-goal structures. However, as the amount of training data increases, the gap
between BC and HIL methods narrows, especially in simpler environments like KeyDoor, where BC
begins to generalize better due to its exposure to more scenarios. Despite this, SEAL maintains a

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 2: Visualization: Sub-goal selection in an example trajectory instance of Grid-World with 3
Objects. We color-code each sub-goal and black circle marks the final step of each trajectory. The
ground-truth is labeled by human in this case, and SEAL achieve the best sub-goal transitions.

consistent performance advantage do to our Transition-Augmented Low-Level policy agent, which
emphasizes imitation the expert actions in challenging sub-goal transition states. As shown in Table
2, SEAL consistently achieves higher sub-goal completion rates, demonstrating its superior ability
to select appropriate actions at those critical intermediate states with sub-goal transitions.

Sub-goals # Traj BC LISA SDIL TC SEAL-L SEAL

Pick up the
Key
(KeyDoor)

30 0.29±0.05 0.22±0.03 0.42±0.05 0.52±0.04 0.55±0.10 0.56±0.04
100 0.78±0.04 0.77±0.06 0.65±0.02 0.67±0.02 0.82±0.05 0.80±0.02
150 0.81±0.06 0.81±0.03 0.80±0.02 0.82±0.03 0.93±0.02 0.93±0.04
200 0.87±0.01 0.88±0.03 0.83±0.03 0.86±0.01 0.97±0.02 0.98±0.01

Pick up
Object 1
(GridWorld)

200 0.58±0.09 0.58±0.05 0.79±0.02 0.78±0.04 0.83±0.04 0.67±0.03
300 0.64±0.06 0.71±0.07 0.75±0.02 0.85±0.03 0.90±0.04 0.85±0.04
400 0.75±0.03 0.79±0.03 0.85±0.03 0.87±0.04 0.95±0.02 0.98±0.01

Pick up
Object 2
(GridWorld)

200 0.39±0.09 0.36±0.06 0.56±0.04 0.64±0.05 0.61±0.04 0.50±0.05
300 0.44±0.06 0.55±0.06 0.59±0.03 0.52±0.05 0.80±0.04 0.73±0.03
400 0.57±0.05 0.63±0.04 0.70±0.04 0.62±0.03 0.90±0.02 0.89±0.01

Table 2: Success rates of sub-goals completion in both KeyDoor and Grid-World, averaged over 5
random seeds. For the KeyDoor environment, the sub-goal is to pick up the key, while for Grid-
World with 3 objects, the sub-goals are to pick up object 1 and object 2.

We observe that the dual high-level encoder design in our SEAL enhances performance. Compared
to relying solely on the LLM-label-based sub-goal encoder, SEAL’s dual-encoder design demon-
strates higher success rates across both tasks. As shown in Fig. 2, SEAL achieves greater prediction
accuracy in the testing environment than other baselines. Unsupervised approaches like SDIL may
struggle to accurately capture the ground-truth hierarchical structure, leading the agent to take ir-
regular actions. Meanwhile, Thought Cloning (TC), although typically better at sub-goal prediction
accuracy when aided by LLM-given labels, can also fail to specify the sub-goals of crucial states
due to overfitting. This can result in invalid actions and ultimately cause task failure.

Additionally, compared to unsupervised HIL baselines, our SEAL removes the burden for tuning
the number of sub-goals K, by leveraging concrete suggestions from LLMs. Unsupervised methods
like LISA, which rely on a pre-defined codebook of sub-goals, can struggle to match the true task
hierarchy when choosing inappropriate hyper-parameter K. As shown in Fig. 3, both overestimating
and underestimating the number of sub-goals can lead to performance degradation. In contrast, our
SEAL avoids this issue and outperforms all unsupervised HIL approaches in most cases.

5.4 PERFORMANCE ON LONGER COMPOSITIONAL TASKS

Object Num # Traj BC LISA SDIL TC SEAL-L SEAL

3 300 0.31±0.04 0.44±0.05 0.48±0.01 0.52±0.07 0.65±0.04 0.61±0.02
400 0.48±0.04 0.53±0.03 0.62±0.04 0.62±0.04 0.83±0.02 0.85±0.02

4 400 0.16±0.03 0.13±0.01 0.22±0.04 0.24±0.05 0.26±0.03 0.32±0.03
500 0.39±0.04 0.36±0.04 0.40±0.01 0.39±0.03 0.49±0.03 0.51±0.03

5 500 0.09±0.02 0.11±0.04 0.11±0.02 0.23±0.06 0.25±0.05 0.42±0.03
600 0.30±0.03 0.47±0.03 0.64±0.05 0.35±0.03 0.65±0.03 0.73±0.03

Table 3: Success rates on longer-range compositional tasks (Grid-World) with 3, 4 and 5 objects.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) #Traj = 200 (b) #Traj = 300 (c) #Traj = 400

Figure 3: Comparison of success rates among different sub-goal number K selection in unsupervised
HIL baselines LISA and SDIL. Experiments set on Grid-World with 3 Objects. x-axis represents
the different settings of K.

We further investigate whether SEAL can sustain its effectiveness and superiority on longer-range
compositional tasks, which involve more sub-goals. To evaluate this, we test our method on Grid-
World with 4 and 5 objects, where the LLMs decompose the task instructions into more sub-goals
(K = 8 and K = 10, respectively). As shown in Table 3, SEAL continues to lead, particularly in
cases with smaller expert datasets, demonstrating its adaptability to more complex tasks. In longer-
range compositional tasks, managing the increasing complexity of the sub-goal space becomes more
challenging, especially for supervised methods like Thought Cloning, as the supervision signal for
each sub-goal becomes sparser. SEAL overcomes this by employing a dual-encoder design, which
leverages both the flexibility of unsupervised learning to learn sub-goals better. Meanwhile, SEAL
focuses more on imitating the few but critical sub-goal transition points in longer-range composi-
tional tasks, avoiding the limitations of signal sparsity faced by other approaches.

5.5 ADAPTATION TO TASK VARIATIONS

We also test the adaptability of SEAL to task variations. To do this, we modify the predefined pick-
up order in the Grid-World environment, which includes three objects: A, B, and C. This generates
new tasks for evaluation. We create a dataset comprising 400 expert demonstrations for the task with
the order ABC, along with few-shot set of 10 expert demonstrations for other orders such as ACB,
BCA, and BAC. We then assess the performance of the trained agent on these alternative orders.
As shown in Table 4, our method exhibits slightly higher success rates, indicating that SEAL has
better adaptability to task variations. However, it is important to note that this conclusion is limited
to specific scenarios. In the grid-world, rearranging the order does not introduce new sub-goals,
meaning that the sub-goals learned from the training set remain applicable to these new tasks.

Table 4: Success rates under task variations on Grid-World averaged over 5 random seeds.

Test Env BC LISA SDIL TC SEAL-L SEAL
ABC 0.48±0.04 0.53±0.03 0.62±0.04 0.62±0.04 0.83±0.02 0.85±0.02
ACB 0.01±0.00 0.08±0.02 0.11±0.04 0.13±0.05 0.18±0.07 0.14±0.03
BAC 0.01±0.00 0.05±0.01 0.06±0.02 0.09±0.02 0.11±0.03 0.08±0.02
BCA 0.00±0.00 0.03±0.01 0.08±0.03 0.08±0.02 0.08±0.01 0.09±0.03

6 CONCLUSION

In this work, we introduce SEAL, a novel HIL framework that leverages LLMs’ semantic and world
knowledge to define sub-goal spaces and pre-label states as meaningful sub-goal representations
without prior task hierarchy knowledge. SEAL outperforms baselines like BC, LISA, SDIL, and TC
across various environments, particularly in low-sample and complex longer-range compositional
tasks. Our approach achieves higher success and sub-goal completion rates, with assistance of
the dual-encoder proving more robust than the pure LLM encoder and the transition-augmented
low-level policy. SEAL also adapts well to varying task complexities and latent dimensions. Our
current design still observes training instability, and we are interested in making more efficient SEAL
approaches while under partially observed states.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

7 ETHICS STATEMENT

In this work, we develop a new algorithm for hierarchical imitation learning, which builds upon pre-
trained large language models (LLMs). The LLMs used in our experiments are based on publicly
available GPT-4o API from OpenAI and do not involve any personally identifiable information or
sensitive data. The authors are not aware of any additional ethical concerns related to the methodol-
ogy presented in this research.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Arun Ahuja, Kavya Kopparapu, Rob Fergus, and Ishita Dasgupta. Hierarchical reinforcement learn-
ing with natural language subgoals. arXiv preprint arXiv:2309.11564, 2023.

Michael Bain and Claude Sammut. A framework for behavioural cloning. In Machine Intelligence
15, pp. 103–129, 1995.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Kiante Brantley, Wen Sun, and Mikael Henaff. Disagreement-regularized imitation learning. In
International Conference on Learning Representations, 2019.

Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alexander Herzog, Daniel Ho,
Julian Ibarz, Alex Irpan, Eric Jang, Ryan Julian, et al. Do as i can, not as i say: Grounding
language in robotic affordances. In Conference on robot learning, pp. 287–318. PMLR, 2023.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of
grounded language learning. arXiv preprint arXiv:1810.08272, 2018a.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment
for openai gym (2018). URL https://github. com/maximecb/gym-minigrid, 6, 2018b.

Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. Goal-conditioned imitation
learning. Advances in neural information processing systems, 32, 2019.

Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek
Gupta, and Jacob Andreas. Guiding pretraining in reinforcement learning with large language
models. In International Conference on Machine Learning, pp. 8657–8677. PMLR, 2023.

Eva Eigner and Thorsten Händler. Determinants of llm-assisted decision-making. arXiv preprint
arXiv:2402.17385, 2024.

Yuwei Fu, Haichao Zhang, Di Wu, Wei Xu, and Benoit Boulet. Furl: Visual-language models as
fuzzy rewards for reinforcement learning. arXiv preprint arXiv:2406.00645, 2024.

Divyansh Garg, Skanda Vaidyanath, Kuno Kim, Jiaming Song, and Stefano Ermon. Lisa: Learn-
ing interpretable skill abstractions from language. Advances in Neural Information Processing
Systems, 35:21711–21724, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Milos Hauskrecht, Nicolas Meuleau, Leslie Pack Kaelbling, Thomas L Dean, and Craig Boutilier.
Hierarchical solution of markov decision processes using macro-actions. arXiv preprint
arXiv:1301.7381, 2013.

Joey Hejna, Pieter Abbeel, and Lerrel Pinto. Improving long-horizon imitation through instruction
prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp.
7857–7865, 2023.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

Shengran Hu and Jeff Clune. Thought cloning: Learning to think while acting by imitating human
thinking. Advances in Neural Information Processing Systems, 36, 2024.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International conference on
machine learning, pp. 9118–9147. PMLR, 2022.

Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Voxposer:
Composable 3d value maps for robotic manipulation with language models. arXiv preprint
arXiv:2307.05973, 2023.

Raisa Islam and Owana Marzia Moushi. Gpt-4o: The cutting-edge advancement in multimodal llm.
Authorea Preprints, 2024.

Abhinav Jain and Vaibhav Unhelkar. Go-dice: Goal-conditioned option-aware offline imitation
learning via stationary distribution correction estimation. In Proceedings of the AAAI conference
on artificial intelligence, volume 38, pp. 12763–12772, 2024.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Yiding Jiang, Evan Liu, Benjamin Eysenbach, J Zico Kolter, and Chelsea Finn. Learning options
via compression. Advances in Neural Information Processing Systems, 35:21184–21199, 2022.

Mingxuan Jing, Wenbing Huang, Fuchun Sun, Xiaojian Ma, Tao Kong, Chuang Gan, and Lei Li.
Adversarial option-aware hierarchical imitation learning. In International Conference on Machine
Learning, pp. 5097–5106. PMLR, 2021.

Zhaoxun Ju, Chao Yang, Fuchun Sun, Hongbo Wang, and Yu Qiao. Rethinking mutual information
for language conditioned skill discovery on imitation learning. In Proceedings of the International
Conference on Automated Planning and Scheduling, volume 34, pp. 301–309, 2024.

Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski,
Chelsea Finn, Sergey Levine, and Karol Hausman. Mt-opt: Continuous multi-task robotic re-
inforcement learning at scale. arXiv preprint arXiv:2104.08212, 2021.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Kaya Stechly, Mudit Verma, Siddhant
Bhambri, Lucas Saldyt, and Anil Murthy. Llms can’t plan, but can help planning in llm-modulo
frameworks. arXiv preprint arXiv:2402.01817, 2024.

Junsu Kim, Younggyo Seo, and Jinwoo Shin. Landmark-guided subgoal generation in hierarchical
reinforcement learning. Advances in neural information processing systems, 34:28336–28349,
2021.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Thomas Kipf, Yujia Li, Hanjun Dai, Vinicius Zambaldi, Alvaro Sanchez-Gonzalez, Edward Grefen-
stette, Pushmeet Kohli, and Peter Battaglia. Compile: Compositional imitation learning and
execution. In International Conference on Machine Learning, pp. 3418–3428. PMLR, 2019.

Karol Kurach, Mario Lucic, Xiaohua Zhai, Marcin Michalski, and Sylvain Gelly. The gan landscape:
Losses, architectures, regularization, and normalization. 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language
models. arXiv preprint arXiv:2303.00001, 2023.

Hoang Le, Nan Jiang, Alekh Agarwal, Miroslav Dudı́k, Yisong Yue, and Hal Daumé III. Hierarchi-
cal imitation and reinforcement learning. In International conference on machine learning, pp.
2917–2926. PMLR, 2018a.

Lei Le, Andrew Patterson, and Martha White. Supervised autoencoders: Improving generalization
performance with unsupervised regularizers. Advances in neural information processing systems,
31, 2018b.

Yang Liu, Yuanshun Yao, Jean-Francois Ton, Xiaoying Zhang, Ruocheng Guo, Hao Cheng, Yegor
Klochkov, Muhammad Faaiz Taufiq, and Hang Li. Trustworthy llms: a survey and guideline for
evaluating large language models’ alignment. arXiv preprint arXiv:2308.05374, 2023.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
coding large language models. arXiv preprint arXiv:2310.12931, 2023.

Federico Malato, Florian Leopold, Andrew Melnik, and Ville Hautamäki. Zero-shot imitation policy
via search in demonstration dataset. In ICASSP 2024-2024 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 7590–7594. IEEE, 2024.

Angelos Mavrogiannis, Christoforos Mavrogiannis, and Yiannis Aloimonos. Cook2ltl: Translat-
ing cooking recipes to ltl formulae using large language models. In 2024 IEEE International
Conference on Robotics and Automation (ICRA), pp. 17679–17686. IEEE, 2024.

Oier Mees, Lukas Hermann, and Wolfram Burgard. What matters in language conditioned robotic
imitation learning over unstructured data. IEEE Robotics and Automation Letters, 7(4):11205–
11212, 2022.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. Advances in neural information processing systems, 31, 2018.

Suraj Nair and Chelsea Finn. Hierarchical foresight: Self-supervised learning of long-horizon tasks
via visual subgoal generation. arXiv preprint arXiv:1909.05829, 2019.

Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning. In Icml, vol-
ume 1, pp. 2, 2000.

Xinlei Pan, Eshed Ohn-Bar, Nicholas Rhinehart, Yan Xu, Yilin Shen, and Kris M Kitani. Human-
interactive subgoal supervision for efficient inverse reinforcement learning. arXiv preprint
arXiv:1806.08479, 2018.

Bharat Prakash, Nicholas Waytowich, Tim Oates, and Tinoosh Mohsenin. Interactive hierarchical
guidance using language. arXiv preprint arXiv:2110.04649, 2021.

Bharat Prakash, Tim Oates, and Tinoosh Mohsenin. Llm augmented hierarchical agents. arXiv
preprint arXiv:2311.05596, 2023.

Marc’Aurelio Ranzato and Martin Szummer. Semi-supervised learning of compact document rep-
resentations with deep networks. In Proceedings of the 25th international conference on Machine
learning, pp. 792–799, 2008.

Siddharth Reddy, Anca D Dragan, and Sergey Levine. Sqil: Imitation learning via reinforcement
learning with sparse rewards. arXiv preprint arXiv:1905.11108, 2019.

Stefan Schaal. Learning from demonstration. Advances in neural information processing systems,
9, 1996.

Tom Silver, Varun Hariprasad, Reece S Shuttleworth, Nishanth Kumar, Tomás Lozano-Pérez, and
Leslie Pack Kaelbling. Pddl planning with pretrained large language models. In NeurIPS 2022
foundation models for decision making workshop, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Anthony Simeonov, Yilun Du, Beomjoon Kim, Francois Hogan, Joshua Tenenbaum, Pulkit
Agrawal, and Alberto Rodriguez. A long horizon planning framework for manipulating rigid
pointcloud objects. In Conference on Robot Learning, pp. 1582–1601. PMLR, 2021.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using
large language models. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pp. 11523–11530. IEEE, 2023.

Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su.
Llm-planner: Few-shot grounded planning for embodied agents with large language models. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2998–3009,
2023.

Simon Stepputtis, Joseph Campbell, Mariano Phielipp, Stefan Lee, Chitta Baral, and Heni
Ben Amor. Language-conditioned imitation learning for robot manipulation tasks. Advances
in Neural Information Processing Systems, 33:13139–13150, 2020.

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the
planning abilities of large language models-a critical investigation. Advances in Neural Informa-
tion Processing Systems, 36:75993–76005, 2023.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Xin Wang, Qiuyuan Huang, Asli Celikyilmaz, Jianfeng Gao, Dinghan Shen, Yuan-Fang Wang,
William Yang Wang, and Lei Zhang. Reinforced cross-modal matching and self-supervised im-
itation learning for vision-language navigation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 6629–6638, 2019a.

Xin Wang, Shinji Takaki, Junichi Yamagishi, Simon King, and Keiichi Tokuda. A vector quantized
variational autoencoder (vq-vae) autoregressive neural f 0 model for statistical parametric speech
synthesis. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 28:157–170,
2019b.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe,
explain, plan and select: Interactive planning with large language models enables open-world
multi-task agents. arXiv preprint arXiv:2302.01560, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Zheng Wen, Doina Precup, Morteza Ibrahimi, Andre Barreto, Benjamin Van Roy, and Satinder
Singh. On efficiency in hierarchical reinforcement learning. Advances in Neural Information
Processing Systems, 33:6708–6718, 2020.

Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong, and Harold Soh. Translating natural lan-
guage to planning goals with large-language models. arXiv preprint arXiv:2302.05128, 2023.

Deheng Ye, Guibin Chen, Wen Zhang, Sheng Chen, Bo Yuan, Bo Liu, Jia Chen, Zhao Liu, Fuhao
Qiu, Hongsheng Yu, et al. Towards playing full moba games with deep reinforcement learning.
Advances in Neural Information Processing Systems, 33:621–632, 2020.

Yuexiang Zhai, Christina Baek, Zhengyuan Zhou, Jiantao Jiao, and Yi Ma. Computational bene-
fits of intermediate rewards for goal-reaching policy learning. Journal of Artificial Intelligence
Research, 73:847–896, 2022.

Alex Zhang, Ananya Parashar, and Dwaipayan Saha. A simple framework for intrinsic reward-
shaping for rl using llm feedback.

Lihua Zhang. Sample efficient imitation learning via reward function trained in advance. arXiv
preprint arXiv:2111.11711, 2021.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Yichi Zhang and Joyce Chai. Hierarchical task learning from language instructions with unified
transformers and self-monitoring. arXiv preprint arXiv:2106.03427, 2021.

Tianxiang Zhao, Wenchao Yu, Suhang Wang, Lu Wang, Xiang Zhang, Yuncong Chen, Yanchi Liu,
Wei Cheng, and Haifeng Chen. Skill disentanglement for imitation learning from suboptimal
demonstrations. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 3513–3524, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A ADDITIONAL ENVIRONMENT INFORMATION

Figure 4: Examples of compositional-task-related environments used in our experiments. Left:
KeyDoor. The player needs to pick up the key and then use it to unlock the door. Right: Grid-
World. The player needs to pick up the different objects in a pre-specified order.

KeyDoor The environment is based on the DoorKey setting from the MiniGrid Dataset, but with
modifications to make the state compatible with LLM input for sub-goal mapping. Instead of us-
ing image states, we convert the state into an 8-dimensional vector that captures crucial object in-
formation: {x-coordinate of key, y-coordinate of key, x-coordinate of door, y-coordinate of door,
x-coordinate of player, y-coordinate of player, key status (picked: 1, not picked: 0), and door status
(unlocked: 1, locked: 0) }. Wall obstacles are removed to avoid interference. The action space
consists of 6 primitive actions: move up, move down, move right, move left, pick up, and unlock.
The key can be picked up only when the player reaches the key’s coordinates, and the door can
be unlocked only if the player reaches the door’s coordinates with the key already picked up. The
language task instructionM is defined as: ”Pick up the key, and then unlock the door.” The episode
ends when the door is successfully unlocked or the maximum time steps T = 100 are reached.

Grid-World The environment is based on the grid world used in (Kipf et al., 2019; Jiang et al.,
2022). Similar to KeyDoor, the image-based states are converted into a vector format for LLM input,
capturing crucial information about objects: x and y coordinates of Object 1, x and y coordinates of
Object 2, ..., x and y coordinates of the player, status of Object 1 (picked: 1, not picked: 0), status
of Object 2, For Grid-World with 3, 4, or 5 objects, the state vector has dimensions 11, 14, and
17, respectively. Wall obstacles and irrelevant objects are removed to avoid interference. The action
space consists of 5 primitive actions: move up, move down, move right, move left, and pick up. An
object can be picked up only when the player reaches its coordinates. The language task instruction
M is defined as: ”Pick up Object 1, then pick up Object 2, then...” The episode ends when the
player picks up all objects in the correct order or after the maximum time step T = 100. At the start
of each episode, the coordinates of all objects and the player are randomly reset.

Sub-goal Spaces Identified by LLMs We use GPT-4o to decompose the language task instructions
for both the KeyDoor and Grid-World environments into their respective sub-goal spaces. In the
KeyDoor environment, there are K = 4 sub-goals: {move to the key, pick up the key, move to the
door, unlock the door}. In the Grid-World environment, with 3, 4, and 5 objects, the number of
sub-goals is K = 6, K = 8, and K = 10, respectively, including: {move to object 1, pick up object
1, move to object 2, pick up object 2, ...}. For both sub-goal spaces, we parameterize each language
sub-goal in it by a K-dim one hot vector.

B EXAMPLE PROMPTS

In SEAL, we prompt LLMs to generate supervisory labels for training the high-level encoder. Fig.
5 illustrates the detailed prompting process. First, we prompt the LLMs to break down the task
instruction into a finite set of sub-goals. Then, for each state, the LLM is prompted K times to de-
termine whether it corresponds to each of the decomposed sub-goals, mapping the states to sub-goal
representations. Example prompts for both task decomposition and sub-goal labeling are provided
in the following sub-sections.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 5: A schematic illustrating how LLMs are prompted to define sub-goal spaces from task
instructions and map states to sub-goal representations, serving as supervisory labels for training the
high-level sub-goal encoder in SEAL.

B.1 PROMPTS FOR TASK DECOMPOSITION

An example prompt used in Grid-World experiment with 3 objects for task decomposition is listed
below. We use GPT-4o to produce the answer.

Task Description: Pick up the key, then Pick up the ball, and then pick up the diamond.

Environment Details:

The environment is a 10×10 2D Grid-world.

Objects {Key, Ball, Diamond, Player} (Key, Ball, and Diamond’s coordinates are fixed, The
player can move)

Observation Space: {o1: The coordinate of the key
o2: The coordinate of the ball
o3: The coordinate of the diamond
o4: The coordinate of player itself
o5: The status of key (picked/not)
o6: The status of ball (picked/not)
o7: The status of diamond (picked/not)}

Action Space: {move up/right/left/down, pick up}

Role Instruction:
You should give an abstract plan to solve the given task step-by-step. For each step in plan,
you need to extract relevant features in observation space. You should answer in format:

{Step 1:. . . , Relevant Features:{o1,....} , Step 2:. . . , Relevant Features:{o1,....} Step
N: ..., Relevant Features:{o1,....} }

The GPT-4o answer with:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Here is the abstract plan to solve the task step-by-step, with relevant features in the
observation space for each step:

Step 1: Move the player to the key’s coordinate.
Relevant Features: o1: The coordinate of the key. o4: The coordinate of the player.

Step 2: Pick up the key.
Relevant Features: o1: The coordinate of the key. o4: The coordinate of the player. o5:
Status of the key (picked/not).

Step 3: Move the player to the ball’s coordinate.
Relevant Features: o2: The coordinate of the ball. o4: The coordinate of the player. o5:
Status of the key (picked/not).

Step 4: Pick up the ball.
Relevant Features: o2: The coordinate of the ball. o4: The coordinate of the player. o6:
Status of the ball (picked/not).

Step 5: Move the player to the diamond’s coordinate.
Relevant Features: o3: The coordinate of the diamond. o4: The coordinate of the player.
o5: Status of the key (picked/not). o6: Status of the ball (picked/not).

Step 6: Pick up the diamond.
Relevant Features: o3: The coordinate of the diamond. o4: The coordinate of the player.
o7: Status of the diamond (picked/not).

This step-by-step plan ensures that the player collects the objects in the specific required
order: key, ball, and then diamond.

B.2 PROMPTS FOR MAPPING STATES TO SUB-GOAL REPRESENTATIONS

An example prompt used in KeyDoor experiment for mapping states in expert demonstration to
sub-goal representations is listed below. We use GPT-4o to produce the answer.

Environment:
A 2D-grid World with a key and and a door in it. The grid world’s size is 10 * 10. The
coordinate in grid is written as [x, y] (x=0,1,2,3,4, y=0,1,2,3,4) Key at the coordinate: [3, 3].
Door at the coordinate: [0, 1]. Key is not picked up. (key state = 0) Door is locked. (door
state = 0)
(Hint: You can only pick up the key when you at the key location, and can only unlock the
door when you are at the door location and have already picked up the key).

Current State:
The player is currently at [3, 0]. The key state = 0. The door state = 0. The next coordinate
of player is at [3,3].

Sub-goal Judgement:
You need to judge which stage the player in:
1. The player should move to the Key.
2. The player should pick up the Key.
3. The player should move to the Door.
4. The player should unlock the Door.
Please check whether the current state in the above stages in turn. For each judgement
please answer with 1(Yes) or 0 (No).

You should finally answer with a 4-dimension vector format: [1/0, 1/0, 1/0, 1/0]

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

The GPT-4o response with:

The current state of the player is at [3, 0] and the next coordinate is [3, 3], which is the
location of the key.

Here’s the judgment for each state:

The player should move to the Key: 1 (The player is moving towards the key)
The player should pick up the Key: 0 (The player is not yet at the key location)
The player should move to the Door: 0 (The player has not picked up the key yet)
The player should unlock the Door: 0 (The player needs to pick up the key first)

So, the 4-dimension vector is: [1, 0, 0, 0]

C MODEL IMPLEMENTATION DETAILS

We outline the model implementation details for all four baselines and SEAL in the KeyDoor and
Grid-World environments. For non-hierarchical BC baselines, we use a two-layer Multi-layer Per-
ceptron (MLP) as the trainable policy agent π(at|st). In HIL approaches like LISA, SDIL, and TC,
this same two-layer MLP is used for both the high-level sub-goal encoder πH(st) and the low-level
policy agent πL(at|st, zt). We use Adam (Kingma, 2014) as the optimizer for all models, with
learning rates initialized at 5e-5 for KeyDoor and 5e-6 for Grid-World. To ensure fair comparison,
we maintain consistent hyper-parameters across all simulations, including the high-level encoder
loss weight β, the hidden dimensions of the MLPs, and the number of sub-goals K for both HIL
baselines and SEAL. Detailed implementations are presented in the following Table 5:

Methods Loss Hidden dim of MLPs β
BC LBC = E(st,at)∈D − logπ(at|st) [128, 128] /

LISA LLISA = βL(vq)
H (st) + LL(st, z

(vq)
t) [128, 128] 0.4

SDIL LSDIL = E(st,at)∈DEzt∈πH (zt|st) − logπL(at|zt, st) [128, 128] /
TC LTC = E(st,at,zt)∈D − log(βπH(zt|zt−1, st) + πL(at|st, zt)) [128, 128] 0.4

SEAL LSEAL = Wllm(L(llm)
H + L(llm)

L) + Wvq(L(vq)
H + L(vq)

L) [128, 128] 0.4

Table 5: Hyperparameters settings of Model Implementations.

19

	Introduction
	Related Works
	Preliminary
	SEAL for Hierarchical Imitation Learning
	Pretrained LLMs for Guiding Sub-Goals Learning
	Dual-Encoder for Sub-goal Identification
	Transition-Augmented Low-level Policy
	Training

	Experiments
	Simulation Environmental Setup
	Baselines
	Main Results
	Performance on longer compositional tasks
	Adaptation to Task Variations

	Conclusion
	Ethics Statement
	Additional Environment Information
	Example Prompts
	Prompts for Task Decomposition
	Prompts for Mapping states to sub-goal representations

	Model Implementation Details

