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ABSTRACT

Despite recent advances in multimodal reasoning, Multimodal Large Language
Models (MLLMs) still underperform on complex vision-centric reasoning tasks
compared to their strong capabilities in language-based reasoning. This perfor-
mance gap stems from a critical asymmetry in their reasoning processes: while
MLLMs excel at iterative reflection and correction in textual contexts, they tend to
uncritically accept their initial visual interpretations and rarely revise them, even
when these cues lead to logical inconsistencies. To overcome this shortcoming,
we introduce GThinker, a general-purpose reasoning MLLM that unifies robust
textual reasoning with a novel, adaptive visual rethinking capability. GThinker
first introduces Cue-Rethinking, a flexible reasoning pattern that not only grounds
reasoning in visual cues but also strategically triggers rethinking of these cues to
resolve visual inconsistency for solid reasoning. To cultivate this adaptive capa-
bility across domains, we further design a two-stage training pipeline, including
the pattern-guided cold start with the judge-guided selective training and incen-
tive reinforcement learning. Furthermore, we construct GThinker-11k to support
the training, a dataset containing 7K cue-annotated chain-of-thought data and 4K
diverse reinforcement samples, using the designed iterative multimodal annota-
tion pipeline. Extensive experiments demonstrate that GThinker achieves 81.5%
on the challenging comprehensive multimodal reasoning benchmark M3CoT, sur-
passing the latest O4-mini model. It also shows an average improvement of 2.1%
on general scenario multimodal reasoning benchmarks, while maintaining on-par
performance in mathematical reasoning compared to counterpart advanced rea-
soning models.

1 INTRODUCTION

Open-source Multimodal Large Language Models (MLLMs) (Li et al., 2024a; Wu et al., 2024; Zhu
et al., 2025; Wu et al., 2025; Team et al., 2025) have made significant strides across a wide range
of tasks. Leading models like Qwen2.5-VL (Bai et al., 2025) now rival closed-source counterparts
such as GPT-4o (Hurst et al., 2024) in performance. These advances have benefited in part from
the adoption of chain-of-thought (CoT) techniques (Lu et al., 2022a; Yao et al., 2023; Wei et al.,
2022), especially in mathematics and science. With the emergence of OpenAI’s O1 model (Jaech
et al., 2024), several studies (Yao et al., 2024; Xu et al., 2024; Thawakar et al., 2025) have sought to
mimic such human-like CoT reasoning capabilities in the multimodal reasoning domain to enhance
models’ performance on complex tasks. DeepSeek-R1 (Guo et al., 2025) further introduces a new
perspective, showing that Reinforcement Learning with Verified Rewards (RLVR) can awaken such
CoT reasoning, with promising results (Meng et al., 2025; Yang et al., 2025; Chen et al., 2025a) in
multimodal reasoning tasks involving science and mathematics.

Beyond mathematics and science, multimodal reasoning in general scenarios, which often involves
visual cues and related commonsense, still remains under-explored. Unlike math and science tasks,
where strict logical structures and unique answers allow models to benefit from consistent reflection
on textual derivations, general multimodal reasoning is inherently diverse and more reliant on visual
interpretation and deduction. This diversity makes it first challenging to summarize a fixed CoT
pattern or design an effective Process Reward Model (PRM), limiting the effectiveness of structured
reasoning (Yao et al., 2024; Xu et al., 2024) and Multimodal PRMs (Wang et al., 2025; Liu et al.,
2024a). Moreover, we observe a critical asymmetry in the reasoning process of current reasoning
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Figure 1: Multimodal reasoning methods comparison across scenarios. Multimodal Reasoning in
different domains is featured with visual reliance and high question complexity, making it a chal-
lenging task. Different from previous methods, GThinker utilizes near free-form thinking for dif-
ferent types of questions instead of a fixed structure form and enables general scenario reasoning
accuracy with designed visual cue rethinking.

MLLMs trained with verifiable rewards: while they can iteratively reflect on and correct textual
context, they tend to uncritically accept initial visual interpretations and rarely revise them even
when inconsistencies arise. As summarized in Figure 1, existing RLVR reasoning models often
fail to revisit or update visual cues once an initial interpretation is formed, and when confronted
with plausible yet inconsistent intermediate states, they continue along the current path to an answer
rather than re-examining those cues. This form of visual rethinking is fundamentally different from
text-centric reflection (Shah et al., 2025), which cannot be reliably induced by RLVR alone, nor
captured by a fixed CoT or PRM template. These limitations point to the need for a mechanism that
unifies robust textual logic with adaptive re-interpretation of visual cues.

To address these challenges, we propose GThinker, a novel reasoning MLLM, which unifies robust
textual logic with a novel, adaptive visual rethinking capability to excel in multimodal reasoning
across general scenarios, mathematics, and science. First, we introduce a new visual cues-driven
multimodal reasoning pattern called Cue-Rethinking to make reasoning as natural as text-centric re-
flection. Unlike prior approaches (Xu et al., 2024; Thawakar et al., 2025) that define structured CoT
formats, Cue-Rethinking only requires the reasoning process to be strictly grounded in visual cues
without enforcing a fixed format. After completing an initial reasoning chain, the model rethinks
the interpretations and inferences based on visual content to correct inconsistencies and arrive at
the correct answer. Building on this pattern, we propose a two-stage training pipeline to enable ro-
bust multimodal reasoning across domains. We begin with a pattern-guided cold start that not only
teaches the model this reasoning pattern across tasks but also cultivates adaptive decisions about
when to rethink via judge-guided selective training. Then, we further employ an incentive RL stage
to let the model explore optimal strategies for solving diverse problems across domains. To support
training, we further develop a multimodal iterative annotation pipeline based on the latest advancing
multimodal models like O3 (OpenAI, 2025) and construct GThinker-11k, comprising 7K cold-start
data with high-quality annotated reasoning paths and 4K reinforcement learning samples, filling a
key gap in multimodal reasoning data for general scenarios.

We implement GThinker based on the advanced open-source MLLM Qwen-VL 2.5–7B and conduct
extensive experiments to rigorously evaluate its effectiveness. We first benchmark GThinker against
both open- and closed-source models on M3CoT (Chen et al., 2024a), a challenging and compre-
hensive multimodal reasoning dataset spanning science, general commonsense, and mathematics.
For broader validation, we include general-domain benchmarks such as MMStar (Chen et al.) and
RealWorldQA (xAI, 2024), as well as science and math-focused benchmarks including MMMU-
Pro (Yue et al., 2024), MathVision (Wang et al., 2024a), and MathVista (Lu et al.). GThinker
demonstrates strong performance across all domains, achieving 81.5% on M3CoT—surpassing the
advanced O4-mini model. On MMStar and RealWorldQA, GThinker achieves the improvement of
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2.5% and 1.6%, respectively. Additionally, it performs competitively on science and math bench-
marks with 40.7% on MMMU Pro and 72.7% on MathVista, matching or outperforming recent
RL-enhanced approaches, further validating its effectiveness.

2 RELATED WORK

2.1 STRUCTURED MULTIMODAL CHAIN-OF-THOUGHT REASONING

Structured Multimodal Chain-of-Thought (MCoT) reasoning builds on the Chain-of-Thought (CoT)
paradigm (Wei et al., 2022), extending it to multimodal tasks using step-by-step reasoning (Lu
et al., 2022a; Zhang et al., 2023). Many approaches enhance this framework with structured de-
signs (Zheng et al., 2023; Liu et al., 2024b; Mitra et al., 2024) and further improvements such as
fine-grained visual grounding, context integration, or tool use (Jia et al., 2024; Gao et al., 2024; Luan
et al., 2024; Wu & Xie, 2024; Shao et al., 2024a; Li et al., 2024b; Bigverdi et al., 2024). However,
these methods are often task-specific—e.g., CCoT (Mitra et al., 2024) for compositional reasoning,
LLaVA-Aurora (Bigverdi et al., 2024) for spatial reasoning—and lack robustness across diverse sce-
narios. Recently, slow-thinking paradigms (Jaech et al., 2024; Team, 2025; Qin et al., 2024) have
been proposed to improve reasoning depth. Enhanced MCoT variants like LLaVA-CoT (Xu et al.,
2024), Virgo (Du et al., 2025), and Mulberry (Yao et al., 2024) leverage long-chain generation, tree
search, and self-reflection. Yet, they remain confined to structured, logic-heavy tasks and are diffi-
cult to generalize to broader settings. In contrast, GThinker adopts a free-form, cue-based thinking
paradigm with further visual cue-based rethinking, moving beyond rigid structures to support open-
domain multimodal reasoning. This design enables generalization across tasks without sacrificing
interpretability or performance.

2.2 MULTIMODAL REASONING WITH REINFORCEMENT LEARNING

3. Reinforcement learning (RL) has become a powerful tool to align MLLMs and mitigate halluci-
nations (Sun et al., 2023b; Yu et al., 2024; Zhang et al., 2024b; Sun et al., 2023a; Li et al., 2023;
Zhang et al., 2025), and is now being explored to improve multimodal reasoning. Early works like
LLaVA-Reasoner (Zhang et al., 2024a), MPO (Wang et al., 2024c), and Insight-V (Rafailov et al.,
2023) emphasize supervised or preference signals to teach correctness, limiting robustness and scal-
ability for more complex scenarios. A shift emerged with DeepSeek-R1 (Guo et al., 2025), which
showed that outcome-based rewards, without fine-grained annotations, can drive reasoning through
self-verification and reflection. Follow-up works (Chen et al., 2025b; Yang et al., 2025; Meng et al.,
2025; Chen et al., 2025a; Team et al., 2025; Peng et al., 2025) expand this idea to the multimodal do-
main, leveraging different verifiable reward functions or data sampling approaches to improve math
and science reasoning. However, these methods chiefly strengthen reflection over textual steps and
seldom encourage re-examination of visual evidence, which limits performance on general multi-
modal tasks with ambiguous cues. In contrast, we make adaptive visual rethinking a main objective
together with textual thinking by a cue-rethinking pattern that teaches not only how to rethink but
also when to invoke it, enabled by a two-stage training scheme.

3 METHODOLOGY

In this section, we provide a comprehensive description of the novel multimodal reasoning model
GThinker as depicted in Figure 4. In §3.1, we first present the Cue-Rethinking Pattern, a core com-
ponent built on free-form thinking to provide visual cue-driven guidance for multimodal reasoning
across scenarios. Then, in §3.2, we describe Pattern-Guided Cold Start, in which we train the model
with pattern-guided supervised fine-tuning to learn how to think and when to rethink for different
scenarios. Finally, we introduce Incentive Reinforcement Learning to generalize the multimodal
reasoning capabilities of the model across diverse scenarios in §3.3.

3.1 CUE-RETHINKING PATTERN

Existing CoT reasoning methods(Xu et al., 2024; Thawakar et al., 2025) often rely on fixed, struc-
tured thinking chains tailored to specific tasks. While effective in targeted domains, their perfor-
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<think>To determine what the image depicts, 
l e t ' s  a n a l y z e  t h e  s h a p e s  a n d  t h e i r 
arrangement:

1. <vcues_1>The image consists of several 
geometric shapes, including triangles and a 
parallelogram</vcues_1>.

2. <vcues_2>The shapes are arranged in a way 
that suggests a form or figure</vcues_2>.

3. <vcues_3>The red and white shapes on the 
left side resemble the body and legs of a 
crab</vcues_3>.

4. <vcues_4>The blue and pink shapes on the 
r i g h t  s i d e  r e s e m b l e  t h e  c l a w s  o f  a 
crab</vcues_4>.

Given this analysis, the image most closely 
resembles a crab.

Question: What does the 
image depict?
A. Crab
B. Fish
C. Shrimp
D. Lobster

<vcues_3>The red triangle at the upper left actually represents the head of a 
shrimp, not the body and legs of a crab</vcues_3>  Shrimp illustrations 
often highlight the head section in a distinct color, and here it is placed at the 
foremost position.

<vcues_4>The small dark‑blue right‑triangle and the bright pink rectangle 
together form the tip of the tail (blue) and the main tail segment (pink) of a 
shrimp, not crab claws</vcues_4> . Their alignment behind the body area 
matches a shrimp’s tail fan.

<vcues_5>The large light‑lavender parallelogram on the lower left represents 
the main body/abdomen of the shrimp</vcues_5> , connecting the red 
head in front to the tail pieces behind.

Because each colored region (red head, lavender body, pink tail, blue tail‑tip) 
maps cleanly onto the characteristic parts of a shrimp’s anatomy, the 
composite figure depicts a shrimp, not a crab, fish, or lobster.</think>

<answer>C</answer>

Figure 2: Constructed Data Example with Cue-Rethinking. The visual cues in red are flawed ones,
while the green indicates the visual cues are revised or appended.

mance tends to drop sharply when applied to more general or unfamiliar scenarios. RLVR models
offer more flexibility, but they also fall short in general settings that require grounded, visually in-
formed interpretations and deductions. To tackle this challenge, we introduce the Cue-Rethinking
Pattern, a thinking mechanism that enables flexible CoT reasoning capable of natural rethinking on
visual cues with near free-form textual thinking.
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Figure 3: Toy example of the Cue-Rethinking Pat-
tern. The dashed line indicates generation on de-
mand.

As shown in Figure 3, the process has
three stages: initial reasoning, cue-rethinking
trigger, and cue-based rethinking. In
the initial stage, the model may use any
previously learned textual reasoning strat-
egy—e.g., step-by-step deduction, reflection,
or knowledge-driven logic—without struc-
tural constraints. The only requirement is to
ground its reasoning in visual evidence and
explicitly mark the referenced cues using the
format <vcues > </vcues > (* denotes the
cue index). This lightweight constraint preserves flexibility while highlighting the visual cues ex-
plicit from the outset, and provides clear anchors for subsequent rethinking.

After the initial reasoning, the model self-triggers a prompt for cue-based rethinking ( e.g., “Let’s
check each visual cue and the corresponding reasoning before the final answer”). We intentionally
avoid immediate rethinking after cue identification to maintain natural reasoning flow and preserve
global context. The model then revisits all marked visual cues, checks for inconsistencies, and, if
needed, revises the cues and updates the associated reasoning before producing the final answer,
as indicated on the right of Figure 2. This design remains compatible with well-established text-
centric reasoning (e.g., knowledge-driven logic, reflective deduction) while explicitly supporting
visual cue–oriented reasoning. By combining free-form reasoning with visual-cue rethinking, it
mitigates failures from misleading or missing visual inputs and yields robust, adaptable performance
across diverse multimodal scenarios.

3.2 PATTERN-GUIDED COLD START

While RLVR can steer models toward desired behaviors, relying on it alone is challenging and
computationally costly—especially when the visual rethinking routine is relatively new to the model.
To address this, we propose a Pattern-Guided Cold Start stage with Judge-Guided Seletive Training,
initialized with a carefully curated 7K training set containing annotated reasoning trajectories across
multiple domains, constructed via our iterative multimodal annotation pipeline, as shown in Figure
4.

Iterative Multimodal Annotation Pipeline. Several method have tried to construct reasoning
dataset to improve multimodal reasoning. Heuristic-driven approaches (Xu et al., 2024) often lack
the diversity to cover complex tasks, while methods (Huang et al., 2025) generating reasoning from
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Figure 4: Overview of GThinker Training Pipeline. We first leverage the Iterative Multimodal An-
notation Pipeline to generate high-quality reasoning data w. and w.o. visual thinking following the
Cue-rethinking Pattern. Building on the constructed data, Judge-Guided Selective Training within
the Pattern-Guided Cold Start phase then teaches the model how to think with the proposed pattern
and when to rethink. Finally, Incentive Reinforcement Learning with DAPO enhances GThinker’s
ability to perform adaptive and accurate multimodal reasoning across diverse scenarios.

visual caption tend to produce text-centric deduction and suffers from inadequate visual informa-
tion from captions. To address these shortcomings, we propose the Iterative Multimodal Annotation
Pipeline to construct a dataset that unifies robust textual reasoning with solid visual cues for general
reasoning, as shown in Figure 3. Instead of relying solely on text, we feed the image, question, and
answer into an advanced multimodal model and prompt it to generate a reasoning process incorpo-
rate critical marked visual interpretation and deduction, as well as human-like cognitive processes
such as self-reflection, ensured by the well-craft prompt. Next, we employ iterative refinement to
mitigate incomplete logic or missed visual cues, which may occur when using a single model. The
output from former model serves as context for a successor model, which is then prompted to correct,
refine, and supplement the prior reasoning. Furthermore, to generate annotations that include visual
rethinking, we devise a “flawed sampling-contrast-generation” process. To avoid the hallucinations
of manual creation, we first collect diverse, incorrect reasoning samples using high-temperature roll-
outs. Powerful O3 is then tasked with contrasting these flawed examples against our correct, refined
annotations to generate new samples incorporating a cue-rethinking procedure. After automated ver-
ification as detailed in A., this pipeline yielded 7,358 samples across various domains, each labeled
to indicate the presence or absence of a visual re-thinking process. We detailed data distribution,
pre-processing and post-processing procedure, and prompts used in each step in the Appendix A.

Judge-Guided Selective Training. While reflection and re-thinking can significantly improve
model accuracy, mandating this process for all training samples is suboptimal, and Naive ap-
proaches, such as randomly selecting a subset of samples for rethinking (Yao et al., 2024; Peng
et al., 2025), also ignore critical differences among samples and model capabilities. Beyond teach-
ing a model how to re-think, instilling the knowledge of when to trigger this process is equally
crucial, especially from a cold start. To address this, we introduce a training strategy termed Judge-
Guided Selective Training. We begin with an initial inference pass, rolling out the base model on the
training set. Leveraging the LLM-as-a-judge paradigm (Gu et al., 2024), we then feed the question,
answer, and the model’s generated response to the employed judge model GPT-4o to diagnose the
model’s response to determine if errors are rooted in flawed visual cues. Based on the diagnostic
step, we apply supervision using the detailed annotations that include the cue rethinking process
for the samples where the model failed due to visual reasoning errors. Crucially, unlike rejection
sampling, which discards incorrect responses, our method transforms these specific failures into
valuable learning signals. This approach guides the model to learn not only how to reason following
the cue-rethinking pattern but, more importantly, to recognize the very conditions that necessitate it.

3.3 INCENTIVE REINFORCEMENT LEARNING

Building on this foundation of Pattern-Guided Cold Start phase, we further enhance the model using
reinforcement learning with verified rewards to encourage exploration and help it generalize across
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diverse tasks and scenarios. Given recent advances in RLVR, we adopt the Decoupled Clip and
Dynamic Sampling Policy Optimization (DAPO) algorithm (Yu et al., 2025) with a hybrid reward
design supported by the offline balancing sampling.

Preliminaries about DAPO. DAPO improves from the GRPO (Shao et al., 2024b) by tackling two
fundamental challenges in training for complex reasoning, as shown in Equation 1. First, it ensures
training stability and efficiency through a Clip-Higher strategy and Dynamic Sampling. Second, it
refines the supervision signal for long-chain reasoning by integrating Token-Level Policy Gradient
Loss and Overlong Reward Shaping. These components enable fine-grained reward assignment
and mitigate noise from reward model biases against verbosity, guiding the model to master high-
quality reasoning patterns. Therefore, the model is better equipped to sample diverse reasoning
paths and is enabled to learn reasoning strategies such as reflective knowledge inference for math
tasks or cue-based rethinking in general multimodal scenarios. As a result, the model improves the
ability to dynamically select the most suitable reasoning strategy for each situation, improving both
generalization and robustness across domains.

JDAPO(θ) = E(q,a)∼D,{oi}G
i=1∼πold(·|q) 1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

min
(
ri,t(θ)Âi,t, clip (ri,t(θ), 1− εlow, 1 + εhigh) Âi,t

)
s.t. 0 < |{oi | is equivalent(a, oi)}| < G,

(1)

where

ri,t(θ) =
πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
, Âi,t =

Ri − mean({Ri}Gi=1)

std({Ri}Gi=1)
. (2)

Hybrid Reward Design. The default DAPO setting combines format-based and accuracy-based
rewards. Prior approaches often constrain QA tasks to rigid formats, such as multiple-choice, and
depend on exact string matching to assess correctness. This limits the range of question types the
model can handle, especially in general scenarios, and model-based verification further reduces
training efficiency. To overcome these limitations, we propose a hybrid reward strategy within the
constraints of verifiable rewards. We support three main question types: multiple-choice, math,
and simple open-ended formats. For multiple-choice questions, we apply exact answer matching.
For math problems—whether numeric or symbolic—we use Math-Verify (Hynek, 2023) to extract
and verify answers. For open-ended questions, we guide the model to summarize the answer in a
standardized, concise format like a word or short phrase, enabling straightforward matching during
reward computation. This design expands the diversity of supported question types while preserving
reward accuracy. For the format reward, we follow prior work by enforcing and verifying adherence
to the think-answer structure.

Offline Balanced Sampling. To support the reinforcement learning stage, we follow the practice
(Yang et al., 2025; Xu et al., 2024) to collect diverse samples spanning math, science, and general
reasoning tasks. However, we observed that not all samples are equally beneficial for training, given
their varying types and difficulty levels. Therefore, to construct a balanced and effective dataset,
we perform an offline balancing sampling procedure prior to the RL training. We first extract the
joint embedding of image and question, and then follow (Vo et al., 2024) to perform clustering and
sampling on these embeddings. Unlike heuristic approaches that rely on fine-grained manual catego-
rization, our method focuses more on the image and question themselves. Subsequently, we conduct
a rollout (n=16) on the remaining samples and discard instances where the model consistently fails
to produce a correct response, which likely represent either annotation errors in the public source
data or are prohibitively difficult. This curation pipeline yields a final set of 4K high-quality samples
for the RL stage. We provide further details on the data composition in Appendix A.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Training Settings. We implement GThinker with the advanced MLLM Qwen2.5-VL-7B (Bai et al.,
2025), one of the latest and most capable models at this scale, combining strong visual understanding
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Table 1: Main results on comprehensive multimodal reasoning benchmark M3CoT. Abbreviations
used in the table: Lang. (Language), Nat. (Natural), Soc. (Social), Phys. (Physical), Temp. (Tem-
poral), Alg. (Algebra), Geom. (Geometry), Theo. (Theory). Excluding closed-source models,
values in bold represent the highest performance, while underlined values indicate the second-best
performance across all models.

Model Science Commonsense Mathematics Overall
Lang. Nat. Soc. Phys. Soc. Temp. Alg. Geom. Theo.

Closed-Source Models
Gemini-2.5 Pro (DeepMind, 2025) 97.6 91.6 75.3 92.2 81.4 94.3 81.1 78.8 61.9 85.9
O3-20250416 (OpenAI, 2025) 96.2 89.3 68.0 91.1 80.2 93.5 95.0 87.5 90.5 83.8
O4-mini-20250416 (OpenAI, 2025) 97.2 84.7 62.9 94.4 82.6 91.1 92.9 86.3 76.2 80.9
GPT-4o-20241120 (Hurst et al., 2024) 96.7 72.0 58.3 91.1 76.4 82.9 21.4 31.3 23.8 67.4

Open-Source Models
InternVL-2.5-8B (Chen et al., 2024b) 82.5 63.7 45.2 86.7 79.8 93.4 42.8 27.5 33.3 61.8
Ovis2-8B (Lu et al., 2024) 80.6 63.1 46.2 83.3 79.3 87.8 45.0 42.5 38.9 61.9
Valley2(Wu et al., 2025) 85.3 64.4 48.4 90.0 77.7 80.5 43.6 36.3 47.6 62.8
Qwen2.5-VL-7B (Bai et al., 2025) 82.9 61.2 46.8 82.2 81.4 81.3 57.9 40.0 61.9 62.4

Reasoning Models
LLaVA-CoT-11B (Xu et al., 2024) 72.0 56.4 41.7 84.4 72.3 82.1 37.9 36.3 33.3 56.0
InternVL2.5-MPO-8B (Wang et al., 2024b) 92.4 75.9 61.9 85.6 82.6 94.3 55.0 43.8 76.2 73.3
Kimi-VL-A3B-Thinking (Team et al., 2025) 86.2 64.4 39.6 91.1 78.9 89.4 13.5 15.0 14.2 58.3
MM-Eureka-7B (Meng et al., 2025) 86.7 71.5 57.3 81.1 80.2 90.2 40.0 23.8 28.6 67.4
R1-OneVision-7B (Yang et al., 2025) 74.9 66.4 51.4 84.4 72.3 85.4 30.0 31.3 42.9 61.8
VLAA-Thinker-7B (Chen et al., 2025a) 91.0 70.6 58.1 78.9 78.1 87.8 45.7 35.3 28.6 68.0

GThinker-7B 92.4 90.7 68.9 82.2 81.4 94.3 73.5 62.5 81.0 81.5

with broad general knowledge. We train the GThinker using our design two-stage pipeline, including
pattern-guided cold start and incentive reinforcement learning with the constructed data. For Pattern-
Guided Cold Start, we use a global batch size of 128 and a learning rate of 5e-6, training the model
with the 7K reasoning path annotated data for 3 epochs. In the Incentive RL stage, we set the rollout
number to 16, use a global batch size of 64, and start with a learning rate of 1e-6, training for 170
steps using the curated 4K data. Training is conducted on 4 nodes, each with 8 NVIDIA H100
GPUs. The total training time is about 9 hours. We provide more details in Appendix E.

Evaluation Settings. We evaluate our model against leading closed-source (e.g., O4-mini) and
open-source structured and RL reasoning models on a diverse suite of benchmarks. We mainly in-
clude M3CoT, a challenging benchmark requiring multi-step reasoning based on visual cues across
science, commonsense, and math. To provide a more fine-grained analysis, we also evaluate per-
formance on several domain-specific benchmarks, including general reasoning, scientific reasoning,
and mathematical Reasoning. A detailed description of the benchmarks and evaluation setting can
be found in the Appendix C.

4.2 MAIN RESULTS

In the main results, we mainly compare our GThinker-7B based on Qwen2.5-VL-7B with leading
reasoning models, and provide more results with larger 32B model and different baseline models in
the Appendix B.

Comparison with Baseline and Structured Reasoner. GThinker-7B significantly surpasses both
strong base models and structured long-chain reasoners like LLaVA-COT without carefully pre-
defined reasoning steps. As shown in Table 1, our model achieves an impressive 81.5% on the
comprehensive and challenging M3CoT benchmark, with a substantial +19.1 improvement over the
strong baseline Qwen-VL-2.5-7B and an even more commanding +25.5 lead over the LLaVA-CoT-
11B model. This advantage further proves our model’s advanced ability to integrate visual and
logical steps flexibly. Meanwhile, such superiority is further validated on specialized benchmarks
as shown in Table 2. GThinker-7B consistently outperforms both Qwen-VL-2.5 and LLaVA-CoT
across all evaluated tasks, with an average improvement of +2.1 on general reasoning MMStar and
RealWorldQA, +2.4 on multidisciplinary MMMU-Pro, and +4.5 on MathVista.
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Table 2: Main results on math-related and multidisciplinary benchmarks, and also fine-grained un-
derstanding of multimodal benchmarks incorporating reasoning. We use the setting detailed in the
evaluation settings.

Model MMStar RealWorldQA MMMU-Pro MathVista MathVision

Close-Source Models
Gemini-2.5 Pro 73.6 78.0 68.8 80.9 73.3
GPT-4o-20241120 65.1 76.2 54.5 63.8 31.2

Open-Source Models
InternVL2.5-8B (Chen et al., 2024b) 62.8 70.1 34.4 64.4 19.7
Ovis2-8B (Lu et al., 2024) 64.4 - - 71.4 25.9
Valley2 (Wu et al., 2025) 62.5 67.5 - 69.1 24.9
Qwen2.5-VL-7B (Bai et al., 2025) 63.9 68.5 38.3 68.2 25.1

Reasoning Models
LLaVA-CoT-11B (Xu et al., 2024) 57.6 63.6 33.8 54.8 20.6
InternVL2.5-MPO-8B (Wang et al., 2024b) - - - 67.0 25.7
Kimi-VL-A3B-Thinking (Team et al., 2025) 60.8 - - 67.6 36.8
MM-Eureka-7B (Meng et al., 2025) 64.2 67.3 40.7 73.0 26.9
R1-Onevision-7B (Yang et al., 2025) 42.8 62.7 31.0 64.1 29.9
VLAA-Thinker-7B (Chen et al., 2025a) 63.7 66.9 39.8 68.0 26.4

GThinker-7B 66.4 70.1 40.7 72.7 26.6

Comparison with RL Reasoners. We further compare our method with leading RL reasoning
methods, including both the MPO method InternVL2.5-MPO-8B and the RLVR methods with dif-
ferent training recipes. In summary, GThinker-7B establishes itself as not only the leading per-
former but also the most versatile. As shown in Table 1, on challenging M3CoT, GThinker-7B’s
score of 81.5% is the highest among all open-source models, outperforming the previous SOTA
InternVL2.5-MPO-8B and also competitive RL reasoners, including VLAA-Thinker-7B by +13.5,
MM-Eureka-7B by +14.1, and Kimi-VL-A3B-Thinking by +8.2. Crucially, GThinker-7B avoids the
common performance trade-off observed in RL-trained reasoners. As we claimed as an asymmetry,
RL can enhance MLLMs’ long-chain reasoning ability on mathematical tasks, but degrades on gen-
eral and multidisciplinary benchmarks, based on previous studies. For example, as seen in Table 2,
both VLAA-Thinker-7B and MM-Eureka-7B underperform their baselines on general benchmarks
like MMStar. In contrast, GThinker-7B achieves 72.7% on MathVista (+4.5 points over baseline)
and 26.6% on MathVision (+1.5 points). Similarly, on the multidisciplinary science benchmark
MMMU-Pro, GThinker-7B improves by approximately 4 points. Furthermore, it shows signifi-
cant gains on general benchmarks requiring fine-grained understanding and further reasoning, with
66.4% on MMStar and 70.1% on RealWorldQA. This demonstrates our method’s unique effective-
ness in fostering a general reasoning capability by unifying the textual reasoning with visual cue
rethinking.

4.3 ABLATION STUDY

Table 3: Ablation on the Iterative Mul-
timodal Reasoning Pipeline. Iter. indi-
cates iterative refinement.

Caption Image Iter. M3CoT

✓ 63.5
✓ 69.6
✓ ✓ 73.6

Ablation on the Iterative Multimodal Reasoning
Pipeline. High-quality data is crucial for training ef-
fective multimodal reasoning models. To build a high-
quality multimodal reasoning data aligned with the pro-
posed cue-rethinking pattern, we propose the iterative
multimodal annotation pipeline. We compare our method
with the text input only (caption + question) data con-
struction method (Huang et al., 2025) indicated by Cap-
tion in Table 3 under the same generation model to val-
idate the necessity and advantage of multimodal annota-
tion, as well as the iterative refinement strategy we use. As shown in Table 3, using only the text
inputs with caption replacing the image, yields an overall score of 63.5%. Our data generation
pipeline, even without iterative refinement, significantly improves performance to 69.6% (+6.1%
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Table 4: Ablation on GThinker Components.

Method Science Com. Math Overall

Qwen2.5-VL-7B 57.6 80.8 60.6 62.4
Qwen2.5-VL-7B-Zero 63.3 81.6 49.0 64.2

+ Patten Guided Cold Start 73.1 79.3 46.9 73.6
w/o Judge-Guided Selective Training 68.0 82.0 42.7 68.4

+ Incentive Reinforcement Learning 82.5 83.7 71.0 81.5
w/o Offline Balanced Sampling 82.2 84.2 60.2 80.4

absolute). Incorporating our iterative refinement process further boosts the overall score to 73.6%,
an additional 4.0% improvement. We attribute this gain to the complementary strengths of the lead-
ing models, including GPT-4o, O1, and O3: during the collaborative annotation iterations, visual
cues and reasoning logic are more thoroughly captured, further boosting the quality of the CoT data.

Ablation on GThinker Components. As shown in Table 4, we conduct ablation studies to examine
the individual contribution of each design in GThinker, evaluating on M3CoT, including the pattern-
guided cold start with Judge-Guided Selective Training and Incentive Reinforcement Learning with
Offline Balanced Sampling. Compared with the baseline, incorporating the pattern-guided cold start
yields a performance boost of +11.2%, with Judge-Guided Selective Training contributing 5.2%
improvement. Such a result highlights the effectiveness of our Judge-Guided Selective Training
to learn from visual cue failure cases to learn when to rethink. Further training the model with
Incentive Reinforcement Learning brings an improvement of 6.9%, among which Offline Balance
Sampling contributes 1.1%. Meanwhile, compared with the model solely training with the DAPO,
termed Qwen2.5-VL-7B-Zero, we lead by a large margin. These results verify that such visual cue-
rethinking is different from text-centric reflection, which cannot be reliably induced by verifiable-
reward RL only, and demonstrate the effectiveness of our cue-rethinking pattern combined with the
two-stage training recipe.

5 QUALITATIVE ANALYSIS

To validate our Cue-Rethinking pattern in practice, we qualitatively analyze the model’s generation
process, presenting two representative case studies in the Appendix Figure 6 and Figure 7. As shown
in the Figure 7, GThinker can augment and revise visual cues during the reasoning phase, ultimately
leading to the correct solution, when essential. With correct and adequate visual cues, GThinker can
also critically reflect upon and validate its reasoning pathway from both logical and computational
standpoints to ascertain the final answer for math problems in Figure 6. These instances effectively
highlight the adaptability of our designed pattern to diverse problems and tasks by accommodating
varied thinking approaches, thereby underscoring the success of our training regimen.

6 CONCLUSION

In this paper, we identify a fundamental limitation in multimodal reasoning: the inability to perform
adaptive visual rethinking, a process crucial for robust reasoning in general-purpose scenarios. We
argue that this capability cannot be reliably induced by reinforcement learning from visual feed-
back alone, nor can it be captured by rigid, template-based reasoning structures. It requires a new
mechanism to guide rethinking, making it as natural and evidence-grounded as textual reasoning.
To address this, we introduce GThinker, a framework that learns a novel reasoning pattern called
the Cue-Rethinking Pattern. This pattern compels the model to eschew fixed formats and instead
ground its reasoning and rethinking in visual cues. Through a two-stage training of pattern-guided
cold start and incentive RL, GThinker effectively unifies robust textual reasoning, such as reflec-
tion, with essential visual rethinking. Extensive experiments on multi-domain multimodal reason-
ing benchmarks show that GThinker outperforms existing reasoning MLLMs in both accuracy and
cross-domain adaptability. Ablation studies further confirm the effectiveness of each core design
component.
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