Under review as submission to TMLR

Data-Efficient Challenges in
Visual Inductive Priors: A Retrospective

Anonymous authors
Paper under double-blind review

Abstract

Deep Learning requires large amounts of data to train models that work well. In data-
deficient settings, performance can be degraded. We investigate which Deep Learning meth-
ods benefit training models in a data-deficient setting, by organizing the "VIPriors: Visual
Inductive Priors for Data-Efficient Deep Learning" workshop series, featuring four editions
of data-impaired challenges. These challenges address the problem of training deep learning
models for computer vision tasks with limited data. Participants are limited to training
models from scratch using a low number of training samples and are not allowed to use any
form of transfer learning. We aim to stimulate the development of novel approaches that
incorporate prior knowledge to improve the data efficiency of deep learning models. Success-
ful challenge entries make use of large model ensembles that mix Transformers and CNNs,
as well as heavy data augmentation. Novel prior knowledge-based methods contribute to
success in some entries.

1 Introduction

Deep learning more and more depends on availability of large-scale training datasets. However, the cost
of collecting and labeling such datasets scales with their size. Even if the issue of costly labeling can be
avoided, training with large unlabeled datasets still uses large amounts of energy, contributing to carbon
emissions (Strubell et al.l [2020; |Schwartz et al., 2020). Furthermore, datasets and compute at such scale
is limited to a few powerful big tech companies. Additionally, data at such a scale may not be available
for some domains at all. The Visual Inductive Priors for Data-Efficient Deep Learning workshop (VIPriors)
therefore encourages research in learning from small datasets, by way of combining the learning power of
deep learning with hard-won prior knowledge from specific domains.

The VIPriors workshop ran for four editions at ICCV and ECCV from 2020 to 2023. Aside from featuring
a paper track, each workshop hosts multiple challenges, where competitors train computer vision models
on small training datasets, challenging them to find competitive solutions without the large quantities of
data that power state-of-the-art deep computer vision models. The chosen tasks and datasets are tailored to
be data-deficient and, where we are able to use custom datasets, contain prior knowledge that competitors
can incorporate in their solutions. As far as we know, our VIPriors challenges are the only challenges that
evaluate models in a data-deficient setting without allowing domain adaptation methods.

In this work, we describe all four editions of the VIPriors challenges. Over the course of four years of chal-
lenges, we organize challenges on five distinct computer vision tasks: image classification, object detection,
segmentation, action recognition and re-identification. For each task, we describe the challenge setup over
the years, the accumulated results of all challenges and the most notable methods used by competitors.

We find that large model ensembles and heavy use of data augmentation are important factors in successful
entries. Successful entries also mix Transformer-type architectures with CNN-type architectures in their
ensembles. Even though a secondary aim of our challenge is for novel prior knowledge-based methods to be
successful in a data-deficient setting, only a few such entries use prior knowledge to success.
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Figure 1: Comparing the winning entries in our challenges against those in corresponding large-scale bench-
marks. Performance on our data-deficient settings are significantly worse, highlighting the need for research
on data-deficient computer vision. For details, see Section @

2 Related Works

Related tasks. Our data-deficient setting is a supervised training setting with limited labeled samples
available. There are other tasks that similarly aim to enable deep learning with little to no data. The
category of n-shot learning tasks is characterized by providing the learner with only n training samples, where
n can be zero (zero-shot learning), one (one-shot learning) or a few samples (few-shot learning) (Kundu
[Wang et al., 2020)). To solve this problem, learners often have to resolve to using additional information, for
example by transfer learning from another training distribution.

In contrast, in our challenges we provide more data than used in few-shot learning, but much less than in
common supervised training benchmarks. Where n-shot learning tasks often require alternative learning or
transfer methods to perform, our data-deficient tasks can be approached with regular supervised learning,
though performance may not be optimal. Our challenges explore the degree to which supervised learning
struggles with this little amount of data and to which extent prior knowledge can alleviate these problems.

Related datasets. Several ImageNet-derivatives exist for data-deficient image classification. Mini-
ImageNet (Vinyals et al., 2016) was proposed for evaluating few-shot methods and is intended to be harder
than CIFAR-10 but easier than full ImageNet. It contains 600 samples per class at full ImageNet image size.
TinyImageNet was created by the organizers of the CS231n course at Stanford University to serve as
benchmark for a course project. It contains 500 samples per class, downsampled to a resolution of 64 pixels
squared. Other unnamed subsets of ImageNet have also been proposed (Brigato et all, |2021)).

In a similar vein, we use subsampling of ImageNet to create small training datasets for our image classification
challenge. In particular, we only use 50 samples per class, and in contrast to TinylmageNet we do not
downsample the images.

Related challenges. The Large-Scale Few-Shot Learning ChallengeEl was hosted at ICCV 2019. As the
name suggests, it is a few-shot learning challenge, with five training samples per class. In contrast, our
data-deficient setting provides more samples per class.

Thttps://1sfsl.net/cl/
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The Cross-Domain Few-Shot Learning Challengeﬂ (CD-FSL) was run at CVPR 2020. A continuation of this
challenge was run at ICCV 2021 as the classification track of the Learning from Limited and Imperfect Data
Challengeﬂ (L2ID). The target datasets to solve are data-deficient datasets such as EuroSAT and ISIC, with
a similar data scale to our challenges. However, in addition to learning from limited data, domain adaptation
from ImageNet was encouraged. In contrast, we do not allow domain adaptation methods in our challenges,
rather focusing on learning models from scratch with limited data.

As far as we know, our VIPriors challenges are the only challenges that evaluate models in a data-deficient
setting without allowing domain adaptation methods.

3 Challenges

Throughout the course of four editions of challenges, we have hosted five different computer vision tasks
as challenges, with a varying number of tasks hosted each year. Common cause between all challenges is
that the number of training samples are reduced to a small number. Where we adapt existing datasets we
choose random subsets of the available data. In other cases, we adapt private datasets acquired through
collaboration with industry, which are already so small to be appropriate for the challenge.

We choose to use small training datasets to realistically reproduce the setting of working in a data-deficient
setting. Another goal of our challenges is to encourage the solutions to use visual prior knowledge of each
task. To this end, we impose further rules to attempt to rule out usage of alternative methods that alleviate
data scarcity. These rules are:

e Models shall be trained from scratch with only the given dataset.

e The usage of other data rather than the provided training data, such as pre-training the models
on other data and transfer learning methods, are prohibited. It is however allowed to train with
synthetic data generated from the training data.

3.1 Image classification

Image classification is a cornerstone task in computer vision for its practical use and simple requirement of
predicting only a single label. Architectures designed for many other tasks use image classification networks
as backbones (Ren et al.l [2016; [He et all 2017; |Cai & Vasconcelos| 2018b; |Chen et al. 2019a). Innovations
in image classification networks therefore have ripple effects throughout the whole field of computer vision.
Therefore, we include this task in our challenges.

For the dataset we use a subset of ImageNet (Deng et al., 2009)). ImageNet has been the de facto benchmark
standard for image classification since its inception (Russakovsky et all[2015). Models trained on ImageNet,
even with a reduced number of samples, transfer well to other tasks and distributions (Huh et al., 2016).
This motivates us to use ImageNet for our challenges, expecting that improvements in training models for a
data-deficient ImageNet will translate to other tasks.

Our subset of ImageNet is a random sample of fifty images from 1,000 classes for training, validation and
testing. This is more samples per class than for a typical few-shot setting, but much less than for a typical
supervised learning setting. We evaluate models on top-1 accuracy.

This challenge ran from 2020 until 2022. We did not run this challenge for the final edition in 2023, as we
felt that competitor interest for challenges had shifted from image classification to more applied tasks like
object detection and instance segmentation.

3.2 Object detection

Object detection is a widely applied task in computer vision. Its requirement to predict bounding boxes
has driven researchers to invent widely varying architectures over the last decade, from ROI-based detec-

%https://www.learning-with-limited-1labels.com/challenge
Shttps://12id.github.io/challenge_classification.html
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(a) DelftBikes (b) SynergySports Basketball

Figure 2: Example images from the a) DelftBikes and b) SynergySports Basketball dataset.

tors (Girshick et al.l 2014; Ren et al.l 2016; He et al., 2017) to YOLO-like dense predictors (Redmon et al.
2016) and recently Transformers such as DETR (Carion et al., [2020)). For its widespread applied use, we
include this task in our challenges.

We use the DelftBikes (Kayhan et al,[2021)) dataset for our object detection challenge. The datasets contains
10,000 images of bikes, photographed from the side (Fig. . Each image contains labels for 22 different
bike parts that are annotated with bounding box, class and object state labels. We evaluate models using
the same measure as used in the COCO benchmark (COC): Average Precision @ 0.50 : 0.95 (AP).

This dataset is larger than other datasets used in our challenges, but still much smaller than other benchmark
datasets for object detection such as COCO. We use this dataset for the strong consistency in bike pose and
location of bike parts, which enables competitors to use prior knowledge in their solutions.

This challenge ran from 2021 until 2023. For the 2020 edition, we ran the same challenge but used a subset
of approximately 6,000 images from COCO (COC).

3.3 Segmentation

Segmentation is a similar task to object detection, with the difference that instead of bounding boxes object
instances are segmented by predicting pixel-wise masks. As masks can capture object outlines more precisely
than bounding boxes, segmentation has become a popular benchmark in recent years (COC]). We therefore
include a segmentation task in our challenges.

Within the group of segmentation tasks, we distinguish semantic segmentation, where a single mask per
category is predicted, and instance segmentation, where a mask is predicted for each object instance in
the image. For our challenge, we use an instance segmentation dataset kindly provided by SynergySportsﬂ
who collaborate with us on organizing this challenge. This dataset contains 18,232 still images taken from
recordings of basketball games, where the objective is to segment basketball players and the ball. See
Figure [2b| for example images. We evaluate models using Average Precision @ 0.50 : 0.95 (AP).

We use this custom dataset for the consistency in camera pose and object appearances that enable competi-
tors to use prior knowledge in their solutions.

This challenge ran from 2021 until 2023. For the 2020 edition, we instead hosted a semantic segmentation
task, using a subset of Cityscapes (Cordts et all 2016) called MiniCity. This subset consists of a train,
validation and test set of 200, 100 and 200 images, respectively.

4https://synergysports.com
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3.4 Action recognition

Video is the next frontier for computer vision. Action recognition is the task of classifying actions in video
clips. Many action recognition are deep, heavy models that need to learn from a lot of data (Carreira &
Zisserman|, [2017; [Feichtenhofer et al., |2019). We aim for our data-deficient action recognition challenge to
further research into less data-hungry action recognition models.

To make a dataset for this challenge, we adapt the Kinetics400 dataset (Kay et al. |2017)), the de facto
benchmark for action recognition, into Kinetics400VIPriors by taking a subset. Our training set consists of
approximately 100 clips per class (40,000 clips total), while the validation and test sets contain about 25 and
50 clips per class, respectively. For evaluation, we use the average classification accuracy across all classes
on the test set.

This challenge ran in 2021 and 2022. For the 2020 edition, we instead used the UCF101 dataset (Soomro
et all [2012), which in itself is already quite small. However, after the results of the 2020 challenge we felt
that the high accuracies achieved showed that the competitors were not challenged enough with this dataset.
After 2022, we chose to not run this challenge for the final edition, as we wanted to focus our efforts and
this challenge did not receive as much interest from competitors as the other challenges.

3.5 Re-identification

Re-identification is the task of accurately retrieving the right person from an unseen gallery of photos given
an unseen query photo. Typically, models learn to embed pictures of a training set of persons into vector
embeddings to represent identities. At test time, the model is then presented with a query photo, which
needs to match one of the unseen gallery images by matching the vector embedding. Having access to enough
training identities is important. We therefore want to challenge competitors to achieve the same performance
in a data-deficient setting.

We collaborated with SynergySports on creating a new, small dataset for this challenge. The provided
dataset contains 954 identities and 18,232 images, taken from frame sequences of recordings of basketball
games, similar to the data source for the Segmentation challenge (see Sec. and Fig. . The dataset is
split in training and testing identities. For the validation and test sets, each sequence is truncated to twenty
frames, where the first frame is used as query image, and the other frames are used as gallery images. We
use top-1 accuracy to evaluate models.

We use this custom dataset for the unique poses and appearances of the persons in it, namely players and
referees in a basketball game. We expect that the specific and consistent appearance of this dataset enables
competitors to use prior knowledge in their solutions.

This challenge only ran in 2021, where the winners of the challenge achieved a very high score. Because
this showed that this setting was not challenging enough, we decided to not run this challenge again moving
forward.

4 Submission and evaluation

Our challenges are published on the CodalLab platformﬂ (Pavao et al.| 2023)), the latter of which also hosts
the technical components of each competition. We make all training and validation data, as well as tooling
and baseline models, available through CodaLab and a GitHub toolkit[f]

To submit to the challenge, competitors are required to register with CodalLab, generate their models pre-
dictions over the test set on their own hardware, and upload these to CodaLab in a provided format. The
CodaLab platform then automatically computes the evaluation measures and composed online rankings.
The labels of the test set are withheld from competitors. As a measure to prevent overfitting to the test
set, we limit the number of times an entry can be evaluated on the test set on CodaLab. We note some

52020-2021: https://competitions.codalab.org/,
2022-2023: https://codalab.lisn.upsaclay.fr/
Shttps://github.com/VIPriors/vipriors-challenges—toolkit
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Figure 3: Results of all challenges. Most challenges show improvement in the best submissions year by year.
Hybrid architectures are prevalent under well-performing submissions. Each dot represents an entry in the
final rankings. The 2020 edition of the object detection, segmentation and action recognition challenges
used deprecated datasets with respect to the other years of the same challenge. We indicate what type of
architectures were used as well as which entries used some novel methodology inspired by prior knowlegde
on the task.

evidence suggesting that competitors evade these evaluation limits by registering with multiple accounts. As
we cannot prove this, we do not address this.

At the time of each challenge closing, we compose official rankings by retaining only qualifying entries. To
qualify, an entry has to be accompanied by a tech report, either published on the internet or submitted to
the organizers by a given later date. We use these reports to verify the validity of the entry, and to enable
our analysis of the methodology of each entry in the challenge reports. The final rankings are then published
at the time of the live workshop program on the website and in the challenge report. The full results over all
editions of each challenge, including details on the methodology used, are given in the appendix (Tables[2—6)).
We visualize the results of all challenges in Figure [3}

5 Methods

Analysis of the methods used by competitors shows patterns within individual challenges as well as patterns
that generalize over all challenges. This section discusses these patterns and what we can conclude from
them.

Model ensembling. Figure [4] shows that many successful entries use large model ensembles. We speculate
that the ease of use of model ensembling plays a role in competitors choosing ensembles: many architectures
and backbones are available in various libraries, making it easy to plug in an extra model. Ensembles may
also cover a wider range of inductive priors than a single model, making the ensemble more successful on a
data-deficient task than a single model.

Architectures. As to the architectures used by competitors, our challenges experienced the advent of
Transformers firsthand. Figure [3] shows that Transformers start to see use in our challenges from 2021
onwards. We find that they are initially only used sporadically as backbones to a CNN-type architecture,
but then increasingly as separate architectures, often combined with other inductive priors such as CNN-type
architectures in ensembles.

Data augmentation. Heavy use of data augmentation is apparent among successful entries, as shown
in Figure The particular data augmentations differ per challenge, but the volume of augmentations is
consistent. We expect data augmentations are successful in our challenges because they are an easy way to
artificially increase the number of training samples in a way that uses prior knowledge on the task at hand.
As for the popularity of data augmentations, we expect their ease of use may be a factor.
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Figure 4: Results of selected challenges plotted against the number of distinct backbone types used in each
entry. Each challenge shows a correlation where larger ensemble size correlates with better performance.
Each dot represents an entry in the final rankings. Lines represent regression model fits performed by
Seaborn . We exclude the action recognition and re-identification challenges as they have
too little entries to analyze.
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Figure 5: Results of selected challenges plotted against the number of data augmentations used in each
entry. Each challenge shows a correlation where larger number of augmentation methods correlates with
better performance. Each dot represents an entry in the final rankings. Lines represent regression model fits

performed by Seaborn (Waskom), [2021). We exclude the action recognition and re-identification challenges
as they have too little entries to analyze.

On prior knowledge in entries. Interestingly, we did not see as many novel prior-based methods being
implemented in successful entries as we had expected. There are some cases where a novel method may have
contributed to success, but only in combination with other factors like ensembling and data augmentation.
We speculate that inventing a novel prior-based method is more strenuous on competitors, making them
instead choose easier to implement methods such as ensembles and data augmentations.

Outside of novel methodological contributions, prior knowledge was used through pre-existing prior-based
methods. One notable example is the use of BlurPool , which specifically enhances translation
equivariance in CNNs. We posit that the extensive use of data augmentation policies can also be counted
as a use of prior knowledge.

5.1 Image classification

In the entries of the image classification task, we note some specific trends. First of all, we confirm that the
general trends of large model ensembles and heavy use of data augmentation hold for this task. Specifically,
AutoAugment (Cubuk et al) [2018) and CutMix (Yun et all |2019) are consistently used by almost all
competitors. Transformers (specifically ConvNeXt (Liu et al) 2022))) appear in this task in 2022, and
contribute to the top three entries in that year. Popular methods to boost performance include label
smoothing and some form of extra training on hard or resized samples. Several entries use alternative or
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additional loss functions such as focal loss and ArcFace (Deng et al. 2019) loss. Almost all entries use regular
supervised training, with a couple entries using some form of knowledge distillation without using additional
data. No entries introduce any novel prior-based methodology. However, winning entries in 2021 and 2022

use BlurPool (Zhang], [2019) to great success.

Winning teams and methods. Ma et al. from Xidian University are the winners of this challenge, scoring
a top-1 accuracy of 78.7. They ensemble of five types of models, including both CNNs and Transformers.
They apply various data augmentations to make the data more diverse. Additionally, they apply several
optimization tricks, such as patching, hard fusion and random image cropping.

5.2 Object detection

In object detection, most entries use between two and four distinct backbone types in ensembles. Again, there
is strong evidence for the benefit of large model ensembles. Many entries combine CNNs such as Cascade
RCNN ((Cai & Vasconcelos),[2018b)) or YOLO (Redmon et al.,|2016)) with Transformers such as Swin
2021a)) and ConvNeXt (Liu et al., |2022). YOLO becomes the dominant architecture starting with version
seven and eight of the YOLO framework (Wang et al., [2022} [git). Correspondingly, the data augmentations
implementations coupled with YOLOvS8 are popular, as well as those implemented in the Albumentations
library (Buslaev et al. 2020a)). Specific augmentations used often are AutoAugment (Cubuk et al., 2018),
Mosaic (Bochkovskiy et all [2020), MixUp (Zhang et al. [2018) and some form of multi-scale augmentation.
Ensembles are combined with Soft NMS (Bodla et al.l 2017), Weighted Boxes Fusion (Roman Solovyev &
|Gabruseval, [2021)) or Model Soups (Wortsman et al., [2022) to combine predictions.

Overall, there are little entries that use novel prior-based methods. The exception is the 2023 edition, where
the top two winning methods propose some novel prior-based methods.

Winning teams and methods. Zhao et al. from the Vision Intelligence Department of Meituan are the
winners of this challenge, scoring an AP of 34.5. They use a Cascade RCNN ([Cai & Vasconcelos| [2018b)) with
a ConvNeXtV2 backbone (Woo et all [2023). They contribute a synthetic dataset created from horizontal
and vertical recombinations of binary pairs of samples, on which they pre-train. Furthermore, they retrain
the model on manually identified hard classes and apply SWA (Izmailov et al., [2018b).

5.3 Segmentation

For segmentation, the same patterns apply when it comes to the number of models in ensembles and data
augmentations. CutMix (Yun et al] [2019), MixUp (Zhang et al) [2018), RandAugment
2020a)), Moasic (Bochkovskiy et al., 2020) and CopyPaste (Ghiasi et al., 2021)) are used by many entries,
with CopyPaste being unique to this task. RCNN-type architectures (Cascade RCNN (Cai & Vasconcelos|
2018Db)), Mask RCNN 2017)), then later on HTC (Chen et al.,[2019b)) dominate in this task. Where
Transformers are used, they are almost exclusively used as backbone networks in an RCNN-type architecture.
In the early editions of this challenge, backbones used are mostly HRNet (Wang et al.,[2019b) and CBSwin-
T (Liang et al) 2021b), while by 2023 there is a large variety of backbone networks, including anything
from HTC, CBSwin, Mask2Former (Cheng et al., [2022a)), (Carion et al., 2020), ViT-Adapter
to Mask RCNN with FPN (Lin et al., 2017a). The best entries use (a variant of) Stochastic Weight
Averaging (Zhang et al. 2020b) to ensemble multiple instances of the same model. Regular ensembling is
also used through Weighted Boxes Fusion and Model Soups.

Interestingly, each edition of this challenge was won by an entry proposing a novel prior-based method.

Winning teams and methods. Zhang et al. from Xidian University are the winners of this challenge,
scoring an AP of 59.0. They propose a novel method called Orthogonal Uncertainty Representation (OUR),
which broadens the geometric manifold of underrepresented classes. Furthermore, they use
multiple backbones with a Mask RCNN model and a Seesaw loss (Wang et al. [2021d).
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Table 1: Statistics and winners of each challenge.

Challenge Entries Quah_ﬁ ed Winning team Winning score
entries

Image classification 33 15 Tianzhi Ma, Zihan Gao, Wenxin He, Licheng Jiao 78.7
School of Artificial Intelligence, Xidian University.

Object detection 87 17 Jiawei Zhao, Xuede Li, Xingyue Chen, Junfeng Luo. 34.5
Vision Intelligence Department (VID), Meituan.

Segmentation 128 18 Junpei Zhang, Kexin Zhang, Rui Peng, Licheng Jiao, 59.0
Fang Liu, Lingling Li, Yuting Yang.
Xidian University, Xi’an, Shaanxi.

Action recognition 25 10 Ishan Dave, Naman Biyani, Brandon Clark, Rohit Gupta, 74

Yogesh Rawat and Mubarak Shah.
Center for Research in Computer Vision (CRCYV),
University of Central Florida.
Re-identification 12 4 Cen Liu, Yunbo Peng, Yue Lin. 96.5
NetEase Games AI Lab.

5.4 Action recognition

For the task of action recognition, we have less entries to analyze. It is therefore hard to confirm the general
trends on large model ensembles and heavy use of data augmentations for this task. On KineticsVIPriors,
only ensembles are used, which combine two-stream methods with Transformer methods. Interestingly, the
data augmentations used are the same as for appearance-only tasks (namely CutMix (Yun et all 2019),
MixUp (Zhang et al., [2018]), AutoAugment (Cubuk et all|2018)). The only entry that makes video versions
of these augmentations places last in the 2020 edition of this challenge. Outside of this entry, there are very
little attempts to customize solutions to the priors of this task.

Winning teams and methods. Dave et al. from the University of Central Florida are the winners of
this challenge with an average accuracy of 74%. They propose to combine several state-of-the-art methods
that have shown promising results in data-deficient settings. They use convolutional (R3D(Hara et al.,[2018)
and I3D(Carreira & Zissermanl 2017)) as well as attention-based (MViT(Fan et al., 2021])) models. Self-
supervised pre-training (TCLR(Dave et al., 2021))) is applied to the convolutional methods, before they are
fine-tuned with both RGB and optical flow frames. The Transformer-type model (MViT) is trained using
only RGB frames.

5.5 Re-identification

As this challenge ran only for one year, with only four qualifying entries in the final ranking, we cannot draw
any strong conclusions from this data. In fact, the entries are very similar in chosen methodology, which
could indicate that the our sample of competitors is biased in some way. We do note that ensembles used
only contain ResNets (He et all [2015) and ResNet derivates (Zhang et al., |2020a; Xie et al.l [2017). The
most popular augmentation methods are Random Erasing (Zhong et al., 2020)), color jitter, random flipping
and AutoAugment (Cubuk et al., [2018)). All entries use at least triplet loss (Weinberger & Saul, |2009) and
circle loss (Sun et al. 2020b). Re-ranking (Zhong et al.l 2017) is used in the top three out of four entries.
None of the entries use any form of novel prior-based methodology.

Winning teams and methods. Liu et al. from NetEase Games Al Lab are the winners of this chal-
lenge with a top-1 accuracy of 96.5%. They use online difficult sample mining, in particular an algorithm
similar to (Shrivastava et al.| 2016)), so as to remove the hard, occluded annotations. They divide occluded
annotations into partially and fully occluded annotations. Full occlusions are removed, while data aug-
mentation is applied to the partial occlusions to create more of them. In this way, the robustness of the
model is improved. Furthermore, they apply data augmentation using Local Grayscale Transform (LGT)
and Random Erasing (Zhong et al., |2020)). In particular, LGT ensures that color similarities in the jersey
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do not lead to problems. Furthermore, Liu et al. overrepresent IDs with less than twenty images to ensure
balance in the training set. They use a model ensemble containing 24 model instances. Finally, common
re-identification post-processing methods are applied: augmentation test, re-ranking (Zhong et al., 2017)
and query expansion (Chum et al., [2007).

6 Results

Statistics on each challenge, as well as the overall winners, are given in Table The segmentation and
object detection challenges were the most popular challenges by some margin. We note that, except for in
the 2022 edition of the action recognition challenge, the achieved results improve with every new edition,
with a significant margin. The fact that state-of-the-art solutions improve so much in a year indicates that
progress in computer vision still shows no signs of slowing down.

Comparison to large-scale settings. We compare the winning entries in our challenges against the
ranking leaders of comparable public large-scale benchmarks. For image classification and action recognition,
our data-deficient settings are subsets of the same dataset used for a large-scale benchmark: ImageNet and
Kinetics-400, respectively. For the object detection and segmentation challenges we used custom datasets
from 2021 onward, while we used subsets of large-scale public datasets in 2020: COCO and Cityscapes,
respectively. We therefore compare the winning entry in the 2020 edition of these challenges against the
ranking leader in the corresponding challenge in 2020. The only edition of the re-identification challenge
used a custom dataset and can therefore not be compared to any public large-scale dataset.

Figure [T] shows the comparisons. We find gaps of around fifteen percentage points in all challenges. There
are several possible explanations for these gaps. They may be due to our challenges having less competitors
and therefore less competitive solutions. We do however expect that a large part of the gap is due to the
difficulty of deep learning in a data-deficient setting without using additional data. We therefore posit that
research into data-efficient deep learning is still quite necessary.

7 Conclusion

Over the course of four years, we organize the VIPriors challenges, challenging competitors to train computer
vision models in a data-deficient setting. We provide more samples than in few-shot learning, but much less
than given in large-scale benchmarks. Furthermore, networks had to be trained using only the provided
data.

The goal of our challenges is to push progress in data-efficient deep learning, ideally by way of infusing prior
knowledge into deep learning models. We can conclude that our challenges show progress in data-deficient
deep learning, as winning entries improved in performance over the years. We also show that more research
into data-efficient deep learning is necessary, as the winning entries in our data-deficient challenges score
around 15 percentage points lower than their counterparts in large-scale benchmarks.

We analyze the methodology of challenge entries to make conclusions about successful methods for data-
deficient deep learning. We find that winning entries make heavy use of model ensembling and data aug-
mentation. Furthermore, mixing Transformers and CNNs is a recipe for success in our challenges.

As to our goal of encouraging the use of prior knowledge, we stimulate entries to use prior-based methods
by introducing a jury prize for the best prior-based method per challenge. Whether or not the jury prize
specifically contributes to competitor’s motivation, we can state that our challenges inspired some entries to
use (novel) prior-based methods, and that some of these entries performed well in the challenges. Overall,
however, methods not specifically designed for data-deficient settings, such as model ensembling and data
augmentation, contributed most to success.

Limitations. Our challenges are specifically aimed at the setting of supervised training with little data. We
rule out using any additional data, and therefore any transfer learning methods. An argument can be made
that this is overly restrictive with respect to real-world data-deficient settings, where additional data may be
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available. A challenge that does not enforce this rule may be more representative of all possible approaches
in a data-deficient setting.

Compared to large-scale benchmarks, the number of competitors in our challenges was relatively small. This
may affect the confidence we have in general claims made based on the results of our challenges.

Finally, on the organizational side, there was some evidence that competitors evaded the evaluation limits
on CodalLab by registering with multiple accounts. As we could not prove this, we did not address this.

Future work. Interestingly, we find that methods based on prior knowledge played only a small role in
our challenges. We wonder if this means that the approach of integrating prior knowledge is truly not
competitive with cheaply implemented methods such as model ensembling, or if there is another reason why
these methods did not shine in our competition. Future work may investigate the efficacy of prior knowledge
in deep learning more concretely.

Furthermore, future workshops may organize similar challenges around prior-based methods. We recom-
mend devising an incentive through which prior-based methods are explicitly encouraged. This can be an
organizational incentive such as our jury prize or an incentive integrated into the task measure, e.g. by
scoring entries by some direct measure of their data efficiency (Hoiem et al., 2021)).

With our challenges, we solely addressed limits on data availability. A similar concern is the energy cost
of deep learning. Combining both concerns in a single challenge may change what methods are successful.
For example, model ensembling is an effective way to improve performance with little effort but places a
significant extra cost on the energy used by the model.
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Table 2: Overview of challenge entries for image classification challenge. J indicates jury prize. Bold-faced
methods are contributions by the competitors. Due to confusion around the competition deadline in 2021,
entries marked with t were awarded special rankings.

Image classification

Rank Team Architectures, backbones Data augmentation Methods Acc.
1 (2022) Ma et al. SE+PyramidNet, ResNeSt200e, CutMix, Label smoothing, AdvProp, 78.7
ReXNet,EfficientNet-B8 AutoAugment (Cubuk et al. , Random image cropping and patching
ConvNeXt-XL* (L: Stubborn Image (RICP), extra training on
Augmentation(SIA) stubborn images, hard fusion
2(2022) & Luetal HorNet, ConvNeXt Cross-decoupled 7.9
J (2022) (Liu et al.||2022 knowledge distillation (Zhao et al.||2022),
label smoothing
3 (2022) Zuo et al. CoAtNet, TResNet, Resnet50, CutMix, Random erasing, Knowledge distillation 77T
Resnext50, EdgeNeXt MixUp, AutoAugment between encoders
4 (2022) Wang et al. ResNeSt, TResNet, SE-ResNet, AutoAugment, MixUp, CutMix, label smoothing, 76.8
ReXNet, ECA-NFNet, padding train on larger images,
ResNet-RS (Bello et al.|[2021), data resampling
Inception-ResNet, RegNet,
EfficientNet, MixNet
5 (2022) She et al. ResNeSt, Res2Net, Xception, AutoAugment, MixUp label smoothing, 75.4
DPN \ 2017), train on larger images,
EfficientNet, SENet hard negative resampling
6 (2022) Chen et al. ResNeSt, EfficientNet, ReXNet, AutoAugment, MixUp, label smoothing, 70.8
RegNetY CutMix, ColorJitter train on larger images,
Exponential Moving Average on
network parameters
1(2021) Sun et al. ResNeSt (Zhang et al.||2020a BlurPool (Zhang|[2019 75.5
stochastic depth \ 2016
2 (2021) J. Wang et al. ResNeSt (Zhang et al.||2020a), label smoothing (Szegedy et al.||2016), 75.2
TResNet (Ridnik et al. 1), DSB-Focalloss
RexNet (Han et al.[[2021
RegNet (Radosavovic et al.||2020),
Inception-ResNet (Szegedy et al.[|2017
2(2021)f  Guo et al. EfficientNet-b5/b6/b7 (Tan & Le|[2019], Contrastive Regularization, 74.3
DSK-ResNeXt101 l m Mean Teacher (Tarvainen & Valpola,
| R Symmetric Cross
ResNet-15 @!
SEResNet-152 (
3(2021) & T. Wang et al. ResNeSt-101/200 Im 2020a), HorizontalFlip, FiveCrop, TenCro, Iterative Partition-based 71.6
J (2021) SEResNeXt-101 (Xie et al.||2017 label smoothing (Szegedy et al.] 2016) Invariant Risk Minimization
1 (2020) EfficientNet-b5, EfficientNet-b6, Cutmix Dual Selective Kernel based on 73.1
ResNeSt-101, ResNest-200, SK (Li et al.||2019) with
DSK-ResNeXt50, DSK-ResNeXt101 anti-aliasing _(Zhang| 2019
center loss 1m W s
tree supervision
loss inspired by 1 2020
2 (2020) n ResNest-101 (Zhang et al.|[2020a), AutoAugment (Cubuk et al. , combinations of cross-entropy loss 70.2
TresNet-XL (Rid 1 Cutmix l 2019 and triplet loss l 2017
SEResNeXt- as well as
ArcFace loss (Deng et al.||2019),
label smoothing (Szegedy et
2 (2020) 1  |Zhao & Wen|(2020 MOCO v2 1M m (teacher), AutoAugment (Cubuk et al.||2018 label smoothing (Miiller et al,] 68.8
ResNeXt101 (Xie et al.[[2017) (student) ten crops,
model ensembling
3 (2020) l EfficientNet (Tan & Le|[2019 Low Significant Bit swapping, focal cosine loss inspired by 67.3
RandAugment (Cubuk et al.||2020a focal (Lin et al.|[2017b) and
cosine 1@ 2020) losses,
Exponential Moving Average,
dropout, drop connection,
Plurality voting ensemble
4 (2020) Qingfeng Liu & Lee AutoAugment lm , model ensembling 66.4

MixUp (Zhang et al.|[2018]
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Table 3: Overview of challenge entries for object detection challenge. J indicates jury prize. Bold-faced
methods are contributions by the competitors. Due to confusion around the competition deadline in 2021,
entries marked with t were awarded special rankings.

Object detection

AP AP

Rank Team Architectures, backbones Data augmentation Methods (COCO)  (DelftBikes)

1(2023) Zhao et al. Cascade RCNN _( Albumentations 1Buslaev et al.] 2020[)" FPN (Lin et al.|}2017a 34.5
Swin T. (Liu et al.||2021a] PhotoMetricDistortion SWA (Izmailov et al.[[2018b),
ConvNeXt (Liu et al.[[2022] MixUp (Zhang et al.||2018 recombined synthetic dataset,
ConvNeXt Auto Augment V2 (Cubuk et al.| retraining hard classes
2(2023) & Luet al. Scaled-YOLOv4 (Wang et al.| Pre-training: random scaling, Model Soups 33.3
J (2023) YOLOVT (Wang et al.[[2023a], random flipping, color jitter; Weighted Boxes Fusion
YOLOR (Wang et al.[2021D], fine-tuning: ﬂRoman Solovyev & Gabruseml
CBNetv2 (Liang et al [2021a] Mosaic Augmentation ‘est-Time Augmentation

Bochkovskiy et al. Moshkov et al. s
Paste (Kisantal et al.| 1——U_g-lmage ncertainty Weighted
Zhang et al.|[2013]

3(2023)  Jinget al. YOLOVT (Wang et al] 2022, Mosaic Augmentation Weighted Boxes Fusion 30.6
YOLOv8x-p2 (git|, 2020] Roman Solovyev & Gabruscval 2021],
YOLOvSx, Y v8x-p6, IixUp (Zhang et al.||2018| est-Time Augmentation
Cascade RONN Moshkov ct al. ,
horizontal flip testing
pre-training, 30.4

Mosaic Augmentation SparK
2020] Weighted Boxes Fusion
TixUp (Zhang et al.|[2018] Roman Solovyev & Gabruseva|[2021],
est-Time Augmentation
Moshkov et al.l 2020},
horizontal Hip testing

HSV, rotation, translation, GAM

scaling, shearing,
flipping,
Mosaic Augmentation

4 (2023) ‘Wang et al.

5(2023)  Sun et al.

cross-validation 29.4

6 (2023) Team fha.ddd Faster RONN 26.6
EfficientNet-V2 (Tan & Lel[2021]
1(2022) Lu et al. YOLOv4(Bochkovskiy et al. Weighted Boxes Fusion 33.0
YOLOv7(Wang 2022} Zhang et al.|[2018] (Roman Solovyev & Gabruseva|[2021],
YOLOR (Wang et al.| 2021c| Kisantal ct al.| T4,
CBNetv2 Model Soups
Image Uncertainty Weighte
2(2022)  Xuetal Cascade RONN (Cai & Vasconcelos| 2 AutoAugment MoCoV3 2021}, 32.9
Swin T. (Liu et al.||2021a) random flip, MoBY (Xie et al.|[2021b},
ConvNext (Liu et al.[12022], multi-scale augmentations Soft-NMS (Bodla et al.[12017],
ResNext ( L SSFPN 5021,
FPN M W non-maximum weig
()
3(2022)  J. Zhao et al. Cascade RCNN Albu, MixUp (Zhang et al.||2018] SWA 2 . 324
Swin T. (Liu et al.|[2021a AutoAugment (Cubuk et al.|[2018] Hard classes retraint
Convnext (Liu ot al.|[2022], Soft-NMS
FPN (Lin et al.{[2017a) pseudo labeling
4(2022) & P. Zhao et al. Cascade RONN (Cai & Vasconcelos| Mosaic (Bochkovskiy et al | . SimMIM 30.9
J(2022) Swin T. (Liu et al.|[2021a], MixUp (Zhang et al.|[2018] GIOU loss (Union/[2019)]

Pyramid Vi

(Wang et al.

1 (2021) Lu et al. YOLO 4-5 (Bochkovskiy et al. Mosaic (Bochkovskiy et al s Weighted Boxes Fusion 30.5
{Jocher & ef. al][202T] MixUp (Zhang et al.|[2018], (Roman Solovyev & Gabruseva] [2021]

random color-jittering

1(2021) f Zhang et al. Cascade RCNN (Cai & Vasconcelos Multi-scale augmentation TTA, MoCo v2 (Chen et al| R 30.4
DON (Dai et al.[[2017] Soft-NMS

Class-specific ToU thresholds

2(2021)  Niuetal. Swin-T (Liu et al.|[2021a Hierarchical labeling FPN (Lin ct al.|2017a 304
Soft-NVS (Bodla et .|
pseudo labeling

2(2021) ¥ Luo et al. Cascade RCNN_(Cai & 1o: Albu, Top-Bottom Cut

DCN 1Dai et al.]

1 (2020) Shen et al. (Shen et al.| 2 Bbox-jitter. infuse global context features, 39.4

GridMask (Chen et al.||2020b)], Weighted Boxes Fusion
MixUp (Zhang et al.|[2018] (Solovyev et al.

Soft-NMS

2(2020)  Guetal Albumentations (Buslaev et al|[2020a], Libra R-ONN 36.6
(3018 AutoAugment (Zop (3019 Guided Anchoring
017a], DCNv2 (Zhu ot al.|[2019¢|  Stitchers {Chen ot al|[2020d], (Wang et al.|[2019a],
Mosaics-SC basod on cneralizod Aftention
D _ong et al. ,
model ensembling
3(2020)  Luoet al. Scratch Mask R-CNN (Zhu ot al.|[2 Albumentations Soft-NMS (Bodla et al.|[2017], 35.1

ResNet-101 (He et al.] 0 extra weight on classification loss
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Table 4: Overview of challenge entries for segmentation challenge. J indicates jury prize.

are contributions by the competitors.

Bold-faced methods

Segmentation
Rank Team Architectures, backbones Data augmentation Methods mloly mioU
’ © (MiniCity)  (Basketball)
1 (2023) Zhang et al. HTC (Chen et al. m Geometric Orthogonal Uncertainty 59.0
Mask | L‘_m! s color space, Representation,
Swin (Li .||2021a) sharpness, noise injection, ‘Weighted Boxes Fusion
ResNet lﬁmlm Copy-Paste (Kisantal et al.l 2019' (Roman Solovyev & Gabruseval|2021),
FPN (Lin ct al ||
CBNet (Liu et al.|
2 (2023) Lu et al. HTC (Chen et al.| Mosaic Augmentation GIoU loss s 58.2
BE{TvZ L (Peng . Soft NMS (Bodla ct al.| 2017
ViT-Adapter | opy-Paste 1 expert net 1
Internimage ( Mix-Up l 2018), SegFormer 1ml and
random brightness, random contrast,  SeMask \ m N
random saturation, random scale, Test-Time Augmentation
random flip, sharpen and overlay,
blur, Gaussian noise, grid-mask Model Soups \
random scaling b
Vamsor et ol
3 (2023) Liang et al. Mask2Former <m Copy-Paste Weighted Boxes Fusion 55.2
YOLOX \|2{l2]_| rotation, mirroring,
DETR 1 m cropping, scaling, random brightness,
random saturation, random contrast,
random color equality, sharpness,
random noise, random erasure,
local erasure
4(2023) & Hsu et al. HTC , Players: RGB curve distortion; 50.9
J (2023) Mask Scoring R-CNN other objects: salt-and-pepper noise &  GroupNorm \w s
s brightness variations; SWA 1| 0 s
B-SwinTransformer- GridMask Model Soups (Wortsman et al |
Base (Liu et al.] 2020bl 2021a|
1(2022) HTC (Chen_et al.][2019a] TS-DA, TS-IP CBFPN 53.1
CBSwin- l| Random scaling
2 (2022) Leng et al. CBNetV2 \ , AutoAugment 50.6
Swin Transformer- ImgAug ( |
Copy-Paste
Horizontal Flip an
Multi-scale Training
2 (2022) Lu et al. HTC (Chen et al] MixUp , Mosaic CBFPN 50.6
CBSwin-T ( g Task-Specific Cop 5 Group Normalization 1@
ResNet
ConvNe? olor and geometric
Swinv2 transformations
CBNetv?
3 (2022) Zhang et al. HTC ( Location-aware MixUp Seesaw Loss lM 202 49.8
CBSwin- Rand Augment \m , SWA 1 A
GridMask \ W
Random scaling,
CopyPaste
Multi-scale augmentation
4 (2022) Cheng et al. HTC (Chen et al. s Rand Augment Mask Transfiner ( 47.6
GridMask
5(2022) & ResNet (He et al.|{[2015 Random flip and scale jitter Sparse Instance Activation 34.0
J (2022) for Real-Time Instance
Segmentation dCheng et al.]-
1(2021) & |Yunusov et al. HTC (Chen et al. Location-aware MixUp 47.7
Rand Augment
(
Random scaling
2 (2021) Cascade R-CNN Random brightness, color jitter, Switchable atrous convs. 40.2
(Cai & Vasconcelos) 20T5a), saturation, sharpening, blurring, {Qino et al
ResNet-10 lw w noise, pixel shuffle, pixelization, roup normalization (
filtering, hue transform
3(2021) Chen et al. Cascade Mask-RCNN HorizontalFlip, 36.6
Cai & Vasconcelos||2018b), Random scale and crop
et (Vu et al. N
Swin (Liu et al. a
4 (2021) Chen, Zheng ResNet-50 (He et al.|[2015 Instaboost Seesaw Loss 18.5
Deformable Convolutions
1 (2020) HRNet multi-scale CutMix 65.64
dYun et al.l 2019'
2 (2020) HRNetv2 Augmix (Hendrycks ef al.|[2020] Object Contextual 65.61
Representations l
Online Hard Example
Mining (Shrivastava et al.||2016},
Frequency Weighted ensemble
3 (2020) n HANet \@M m edge-preserving loss, 64.4
ResNeSt \ m pasting augmented crops
of rare classes
4 (2020) Yesilkaynak et al. EfficientSeg using random hue, 58.0
MobileNetV3 blocks random brightness,
non-uniform scaling,
random rotation,
random flipping

CutMix Sprinkles based on
Cutix

Progressive Sprinl
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Table 5: Overview of challenge entries for action recognition challenge. J indicates jury prize. Bold-faced
methods are contributions by the competitors. Due to confusion around the competition deadline in 2021,
entries marked with 1 were awarded special rankings.

Action recognition

Acc. Acc.

Rank Team Architectures, backbones Data augmentation Methods (UCF101)  (KineticsViP)

1(2022) Song et al. Random flipping, TenCrop Soft voting 71

2 (2022) He et al. AutoAument Label smoothing 69
2019
ip, grayscale, jitter,
temporal aug., TenCrop,
test-time aug.
3(2022) & Tan et al. MixUp (Zhang et al.| , 59
J (2022) CutMix _(Yun ct al.[[2019)
MoCo 'Eﬁﬂllﬂlﬁ{'}ﬂ
Stowrtst (Tetfofor s aT|EOT0],  TVL 1 (e l 07
CSN |Wll
1(2021) & Dave et al. TCLR(Dave et al.|[2021 74
J (2021)
1(2021) ¥  Wuet al. MixUp (Zhang et al.|[2018), 66
CutMix (Yun et al.[|2019
2 (2021) Gao et al. 73
1 (2020) Ishan Dave & Shah random crops, 90.8
horizontal flipping,
frame skipping
2 (2020) modified C3D corner cropping, Temporal Central 88.3
2015 horizontal flip Difference Convolution,
Rank Pooling
Fernando et al.
3 (2020) Luo & Che SlowFast (Feichtenhofer et al. center /random crop, TSM (Lin et al. 87.6
horizontal flip,
normal/reverse
video reproduction
4 (2020) n SlowFast-50 (Feichtenhofer et al. m RandAugment-T based on  model ensembling 86.0
RandAugment
(Cubuk et al.|[2020a),
temporal extensions of
CutOut
MixUp (Zhang et al.[[2018),
CutMix (Yun et al.||2019),

random crop,
random horizontal flip
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Table 6: Overview of challenge entries for re-identification challenge. J indicates jury prize. Bold-faced
methods are contributions by the competitors.

Re-identification

Rank Team Architectures, backbones Data augmentation Methods Acc.
1 (2021) Liu et al. ResNet (He et al.| [2015), Difficult sample mining Triplet loss 96.5
ResNetSt (Zhang et al.|[2020a), (Shrivastava et al.] 2016), (Weinberger & Saul||2009
SE-ResNetXt ( Random Erasing and circle loss
(24 models) (Zhong et al.|[2020), (Sun et al.|[2020b),

Local Grayscale Transform, with augmentation test,

affine transformations, re-ranking (Zhong et al.||2017),
pixel padding, random flip.  query expansion 1 2007)

2(2021) & Chenet al.  ResNet-IBN 1 2015), Video temporal mining, Cross-entropy and 96.4
J (2021) SE ResNet-IBN (Hu et al.[[2018) Random Erasing triplet loss
(5 models) (Zhong et al.||2020), (Weinberger & Saul||2009),

pixel padding, random flip ~ with augmentation test,

re-ranking (Zhong et al.||2017),
6x schedule (He et al.| .

3 (2021) Qi et al. ResNet-IBN , Random Erasing Cross-entropy and 94.2
230SNet on Stronger Baseline , triplet loss
color jitter, random flip, Weinberger & Saul
AutoAugment re-ranking (Zhong et al. s
query expansion 1m w
4 (2021) Zheng et al. ResNet-IBN Random Erasing and Cross-entropy, 84.8
w/ spatial and Patch , triplet loss
channel attention color jitter, random flip, Weinberger & Saull m

AutoAugment and circle loss (Sun et al.] 2020b'
(Cubuk et al.] 2018)
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