
Combinatorial privacy: Packing splinters in
polytopes at scale for private bit sums via SecureHull

Abstract

We present a scheme to obtain counts of 0’s and 1’s at a server based on private
bit streams hosted by multiple clients. The goal is to obtain this solution at the
server while maintaining privacy of client data. The bit sums need to be obtained
with respect to data from all clients; and not at a per client granularity. In our
scheme called SecureHull, we hide the private data encoded as permutations
amidst publicly shareable permutation matrices and form a secret doubly stochastic
matrix via a convex combination with secret coefficients. We exploit the non-
uniqueness of the Birkhoff-von Neumann decomposition and use some remnants
of the splintering scheme to provide an unconventional secure computation method
to this private bitsum problem. This scheme does not require any private data-
dependent communication with the server as is ideal. We also provide lower bounds
to quantify the probability of a successful attack. We show that the lower bound can
be quadratically reduced with a linear increase in communication upto a constant.
Our solution also involves a cryptographic shuffling routine that scales linearly with
number of clients as against to the size of the datasets. The rest of the operations do
not require a cryptographic approach and are secured through our scheme thereby
benefiting its scalability.

1 Introduction and Problem Statement

Given the digital nature of mainstream computation, the bit sum is quite a fundamental operation and
its applications are in plenty. We walkthrough an example use-case below without loss of generality.
Motivating problem of COVID-19 private test statistics: Release of private client level statistics
of symptoms such as fever/no-fever, test-results (positive/negative) and so forth for analysis and
monitoring by a central server during the COVID-19 pandemic while maintaining the privacy of the
clients data is a motivating use-case for example. This enables data-driven decision making at the
central authority while not having to forego the critical privacy constraints and legal regulations of
the clients data.

We now state the exact problem statement we consider in this paper followed by related work,
preliminaries and our proposed solution.

1.1 Problem Statement

Private Boolean Sum: Given k client entities that each holds a private binary bitstreamMi ∈ {0, 1}n
of length n, the problem statement is to provide an algorithm for a server to compute the total number
of 0’s and 1’s in ∪kiMi without access to any Mi or any statistics of Mi’s.

1.2 Related work

Differentially private Boolean sum The works in [1] provides a method for private estimation
of Boolean bit sums where the privacy guarantees are based on differential privacy. The work in
[2] provides differential privacy mechanisms for linear queries and hence can be adapted for this
problem. Differential privacy solutions typically have a trade-off of accuracy of the solution Vs.
privacy guarantees and are not geared for sharing exact solutions. Our work instead focuses on a

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.



hybrid approach between cryptographic schemes for shuffling and a combinatorial variant of a recent
unconventional private computation approach called splintering to scalably obtain exact solutions at
the server while protecting the privacy of individual client data.
Splintering: [3] A recent method called splintering allows for private computation in distributed
settings via privatized stochastic shares of sensitive data called splinters. This enables client devices
to receive services from server without directly sharing any sensitive data. The server performs
computations over these splinters and the corresponding results are sent back to the client. The
client has required private coefficients to perform specific operations referred to as unsplintering over
these intermediate results in order to obtain the required final result as if the sensitive data itself was
sent across to the server instead of the communicated splinters. Their work gives splintering and
unsplintering schemes for operations of inner-product, sigmoid, softmax and matrix inverse. Their
privacy guarantees are based on stochastic guarantees such as lower bounds on sample complexity
for distribution testing and estimating distributions. Some of the splinters sent in this scheme are
private data dependent while the rest are private data independent. In contrast our approach ensures
any communication sent to the server via splinters that are permutations are completely independent
of the private data.
Instance mixing schemes: Another line of work that mixes the private data records with public
datasets, and random noise for the purpose of security is InstaHide [4, 5]. This approach also utilizes
cryptographic computation for some operations while ensuring greater scalability as is the case in our
scheme. One key difference is that our approach focuses on the Boolean bit sum problem while the
instance mixing schemes focus on the task of private prediction with machine learning models.

1.3 Preliminaries for Splintering

For a d dimensional input query vector x, the client device creates d shares corresponding to x as
{z1, z2 . . . zd} so that x = Splint(z1, z2 . . . zd),∀i ∈ 1..d. The most basic splint function that
allows for such a representation is a linear combination using coefficients αi as x =

∑d
i αizi,∀i ∈

1..d. The α′is are private to the client and not shared with any other entity, be it another client or a
server. The splinters zi are shared with the server. The server performs a set of application dependent
operations on the splinters zi,∀i ∈ 1 . . . d and sends results {βi} back to client on either all or a
subset of the d shares. The client performs a local computation called UnSplint using original
shares zi, its corresponding αi’s that are known only to the client and received β′is obtained from the
server. This unsplinting operation reveals the true result l of the intended application to the client as
l = UnSplint(αi, zi, βi),∀i ∈ 1..d. Note that although x is represented via a linear combination,
the computation of {βi} and UnSplint is not necessarily linear.

1.3.1 Terminology: Types of splinters

Decoy Splinters: Data independent splinters zi whose corresponding coefficients αi are zero.
Minor Splinters: Data independent splinters zi whose corresponding coefficients αi are non-zero.
Major Splinters: Data dependent splinters zi whose corresponding coefficients αi are non-zero.
Attackers would need to be able to distinguish decoy splinters from the rest of splinters, while
estimating their corresponding coefficients in order to reconstruct the raw data. A good scheme for
generating the splinters would need to prevent that attack.

1.3.2 Motivation for combinatorial splintering

Combinatorial splintering with SecureHulls: We present a modification to this scheme where a
convex combination of the splinters is shared as against to sharing the individual splinters themselves
as done in the original splintering scheme. It is ideal for such a combination to be non-unique
(many to one) for security purposes; in addition to having the security benefit of private coefficients.
Our scheme is based on exploiting the non-uniqueness of the popular Birkhoff-von Neumann
decomposition [6, 7, 8, 9] and also borrows from some remnants of the splintering scheme. In
addition to that our scheme only depends on data independent splinters; and thereby negates leakage
of information about the raw private dataset via these splinters. We refer to our algorithm as
SecureHull.

2



2 Preliminaries for SecureHull: Polyhedral Combinatorics

Definition 1 (Doubly stochastic matric) A square matrix A = (aij) of nonnegative real numbers,
each of whose rows and columns sums satisfy the condition

∑
i aij =

∑
j aij = 1 is doubly

stochastic.

Definition 2 (Sub-permutation matrix) A doubly-stochastic matrix is a sub-permutation matrix if
every row and every column has at most one non-zero entry with value 1.

Theorem 2.1 (Birkhoff–von Neumann theorem) The Birkhoff–von Neumann theorem states that
the polytope of n × n doubly Bn is the convex hull of the set of n × n permutation matrices, and
furthermore that the vertices of Bn are precisely the permutation matrices. In other words, if A is
doubly stochastic matrix, then there exist θ1, . . . , θk ≥ 0,

∑k
i=1 θi = 1 and permutation matrices

P1, . . . , Pk such that A = θ1P1 + · · ·+ θkPk. This representation is also known as the Birkhoff–von
Neumann decomposition [6, 7, 8, 9].

3 SecureHull: Dual splintering for categorical/label data

Figure 1: Illustration of our scalable private bitsum computation algorithm (SecureHull) where the
goal is for the server to obtain a grand sum total count of all 0’s and 1′s across private bitstreams of
all clients while maintaining privacy of clients data.

We now provide a modified version of splintering that is suitable for data that is one-hot encoded (i.e,
in the form of permutation matrices). Any binary bit can be encoded as a permutation matrix. This
can be generalized to any label/categorical data in machine learning which can also be encoded as
permutation matrices.

3.1 Data representation

As an example if the input message from client 1 was [0, 1, 1, 0], we can stack 4 permutation matrices
of size 2× 2 on top of each other and pad 0’s everywhere else to represent it as a square matrix of

size 8 × 8. Every 0 bit can be encoded as
[
1 0
0 1

]
and 1 as

[
0 1
1 0

]
. This may seem overdone but

is quite necessary because for the convex combination of permutations to be doubly stochastic it is
required that the permutations have to be represented as matrices. In this representation under the
non-private case, in order to get sum of 1’s in a message, one needs to trivially count the number
of 1’s in first column and to get number of 0’s, I need to count number of 0’s in second column;
when the permutation matrices are stacked to form a tall matrix. They could as well be stacked as a
tensor; and an analogous approach to count would follow. In the following sections we show how the
permutation matrix that represents any given data record is mixed with data independent permutation
matrices; followed by a specific computation protocol to solve the Boolean bitsum problem.

3



3.2 Approach: SecureHull

In this approach, we share a specific combination of splinters instead of the splinters themselves as
typically done in the splintering technique.
Desirable primitives of Birkhoff-von Neumann decomposition: Typically decompositions such
as eigen-decompositions are unique (when all eigenvalues are unique). But the relationship between
doubly stochastic matrices to permutation matrices is non-unique, i.e there are multiple ways in which
convex combination of permutation matrices can be used to represent a doubly stochastic matrix. We
exploit this in our proposed scheme as follows.

The raw one-hot encoded matrix M that is generated using the data representation discussed in
previous section, is first rescaled with a coefficient α∗ ∈ (0, 1) to get M∗. This scaled matrix is
combined (in a convex combination) with several secret permutation matrices P1,P2, . . . ,Pk and
secret coefficients α1, . . . , αk to obtain a doubly stochastic matrix D. The client then computes
P =

∑k
i=1 αiPi and shares P∗ with the server upon a rescaling P∗ = β∗P. The server cannot

reconstruct M due to the lack of secret coefficients and the fact that the decomposition from doubly
stochastic D to the permutations is non-unique. Server computes P∗.y = d and sends the result to
client. All the clients send a secure shuffled set of α∗i’s to server along with each client sending one
product (unshuffled) α∗iβidi to the server. Server then computes the following to get the final bit
sums:

2n
∑
i

α∗i −
∑
i

α∗iβidi

The 2n in the final step can be replaced by a known constant, in order to generalize to data with
ternary or more categories instead of the Boolean bitstream. The benefit of knowing this constant
happens due to the stacked doubly-stochastic property of D as described in the data representation
section. This gives a huge advantage in not having to either send the raw message or the D to ther
server; while only having to send data independent permutation matrices to the server. We refer to
this proposed algorithm as SecureHull and share it in the algorithmic block below.

Algorithm 1 SecureHull

for Each of k clients perform do
Input: One-hot encoded data M is scaled down as M∗ = 1

α∗
M with α∗ ∈ (0, 1)

Generate: Client generates;
Secret coefficients {α1, . . . , αk} ∈ R+ and Permutation matrices P1,P3 . . .Pk.

Create: Client creates doubly stochastic matrix D =
∑k
i=1 αiPi +M∗

Compute: Client computes P =
∑k
i=1 αiPi

Rescale: Client rescales P∗ = 1
βP and sends P∗ to server.

Compute: Server computes P∗.y = d and sends the result to client.
Triplets: Each client computes one product α∗iβidi and sends to server.
End of for loop

Secure Shuffle: All clients perform a cryptographic shuffle of α∗1 . . . α∗k, if there are k clients
and send to server (one α∗ per client).
Solution: Server computes 2n

∑
i α∗i −

∑
i α∗iβidi to to get the final bit sums.

3.3 Lower and upper bounds on # of possible Birkhoff von Neumann decompolinksitions of
a doubly stochastic matrix

The # of possible Birkhoff von Neumann decompsitions of a doubly stochastic matrix is lower
bounded by the square of # of positive elements in the doubly stochastic matrix Dn × n and upper
bounded by n2−2n+2 as in [10, 11, 12, 13]. The upper bound originally is based on the Marcus-Ree
theorem in [14]. The lower bound in the context of SecureHull can be inflated by adding fake rows
into the original permutation matrix; thereby increasing the security. This comes with a trade-off of
increase in communication. It is also known that finding a Birkhoff-von Neumann decomposition
with the least possible number of permutations is NP-Hard. As part of future work we would like to
expand the scheme to other operations in addition to studying polytopes based on alternating sign
matrices with {−1, 0, 1} [15, 16, 17] or the transportation polytope [18].

4



References
[1] Albert Cheu et al. “Distributed differential privacy via shuffling”. In: Annual International

Conference on the Theory and Applications of Cryptographic Techniques. Springer. 2019,
pp. 375–403.

[2] Chao Li et al. “Optimizing linear counting queries under differential privacy”. In: Proceedings
of the twenty-ninth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems. 2010, pp. 123–134.

[3] Praneeth Vepakomma, Julia Balla, and Ramesh Raskar. “Splintering with distributions: A
stochastic decoy scheme for private computation”. In: arXiv preprint arXiv:2007.02719 (2020).

[4] Yangsibo Huang et al. “InstaHide: Instance-hiding Schemes for Private Distributed Learning”.
In: Proceedings of the 37’th International Conference on Machine Learning (2020).

[5] Zhijian Liu et al. “DataMix: Efficient Privacy-Preserving Edge-Cloud Inference”. In: ().
[6] Günter M Ziegler. Lectures on polytopes. Vol. 152. Springer Science & Business Media, 2012.
[7] Branko Grünbaum and Geoffrey C Shephard. “Convex polytopes”. In: Bulletin of the London

Mathematical Society 1.3 (1969), pp. 257–300.
[8] Peter R Cromwell. Polyhedra. Cambridge University Press, 1999.
[9] Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency. Vol. 24. Springer

Science & Business Media, 2003.
[10] Richard A Brualdi. “Notes on the Birkhoff algorithm for doubly stochastic matrices”. In:

Canadian Mathematical Bulletin 25.2 (1982), pp. 191–199.
[11] Fanny Dufossé and Bora Uçar. “Notes on Birkhoff–von Neumann decomposition of doubly

stochastic matrices”. In: Linear Algebra and its Applications 497 (2016), pp. 108–115.
[12] Richard A Brualdi and Geir Dahl. “An extension of the polytope of doubly stochastic matrices”.

In: Linear and Multilinear Algebra 61.3 (2013), pp. 393–408.
[13] Lu-Bin Cui, Wen Li, and Michael K Ng. “Birkhoff–von Neumann theorem for multistochastic

tensors”. In: SIAM Journal on Matrix Analysis and Applications 35.3 (2014), pp. 956–973.
[14] Marvin Marcus and Rimhak Ree. “Diagonals of doubly stochastic matrices”. In: The Quarterly

Journal of Mathematics 10.1 (1959), pp. 296–302.
[15] Bahman Kalantari. “Alternating sign matrices and polynomiography”. In: the electronic journal

of combinatorics (2011), P24–P24.
[16] Jessica Striker. “The alternating sign matrix polytope”. In: arXiv preprint arXiv:0705.0998

(2007).
[17] Roger E Behrend and Vincent A Knight. “Higher spin alternating sign matrices”. In: arXiv

preprint arXiv:0708.2522 (2007).
[18] Edward D Kim. “Geometric combinatorics of transportation polytopes and the behavior of the

simplex method”. In: arXiv preprint arXiv:1006.2416 (2010).

5


	Introduction and Problem Statement
	Problem Statement
	Related work
	Preliminaries for Splintering
	Terminology: Types of splinters
	Motivation for combinatorial splintering


	Preliminaries for SecureHull: Polyhedral Combinatorics
	SecureHull: Dual splintering for categorical/label data
	Data representation
	Approach: SecureHull
	Lower and upper bounds on # of possible Birkhoff von Neumann decompolinksitions of a doubly stochastic matrix


