GTHINKER: TOWARDS GENERAL MULTIMODAL REASONING VIA CUE-GUIDED RETHINKING

Anonymous authors

000

001

002 003 004

010 011

012

013

014

016

017

018

019

021

025

026

027

028

029

031

032

034

037

040

041

042

043

044

046 047

048

051

052

Paper under double-blind review

ABSTRACT

Despite recent advances in multimodal reasoning, Multimodal Large Language Models (MLLMs) still underperform on complex vision-centric reasoning tasks compared to their strong capabilities in language-based reasoning. This performance gap stems from a critical asymmetry in their reasoning processes: while MLLMs excel at iterative reflection and correction in textual contexts, they tend to uncritically accept their initial visual interpretations and rarely revise them, even when these cues lead to logical inconsistencies. To overcome this shortcoming, we introduce **GThinker**, a general-purpose reasoning MLLM that unifies robust textual reasoning with a novel, adaptive visual rethinking capability. GThinker first introduces Cue-Rethinking, a flexible reasoning pattern that not only grounds reasoning in visual cues but also strategically triggers rethinking of these cues to resolve visual inconsistency for solid reasoning. To cultivate this adaptive capability across domains, we further design a two-stage training pipeline, including the pattern-guided cold start with the judge-guided selective training and incentive reinforcement learning. Furthermore, we construct GThinker-11k to support the training, a dataset containing 7K cue-annotated chain-of-thought data and 4K diverse reinforcement samples, using the designed iterative multimodal annotation pipeline. Extensive experiments demonstrate that GThinker achieves 81.5% on the challenging comprehensive multimodal reasoning benchmark M³CoT, surpassing the latest O4-mini model. It also shows an average improvement of 2.1% on general scenario multimodal reasoning benchmarks, while maintaining on-par performance in mathematical reasoning compared to counterpart advanced reasoning models.

1 Introduction

Open-source Multimodal Large Language Models (MLLMs) (Li et al., 2024a; Wu et al., 2024; Zhu et al., 2025; Wu et al., 2025; Team et al., 2025) have made significant strides across a wide range of tasks. Leading models like Qwen2.5-VL (Bai et al., 2025) now rival closed-source counterparts such as GPT-4o (Hurst et al., 2024) in performance. These advances have benefited in part from the adoption of chain-of-thought (CoT) techniques (Lu et al., 2022a; Yao et al., 2023; Wei et al., 2022), especially in mathematics and science. With the emergence of OpenAI's O1 model (Jaech et al., 2024), several studies (Yao et al., 2024; Xu et al., 2024; Thawakar et al., 2025) have sought to mimic such human-like CoT reasoning capabilities in the multimodal reasoning domain to enhance models' performance on complex tasks. DeepSeek-R1 (Guo et al., 2025) further introduces a new perspective, showing that Reinforcement Learning with Verified Rewards (RLVR) can awaken such CoT reasoning, with promising results (Meng et al., 2025; Yang et al., 2025; Chen et al., 2025a) in multimodal reasoning tasks involving science and mathematics.

Beyond mathematics and science, multimodal reasoning in general scenarios, which often involves visual cues and related commonsense, still remains under-explored. Unlike math and science tasks, where strict logical structures and unique answers allow models to benefit from consistent reflection on textual derivations, general multimodal reasoning is inherently diverse and more reliant on visual interpretation and deduction. This diversity makes it first challenging to summarize a fixed CoT pattern or design an effective Process Reward Model (PRM), limiting the effectiveness of structured reasoning (Yao et al., 2024; Xu et al., 2024) and Multimodal PRMs (Wang et al., 2025; Liu et al., 2024a). Moreover, we observe a critical asymmetry in the reasoning process of current reasoning

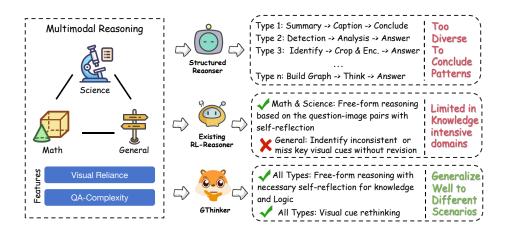


Figure 1: Multimodal reasoning methods comparison across scenarios. Multimodal Reasoning in different domains is featured with visual reliance and high question complexity, making it a challenging task. Different from previous methods, GThinker utilizes **near free-form** thinking for different types of questions instead of a fixed structure form and enables general scenario reasoning accuracy with **designed visual cue rethinking**.

MLLMs trained with verifiable rewards: while they can iteratively reflect on and correct textual context, they tend to uncritically accept initial visual interpretations and rarely revise them even when inconsistencies arise. As summarized in Figure 1, existing RLVR reasoning models often fail to revisit or update visual cues once an initial interpretation is formed, and when confronted with plausible yet inconsistent intermediate states, they continue along the current path to an answer rather than re-examining those cues. This form of visual rethinking is fundamentally different from text-centric reflection (Shah et al., 2025), which cannot be reliably induced by RLVR alone, nor captured by a fixed CoT or PRM template. These limitations point to the need for a mechanism that unifies robust textual logic with adaptive re-interpretation of visual cues.

To address these challenges, we propose GThinker, a novel reasoning MLLM, which unifies robust textual logic with a novel, adaptive visual rethinking capability to excel in multimodal reasoning across general scenarios, mathematics, and science. First, we introduce a new visual cues-driven multimodal reasoning pattern called Cue-Rethinking to make reasoning as natural as text-centric reflection. Unlike prior approaches (Xu et al., 2024; Thawakar et al., 2025) that define structured CoT formats, Cue-Rethinking only requires the reasoning process to be strictly grounded in visual cues without enforcing a fixed format. After completing an initial reasoning chain, the model rethinks the interpretations and inferences based on visual content to correct inconsistencies and arrive at the correct answer. Building on this pattern, we propose a two-stage training pipeline to enable robust multimodal reasoning across domains. We begin with a pattern-guided cold start that not only teaches the model this reasoning pattern across tasks but also cultivates adaptive decisions about when to rethink via judge-guided selective training. Then, we further employ an incentive RL stage to let the model explore optimal strategies for solving diverse problems across domains. To support training, we further develop a multimodal iterative annotation pipeline based on the latest advancing multimodal models like O3 (OpenAI, 2025) and construct GThinker-11k, comprising 7K cold-start data with high-quality annotated reasoning paths and 4K reinforcement learning samples, filling a key gap in multimodal reasoning data for general scenarios.

We implement GThinker based on the advanced open-source MLLM Qwen-VL 2.5–7B and conduct extensive experiments to rigorously evaluate its effectiveness. We first benchmark GThinker against both open- and closed-source models on M³CoT (Chen et al., 2024a), a challenging and comprehensive multimodal reasoning dataset spanning science, general commonsense, and mathematics. For broader validation, we include general-domain benchmarks such as MMStar (Chen et al.) and RealWorldQA (xAI, 2024), as well as science and math-focused benchmarks including MMMU-Pro (Yue et al., 2024), MathVision (Wang et al., 2024a), and MathVista (Lu et al.). GThinker demonstrates strong performance across all domains, achieving 81.5% on M³CoT—surpassing the advanced O4-mini model. On MMStar and RealWorldQA, GThinker achieves the improvement of

2.5% and 1.6%, respectively. Additionally, it performs competitively on science and math benchmarks with 40.7% on MMMU Pro and 72.7% on MathVista, matching or outperforming recent RL-enhanced approaches, further validating its effectiveness.

2 RELATED WORK

2.1 STRUCTURED MULTIMODAL CHAIN-OF-THOUGHT REASONING

Structured Multimodal Chain-of-Thought (MCoT) reasoning builds on the Chain-of-Thought (CoT) paradigm (Wei et al., 2022), extending it to multimodal tasks using step-by-step reasoning (Lu et al., 2022a; Zhang et al., 2023). Many approaches enhance this framework with structured designs (Zheng et al., 2023; Liu et al., 2024b; Mitra et al., 2024) and further improvements such as fine-grained visual grounding, context integration, or tool use (Jia et al., 2024; Gao et al., 2024; Luan et al., 2024; Wu & Xie, 2024; Shao et al., 2024a; Li et al., 2024b; Bigverdi et al., 2024). However, these methods are often task-specific—e.g., CCoT (Mitra et al., 2024) for compositional reasoning, LLaVA-Aurora (Bigverdi et al., 2024) for spatial reasoning—and lack robustness across diverse scenarios. Recently, slow-thinking paradigms (Jaech et al., 2024; Team, 2025; Qin et al., 2024) have been proposed to improve reasoning depth. Enhanced MCoT variants like LLaVA-CoT (Xu et al., 2024), Virgo (Du et al., 2025), and Mulberry (Yao et al., 2024) leverage long-chain generation, tree search, and self-reflection. Yet, they remain confined to structured, logic-heavy tasks and are difficult to generalize to broader settings. In contrast, GThinker adopts a free-form, cue-based thinking paradigm with further visual cue-based rethinking, moving beyond rigid structures to support opendomain multimodal reasoning. This design enables generalization across tasks without sacrificing interpretability or performance.

2.2 Multimodal Reasoning with Reinforcement Learning

3. Reinforcement learning (RL) has become a powerful tool to align MLLMs and mitigate hallucinations (Sun et al., 2023b; Yu et al., 2024; Zhang et al., 2024b; Sun et al., 2023a; Li et al., 2023; Zhang et al., 2025), and is now being explored to improve multimodal reasoning. Early works like LLaVA-Reasoner (Zhang et al., 2024a), MPO (Wang et al., 2024c), and Insight-V (Rafailov et al., 2023) emphasize supervised or preference signals to teach correctness, limiting robustness and scalability for more complex scenarios. A shift emerged with DeepSeek-R1 (Guo et al., 2025), which showed that outcome-based rewards, without fine-grained annotations, can drive reasoning through self-verification and reflection. Follow-up works (Chen et al., 2025b; Yang et al., 2025; Meng et al., 2025; Chen et al., 2025a; Team et al., 2025; Peng et al., 2025) expand this idea to the multimodal domain, leveraging different verifiable reward functions or data sampling approaches to improve math and science reasoning. However, these methods chiefly strengthen reflection over textual steps and seldom encourage re-examination of visual evidence, which limits performance on general multimodal tasks with ambiguous cues. In contrast, we make adaptive visual rethinking a main objective together with textual thinking by a cue-rethinking pattern that teaches not only how to rethink but also when to invoke it, enabled by a two-stage training scheme.

3 METHODOLOGY

In this section, we provide a comprehensive description of the novel multimodal reasoning model GThinker as depicted in Figure 4. In §3.1, we first present the Cue-Rethinking Pattern, a core component built on free-form thinking to provide visual cue-driven guidance for multimodal reasoning across scenarios. Then, in §3.2, we describe Pattern-Guided Cold Start, in which we train the model with pattern-guided supervised fine-tuning to learn how to think and when to rethink for different scenarios. Finally, we introduce Incentive Reinforcement Learning to generalize the multimodal reasoning capabilities of the model across diverse scenarios in §3.3.

3.1 Cue-Rethinking Pattern

Existing CoT reasoning methods(Xu et al., 2024; Thawakar et al., 2025) often rely on fixed, structured thinking chains tailored to specific tasks. While effective in targeted domains, their performance of the control of the control

Figure 2: Constructed Data Example with Cue-Rethinking. The visual cues in red are flawed ones, while the green indicates the visual cues are revised or appended.

mance tends to drop sharply when applied to more general or unfamiliar scenarios. RLVR models offer more flexibility, but they also fall short in general settings that require grounded, visually informed interpretations and deductions. To tackle this challenge, we introduce the Cue-Rethinking Pattern, a thinking mechanism that enables flexible CoT reasoning capable of natural rethinking on visual cues with near free-form textual thinking.

As shown in Figure 3, the process has three stages: initial reasoning, cue-rethinking trigger, and cue-based rethinking. In the initial stage, the model may use any previously learned textual reasoning strategy—e.g., step-by-step deduction, reflection, or knowledge-driven logic—without structural constraints. The only requirement is to ground its reasoning in visual evidence and explicitly mark the referenced cues using the format <vcues_> </vcues_> (* denotes the

Figure 3: Toy example of the Cue-Rethinking Pattern. The dashed line indicates generation on demand.

cue index). This lightweight constraint preserves flexibility while highlighting the visual cues explicit from the outset, and provides clear anchors for subsequent rethinking.

After the initial reasoning, the model self-triggers a prompt for cue-based rethinking (e.g., "Let's check each visual cue and the corresponding reasoning before the final answer"). We intentionally avoid immediate rethinking after cue identification to maintain natural reasoning flow and preserve global context. The model then revisits all marked visual cues, checks for inconsistencies, and, if needed, revises the cues and updates the associated reasoning before producing the final answer, as indicated on the right of Figure 2. This design remains compatible with well-established text-centric reasoning (e.g., knowledge-driven logic, reflective deduction) while explicitly supporting visual cue—oriented reasoning. By combining free-form reasoning with visual-cue rethinking, it mitigates failures from misleading or missing visual inputs and yields robust, adaptable performance across diverse multimodal scenarios.

3.2 PATTERN-GUIDED COLD START

While RLVR can steer models toward desired behaviors, relying on it alone is challenging and computationally costly—especially when the visual rethinking routine is relatively new to the model. To address this, we propose a Pattern-Guided Cold Start stage with Judge-Guided Seletive Training, initialized with a carefully curated 7K training set containing annotated reasoning trajectories across multiple domains, constructed via our iterative multimodal annotation pipeline, as shown in Figure 4

Iterative Multimodal Annotation Pipeline. Several method have tried to construct reasoning dataset to improve multimodal reasoning. Heuristic-driven approaches (Xu et al., 2024) often lack the diversity to cover complex tasks, while methods (Huang et al., 2025) generating reasoning from

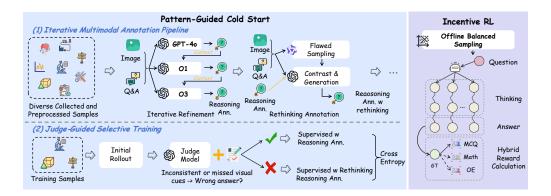


Figure 4: Overview of GThinker Training Pipeline. We first leverage the Iterative Multimodal Annotation Pipeline to generate high-quality reasoning data w. and w.o. visual thinking following the Cue-rethinking Pattern. Building on the constructed data, Judge-Guided Selective Training within the Pattern-Guided Cold Start phase then teaches the model how to think with the proposed pattern and when to rethink. Finally, Incentive Reinforcement Learning with DAPO enhances GThinker's ability to perform adaptive and accurate multimodal reasoning across diverse scenarios.

visual caption tend to produce text-centric deduction and suffers from inadequate visual information from captions. To address these shortcomings, we propose the Iterative Multimodal Annotation Pipeline to construct a dataset that unifies robust textual reasoning with solid visual cues for general reasoning, as shown in Figure 3. Instead of relying solely on text, we feed the image, question, and answer into an advanced multimodal model and prompt it to generate a reasoning process incorporate critical marked visual interpretation and deduction, as well as human-like cognitive processes such as self-reflection, ensured by the well-craft prompt. Next, we employ iterative refinement to mitigate incomplete logic or missed visual cues, which may occur when using a single model. The output from former model serves as context for a successor model, which is then prompted to correct, refine, and supplement the prior reasoning. Furthermore, to generate annotations that include visual rethinking, we devise a "flawed sampling-contrast-generation" process. To avoid the hallucinations of manual creation, we first collect diverse, incorrect reasoning samples using high-temperature rollouts. Powerful O3 is then tasked with contrasting these flawed examples against our correct, refined annotations to generate new samples incorporating a cue-rethinking procedure. After automated verification as detailed in A., this pipeline yielded 7,358 samples across various domains, each labeled to indicate the presence or absence of a visual re-thinking process. We detailed data distribution, pre-processing and post-processing procedure, and prompts used in each step in the Appendix A.

Judge-Guided Selective Training. While reflection and re-thinking can significantly improve model accuracy, mandating this process for all training samples is suboptimal, and Naive approaches, such as randomly selecting a subset of samples for rethinking (Yao et al., 2024; Peng et al., 2025), also ignore critical differences among samples and model capabilities. Beyond teaching a model how to re-think, instilling the knowledge of when to trigger this process is equally crucial, especially from a cold start. To address this, we introduce a training strategy termed Judge-Guided Selective Training. We begin with an initial inference pass, rolling out the base model on the training set. Leveraging the LLM-as-a-judge paradigm (Gu et al., 2024), we then feed the question, answer, and the model's generated response to the employed judge model GPT-40 to diagnose the model's response to determine if errors are rooted in flawed visual cues. Based on the diagnostic step, we apply supervision using the detailed annotations that include the cue rethinking process for the samples where the model failed due to visual reasoning errors. Crucially, unlike rejection sampling, which discards incorrect responses, our method transforms these specific failures into valuable learning signals. This approach guides the model to learn not only how to reason following the cue-rethinking pattern but, more importantly, to recognize the very conditions that necessitate it.

3.3 INCENTIVE REINFORCEMENT LEARNING

Building on this foundation of Pattern-Guided Cold Start phase, we further enhance the model using reinforcement learning with verified rewards to encourage exploration and help it generalize across

diverse tasks and scenarios. Given recent advances in RLVR, we adopt the Decoupled Clip and Dynamic Sampling Policy Optimization (DAPO) algorithm (Yu et al., 2025) with a hybrid reward design supported by the offline balancing sampling.

Preliminaries about DAPO. DAPO improves from the GRPO (Shao et al., 2024b) by tackling two fundamental challenges in training for complex reasoning, as shown in Equation 1. First, it ensures training stability and efficiency through a Clip-Higher strategy and Dynamic Sampling. Second, it refines the supervision signal for long-chain reasoning by integrating Token-Level Policy Gradient Loss and Overlong Reward Shaping. These components enable fine-grained reward assignment and mitigate noise from reward model biases against verbosity, guiding the model to master high-quality reasoning patterns. Therefore, the model is better equipped to sample diverse reasoning paths and is enabled to learn reasoning strategies such as reflective knowledge inference for math tasks or cue-based rethinking in general multimodal scenarios. As a result, the model improves the ability to dynamically select the most suitable reasoning strategy for each situation, improving both generalization and robustness across domains.

$$\mathcal{J}_{\text{DAPO}}(\theta) = \mathbb{E}_{(q,a) \sim \mathcal{D}, \{o_i\}_{i=1}^G \sim \pi_{\text{old}}(\cdot | q)} \\ \left[\frac{1}{\sum_{i=1}^G |o_i|} \sum_{i=1}^G \sum_{t=1}^{|o_i|} \min \left(r_{i,t}(\theta) \hat{A}_{i,t}, \operatorname{clip} \left(r_{i,t}(\theta), 1 - \varepsilon_{\text{low}}, 1 + \varepsilon_{\text{high}} \right) \hat{A}_{i,t} \right) \right] \\ \text{s.t.} \quad 0 < |\{o_i \mid \text{is_equivalent}(a, o_i)\}| < G,$$

where

$$r_{i,t}(\theta) = \frac{\pi_{\theta}(o_{i,t} \mid q, o_{i, < t})}{\pi_{\theta_{\text{old}}}(o_{i,t} \mid q, o_{i, < t})}, \hat{A}_{i,t} = \frac{R_i - \text{mean}(\{R_i\}_{i=1}^G)}{\text{std}(\{R_i\}_{i=1}^G)}.$$
 (2)

Hybrid Reward Design. The default DAPO setting combines format-based and accuracy-based rewards. Prior approaches often constrain QA tasks to rigid formats, such as multiple-choice, and depend on exact string matching to assess correctness. This limits the range of question types the model can handle, especially in general scenarios, and model-based verification further reduces training efficiency. To overcome these limitations, we propose a hybrid reward strategy within the constraints of verifiable rewards. We support three main question types: multiple-choice, math, and simple open-ended formats. For multiple-choice questions, we apply exact answer matching. For math problems—whether numeric or symbolic—we use Math-Verify (Hynek, 2023) to extract and verify answers. For open-ended questions, we guide the model to summarize the answer in a standardized, concise format like a word or short phrase, enabling straightforward matching during reward computation. This design expands the diversity of supported question types while preserving reward accuracy. For the format reward, we follow prior work by enforcing and verifying adherence to the think-answer structure.

Offline Balanced Sampling. To support the reinforcement learning stage, we follow the practice (Yang et al., 2025; Xu et al., 2024) to collect diverse samples spanning math, science, and general reasoning tasks. However, we observed that not all samples are equally beneficial for training, given their varying types and difficulty levels. Therefore, to construct a balanced and effective dataset, we perform an offline balancing sampling procedure prior to the RL training. We first extract the joint embedding of image and question, and then follow (Vo et al., 2024) to perform clustering and sampling on these embeddings. Unlike heuristic approaches that rely on fine-grained manual categorization, our method focuses more on the image and question themselves. Subsequently, we conduct a rollout (n=16) on the remaining samples and discard instances where the model consistently fails to produce a correct response, which likely represent either annotation errors in the public source data or are prohibitively difficult. This curation pipeline yields a final set of 4K high-quality samples for the RL stage. We provide further details on the data composition in Appendix A.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Training Settings. We implement GThinker with the advanced MLLM Qwen2.5-VL-7B (Bai et al., 2025), one of the latest and most capable models at this scale, combining strong visual understanding

Table 1: Main results on comprehensive multimodal reasoning benchmark M³CoT. Abbreviations used in the table: Lang. (Language), Nat. (Natural), Soc. (Social), Phys. (Physical), Temp. (Temporal), Alg. (Algebra), Geom. (Geometry), Theo. (Theory). Excluding closed-source models, values in bold represent the highest performance, while underlined values indicate the second-best performance across all models.

Model	Science		Commonsense		Mathematics		Overall			
	Lang.	Nat.	Soc.	Phys.	Soc.	Temp.	Alg.	Geom.	Theo.	Overun
Closed-Source Models										
Gemini-2.5 Pro (DeepMind, 2025)	97.6	91.6	75.3	92.2	81.4	94.3	81.1	78.8	61.9	85.9
O3-20250416 (OpenAI, 2025)	96.2	89.3	68.0	91.1	80.2	93.5	95.0	87.5	90.5	83.8
O4-mini-20250416 (OpenAI, 2025)	97.2	84.7	62.9	94.4	82.6	91.1	92.9	86.3	76.2	80.9
GPT-4o-20241120 (Hurst et al., 2024)	96.7	72.0	58.3	91.1	76.4	82.9	21.4	31.3	23.8	67.4
Open-Source Models										
InternVL-2.5-8B (Chen et al., 2024b)	82.5	63.7	45.2	86.7	79.8	93.4	42.8	27.5	33.3	61.8
Ovis2-8B (Lu et al., 2024)	80.6	63.1	46.2	83.3	79.3	87.8	45.0	42.5	38.9	61.9
Valley2(Wu et al., 2025)	85.3	64.4	48.4	90.0	77.7	80.5	43.6	36.3	47.6	62.8
Qwen2.5-VL-7B (Bai et al., 2025)	82.9	61.2	46.8	82.2	81.4	81.3	<u>57.9</u>	40.0	61.9	62.4
Reasoning Models										
LLaVA-CoT-11B (Xu et al., 2024)	72.0	56.4	41.7	84.4	72.3	82.1	37.9	36.3	33.3	56.0
InternVL2.5-MPO-8B (Wang et al., 2024b)	92.4	75.9	61.9	85.6	82.6	94.3	55.0	43.8	76.2	73.3
Kimi-VL-A3B-Thinking (Team et al., 2025)	86.2	64.4	39.6	91.1	78.9	89.4	13.5	15.0	14.2	58.3
MM-Eureka-7B (Meng et al., 2025)	86.7	71.5	57.3	81.1	80.2	90.2	40.0	23.8	28.6	67.4
R1-OneVision-7B (Yang et al., 2025)	74.9	66.4	51.4	84.4	72.3	85.4	30.0	31.3	42.9	61.8
VLAA-Thinker-7B (Chen et al., 2025a)	91.0	70.6	58.1	78.9	78.1	87.8	45.7	35.3	28.6	68.0
GThinker-7B	92.4	90.7	68.9	82.2	81.4	94.3	73.5	62.5	81.0	81.5

with broad general knowledge. We train the GThinker using our design two-stage pipeline, including pattern-guided cold start and incentive reinforcement learning with the constructed data. For Pattern-Guided Cold Start, we use a global batch size of 128 and a learning rate of 5e-6, training the model with the 7K reasoning path annotated data for 3 epochs. In the Incentive RL stage, we set the rollout number to 16, use a global batch size of 64, and start with a learning rate of 1e-6, training for 170 steps using the curated 4K data. Training is conducted on 4 nodes, each with 8 NVIDIA H100 GPUs. The total training time is about 9 hours. We provide more details in Appendix E.

Evaluation Settings. We evaluate our model against leading closed-source (e.g., O4-mini) and open-source structured and RL reasoning models on a diverse suite of benchmarks. We mainly include M³CoT, a challenging benchmark requiring multi-step reasoning based on visual cues across science, commonsense, and math. To provide a more fine-grained analysis, we also evaluate performance on several domain-specific benchmarks, including general reasoning, scientific reasoning, and mathematical Reasoning. A detailed description of the benchmarks and evaluation setting can be found in the Appendix C.

4.2 MAIN RESULTS

In the main results, we mainly compare our GThinker-7B based on Qwen2.5-VL-7B with leading reasoning models, and provide more results with larger 32B model and different baseline models in the Appendix B.

Comparison with Baseline and Structured Reasoner. GThinker-7B significantly surpasses both strong base models and structured long-chain reasoners like LLaVA-COT without carefully predefined reasoning steps. As shown in Table 1, our model achieves an impressive 81.5% on the comprehensive and challenging M³CoT benchmark, with a substantial +19.1 improvement over the strong baseline Qwen-VL-2.5-7B and an even more commanding +25.5 lead over the LLaVA-CoT-11B model. This advantage further proves our model's advanced ability to integrate visual and logical steps flexibly. Meanwhile, such superiority is further validated on specialized benchmarks as shown in Table 2. GThinker-7B consistently outperforms both Qwen-VL-2.5 and LLaVA-CoT across all evaluated tasks, with an average improvement of +2.1 on general reasoning MMStar and RealWorldQA, +2.4 on multidisciplinary MMMU-Pro, and +4.5 on MathVista.

Table 2: Main results on math-related and multidisciplinary benchmarks, and also fine-grained understanding of multimodal benchmarks incorporating reasoning. We use the setting detailed in the evaluation settings.

Model	MMStar	RealWorldQA	MMMU-Pro	MathVista	MathVision
Close-Source Models					
Gemini-2.5 Pro	73.6	78.0	68.8	80.9	73.3
GPT-4o-20241120	65.1	76.2	54.5	63.8	31.2
Open-Source Models					
InternVL2.5-8B (Chen et al., 2024b)	62.8	70.1	34.4	64.4	19.7
Ovis2-8B (Lu et al., 2024)	64.4	-	-	71.4	25.9
Valley2 (Wu et al., 2025)	62.5	67.5	-	69.1	24.9
Qwen2.5-VL-7B (Bai et al., 2025)	63.9	<u>68.5</u>	38.3	68.2	25.1
Reasoning Models					
LLaVA-CoT-11B (Xu et al., 2024)	57.6	63.6	33.8	54.8	20.6
InternVL2.5-MPO-8B (Wang et al., 2024b)	-	-	-	67.0	25.7
Kimi-VL-A3B-Thinking (Team et al., 2025)	60.8	-	-	67.6	36.8
MM-Eureka-7B (Meng et al., 2025)	64.2	67.3	40.7	73.0	26.9
R1-Onevision-7B (Yang et al., 2025)	42.8	62.7	31.0	64.1	29.9
VLAA-Thinker-7B (Chen et al., 2025a)	63.7	66.9	<u>39.8</u>	68.0	26.4
GThinker-7B	66.4	70.1	40.7	72.7	26.6

Comparison with RL Reasoners. We further compare our method with leading RL reasoning methods, including both the MPO method InternVL2.5-MPO-8B and the RLVR methods with different training recipes. In summary, GThinker-7B establishes itself as not only the leading performer but also the most versatile. As shown in Table 1, on challenging M³CoT, GThinker-7B's score of 81.5% is the highest among all open-source models, outperforming the previous SOTA InternVL2.5-MPO-8B and also competitive RL reasoners, including VLAA-Thinker-7B by +13.5, MM-Eureka-7B by +14.1, and Kimi-VL-A3B-Thinking by +8.2. Crucially, GThinker-7B avoids the common performance trade-off observed in RL-trained reasoners. As we claimed as an asymmetry, RL can enhance MLLMs' long-chain reasoning ability on mathematical tasks, but degrades on general and multidisciplinary benchmarks, based on previous studies. For example, as seen in Table 2, both VLAA-Thinker-7B and MM-Eureka-7B underperform their baselines on general benchmarks like MMStar. In contrast, GThinker-7B achieves 72.7% on MathVista (+4.5 points over baseline) and 26.6% on MathVision (+1.5 points). Similarly, on the multidisciplinary science benchmark MMMU-Pro, GThinker-7B improves by approximately 4 points. Furthermore, it shows significant gains on general benchmarks requiring fine-grained understanding and further reasoning, with 66.4% on MMStar and 70.1% on RealWorldQA. This demonstrates our method's unique effectiveness in fostering a general reasoning capability by unifying the textual reasoning with visual cue rethinking.

4.3 ABLATION STUDY

Ablation on the Iterative Multimodal Reasoning Pipeline. High-quality data is crucial for training effective multimodal reasoning models. To build a high-quality multimodal reasoning data aligned with the proposed cue-rethinking pattern, we propose the iterative multimodal annotation pipeline. We compare our method with the text input only (caption + question) data construction method (Huang et al., 2025) indicated by Caption in Table 3 under the same generation model to validate the necessity and advantage of multimodal annota-

Table 3: Ablation on the Iterative Multimodal Reasoning Pipeline. Iter. indicates iterative refinement.

Caption	Image	Iter.	M ³ CoT
✓			63.5
	✓		69.6
	✓	✓	73.6

tion, as well as the iterative refinement strategy we use. As shown in Table 3, using only the text inputs with caption replacing the image, yields an overall score of 63.5%. Our data generation pipeline, even without iterative refinement, significantly improves performance to 69.6% (+6.1%)

Table 4: Ablation on GThinker Components.

Method	Science	Com.	Math	Overall
Qwen2.5-VL-7B	57.6	80.8	60.6	62.4
Qwen2.5-VL-7B-Zero	63.3	81.6	49.0	64.2
+ Patten Guided Cold Start	73.1	79.3 82.0	46.9 42.7	73.6 68.4
w/o Judge-Guided Selective Training+ Incentive Reinforcement Learning	68.0 82.5	82.0 83.7	42.7 71.0	81.5
w/o Offline Balanced Sampling	82.2	84.2	60.2	80.4

absolute). Incorporating our iterative refinement process further boosts the overall score to 73.6%, an additional 4.0% improvement. We attribute this gain to the complementary strengths of the leading models, including GPT-40, O1, and O3: during the collaborative annotation iterations, visual cues and reasoning logic are more thoroughly captured, further boosting the quality of the CoT data.

Ablation on GThinker Components. As shown in Table 4, we conduct ablation studies to examine the individual contribution of each design in GThinker, evaluating on M³CoT, including the patternguided cold start with Judge-Guided Selective Training and Incentive Reinforcement Learning with Offline Balanced Sampling. Compared with the baseline, incorporating the pattern-guided cold start yields a performance boost of +11.2%, with Judge-Guided Selective Training contributing 5.2% improvement. Such a result highlights the effectiveness of our Judge-Guided Selective Training to learn from visual cue failure cases to learn when to rethink. Further training the model with Incentive Reinforcement Learning brings an improvement of 6.9%, among which Offline Balance Sampling contributes 1.1%. Meanwhile, compared with the model solely training with the DAPO, termed Qwen2.5-VL-7B-Zero, we lead by a large margin. These results verify that such visual cuerethinking is different from text-centric reflection, which cannot be reliably induced by verifiable-reward RL only, and demonstrate the effectiveness of our cue-rethinking pattern combined with the two-stage training recipe.

5 QUALITATIVE ANALYSIS

To validate our Cue-Rethinking pattern in practice, we qualitatively analyze the model's generation process, presenting two representative case studies in the Appendix Figure 6 and Figure 7. As shown in the Figure 7, GThinker can augment and revise visual cues during the reasoning phase, ultimately leading to the correct solution, when essential. With correct and adequate visual cues, GThinker can also critically reflect upon and validate its reasoning pathway from both logical and computational standpoints to ascertain the final answer for math problems in Figure 6. These instances effectively highlight the adaptability of our designed pattern to diverse problems and tasks by accommodating varied thinking approaches, thereby underscoring the success of our training regimen.

6 Conclusion

component.

In this paper, we identify a fundamental limitation in multimodal reasoning: the inability to perform adaptive visual rethinking, a process crucial for robust reasoning in general-purpose scenarios. We argue that this capability cannot be reliably induced by reinforcement learning from visual feedback alone, nor can it be captured by rigid, template-based reasoning structures. It requires a new mechanism to guide rethinking, making it as natural and evidence-grounded as textual reasoning. To address this, we introduce GThinker, a framework that learns a novel reasoning pattern called the Cue-Rethinking Pattern. This pattern compels the model to eschew fixed formats and instead ground its reasoning and rethinking in visual cues. Through a two-stage training of pattern-guided cold start and incentive RL, GThinker effectively unifies robust textual reasoning, such as reflection, with essential visual rethinking. Extensive experiments on multi-domain multimodal reasoning benchmarks show that GThinker outperforms existing reasoning MLLMs in both accuracy and cross-domain adaptability. Ablation studies further confirm the effectiveness of each core design

REFERENCES

- Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. *arXiv* preprint arXiv:2502.13923, 2025.
- Mahtab Bigverdi, Zelun Luo, Cheng-Yu Hsieh, Ethan Shen, Dongping Chen, Linda G Shapiro, and Ranjay Krishna. Perception tokens enhance visual reasoning in multimodal language models. *arXiv preprint arXiv:2412.03548*, 2024.
- Hardy Chen, Haoqin Tu, Fali Wang, Hui Liu, Xianfeng Tang, Xinya Du, Yuyin Zhou, and Cihang Xie. Sft or rl? an early investigation into training r1-like reasoning large vision-language models. *arXiv preprint arXiv:2504.11468*, 2025a.
- Liang Chen, Lei Li, Haozhe Zhao, Yifan Song, and Vinci. R1-v: Reinforcing super generalization ability in vision-language models with less than \$3. https://github.com/Deep-Agent/R1-V, 2025b. Accessed: 2025-02-02.
- Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language models? In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*.
- Qiguang Chen, Libo Qin, Jin Zhang, Zhi Chen, Xiao Xu, and Wanxiang Che. M3cot: A novel benchmark for multi-domain multi-step multi-modal chain-of-thought. *arXiv* preprint *arXiv*:2405.16473, 2024a.
- Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 24185–24198, 2024b.
- Google DeepMind. Gemini 2.5 pro preview model card. https://storage.googleapis.com/model-cards/documents/gemini-2.5-pro-preview.pdf, 2025.
- Yifan Du, Zikang Liu, Yifan Li, Wayne Xin Zhao, Yuqi Huo, Bingning Wang, Weipeng Chen, Zheng Liu, Zhongyuan Wang, and Ji-Rong Wen. Virgo: A preliminary exploration on reproducing ollike mllm. *arXiv preprint arXiv:2501.01904*, 2025.
- Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu Fang, Lin Chen, Yuan Liu, Xiaoyi Dong, Yuhang Zang, Pan Zhang, Jiaqi Wang, et al. Vlmevalkit: An open-source toolkit for evaluating large multi-modality models. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pp. 11198–11201, 2024.
- Timin Gao, Peixian Chen, Mengdan Zhang, Chaoyou Fu, Yunhang Shen, Yan Zhang, Shengchuan Zhang, Xiawu Zheng, Xing Sun, Liujuan Cao, et al. Cantor: Inspiring multimodal chain-of-thought of mllm. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pp. 9096–9105, 2024.
- Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen, Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. *arXiv preprint arXiv:2411.15594*, 2024.
- Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
- Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In *Thirty-fifth Conference on Neural Information Processing Systems*, 2021.

- Jack Hessel, Jena D Hwang, Jae Sung Park, Rowan Zellers, Chandra Bhagavatula, Anna Rohrbach, Kate Saenko, and Yejin Choi. The abduction of sherlock holmes: A dataset for visual abductive reasoning. In *European Conference on Computer Vision*, pp. 558–575. Springer, 2022.
 - Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and Shaohui Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language models. arXiv preprint arXiv:2503.06749, 2025.
 - Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint arXiv:2410.21276*, 2024.
 - Hynek. Math-Verify: Math Verification Library, 2023. URL https://github.com/huggingface/Math-Verify. If you use this software, please cite it using the metadata from this file.
 - Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv* preprint arXiv:2412.16720, 2024.
 - Anya Ji, Noriyuki Kojima, Noah Rush, Alane Suhr, Wai Keen Vong, Robert Hawkins, and Yoav Artzi. Abstract visual reasoning with tangram shapes. In *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*, pp. 582–601, 2022.
 - Zixi Jia, Jiqiang Liu, Hexiao Li, Qinghua Liu, and Hongbin Gao. Dcot: Dual chain-of-thought prompting for large multimodal models. In *The 16th Asian Conference on Machine Learning (Conference Track)*, 2024.
 - Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint arXiv:2408.03326*, 2024a.
 - Lei Li, Zhihui Xie, Mukai Li, Shunian Chen, Peiyi Wang, Liang Chen, Yazheng Yang, Benyou Wang, and Lingpeng Kong. Silkie: Preference distillation for large visual language models. arXiv preprint arXiv:2312.10665, 2023.
 - Zejun Li, Ruipu Luo, Jiwen Zhang, Minghui Qiu, Xuanjing Huang, and Zhongyu Wei. Vocot: Unleashing visually grounded multi-step reasoning in large multi-modal models. *arXiv preprint arXiv:2405.16919*, 2024b.
 - Wei Liu, Junlong Li, Xiwen Zhang, Fan Zhou, Yu Cheng, and Junxian He. Diving into self-evolving training for multimodal reasoning. *arXiv preprint arXiv:2412.17451*, 2024a.
 - Zuyan Liu, Yuhao Dong, Yongming Rao, Jie Zhou, and Jiwen Lu. Chain-of-spot: Interactive reasoning improves large vision-language models. *arXiv* preprint arXiv:2403.12966, 2024b.
 - Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of foundation models in visual contexts. In *The Twelfth International Conference on Learning Representations*.
 - Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for science question answering. *Advances in Neural Information Processing Systems*, 35:2507–2521, 2022a.
 - Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu, Tanmay Rajpurohit, Peter Clark, and Ashwin Kalyan. Dynamic prompt learning via policy gradient for semi-structured mathematical reasoning. In *The Eleventh International Conference on Learning Representations*, 2022b.
 - Shiyin Lu, Yang Li, Qing-Guo Chen, Zhao Xu, Weihua Luo, Kaifu Zhang, and Han-Jia Ye. Ovis: Structural embedding alignment for multimodal large language model. *arXiv:2405.20797*, 2024.

- Bozhi Luan, Hao Feng, Hong Chen, Yonghui Wang, Wengang Zhou, and Houqiang Li. Textcot: Zoom in for enhanced multimodal text-rich image understanding. *arXiv* preprint arXiv:2404.09797, 2024.
 - Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Tiancheng Han, Botian Shi, Wenhai Wang, Junjun He, et al. Mm-eureka: Exploring the frontiers of multimodal reasoning with rule-based reinforcement learning. *arXiv preprint arXiv:2503.07365*, 2025.
 - Chancharik Mitra, Brandon Huang, Trevor Darrell, and Roei Herzig. Compositional chain-of-thought prompting for large multimodal models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14420–14431, 2024.
 - OpenAI. O3 and o4-mini system card. https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf, 2025. Accessed: 2025-05-07.
 - Yi Peng, Xiaokun Wang, Yichen Wei, Jiangbo Pei, Weijie Qiu, Ai Jian, Yunzhuo Hao, Jiachun Pan, Tianyidan Xie, Li Ge, et al. Skywork r1v: Pioneering multimodal reasoning with chain-of-thought. *arXiv preprint arXiv:2504.05599*, 2025.
 - Yiwei Qin, Xuefeng Li, Haoyang Zou, Yixiu Liu, Shijie Xia, Zhen Huang, Yixin Ye, Weizhe Yuan, Hector Liu, Yuanzhi Li, et al. O1 replication journey: A strategic progress report–part 1. *arXiv* preprint arXiv:2410.18982, 2024.
 - Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances in Neural Information Processing Systems*, 36:53728–53741, 2023.
 - Darsh J Shah, Peter Rushton, Somanshu Singla, Mohit Parmar, Kurt Smith, Yash Vanjani, Ashish Vaswani, Adarsh Chaluvaraju, Andrew Hojel, Andrew Ma, et al. Rethinking reflection in pretraining. *arXiv preprint arXiv:2504.04022*, 2025.
 - Hao Shao, Shengju Qian, Han Xiao, Guanglu Song, Zhuofan Zong, Letian Wang, Yu Liu, and Hongsheng Li. Visual cot: Advancing multi-modal language models with a comprehensive dataset and benchmark for chain-of-thought reasoning. *Advances in Neural Information Processing Systems*, 37:8612–8642, 2024a.
 - Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024b.
 - Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu, Chunyuan Li, Yikang Shen, Chuang Gan, Liang-Yan Gui, Yu-Xiong Wang, Yiming Yang, et al. Aligning large multimodal models with factually augmented rlhf. *arXiv preprint arXiv:2309.14525*, 2023a.
 - Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu, Chunyuan Li, Yikang Shen, Chuang Gan, Liang-Yan Gui, Yu-Xiong Wang, Yiming Yang, et al. Aligning large multimodal models with factually augmented rlhf. *arXiv preprint arXiv:2309.14525*, 2023b.
 - Kimi Team, Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen, Chenlin Zhang, Chenzhuang Du, Chu Wei, et al. Kimi-vl technical report. *arXiv* preprint *arXiv*:2504.07491, 2025.
 - Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL https://qwenlm.github.io/blog/qwq-32b/.
 - Omkar Thawakar, Dinura Dissanayake, Ketan More, Ritesh Thawkar, Ahmed Heakl, Noor Ahsan, Yuhao Li, Mohammed Zumri, Jean Lahoud, Rao Muhammad Anwer, et al. Llamav-o1: Rethinking step-by-step visual reasoning in llms. *arXiv preprint arXiv:2501.06186*, 2025.
 - Huy V Vo, Vasil Khalidov, Timothée Darcet, Théo Moutakanni, Nikita Smetanin, Marc Szafraniec, Hugo Touvron, Camille Couprie, Maxime Oquab, Armand Joulin, et al. Automatic data curation for self-supervised learning: A clustering-based approach. *arXiv preprint arXiv:2405.15613*, 2024.

- Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Houxing Ren, Aojun Zhou, Mingjie Zhan, and Hongsheng Li. Measuring multimodal mathematical reasoning with math-vision dataset. *Advances in Neural Information Processing Systems*, 37:95095–95169, 2024a.
- Weiyun Wang, Zhe Chen, Wenhai Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Jinguo Zhu, Xizhou Zhu, Lewei Lu, Yu Qiao, and Jifeng Dai. Enhancing the reasoning ability of multimodal large language models via mixed preference optimization. *arXiv preprint arXiv:2411.10442*, 2024b.
- Weiyun Wang, Zhe Chen, Wenhai Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Jinguo Zhu, Xizhou Zhu, Lewei Lu, Yu Qiao, et al. Enhancing the reasoning ability of multimodal large language models via mixed preference optimization. *arXiv* preprint arXiv:2411.10442, 2024c.
- Weiyun Wang, Zhangwei Gao, Lianjie Chen, Zhe Chen, Jinguo Zhu, Xiangyu Zhao, Yangzhou Liu, Yue Cao, Shenglong Ye, Xizhou Zhu, et al. Visualprm: An effective process reward model for multimodal reasoning. *arXiv preprint arXiv:2503.10291*, 2025.
- Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information processing systems*, 35:24824–24837, 2022.
- Penghao Wu and Saining Xie. V?: Guided visual search as a core mechanism in multimodal llms. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 13084–13094, 2024.
- Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang Ma, Chengyue Wu, Bingxuan Wang, et al. Deepseek-vl2: Mixture-of-experts vision-language models for advanced multimodal understanding. *arXiv preprint arXiv:2412.10302*, 2024.
- Ziheng Wu, Zhenghao Chen, Ruipu Luo, Can Zhang, Yuan Gao, Zhentao He, Xian Wang, Haoran Lin, and Minghui Qiu. Valley2: Exploring multimodal models with scalable vision-language design. *arXiv* preprint arXiv:2501.05901, 2025.
- xAI. Grok-1.5 vision preview. https://x.ai/blog/grok-1.5v, 2024.
- Guowei Xu, Peng Jin, Li Hao, Yibing Song, Lichao Sun, and Li Yuan. Llava-o1: Let vision language models reason step-by-step. *arXiv preprint arXiv:2411.10440*, 2024.
- Yi Yang, Xiaoxuan He, Hongkun Pan, Xiyan Jiang, Yan Deng, Xingtao Yang, Haoyu Lu, Dacheng Yin, Fengyun Rao, Minfeng Zhu, et al. R1-onevision: Advancing generalized multimodal reasoning through cross-modal formalization. *arXiv preprint arXiv:2503.10615*, 2025.
- Huanjin Yao, Jiaxing Huang, Wenhao Wu, Jingyi Zhang, Yibo Wang, Shunyu Liu, Yingjie Wang, Yuxin Song, Haocheng Feng, Li Shen, et al. Mulberry: Empowering mllm with o1-like reasoning and reflection via collective monte carlo tree search. *arXiv* preprint arXiv:2412.18319, 2024.
- Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. *Advances in neural information processing systems*, 36:11809–11822, 2023.
- Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale. *arXiv preprint arXiv:2503.14476*, 2025.
- Tianyu Yu, Haoye Zhang, Yuan Yao, Yunkai Dang, Da Chen, Xiaoman Lu, Ganqu Cui, Taiwen He, Zhiyuan Liu, Tat-Seng Chua, et al. Rlaif-v: Aligning mllms through open-source ai feedback for super gpt-4v trustworthiness. *arXiv preprint arXiv:2405.17220*, 2024.
- Xiang Yue, Tianyu Zheng, Yuansheng Ni, Yubo Wang, Kai Zhang, Shengbang Tong, Yuxuan Sun, Botao Yu, Ge Zhang, Huan Sun, et al. Mmmu-pro: A more robust multi-discipline multimodal understanding benchmark. *arXiv preprint arXiv:2409.02813*, 2024.

- Yufei Zhan, Yousong Zhu, Zhiyang Chen, Fan Yang, Ming Tang, and Jinqiao Wang. Griffon: Spelling out all object locations at any granularity with large language models. In *European Conference on Computer Vision*, pp. 405–422. Springer, 2024.
- Haotian Zhang, Haoxuan You, Philipp Dufter, Bowen Zhang, Chen Chen, Hong-You Chen, Tsu-Jui Fu, William Yang Wang, Shih-Fu Chang, Zhe Gan, et al. Ferret-v2: An improved baseline for referring and grounding with large language models. In *First Conference on Language Modeling*.
- Ruohong Zhang, Bowen Zhang, Yanghao Li, Haotian Zhang, Zhiqing Sun, Zhe Gan, Yinfei Yang, Ruoming Pang, and Yiming Yang. Improve vision language model chain-of-thought reasoning. arXiv preprint arXiv:2410.16198, 2024a.
- Yi-Fan Zhang, Tao Yu, Haochen Tian, Chaoyou Fu, Peiyan Li, Jianshu Zeng, Wulin Xie, Yang Shi, Huanyu Zhang, Junkang Wu, et al. Mm-rlhf: The next step forward in multimodal llm alignment. arXiv preprint arXiv:2502.10391, 2025.
- Yongting Zhang, Lu Chen, Guodong Zheng, Yifeng Gao, Rui Zheng, Jinlan Fu, Zhenfei Yin, Senjie Jin, Yu Qiao, Xuanjing Huang, et al. Spa-vl: A comprehensive safety preference alignment dataset for vision language model. *arXiv preprint arXiv:2406.12030*, 2024b.
- Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, and Alex Smola. Multimodal chain-of-thought reasoning in language models. *arXiv preprint arXiv:2302.00923*, 2023.
- Ge Zheng, Bin Yang, Jiajin Tang, Hong-Yu Zhou, and Sibei Yang. Ddcot: Duty-distinct chain-of-thought prompting for multimodal reasoning in language models. *Advances in Neural Information Processing Systems*, 36:5168–5191, 2023.
- Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Yuchen Duan, Hao Tian, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for open-source multimodal models. *arXiv preprint arXiv:2504.10479*, 2025.