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Fig. 1: Overview. We present SAGE, a framework bridging the understanding of semantic and actionable parts for generalizable manipulation of articulated
objects. Left: We give two examples of human instructions illustrating the concept of part semantics, part functionalities, and corresponding actions. Right:
examples of real-world tasks and our results. Our framework can tackle diverse manipulation tasks on various articulated objects.

Abstract—To interact with daily-life articulated objects of
diverse structures and functionalities, understanding the object
parts plays a central role in both user instruction comprehension
and task execution. However, the possible discordance between
the semantic meaning and physics functionalities of the parts
poses a challenge for designing a general system. To address
this problem, we propose SAGE, a novel framework that bridges
semantic and actionable parts of articulated objects to achieve
generalizable manipulation under natural language instructions.
More concretely, given an articulated object, we first observe all
the semantic parts on it, conditioned on which an instruction
interpreter proposes possible action programs that concretize
the natural language instruction. Then, a part-grounding module
maps the semantic parts into so-called Generalizable Actionable
Parts (GAParts), which inherently carry information about part
motion. End-effector trajectories are predicted on the GAParts,
which, together with the action program, form an executable pol-
icy. Additionally, an interactive feedback module is incorporated
to respond to failures, which closes the loop and increases the
robustness of the overall framework. Key to the success of our
framework is the joint proposal and knowledge fusion between a
large vision-language model (VLM) and a small domain-specific
model for both context comprehension and part perception, with
the former providing general intuitions and the latter serving as
expert facts. Both simulation and real-robot experiments show
our effectiveness in handling a large variety of articulated objects
with diverse language-instructed goals.

I. INTRODUCTION

From furniture to home appliances, articulated object pre-
vails in our daily lives. While being long studied in the robotics
literature, their diverse object structures, functionalities, and

manipulation goals in real-world scenarios remain challenging
for most robot systems. The design of a general system that
accommodates such object diversities falls into the problem of
generalizable object manipulation, which involves the transfer
of manipulation skills across object shapes [36, 20], object
categories[13, 14, 56, 51], or even tasks [60]. Specifically, a
line of works has focused on learning generalizable manip-
ulation skills of articulated objects [36, 20, 13, 14, 17, 15].
However, even these works are still limited to a few common
object categories, leaving aside the problem of how to model
the resemblance between seemingly irrelevant articulated ob-
jects, from a simple cabinet to a multifunctional blender
with intricate mechanical structures and electricity-powered
functionalities.

In this work, we approach this problem by separately mod-
eling the cross-category part commonality in their semantics
and actions. Taking the blender in Fig. 1 top left as an
example, to mince the food ingredients in it, one needs to
press its container from the top to turn it on. The part you
press on is semantically a “container”, but considering your
interaction with it, its action resembles a “button” which can
be pressed and trigger other mechanical motions (such as the
blade rotating). To exert the functionality of this object, both
part semantics and actions should be well understood. This
also fits into the two different types of affordances in Gibson’s
theory of distributed cognition [61]: physical affordance and
cognitive affordance, which have different emphases in human
cognition of interactable objects. Physical affordance focuses



on physical structures such as the joint conditions and part
motions of articulated objects; cognitive affordances, on the
other hand, are provided by cultural conventions and involve
a high-level semantic understanding of the object.

Following this inspiration, we introduce SAGE, a frame-
work for generalizable manipulation of articulated objects
under natural language instructions by bridging semantic and
actionable parts (Fig. 1 right). Our key insight is that large
Visual-Language Models (VLMs) possess general knowledge
of part semantics, while small domain-specific models present
higher accuracy in predicting part actions, which can serve
as “expert facts”. Different from prior works that separately
assign VLMs and small models to different sub-tasks[24], we
fuse their predictions in both context comprehension and part
perception, which achieves a good balance of generality and
exactness.

Concretely, given a manipulation goal specified by natural
language and an RGBD image as visual observation, an
instruction interpreter first translates the language instruc-
tion into programmatic action representation. These action
programs are composed of so-called action units, which are
represented by 3-tuples of object semantic parts, joint types,
and state changes. We then convert the action programs defined
on the object semantic parts into executable policies through
a part grounding module that maps the semantic parts into so-
called Generalizable Actionable Parts (GAParts), which is a
cross-category definition of parts according to their actionabil-
ities. From the detected GAParts, we can generate physically
plausible part actions indicated by the pre-obtained action
programs. Finally, we also introduce an interactive feedback
module that actively responds to failed action steps and adjusts
the overall policy accordingly, which enables the framework
to act robustly under environmental ambiguities or failure.

We demonstrate the effectiveness of our method both in sim-
ulation environments and on real robots. Specifically, we also
assess the crucial components of language-guided articulated-
object manipulation: scene descriptions, part perceptions, and
manipulation policies. Quantitatively, our method surpasses all
baseline approaches. This success is attributed to our blend of
a comprehensive general-purpose model and a precise domain
specialist, endowing our method with both stellar performance
and robust generalization capabilities. Qualitatively, we further
illustrate the proficiency of our method through its perfor-
mance on several demanding tasks.

To summarize, our key contributions are:
• We bridge the notion of semantic and actionable parts

to model the commonality across articulated objects of
highly diverse structures and functionalities.

• We build a robot system for generalizable manipulation
of articulated objects under language instructions.

• We design a knowledge fusion mechanism between
VLMs and small domain-specific models to incorporate
expert facts into general perception and comprehension.

• We demonstrate our strong generalizability on a variety
of different objects under diverse language instructions in
both simulation environments and on real robots.

II. RELATED WORK

Articulated-object manipulation. Articulated object manip-
ulation presents significant challenges due to diverse object
geometries and physical characteristics. Although benchmarks
by [49, 36] have been introduced, their scope remains limited.
While methods like [39, 25, 4] have delved into motion
planning, visual affordance learning has also gained attention
[35, 54, 52, 62, 15]. Other works [7, 58] have proposed special
representations for manipulation, though they are tailored
mainly for suction grippers. On the other hand, [13, 14]
introduce generalizable parts as a novel representation but are
limited to single-part interaction and can not handle natural
instructions.

Generalizable object manipulation. Achieving generaliza-
tion in robot applications is essential yet challenging. Various
works [8, 47, 18, 12, 57] employ supervised learning with
motion planning to tackle generalizable tasks such as grasping.
Nevertheless, these techniques often necessitate task-specific
architectures and may falter in intricate manipulations. Though
reinforcement learning holds promise for complex challenges
[40, 2], the lack of generalizability remains unresolved [30,
16]. The ManiSkill benchmark [36] pioneers category-level
object manipulation in simulations, while [42] utilizes imi-
tation learning with RL-trained demonstrations. However, in
both cases, the generalization ability is still unclear. [13, 14]
first tackles generalizable manipulation in a cross-category
manner, but is still limited to predefined part classes. [56, 51]
have universal generalization ability but only for grasping
tasks. In summary, Generalizable object manipulation is still
extremely challenging.

Robot control with large language models. Incorporating
pre-trained language models into robot systems has been
gaining tremendous attention recently. A notable segment
of these works concentrates on the grounding of language
to manipulation skills, essential for executing long-horizon
instructions [26, 46, 34, 5, 41, 1, 17, 19, 43, 21, 59]. A
hierarchical approach, seen in another subset of studies, hinges
on a two-fold process: establishing a skill set and subsequently
strategizing over it using large language models (LLMs)
[3, 23, 45, 22, 32, 28]. However, this method is limited by the
huge data collection effort, is still constrained to the predefined
skill sets, and lacks visual understanding. In contrast, LLMs
are employed to spawn code for low-level skills through APIs,
though predicting these skills’ continuous parameters remains
challenging [31]. Some employ a way-point-based method
for efficiency, sidestepping low-level robot actions in favor
of trajectory hand poses [44, 17]. But they also require lots
of data and have no detailed planning strategy. VoxPoser [24]
performs motion planning based on affordance and obstacle
maps generated by LLM, but still lacks visual understanding.
For articulated objects with diverse geometries, intricate struc-
tures, and physical constraints, language-guided manipulation
remains a challenging and underexplored problem.



Fig. 2: Framework overview. Given a natural language input conditioned
on visual observation, we first obtain the semantic parts and interpret the
language instructions on them. Then we link the semantic parts to actionable
parts through a part grounding module, on which executable actions can be
predicted.

III. PROBLEM FORMULATION

A. Semantic and Actionable Parts

As shown in Fig 1, we characterize a semantic part based on
its human-defined identity or its functional role in articulated
objects. During the interaction, for a actionable part, we
adopt the concept of ”Generalizable Actionable Part (GAPart)”
as formulated by GAPartNet [13]. GAPart categorizes parts
across different objects based on their actionability, where
parts within the same GAPart category exhibit similar ge-
ometry and functionality. For instance, a button designed for
pressing and a knob meant for rotation would not fall under
the same GAPart category, even if they appear similar. Our
approach emphasizes the importance of understanding parts at
both semantic and action levels for generalized manipulation
of articulated objects.

B. Problem Definition and Framework Overview

Problem definition. Our task focuses on open-vocabulary ma-
nipulation of articulated objects. The input consists of a human
language instruction and a single-view RGB-D image. A fixed
base robot arm is required to follow human instructions and
manipulate the articulated object within the scene to achieve
the goal specified in the instructions.
Framework overview (Fig. 2). We propose SAGE, a compre-
hensive framework designed for open-vocabulary articulated
object manipulation in the wild. By combining the strength
of the general-purpose Visual Language Model (VLM) and a
domain-specific 3D part perception and manipulation model,
SAGE is uniquely capable of understanding object parts on
both semantic and action levels, facilitating more effective and
adaptable manipulation in real-world scenarios.

In the SAGE system, we employ the classic perception-
decision-execution-feedback loop to generalizable articulate

Fig. 3: Context-aware instruction interpretation. With instruction and
observation (RGBD image) as input, the interpreter first generates a scene
description with VLM and GAPartNet[13]. Then LLM(GPT-4) takes both
instruction and scene description as input and generates semantic parts and
action programs. Optionally, we can input a specific user manual, and LLM
will generate a target actionable part; see Sec.IV-C for more details about the
actionable part.

object manipulation: More specifically, (1) we first use GPT-
4V to process the input RGB image to obtain a scene descrip-
tion that contains task-related information, such as semantic
parts, part interaction possibilities, and object states. We
further detect more actionable parts with GAPartNet and fuse
both outputs to obtain the final part-aware scene description.
(2) Then, we again prompt GPT-4V to comprehend the scene
description together with the human instruction to act like a
global planner. It outputs action programs step by step and
makes decisions based on execution feedback. (3) The action
programs are executed with a motion planner which controls
the robot arm to follow a predefined trajectory grounded on
the actionable part. (4) Finally, we interactively detect the part
and object state changes and feedback on the updates to the
global planner.

IV. METHOD

A. Part-aware Scene Perception

In daily-life scenarios, human language instructions could
be diverse and even ambiguous. To facilitate large language
models to truly understand human intention and plan accord-
ingly, it is beneficial to add comprehensive scene descriptions
to the prompt text inspired by the success of Chain-of-thought
[53] prompting.
Scene Description. Chain-of-thought[53] is proven useful for
prompting large models. Here, we also notice that, compared
to outputting an action program (See Sec. IV-B) directly using
a Visual-Language Model, it is better to first generate a scene
description D̃scene containing task-related information (such
as parts, object states, interaction possibilities). However, we
observe that VLM provides rich context but lacks accuracy in
part-related perception as illustrated in Fig. 4. This example
illustrates that employing the Visual-Language Model directly
can result in the omission of crucial information related to
parts and tasks, or may even introduce factual inaccuracies.
Actionable Part Detection. We deploy the 3D GAPart Model
[13] to enhance part perception. This model interprets the
partial RGBD point cloud X to yield its set of 3D part
proposals, which are masked point clouds denoted as M3D =
{lj ,M3D

j }nj=1, where l is the actionable part label, M is



Fig. 4: Scene description. To better help with action generation, the scene
description should contain object information, part information, and some
interaction-related information. We use expert GAPart model[10] to generate
some expert descriptions as part of the VLM prompt and then generate the
scene descriptions, which works well and absorbs the advantages of both
models.

the masked partial point cloud, and j indexes the detected
actionable parts from 1 to n. We reframe the actionable parts
with a template sentence as shown in Fig. 4, eg., There
are 4 hinge-door and 4 line-fixed-handle on the object. The
sentences that contain actionable parts are then appended
to obtain the part-enhanced scene description Dscene. We
empirically found this significantly boosts the performance of
perception. More details are given in the experiments.

B. Instruction Interpretation and Global Planner

Given the part-aware scene description Dscene, we here
again employ GPT-4V [37] as the instruction interpreter to
translate natural-language instruction Ĩ into executable actions
that will be sent to the downstream execution module. We
devise a representation named action unit to encapsulate the
output actions.
Action Units. We define the most basic manipulation on one
single part of articulated objects as an “action unit”, which
can be represented by a 3-tuple a = (p̃, j,∆s) with part name
p̃, joint type j, and the change of part state ∆s. The part
name p̃ is a noun in natural language. j refers to the joint
directly linked to part p̃ and indicates whether it is a revolute
or a prismatic joint; ∆s is the state change of joint j under
the action, which is either an angle ±θ if j is revolute or
a relative translation ±t w.r.t. the part bounding box if j is
prismatic. The final output of the interpreter should be in one
of the following formats:

• a single action unit,
• an unordered union of multiple action units,
• an ordered list of multiple action units,

or be a finite combination of the three formats. Following
the convention of programming languages (PL), this can be
viewed as a typing system with expressions:

a | Union{a,a} | List[a,a]

Here the Union expression is for non-deterministic policy
generation when multiple action units can reach the same goal,
e.g., both pulling the door and pressing a button result in the

Fig. 5: Part grounding. With the observation as input, our method ensembles
2D proposals from GroundedSAM and 3D proposals from GAPartNet. then
the proposals are fed to the ground as an actionable part. Leveraging ScoreNet,
NMS, and PoseNet, we then present the perception results. Notice that: (1)
For the part perception evaluation benchmark, we directly employ SAM[29].
However, within our manipulation pipeline, we utilize GroundedSAM, which
also considers the semantic part as input. (2) As highlighted in Fig. 3, if the
LLM produces a target actionable part, the grounding process is bypassed.

microwave door being opened. List is for sequential action
generation when no single-step solution exists, e.g., to open a
door, a knob must be first rotated to unlock the door.
Global Planner. Throughout the interaction, tracking of both
the target gripper and part states is maintained by a global
planner, where details are given in Algorithm 1. If significant
discrepancies arise, the planner has the discretion to select
from one of four states: ”continue”, ”transition to the next
step”, ”halt and replan”, or ”success”. For instance, if the
gripper is set to rotate 60 degrees along a joint, yet the door
only opens to 15 degrees, the LLM planner would opt to ”halt
and re-plan”. This interaction tracking model ensures that the
LLM remains cognizant of developments during interactions,
permitting strategy adjustments and, where necessary, recovery
from unforeseen setbacks.

C. Part Grounding and Execution

An execution module is implemented to act accordingly
to the action unit outputted by the global planner. Like any
language-guided manipulation task, we first need to ground
the action onto the corresponding physical actionable part.
Actionable part grounding. To this end, We first collect a
dataset of actionable part features and part labels {F dino

part , lpart}.
This dataset contains the pre-defined interaction policies of
each typical GAPart. The policies are a series of pre-defined
end-effector trajectories to complete a certain motion for a
specific part. It serves as our domain-specific expert which
is the key to the success of our generalizable system. In
particular, we extract a good image feature map F dino from
DINOv2 [38]. Then, for the target actionable part denoted as
pj , we use its mask to get the part feature F dino

j . We first do
max-pooling to obtain the part feature and run KNN algorithm
to find the grounded actionable part label denoted as lj

F dino
j = MaxPooling(F dino[Mj ])

lj = KNN({F dino
part , lpart}, F dino

j ).



Trajectory Generation. Once we have grounded the semantic
part to the actionable GAPart, we can generate executable
manipulations on this part. We first estimate the part pose Pj

as defined in GAPartNet [13]. We also compute the joint state
(part axis and position) and plausible motion direction based
on the joint type (prismatic or revolute). Then we generate the
part actions according to these estimations. We first predict an
initial gripper pose as the primary action. It is followed by
a motion induced from a pre-determined strategy defined in
GAPartNet [13] according to the part poses and joint states.
For example, to open a door with a revolute joint, the starting
position can be on the door’s rim or handle, with the trajectory
being a circular arc oriented along the door’s hinge.

D. Interactive Feedback

Algorithm 1 Global Planner
Input Gripper target and current state ∆gt, δgt and part

target and estimated movement ∆st, st.
1: prompt = template(∆gt, δgt,∆st, st)
2: result = call VLM with prompt
3: switch result do
4: case "continue"
5: Continue the current strategy
6: case "transition to next step"
7: Finish the current action tuple and transition to the

next action.
8: case ("halt and replan")
9: Stop the current execution and replan ▷ Some

errors happened.
10: case ("success")
11: Success and terminate.

Algorithm 2 Interactive perception
Input initial and current part point cloud X0

part, X
t
part

Output joint axis jt and movement st
1: tt, Rt = RANSAC(Umeyama(X0

part, X
t
part))

2: jt, st = GeometryInference(Rt, tt)

Up to now, we have only utilized a single initial observation
I0rgbd for generating open-loop interactions. We now introduce
a mechanism to further leverage the observations acquired
during the interaction process, which can update the perception
results and adjust the manipulations accordingly. Toward this
goal, we introduce a two-section feedback mechanism during
interaction.
Interactive perception. It should be noted that occlusion and
estimation errors may arise during the perception of the first
observation. To address these challenges, we propose a model
that leverages interactive observations to enhance operation
(see Algo. 2). Consider two distinct observations, I0rgbd and
Itrgbd, captured during an interaction. A part’s motion can be
detected between these two observations. We subsequently

Fig. 6: Task examples for experiments in simulation.

employ the mask of the moved part to deduce the actual
joint state during the interaction. Applying RANSAC [9] for
outlier removal and Umeyama algorithm [48], we estimate
the rotation and translation between the two frames of the
part’s point cloud X0

part, X
t
part. This computation subsequently

allows us to ascertain the joint state jt and the current part
movement states st. Finally, we send the joint state and part
movement state back to the global planner (see Sec. IV-B,
thereby completing the main loop.

V. EXPERIMENTS

A. Simulation Experiments

Setup. We conducted our simulations using the SAPIEN
environment [55] and designed 12 language-guided articulated
object manipulation tasks. An example task is given in Fig.
6. A comprehensive breakdown of these tasks, along with
detailed statistics, is presented in Table I II. For each category
of Microwave, StorageFurniture and Cabinate, we devised 3
tasks including opening from the initial open and close state
and closing from the initial open state. The remaining tasks
for KitchenPot, Remote and Blender are Open the lid, Press
the button and Turn on the blender respectively. For each
task, we carefully curated more than 5 distinct objects sourced
from the GAPartNet dataset [13] that were well-suited for
the respective actions. For example, we selected 5 different
models of Microwaves from GAPartNet, chosen specifically
for tasks like pulling the door open and pushing the door
closed. Likewise, we chose 20 different StorageFurniture
objects and 10 Blenders, each tailored to their corresponding
tasks. To assess the robustness of our part interaction module,
we conducted over 20 trials for each task. During each trial, we
introduced randomization in both camera position and initial
joint states, ensuring the variability of scenarios. Specifically,
for the task Close the door, the initial positions of the
articulated object doors were randomized within the range of
(30, 60) degrees. To facilitate fair comparisons, we leveraged
pre-trained weights from GAPartNet to identify actionable
parts within the scene. Subsequently, we applied the same
motion generation policy as our pipeline.
Results. The results of our experiments are summarized in
Table I, showcasing the superior performance of our methods
across nearly all tasks. The key drivers of our success can
be attributed to our enhanced perception capabilities, which
benefit from the fusion of the specialized model from GAPart-
Net and the generalist model of LLM. The average runtime



Category Microwave StorageFurniture Cabinet KitchenPot Remote Blender

Task ID 1 2 3 4 5 6 7 8 9 10 11 12

VoxPoser∗[24] - - 13.0 - - 15.0 - - 14.2 - - -
GAPartNet∗[13] 87.5 75.5 58.6 53.3 76.9 81.3 50.0 66.3 73.8 - - -
Ours 98.0 96.0 94.1 83.3 80.0 95.0 79.3 89.6 83.1 85.7 60.7 42.9

TABLE I: Success rates (%) under language instructions. Comparison between our method with VoxPoser [24] and GAPartNet[13]. We evaluate 12 tasks
with 6 different articulated objects. ”-” means the task is not implemented by the baseline. GAPartNet∗ shares the same execution policy as our method,
while VoxPoser∗ is adapted from the unofficial version of the authors.

Category #Task #Init. state #Tgt. state #Instruct.

Microwave 100 3 2 5
StorageFurniture 40 3 2 5
Cabinet 40 3 2 5
KitchenPot 20 1 1 5
Remote 18 1 1 5
Blender 20 1 1 5

TABLE II: Benchmark statistics. For each object category, we created tasks
that were randomly initialized.

Perception Scene Description <1s
Part Detection 13s

Decision Instruction Interpretation <10s
Global Planninng <1s

Execution Part Grounding <5s
Motion Planning 45s

Feedback Interactive Perception <1s

TABLE III: Average runtime of each module.

breakdown of each module in the SAGE system is shown in
Table. III.

B. Real-Robot Experiments

Setup. In our real-world experiments, we establish an ex-
perimental setup with the UFACTORY xArm 6 and several
different articulated objects for manipulation.
Results. Fig. 7 shows our results on real-robot execution, and
more results can be found in the supplementary materials.
Three challenging cases are highlighted in Fig. 7 with detailed
explanations and intermediate outputs. The top left is a blender
whose top part is perceived as a container for containing juices
but functions as a button to be pressed down. Our framework
effectively links its semantic and action understandings and
successfully executes the task. The top right shows an emer-
gency stop button for robots, which requires a press (down)
to halt an operation and a rotation (up) to restart it. With the
auxiliary input of the user manual, our method completes both
of these two tasks. The bottom shows a rather challenging
case where the microwave door cannot be directly pulled
open. Instead, it requires first pressing the button to initiate
a slight door opening. In this case, our method first tries the
most straightforward solution of pulling the door and fails.
The interactive feedback module then detects this failure and
informs the global planner to replan a second strategy that
adapts to the current environment, finally completing the task.

Fig. 7: Explanations of real-world results. Top: ”turn on the blender”
and ”turn on/off the machine”. Our method accurately understands the part
semantics and actions that are not aligned. Bottom: ”Open the microwave”.
The mechanical structures of the microwave prevent the robot from directly
pulling open the door but instead require the button to be pressed, resulting
in a failure. However, our interactive feedback model can detect the failure
and recognize that it should try pressing the button instead and subsequently
complete the task.

MOS ↑ GAPartNet VLM
(Bard)

Ours
(Bard)

VLM
(GPT4V)

Ours
(GPT4V)

Part description 3.8 4.1 6.3 7.2 9.6
Part accuracy 8.7 4.0 6.5 6.9 9.5
Part state precision 0.0 3.7 5.6 7.7 7.8
Object & scene descr. 0.0 2.7 6.2 6.4 8.0
Interaction info. 0.3 7.3 7.6 7.6 8.7
Overall performance 2.6 4.4 6.4 7.2 8.7

TABLE IV: User study results for scene description. We solicited volunteers
to assess the quality of scene descriptions. Participants were tasked with eval-
uating the following aspects: (1) Performance in the overall part description.
(2) Accuracy in the enumeration and naming of parts. (3) Precision in part-
state depiction. (4) Depiction of objects and the overall scene. (5) Description
of interaction-related information. (6) Overall performance.

C. Generalizable Visual Perception

As described in Sec. IV, we design knowledge fusion
mechanisms to join the force VLMs and small domain-specific
models both in our context comprehension and part perception.
In this section, we evaluate our intermediate results on scene
description (Sec. IV-A) and part perception (Sec. IV-C) and
show that our generalizable perception modules achieve a
better balance between generalization and exactness compared
to existing methods or its ablated versions.
Scene description (Sec. IV-A). In our instruction interpreter, a
scene description is generated from the visual observations to
inform the other modules of the scene context. To evaluate
the quality of scene descriptions generated by our method
which joins the forces of generalist and specialist models,



(a) Nudge the microwave’s door open

(b) Open the door, please

(c) Lift the pod’s lid

(f) Pull the top drawer

(e) Turn on the blender

(d) Open the pod

(g) Open the microwave door

Fig. 8: Real-robot results. We show the keyframes of various tasks in our experiments. More results can be found in the supplementary materials.



Part Perception In-distribution Unseen states Unseen objects Unseen categories
Accuracy AP@50 mAP AP@50 mAP AP@50 mAP AP@50 mAP

PointGroup[27] 69.70 60.58 69.54 60.48 58.26 46.29 24.57 19.40
SoftGroup[50] 69.59 60.54 70.02 59.59 59.20 47.10 28.18 22.50
AutoGPart[33] 66.81 57.63 67.60 56.69 55.30 43.50 26.24 20.38
GAPartNet[13] 81.42 72.55 80.80 71.73 63.18 53.94 36.39 27.40
PartGroundedSAM [29, 38] 73.73 61.75 72.36 62.02 66.25 38.64 41.59 28.45
Ours 83.04 72.23 82.39 71.91 72.17 58.04 47.69 34.57

TABLE V: Part perception results. We have curated a novel evaluation dataset for part perception, enriched
with more comprehensive data. Our method is benchmarked against 3D point cloud-based techniques,
including PointGroup[27], SoftGroup[50], AutoGPart[33], and GAPartNet[13]. In alignment with the 2D
branch of our approach, we also employ SAM[29] and DINOv2[38] to establish a 2D-centric baseline. For
evaluation, we adopt AP@50 and mAP as our primary metrics.
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Fig. 9: Part perception results. Our method
consistently achieved the highest AP@50 score
for each level of generalization.

we curate an image dataset specifically for evaluating scene
descriptions for manipulation purposes. The dataset includes
145 images from 15 object categories with varying part
states. We also designed six interaction-oriented metrics for
assessing the qualities of the descriptions: part description,
part accuracy, part state precision, object&scene description,
interaction-related information, and overall performance. With
these metrics, we can collect the Mean Opinion Score (MOS)
through carefully designed user studies, as in [11].

We evaluate the scene descriptions generated by five meth-
ods: (1) GAPart Model: detection results are translated into
natural language descriptions through a human-crafted format;
(2)(3) VLM (Bard, GPT-4V), craft descriptions from the input
image using Bard and GPT-4V; (4)(5) Our methods (based on
Bard and GPT-4V). In the user study, participants are provided
an image and the descriptions generated by the three methods
at each time, and they are asked to rate the descriptions using
a scale of 0-10 (with 10 being the best) according to the 6
metrics. 17 participants have been invited, and each person is
asked to rate about 40 scenes on average.

Table IV shows the results of this user study. We found that
domain-specific models can hardly provide useful object and
scene-level descriptions due to their lack of general knowl-
edge. On the other hand, VLM provides rich context but lacks
accuracy in domain-related information. Our method benefits
from both of them and achieves much better performances by
joining their strengths.
Part perception (Sec. IV-C). In our part perception task, we
utilize a single RGBD image as input to predict part-related
information, including part semantic segmentation, pose and
state estimation. To evaluate the methods, we introduce a
new benchmark for part perception tasks. In comparison
with GAPartNet, our benchmark is more comprehensive and
suitable for manipulation tasks. For instance, we incorporate
a greater number of objects with closed parts, accounting for
12.5%, which is not included in GAPartNet[13]. To enable
the evaluation of generalizations at different levels, the test
data are divided into 4 subsets: in-distribution, unseen (artic-
ulation) states, unseen objects, and unseen object categories.
We use the average precision AP@50 and mAP as evaluation
metrics for part segmentation, which are widely adopted in
prior 3D semantic/instance segmentation benchmarks such as
ScanNet[6] and GAPartNet[13],

Table V presents the results of our method in com-
parison to various baselines for part perception. We con-
sider GAPartNet[13], a modified version of PointGroup[27],
SoftGroup[50], and AutoGPart [33] as our primary baselines.
Additionally, we adapted GroundedSAM, rebranding it as
PartGroundedSAM for this context. The performance metrics
in Table V indicate that our approach surpasses other baselines.
Notably, we observed that methods based on 3D tend to under-
perform on out-of-domain data, whereas 2D-centric methods
yield subpar results for parts. Our methodology derives advan-
tages from both the 2D and 3D realms, resulting in optimal
performance and superior generalization capabilities.

VI. CONCLUSIONS

In this paper, we introduce a novel framework for language-
guided manipulation of articulated objects. Bridging the un-
derstanding of object semantics and actionability at the part
level, we can ground language-implied actions to executable
manipulations. Throughout our framework, we also study the
combination of general-purpose large vision/language models
and domain-specialist models for enhancing the richness and
correctness of network predictions. better handle these tasks
and achieve state-of-the-art performance. We demonstrate
our strong generalizability across diverse object categories
and tasks. We also provide a new benchmark for language-
instructed articulated-object manipulations.
Limitations and future work. Since the SAGE system is built
upon existing large vision-language models, it suffers from the
drawbacks of demanding massive data and massive computing
power. Although in our case we use APIs provided by GPT-
4V, the long inference time and high cost could be a concern.
On the other hand, we rely on the expert model GAPartNet to
detect parts and its prior knowledge to manipulate the parts.
The policy is not always optimal by blindly following the
pre-defined end-effector trajectories. Such a motion-planning-
based execution policy is not as responsive as a reinforcement
learning or imitation learning agent. One future exploration
direction could be fine-tuning existing large models to directly
output the desired low-level action of the end-effector to
increase responsiveness.
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