
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PROCESS REWARD MODEL WITH Q-VALUE RANKINGS

Anonymous authors
Paper under double-blind review

ABSTRACT

Process Reward Modeling (PRM) is critical for complex reasoning and decision-
making tasks where the accuracy of intermediate steps significantly influences the
overall outcome. Existing PRM approaches, primarily framed as classification
problems, employ cross-entropy loss to independently evaluate each step’s cor-
rectness. This method can lead to suboptimal reward distribution and does not
adequately address the interdependencies among steps. To address these limita-
tions, we introduce the Process Q-value Model (PQM), a novel framework that
redefines PRM in the context of a Markov Decision Process. PQM optimizes Q-
value rankings based on a novel comparative loss function, enhancing the model’s
ability to capture the intricate dynamics among sequential decisions. This ap-
proach provides a more granular and theoretically grounded methodology for pro-
cess rewards. Our extensive empirical evaluations across various sampling poli-
cies, language model backbones, and multi-step reasoning benchmarks show that
PQM outperforms classification-based PRMs. The effectiveness of the compara-
tive loss function is highlighted in our comprehensive ablation studies, confirming
PQM’s practical efficacy and theoretical advantage. Our codes can be found at
https://anonymous.4open.science/r/PQM-4446

1 INTRODUCTION

Process reward modeling (PRM) plays a crucial role in tasks where the quality of intermediate steps
is pivotal to achieving the final outcome (Lightman et al., 2024). In complex problem-solving sce-
narios, such as mathematical reasoning or multi-step decision-making (Shao et al., 2024; Yu et al.,
2024; Hao et al., 2024), the accuracy and effectiveness of each intermediate action can significantly
influence the overall success. Unlike outcome reward models (ORM) (Cobbe et al., 2021), which
focus solely on the final result, PRM provides detailed feedback at each stage of the process. By
capturing the value of intermediate steps, PRM allows for a deeper understanding of how each action
contributes to the overall goal. This granular approach supports the development of more sophisti-
cated and reliable systems that can navigate complex tasks with greater accuracy.

Existing research typically frames PRM as a classification problem (Wang et al., 2023a; Shao et al.,
2024; Lightman et al., 2024; Luo et al., 2024), where each intermediate state is classified as correct
or incorrect. Specifically, for a trajectory {x, a1, a2, . . . , aH} where x, a,H represent a question,
a reasoning step, and the trajectory horizon, a reasoning state si = (x, a1:i−1) comprises the in-
struction x and text pieces previously generated (e.g. reasoning steps in reasoning tasks). Current
research uses cross-entropy loss to maximize the probability p(ci|si) for each reasoning state, where
ci is the label indicating whether si is correct. While this approach has shown empirical success,
it has notable limitations. Classification-based methods treat each state independently and do not
account for the dependencies and nuances among states within a trajectory. This can lead to subop-
timal reward assignments, as these methods often ignore the relative importance of different steps
and their influence on the overall process. Furthermore, these approaches lack theoretical grounding
on how they approximate the desired reward function.

To address the challenges, we propose a novel framework—Process Q-value Model (PQM)—which
frames PRM as a Q-value ranking problem. This framework allows us to capture the interdependen-
cies among states and provides a more nuanced evaluation of each step’s contribution to the overall
process. Specifically, our framework is grounded in the Markov Dynamic Process, where each ac-
tion ah is a text piece generated based on the current state sh = (x, a1:h−1). The LLM policy
π(ah|x, a1:h−1) maps the observed state to a distribution over the action space. The process reward

1

https://anonymous.4open.science/r/PQM-4446

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

PRM PRM PRMPRM

Input

Output

Step 4: Now, let's find the highest prime factor among these divisors.

Step 5: The highest prime factor in the divisors of
200 is 5. Therefore, the highest prime factor of
the total of its divisors is 5. The answer is: 5

correct steps wrong steps

First, find all divisors of ...
The prime factorization is ...

Hence, the total is 320,...

correct steps wrong steps

previous
PQM

correct steps wrong steps

Q-value label of previous work

classification

Q-value label of PQM
rank 1

rank (l-3)

rank l

rank (l+1)
rank (l+2) rank H+1

ranking-basedrank (l-2)
rank (l-1)

Question: What's the highest prime factor of the total of divisors
200

Step 1: Let's list the divisors of
200 . state:

Step 2: The divisors are$1, 2, 4, 5,
8, 10, 20, 25, 40, 50, 100, 200$.
.

Step 3: The total of the above
divisors are 465

Step 4: We need to obtain all
prime factors of 200 .

Step 5: The prime factors of
200 are $1,2,4,5$. Hence, the
highest one is 5

Step 6: The final result is 5

Process Q-value Model (PQM)

action:
…

Larger Q-value, more likely to
achieve correct final answer

smaller Q-value, less likely to
achieve correct final answer

significant
 divergence

Predicted
Q-value

Question: What's the highest prime factor of the total of divisors
200

Step 1: Let's list the divisors of
200 . state:

Step 2: The divisors are$1, 2, 4, 5,
8, 10, 20, 25, 40, 50, 100, 200$.
.

Step 3: The total of the above
divisors are 465

Step 4: We need to obtain all
prime factors of 200 .

Step 5: The prime factors of
200 are $1,2,4,5$. Hence, the
highest one is 5

Step 6: The final result is 5

Process Q-value Model (PQM)

action:
…

Larger Q-value, more likely to
achieve correct final answer

smaller Q-value, less likely to
achieve correct final answer

significant
 divergence

Predicted
Q-value

Figure 1: Illustration of our proposed framework Process Q-value Model (PQM). The example highlights a
solution trajectory with six steps, where the first three steps are correct and the last three steps are incorrect.

model intuitively scores each action ah based on the instruction x and previous generations a1:h−1.
In the context of reasoning tasks, we introduce a Q-value function for each state-action pair (sh, ah)
as the probability of success in achieving the correct final answer. Importantly, the Q-value function
implicitly defines a reward function for intermediate steps. Under this characterization, we formally
derive the optimal Q-value rankings among reasoning steps, by which we then train PRMs to ap-
proximate these rankings with a specialized comparative loss function. According to Theorem 3.5,
Q-values ascend with the continuation of correct steps and descend as wrong steps proceed, while
having a prominent gap between correct and wrong steps (see Fig. 1). We further prove that the
previous classification-based PRM can be cast as a special case of our theoretical framework under
certain conditions.

We conduct comprehensive experiments, revealing the significant advantages of the PQM over prior
methods. Following prior research (Wang et al., 2023a; Lightman et al., 2024; Luo et al., 2024), we
evaluate PRMs based on their verification ability through best-of-n sampling. The metric assesses
the correctness of the most preferred trajectory selected by the PRM from n candidates for each
question. Compared to classification-based PRMs, our ranking-based method PQM demonstrates
superior accuracy in verification, highlighting its effectiveness in capturing nuanced dependencies
among steps. For example, when verifying solutions sampled from the Llama-3-70B-Instruct model,
PQM improves the accuracy from 39.8% to 51.4%, a direct 11.6% improvement on the challenging
MATH500 benchmark (Hendrycks et al., 2021). These results are consistent across diverse datasets,
sampling policys, and LLM backbones, underscoring PQM’s effectiveness and generalizability.

To summarize, our main contributions are as follows:

1. We present a new framework for PRM by framing it as a Q-value ranking problem, provid-
ing a theoretical basis for process reward modeling that captures inter-dependencies among
reasoning states.We also show that prior classification-based PRM can be cast as a special
case under our framework.

2. We offer a detailed theoretical analysis of PQM and validate its effectiveness through com-
prehensive experiments on a wide range of sampling policies, LLM backbones, and differ-
ent test sets.

3. We perform extensive ablation studies on the proposed comparative training objective, and
analyze its variations to understand their impact on the model’s performance and design.

2 PRELIMINARIES

LLMs for reasoning. Large language models have demonstrated impressive abilities on challenging
reasoning tasks across a wide range of math, science, and coding challenges. Chain of thought (Wei
et al., 2022) and related techniques (Wang et al., 2023b; Yao et al., 2023; Besta et al., 2024a;b) have
emerged as dominant methods, linking the question and the final answer by a series of intermediate
reasoning steps. For a given question x and its corresponding answer y, extensive studies (Wei et al.,
2022; Chen et al., 2023; Yao et al., 2023; Besta et al., 2024a;b) have shown that prompting LLMs to
arrive at solutions via intermediate steps {a1, a2, . . . } can produce more interpretable and accurate
results. To generate the final answer, each intermediate step is sampled in an auto-regressive manner:
at ∼ πθ(·|x, a1:t−1), where πθ denotes an LLM policy parameterized by θ. The final answer is then

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

generated by y ∼ πθ(·|x, a1, a2, · · ·). Note that the final answer can be considered the last reasoning
step, so we omit y in our subsequent discussion.

ORM vs. PRM. Outcome reward model (ORM) and process reward model (PRM) represent two
distinct approaches to reward assignment in decision-making tasks, particularly in the context of
reinforcement learning and language models. ORMs focus on the final outcome, assigning rewards
based solely on the end state (Cobbe et al., 2021), which is advantageous when the end goal is clear
and well-defined. For example, this approach has been popularly used in LLM alignment frame-
works for learning human preferences, where the emphasis is on aligning the model’s final output
with human judgments (Ouyang et al., 2022; Lee et al., 2023; Rafailov et al., 2024b). However,
ORMs often overlook the nuances of the process that leads to the final outcome, potentially ignor-
ing valuable information embedded in the intermediate steps for multi-step reasoning tasks (Uesato
et al., 2022).

In contrast, OpenAI’s recent work on PRM (Lightman et al., 2024) has shown promise in assigning
rewards based on the quality or characteristics of the intermediate steps. PRMs are particularly
useful in tasks that require complex reasoning or multi-step problem-solving, where the path taken to
reach the solution is as important as the solution itself. By rewarding intermediate steps, PRMs can
encourage more interpretable and structured problem-solving processes, offering a more granular
training signal that captures the intricacies of the decision-making process.

Process reward modeling with BCE loss. For a question and a trajectory with several steps, τ =
(x, a1, a2, . . . , aH), current research on process reward models (Wang et al., 2023a; Shao et al.,
2024; Lightman et al., 2024; Luo et al., 2024) typically frames PRMs as a classification problem.
This approach aims to maximize the predicted correctness of each reasoning state using a binary
cross-entropy (BCE) loss,

LBCE(τ) = − 1

H

H∑
i=1

(
ci log pθ(ci|si) + (1− ci) log(1− pθ(ci|si))

)
, (1)

where ci is the gold classification label of i-th step, equal to 1 when si is a correct intermediate
state otherwise 0. Despite its effectiveness, BCE loss treats each intermediate state independently
and does not account for the interdependencies among the reasoning states within a trajectory. By
treating each state in isolation, BCE loss overlooks the relative contribution each step makes. More-
over, the theoretical support for PRM formulation is also lacking. These limitations motivate our
approach of formulating process reward modeling as a Q-value ranking problem grounded in the
Markov Dynamic Process, where the focus shifts to evaluating the relative quality of different steps
in a solution trajectory, thus capturing the interdependencies among steps and providing a more
holistic approach to reward assignment.

3 PQM: PROCESS REWARD MODEL WITH Q-VALUE RANKINGS

In this section, we introduce our framework PQM, which frames process reward modeling as a
Q-value ranking problem. In what follows, we first define a Q-value function for reasoning tasks,
which implicitly defines a reward function for each intermediate step (Section 3.2). Then, we derive
the desirable Q-value rankings among intermediate reasoning steps (Section 3.3), by which we can
train PRMs to approximate the intermediate Q-values by a comparison-based loss (Section 3.4).
Lastly, we demonstrate that classification-based PRMs can be viewed as a special case within our
theoretical framework (Section 3.5).

3.1 DETERMINISTIC MDP FOR LLMS

Formulations of MDP. A standard Markov Dynamic Process can be formulated as M =
(S,A, T , r, ρ,H), where S is the state space, A is the action space, T : S × A → ∆(S) is the
transition kernel, r is the reward function, ρ denotes the initial state distribution, and H is the max-
imal number of interaction steps. A policy in MDPs, denoted by π : S → ∆(A), maps each state
to a distribution over actions. The interaction between the environment M and the agent can be
described as follows. Initially, the starting state s1 is sampled from the initial distribution ρ. At
each step t, the agent observes the current state st and selects an action at based on its policy. The

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

environment then transits to the next state st+1, which is sampled from the distribution T (·|st, at).
This process continues until a termination condition is met, which will be triggered within H steps.

Deterministic MDP for LLMs. In text generation scenarios, the transition kernel T is deterministic,
as each new state is formed by concatenating the previous tokens with the current output. The
length limit for LLM outputs is characterized by H . Initially, an instruction x is sampled from an
initial distribution ρ. Each subsequent state st = (x, a1:t−1) comprises the instruction x and text
pieces previously generated (e.g. reasoning steps in reasoning tasks). Each action at is a text piece
generated based on the current state st. The LLM policy π(at|x, a1:t−1) maps the observed state
to a distribution over the action space. The process reward model, r : S × A → R, intuitively
scores each action at based on the instruction x and previous generations a1:t−1. For simplicity, the
instruction x is omitted in the state notation (x, a1:t) thereafter when no ambiguity arises.

3.2 DEFINING Q-FUNCTION IMPLICITLY DEFINES A REWARD FUNCTION

Recall that the state-action value Q(s, a) (Mnih et al., 2013; Fan et al., 2020; Setlur et al., 2024)
typically represents the expected benefit of taking a specific action a to achieve a correct answer. In
the context of reasoning tasks, we define the Q-value function as the success probability of achieving
the correct final answer. Specifically, the Q-value function is defined as

Qπ(a1:t−1, at) := σ−1
(
Eat+1:H∼π(·|a1:t)I(x, a1:H)

)
, (2)

where π is a policy, H is the maximum step number, σ is the sigmoid function and σ−1 is its inverse
function to ensure Q ∈ R. I is an indicator function, which equals 1 if the trajectory reaches the
correct answer of x, and 0 otherwise. For simplicity, we also denote Q(a1:t−1, at) as Qt when there
is no ambiguity.
Lemma 3.1. (Ng et al., 1999) For two reward functions r(st, at) and r′(st, at), if there exists
a potential function Φ(s) satisfying r′(st, at) = r(st, at) + Φ(st+1) − Φ(st), these two reward
functions results in the same optimal policy.

Given this lemma, defining the Q-value function implicitly defines a corresponding reward function.
Lemma 3.2. Under deterministic MDP, the advantage function of the optimal policy π∗ can function
the same as the reward function leading to π∗.

Proof. Due to the deterministic MDP setting, we have A∗(st, at) = r(st, at) + V ∗(st+1)− V∗(st)
where we denote the Q,V -value under the optimal policy π∗ as Q∗, V ∗. Hence, with Lemma 3.1,
we have the advantage function of the optimal policy functions the same as the reward function.

With the definition in Eq. 2, the advantage function of the optimal policy can be formulated as
A∗(st, at) = Q∗(st, at)− Eat∼π∗(·|st)Q

∗(st, at) = Q∗(st, at)−Q∗(st−1, at−1)

Thus, our objective is to approximate the Q-function of the optimal policy. However, the optimal
policy is not known in advance and varies across different algorithms. To establish the relationships
between Q-values at intermediate steps, we introduce the following mild assumption regarding ideal
optimal policies.
Assumption 3.1. For an ideal optimal policy π∗, the next step based on a correct state is more likely
to be correct than be wrong, i.e. P∗(at+1|a1:t) ≫ P∗(at+1|a1:t), which follows achieving correct
answer from a correct state is much easier than from a wrong state, i.e. P∗(τ |s) > P∗(τ |s).

In Section 4.3, we will further empirically validate this assumption. For the parameter notations of
Pπ(·), we use the original notations to represent the correctness of states and an overline to indicate
incorrectness. For example, Pπ(at+1|a1:t) denotes the probability that policy π will produce an
incorrect next step given the correct state sequence a1:t, and Pπ(τ |s) represents the probability that
the policy π generates a correct trajectory from an incorrect state s. P∗ is shorthand for Pπ∗

, where
π∗ is the optimal policy. Using the above definitions and assumptions, we can collect comparative
labels to approximate Q-values, which will be introduced next.

3.3 OPTIMAL Q-VALUE RANKING

In this subsection, we derive the Q-value rankings among intermediate reasoning steps. In our main
Theorem 3.5, we establish that Q-values ascend with the continuation of correct steps and descend

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

as wrong steps proceed, while maintaining a significant gap between correct and wrong steps. To
arrive at this result, we first derive the pairwise relationship between Q-values of an earlier step and
a later step in Lemma 3.3. Next we show the relationship between the first correct step and the
first incorrect step in Lemma 3.4. Finally, we combine these intermediate relationships to derive an
integrated ranking across the entire trajectory.

We start by introducing a few lemmas that are useful for deriving our main Theorem 3.5. For any
two actions an, am s.t. n < m in a solution trajectory τ = (x, a1, a2, ...aH), we have

P∗(τ |a1:n) = P∗(a1:m|a1:n)P∗(τ |a1:m) + P∗(a1:m|a1:n)P∗(τ |a1:m), (3)
P∗(τ |a1:n) = P∗(a1:m|a1:n)P∗(τ |a1:m) + P∗(a1:m|a1:n)P∗(τ |a1:m), (4)

which directly follows the Bayesian factorization. P∗(a1:m|a1:n) denotes the possibility that policy
generate correct state a1:m conditioned on a wrong state a1:n. For a solution τ = (x, a1, a2, ...aH),
recall the Q function in Eq.2, we define Q∗

σ(a1:t−1, at) = σ(Q∗(a1:t−1, at)) = P∗(τ |a1:t)
where σ is the sigmoid function. Since σ is a monotonically increasing function, hence when
Q∗

σ(a1:m−1, am) > Q∗
σ(a1:n−1, an) for any two steps am, an, we have Q∗(a1:m−1, am) >

Q∗(a1:n−1, an). Then we can obtain the following lemma.
Lemma 3.3. For two steps an, am in a solution τ where n < m, if they are both correct, we
have Q∗(a1:n−1, an) < Q∗(a1:m−1, am). If an, am are both wrong, we have Q∗(a1:n−1, an) >
Q∗(a1:m−1, am).

Proof. We first analyze the difference between the two correct steps as follows,

Q∗
σ(a1:n−1, an)−Q∗

σ(a1:m−1, am)

= P∗(am|a1:n)P∗(τ |a1:m) + P∗(am|a1:n)P∗(τ |a1:m)− P∗(τ |a1:m)

= P∗(am|a1:n)[P∗(τ |a1:m)− P∗(τ |a1:m)], (5)

where the first equation uses the Q-function definition and Eq. 4, the second equation uses
P∗(am|a1:n) +P∗(am|a1:n) = 1. With the Assumption 3.1, we have P∗(τ |a1:m)−P∗(τ |a1:m) <
0. Hence, when an and am are both correct, we have Q∗(a1:n−1, an) < Q∗(a1:m−1, am). Similar
to the above proof, we can factorize the Q-value difference between two incorrect steps as follows,

Q∗
σ(a1:n−1, an)−Q∗

σ(a1:m−1, am) = P∗(am|a1:n)[P∗(τ |a1:m)− P∗(τ |a1:m)]. (6)

With the Assumption 3.1 where P∗(τ |a1:m) > P∗(τ |a1:m), if an, am are both incorrect, we have
Q∗(a1:n−1, an) > Q∗(a1:m−1, am).

Additionally, considering the initial situation intermediate steps and V∗(x), we have the following
lemma.
Lemma 3.4. For the first correct step an and the first incorrect step am, we have Q∗(a1:n−1, an) >
V∗(x) ≫ Q∗(a1:m−1, am).

Proofs. Considering the first correct step an, similar to the proof in Lemma 3.3, we have

Q∗
σ(a1:n−1, an)− V∗

σ(x) = P∗(τ |a1:n)− P∗(τ |x) = P∗(an|x)(P∗(τ |a1:n)− P∗(τ |a1:n)) (7)
Q∗

σ(a1:m−1, am)− V∗
σ(x) = P∗(τ |a1:m)− P∗(τ |x) = P∗(am|x)(P∗(τ |a1:m)− P∗(τ |a1:m))

(8)

Hence, we have Q∗(a1:m−1, am) < V∗(x) < Q∗(a1:n−1, an). Now, we obtain the ordering of the
Q-value difference, but the specific discrepancy between intermediate steps have not been discussed
yet. With Assumption 3.1, for an ideal π∗, we have P∗(an|x) ≪ P∗(am|x). Hence, the difference
between V∗(x) and the Q-value of the first correct step is much smaller than difference between
V∗(x) and the Q-value of the first incorrect step.

Based on the above derivations, we can rank the state-action Q-values for the whole trajectory. We
formalize the ranking in the following theorem.

Theorem 3.5 (Q-value ranking among reasoning steps). Formally, for a trajectory τ with H
steps, C = [c1, c2, . . . , c|C|] denotes the index list of the correct intermediate steps, where c1 <
c2 < · · · < c|C|, W = [w1, w2, . . . , w|W |] denotes the index list of the wrong intermediate steps,
where w1 < w2 < · · · < w|W |, we have

Q∗
w|W |

< · · · < Q∗
w2

< Q∗
w1

≪ Q∗
0 < Q∗

c1 < Q∗
c2 < · · · < Q∗

c|C|
,

where Q∗
0 = V ∗(x), | · | denotes the length of the list, and |C|+ |W | = H .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.4 COMPARATIVE LOSS FUNCTION FOR OPTIMIZING Q-VALUE RANKINGS

Given the optimal Q-value ranking derived in Theorem 3.5, we now propose a new comparative loss
that trains RPM to approximate the intermediate Q-values. While the ranking relationship can be
captured by the classical Plackett-Luce (PL) ranking model (Plackett, 1975; Luce, 1959), there are
significant limitations when using the canonical PL loss directly in this context. The standard PL
loss is designed to handle general ranking scenarios without accounting for the varying degrees of
discrepancy within the ranking. However, in our case, the Q-value gaps between correct and incor-
rect steps are often highly pronounced (cf. Lemma 3.4), leading to a situation where the standard PL
model may not adequately capture the importance of these differences. As discussed in Section 4.3,
this results in suboptimal performance, since the PL loss does not differentiate sufficiently between
steps that are only marginally different in rank versus those with substantial Q-value gaps.

Comparative loss with Q-value margin. To address the limitation, we adapt the vanilla PL loss
to better reflect these discrepancies. Our proposed loss function is designed to emphasize the signifi-
cant gaps in Q-values, ensuring that the model learns to prioritize these differences in a theoretically
justified manner. The loss is defined as:

Ltheorem = − 1

H

[|W |∑
t=2

log
exp(Qwt)∑t
q=1 expQwq

+

|C|∑
t=0

log
exp(Qct)∑t

q=0 expQcq +
∑

w∈W exp(Qw + ζ)

]
, (9)

where ζ is a margin hyperparameter introduced to emphasize the gap between correct and incorrect
steps, and 0 is inserted at the beginning of C for clarity.

Practically, prior research (Wang et al., 2023a; Shao et al., 2024) often treats all steps following
the first incorrect step as wrong. Specifically, for a given trajectory τ = {a1, . . . , al−1, al, . . . , aH}
where a1:l−1 are correct steps and al is the first incorrect step, existing data corpora typically catego-
rize all subsequent steps al:H as incorrect. This approach leads to a situation where the wrong steps
are not necessarily accurately annotated, as they are all uniformly marked as incorrect. To address
this issue and explore a practically effective loss function, we investigate several variations of the
comparative loss function. Our practical implementation, which will be discussed in Section 4.3, is
designed to better handle this scenario. The proposed loss function is:

L = − 1

|C|

|C|∑
t=0

log
exp(Qct)∑t

q=0 expQcq +
∑

w∈W exp(Qw + ζ)
. (10)

In this formulation, ζ is a positive scalar that adjusts the relative importance of incorrect steps,
and Q0 is set to 0 to simplify the computation. Comparing to Ltheorem, this objective disregards
the internal rankings among incorrect steps, focusing solely on the relative rankings among cor-
rect steps and the substantial discrepancy between the Q-values of correct and incorrect steps, i.e.
{Q∗

w|W |
, . . . ,Q∗

w2
,Q∗

w1
} ≪ Q∗

0 < Q∗
c1 < Q∗

c2 < · · · < Q∗
c|C|

. We will perform extensive ablation
comparing L and Ltheorem in Section 4.3.

3.5 CLASSIFICATION-BASED PRM IS A SPECIAL CASE OF Q-VALUE APPROXIMATORS

We show that the previous classification-based PRM can be cast as a special case of our framework
under certain conditions. To illustrate this, consider an extreme scenario where the assumptions
outlined in Assumption 3.1 are satisfied, namely, when P∗(at+1|a1:t) → 1 and P∗(at+1|a1:t) → 1.
According to the Q-function definition provided in Eq. 2 and leveraging Bayesian Factorization, it
follows that classification-based PRMs approximate Q-value rankings under these conditions.
Lemma 3.6. Formally, when P∗(at+1|a1:t) → 1 and P∗(at+1|a1:t) → 1 for any t, we have
Q∗

σ(a1:m−1, am) = 1 for any correct step am and Q∗
σ(a1:n−1, an) = 0 for any wrong step an.

Proof. This result can be derived directly from Bayesian Factorization, which states:

P∗(τ |a1:m) =

H∏
t=m+1

P∗(at|a1:t−1),P∗(τ |a1:n) =
H∏

t=n+1

P∗(at|a1:t−1). (11)

Therefore, for a correct step, we have Q∗
σ(a1:m−1, am) = P∗(τ |a1:m) = 1 and for a wrong step,

we have Q∗
σ(a1:n−1, an) = 1−P∗(τ |a1:n) = 0. Thus, the cross-entropy loss used in classification-

based PRMs can be interpreted as estimating the Q-value without bias.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Sampling
Policy Methods Dataset: MATH500 Dataset: GSM-Plus

@8 @16 @32 @64 @128 @8 @16 @32 @64 @128

MetaMath-
Mistral-7B

ORM 32.8 34.8 36.2 39.0 38.2 56.58 57.63 57.17 57.63 58.33
MSE1-0 33.2 36.2 37.6 38.8 38.4 58.21 58.75 58.71 58.50 58.17

MSEMCTS 24.2 25.2 26.4 25.0 27.0 50.91 51.67 50.08 49.58 49.79
BCE 33.6 37.0 39.2 40.8 42.0 59.25 60.29 61.16 61.88 61.72

PQM ζ = 2 34.8 37.0 39.6 41.8 41.2 62.42 64.04 64.92 65.25 66.00
PQM ζ = 4 36.2 38.2 41.0 44.2 44.6 62.04 63.58 64.50 64.96 65.20

Muggle-
Math-13B

ORM 24.0 28.0 27.0 28.8 28.2 55.41 55.83 56.83 54.83 54.45
MSE1-0 28.2 30.2 33.0 33.6 34.0 56.42 58.42 58.38 58.67 59.08

MSEMCTS 21.2 24.2 22.0 23.8 26.8 42.75 45.83 46.95 45.67 46.33
BCE 30.4 31.4 33.4 36.4 37.0 57.50 59.79 61.16 62.00 62.17

PQM ζ = 2 30.0 33.4 34.4 36.8 35.0 60.58 62.54 64.25 64.79 65.62
PQM ζ = 4 30.0 34.8 36.2 39.2 39.0 61.00 62.66 64.08 64.79 65.54

Llama-3-
70B-Instruct

ORM 45.0 46.0 43.4 42.4 43.2 71.66 71.50 72.00 71.66 71.13
MSE1-0 41.6 42.2 40.0 36.8 38.0 71.79 71.67 71.96 71.25 71.04

MSEMCTS 39.6 40.4 40.0 41.2 41.4 68.46 69.70 67.79 71.13 70.66
BCE 43.6 41.4 41.6 42.4 39.8 72.16 71.83 72.04 71.38 70.75

PQM ζ = 2 47.6 49.0 50.4 48.4 51.4 72.04 71.95 72.70 72.33 72.33
PQM ζ = 4 47.2 48.2 50.0 46.0 47.8 72.54 73.25 73.38 72.79 71.96

Table 1: Main results measured by best-of-n (BON@n) accuracy. The BON@1 of MATH500 for
MetaMath-Mistral-7B is 24.4, for MuggleMath-13B is 18.4, for Llama-3-70B-Instruct is 37.4. The
BON@1 of GSM-Plus for MetaMath-Mistral-7B is 48.0, for MuggleMath-13B is 43.16, for Llama-
3-70B-Instruct is 67.875. Boldface and underline indicate the best two results.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets and metrics. Following previous research (Wang et al., 2023a; Lightman et al., 2024;
Luo et al., 2024), we evaluate PRMs based on their verification ability through best-of-n sampling.
The metric, BON@n, assesses the correctness of the most preferred trajectory selected by the PRM
from n candidates for each question. During the evaluation, the PRM first scores every step within
each trajectory. Consistent with prior studies (Wang et al., 2023a), the final score of a trajectory is
determined by the minimum score of its individual steps. The test corpus includes 128 solutions
for each question from GSM-Plus (Li et al., 2024) and MATH500 (Hendrycks et al., 2021) datasets.
These solutions are sampled from three policy models with strong performance in math tasks with
different scales: MetaMath-Mistral-7B (Yu et al., 2024), MuggleMath-13B (Li et al., 2023a), Llama-
3-70B-Instruct (AI@Meta, 2024). We utilize the existing off-shelf corpus, Math-Shepherd (Wang
et al., 2023a), as our training corpus.

Baselines and implementation details. Consistent with prior works (Wang et al., 2023a; Lightman
et al., 2024), we evaluate the performance of PRM by comparing it against the outcome reward
model (ORM). We also compare our comparative loss with the BCE loss, which is employed in
Math-Shepherd. Additionally, some research (Zhang et al., 2024a; Wang et al., 2024) adopt more
strict MSE loss to minimize the distance between the predicted value and the label. We implement
MSE loss with two versions: 0-1 label and iterative Monte Carlo Tree Search (MCTS) to estimate
the continuous label for MSE loss as in Zhang et al. (2024a). For the model architecture, we adopt
general reward model frameworks, incorporating a value head on top of the Deepseek-7B-base LLM
(Shao et al., 2024). This value head projects the latent representation of the model into a scalar value,
facilitating the evaluation of intermediate steps and trajectories. More detailed implementation in-
formation, including specific configurations and experimental setups, can be found in Appendix B.

4.2 MAIN RESULTS

Verification performance across different policy models. Experimental results are shown in Ta-
ble 1. Our proposed PQM demonstrates significant performance improvements over all baselines.
Firstly, PQM outperforms the outcome reward model, which is consistent with prior findings that
process-based methods provide a more nuanced evaluation of intermediate steps. Moreover, when
compared to classification-based PRM models using BCE or MSE loss, PQM shows a notable ad-
vantage. For example, when verifying solutions sampled from the Llama-3-70B-Instruct model,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Backbone for PQM MetaMath-Mistral-7B MuggleMath-13B Llama-3-70B-Instruct
@8 @16 @32 @64 @128 @8 @16 @32 @64 @128 @8 @16 @32 @64 @128

Deepseek-math-7b-base 36.2 38.2 41.0 44.2 44.6 30.0 34.8 36.2 39.2 39.0 47.2 48.2 50.0 46.0 47.8
Deepseek-math-7b-rl 38.0 40.8 42.8 45.4 44.2 31.8 34.6 38.6 37.2 37.4 49.8 50.8 53.2 53.8 55.0

Qwen2-math-1.5b 31.4 32.8 34.6 33.8 33.2 25.4 28.2 30.4 35.2 32.4 41.2 39.2 40.0 40.2 39.4
Qwen2-math-1.5b-inst 38.6 41.2 43.8 46.4 47.6 30.6 34.2 37.6 40.6 41.4 50.8 49.4 50.0 49.6 51.0

Metamath-7b 30.4 32.8 32.8 31.2 33.8 26.2 30.6 29.6 30.2 30.0 42.0 44.8 45.4 44.8 44.0
Metamath-13b 32.6 32.4 33.4 33.6 34.2 29.4 30.6 31.4 31.8 31.4 45.0 45.2 45.0 46.8 45.8

Table 2: Results of PQM across six different LLM backbones on MATH500. ζ is set to 4.

@1 @8 @16 @32 @64 @128
25

30

35

40

45

BO
N

PQM(2)
PQM(4)
SC+PQM(2)
SC+PQM(4)

@1 @8 @16 @32 @64 @128

20

25

30

35

40

BO
N

PQM(2)
PQM(4)
SC+PQM(2)
SC+PQM(4)

@1 @8 @16 @32 @64 @128

40

45

50

55

60

BO
N

PQM(2)
PQM(4)
SC+PQM(2)
SC+PQM(4)

Figure 2: Integration of our approach PQM with self-consistency (SC) on three policy models,
MetaMath-7B-Mistral (left), MuggleMath-13B (middle), Llama-3-70B-Instruct (right). The evalu-
ation is conducted on MATH500. Numbers in brackets denote the value of ζ.

PQM improves the accuracy from 39.8% (BCE) to 51.4%, a direct 11.6% improvement on the chal-
lenging MATH500 benchmark. This result underscores the effectiveness of PQM in capturing the
relative quality of different steps within a trajectory, addressing the limitations of BCE loss which
treats each step independently without considering their interdependencies. PQM outperforms MSE
loss with either 0-1 label or MCTS search. Compared to 0-1 label, MCTS search requires more
computational resources but only leads to marginal performance enhancement. This may stem from
its Q-value definition with sophisticated heuristics, and theoretically biased estimation of Q-values
in MCTS. Other results on both the MATH500 and GSM-Plus datasets across three policy models
further confirm the efficacy of PQM. In these benchmarks, PQM consistently outperforms existing
methods, demonstrating superior performance across different policy scales and test sets, validating
the efficacy of ranking-based process reward modeling.

PQM performance can be boosted by self-consistency (Wang et al., 2023b). By sampling mul-
tiple trajectories and then selecting the final answer that appears most frequently, self-consistency
can further enhance the reliability of LLMs. In Figure 2, we report performance when combining
self-consistency with our method PQM under both ζ = 2 and ζ = 4. This integration capitalizes on
the strengths of self-consistency to further enhance the verification. The performance gap between
PQM and SC+PQM increases as we move to the right in Figure 2, since the large capacity model
tends to reinforce the effectiveness of SC, leading to the increased performance gap observed in the
figure. Our results reveal that this combination can boost performance, underscoring that blending
self-consistency with process reward modeling provides a more effective verification strategy.

PQM remains effective under different LLM backbones. To explore the generalization of our
approach, we train with PQM on additional LLM backbones, including Qwen2-Math-1.5B, Qwen2-
Math-1.5B-Instruct (Yang et al., 2024), Deepseek-Math-7B-rl (Shao et al., 2024), Metamath-7B and
Metamath-13B (Yu et al., 2024). As shown in Table 2, stronger backbones generally lead to better
overall performance under the same sampling policy model. Moreover, Qwen2-Math-1.5B-Instruct
achieves impressive results among six backbones, which indicates that a small-scale PQM can also
provide effective verification if the backbone is specialized in mathematics.

4.3 FURTHER STUDIES

In ablation studies, we keep most of the experimental settings consistent with the main experiments,
except that we use data with a length of less than 512 tokens, totaling 390k data out of 440k data, to
save the training cost. The detailed hyperparameters are shown in Appendix B.

Impact of margin ζ. In this ablation, we investigate how the margin ζ in our loss function influ-
ences the performance. We implement several variations with ζ = 0, 2, 4, 8, 16. The experimental
results are shown in Table 3, along with loss curves in Figure 5 (Appendix). Our experiments reveal
that ζ has a minimal effect on the convergence of training, as the loss curves for all values flatten out

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Methods MetaMath-Mistral-7B MuggleMath-13B Llama-3-70B-Instruct
@8 @16 @32 @64 @128 @8 @16 @32 @64 @128 @8 @16 @32 @64 @128

L, ζ = 16 34.6 36.4 38.2 40.2 39.2 29.6 32.4 34.6 35.4 35.0 42.4 43.6 40.2 40.2 39.0
L, ζ = 8 36.4 40.2 41.2 43.8 44.6 30.8 33.8 37.2 38.8 38.8 47.0 47.0 47.8 46.2 46.0
L, ζ = 4 36.8 40.6 41.8 44.4 44.6 32.0 33.6 36.8 38.4 37.4 47.4 47.0 45.6 47.8 48.2
L, ζ = 2 35.8 39.0 40.8 43.4 43.8 30.2 32.8 34.2 36.8 37.4 47.4 49.0 50.6 51.2 50.4
L, ζ = 0 32.8 37.0 36.2 35.8 36.4 26.2 27.4 29.2 29.2 28.0 44.6 44.4 45.4 44.2 46.6

Ltheorem, ζ = 16 33.2 34.6 35.0 37.2 38.0 28.8 30.6 32.4 32.6 32.6 46.2 45.4 44.8 44.8 44.2
Ltheorem, ζ = 8 33.6 34.4 35.0 35.4 35.6 29.0 29.4 30.0 31.4 32.6 43.8 42.6 41.0 38.2 37.4
Ltheorem, ζ = 4 35.4 38.2 39.0 40.0 40.2 31.6 33.2 34.8 36.4 34.8 44.8 45.2 46.4 47.8 46.0
Ltheorem, ζ = 2 33.8 35.8 37.6 37.6 38.0 28.4 29.4 31.0 31.4 32.0 43.0 44.8 46.0 47.8 48.6
Ltheorem, ζ = 0 30.4 29.8 30.6 31.8 33.0 24.0 26.8 29.0 28.8 26.2 41.6 40.4 40.6 40.4 37.4

Table 3: Ablation results. The BON@1 of MATH500 for MetaMath-Mistral-7B is 24.4, for
MuggleMath-13B is 18.4, for Llama-3-70B-Instruct is 37.4. L,Ltheorem refers to Eq.10 and Eq.9
respectively. Boldface and underline indicate the best two results.

wrong correct
0.0

0.2

0.4

0.6

0.8

wrong correct
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Figure 3: Empirical validation for Assump-
tion 3.1.

2 4 6 8 10 12
step

0.5

0.6

0.7

0.8

0.9 Qσ correct trajectory

2 4 6 8 10 12
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16 Qσ

step

wrong trajectory

Figure 4: Empirical evidence for Theorem 3.5.

after approximately 200 steps. However, the choice of ζ impacts the effectiveness of our method.
As shown in Table 3, extreme values of ζ—either too large or too small—lead to suboptimal perfor-
mance. Specifically, ζ values of 2,4,8 yield the best results, whereas ζ values of 0 and 16 perform
less effectively. When ζ is too large, the comparative loss overweighs the discrepancy between the
correct steps and wrong steps while neglecting the ascending relationship among Q-values of cor-
rect steps. Conversely, when ζ is too small, the loss function fails to adequately capture Q-value
discrepancies, leading to suboptimal performance. These findings align with our theoretical expec-
tations and underscore the importance of choosing an appropriate ζ to balance the comparative loss
and capture meaningful Q-value distinctions.

Impact of loss design. Since the empirical training dataset automatically marks all steps after the
first incorrect one as negative steps, we ablate the impact of these pseudo-negative steps by com-
paring our loss function with the theoretical version as delineated in Eq. 9. The findings, presented
in Table 3, reveal the existence of noise in negative annotations. Specifically, when applying the
theoretical loss as in Eq. 9, there is a marked decline in performance. We also explored another
variant which emphasize the first negative step since the first negative annotation is verified by the
automatic annotation. The experimental results and analysis are supplemented in Appendix C.

Empirical validation of Assumption 3.1 and Theorem 3.5. To empirically validate the Assump-
tion 3.1 and Theorem 3.5, we use Llama-3.1-70B-Instruct to substitute the optimal model π∗. We
sample 256 trajectories from Math-Step-DPO-10K (Lai et al., 2024), each consisting of more than
six steps. For each step ai in each trajectory, we sample 32 times by τ ∼ π∗(·|a1:i). In Fig. 3, the
left panel’s y-axis shows the proportion of correct next steps, while the right panel’s y-axis displays
the proportion of correct trajectories. The x-axis indicates whether the generation is conditioned
on a correct state or an incorrect state. The plot demonstrates that when conditioned on a correct
reasoning state, there is a higher probability of generating a correct subsequent step or completing
a correct trajectory. This validates our Assumption 3.1. In Fig. 4, x-axis represents the i-th correct
step (left) or wrong step (right), and y-axis represents the approximated Qσ . According to the graph,
the approximated Q-values ascend with the continuation of the correct steps. Meanwhile, the latter
wrong steps generally have smaller Q-values than the previous wrong steps. Moreover, there is a
noticeable discrepancy between Q-value of correct steps (generally over 0.5) and incorrect steps
(generally below 0.15). Implementation details and more discussions can be found in Appendix C.

Qualitative example. For each step in the solution, we display the predicted probability of achiev-
ing the correct final answer by ORM, classification-based PRM, and PQM in Table 4. We also show
the original Q value predicted by PQM, along with Qσ = σ(Q). The Q-value predicted by PQM

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Q: Find all values of x that satisfy the equation x=
√
11− 2x+ 4. ORM BCE Qσ Q

Step 1: Subtract 4 from both sides of the equation.x− 4 =
√
11− 2x - 0.916 0.424 -0.308

Step 2: Square both sides of the equation. (x− 4)2 = (
√
11− 2x)2 - 0.882 0.487 -0.053

Step 3: Simplify.x2 − 8x+ 16 = 11− 2x - 0.848 0.482 -0.070
Step 4: Subtract 11 from both sides of the equation. x2−8x+5=2x - 0.628 0.004 -5.445
Step 5: Subtract 2x from both sides of the equation.x2 − 10x+5 = 0 - 0.584 0.004 -5.493
Step 6: Factor the quadratic.(x− 5)(x− 1) = 0 - 0.489 0.002 -6.164
Step 7: The final answer is 5 and 1. I hope it is correct. 0.475 0.399 0.001 -6.811

Table 4: A case study on MATH500. The solution is sampled by Llama3-70B-Instruct. For each
step, we display Q-value predicted by PQM(Q) and estimated probability of achieving the correct
answer by ORM, BCE, and our PQM(Qσ). The steps after the first error (Step 4) are in gray.

has a sharp decrease at Step 4, which accurately locates the error. In contrast, the predicted proba-
bility of classification-based PRM only decreases smoothly and exhibits large values even for wrong
steps. We show more qualitative examples in Appendix E.

5 RELATED WORKS

Process Reward Models. Process supervision (Uesato et al., 2022; Li et al., 2023b), represented
by PRMs, can provide more precise feedback, which is easier for humans to interpret, and more
directly rewards models in step-by-step reasoning tasks. Most existing research (Lightman et al.,
2024; Wang et al., 2023a; Shao et al., 2024; Luo et al., 2024) formulates PRM as a classification
problem, where the process reward is modeled as the probability of correctness of each step. We
show that the prior approach can be cast as a special case under our theoretical framework. Due to
the labor-intensive nature of dense annotations, several recent methods have introduced automatic
annotation strategies (Wang et al., 2023a; Luo et al., 2024; Lu et al., 2024a). In these approaches, a
step is deemed correct if a valid completion can be sampled from the LLM policy within k trials, see
details in Appendix A. Generally, the subsequent steps after the first error are all treated as wrong
steps in this line of methods. Additionally, Zhang et al. (2024a); Wang et al. (2024) estimate the Q-
value of intermediate steps by iterative Monte Carlo Tree Search (MCTS) and MSE loss. However,
their Q-value designs are different from ours, which generally incorporate sophisticated heuristics,
e.g., reasoning distance and quality value. Moreover, their works necessitate a dense online search
over the large action space. Besides being costly, the distribution shift between the sampling policy
and the optimal π∗ will result in biased estimation. In contrast, our comparative loss is easy to use,
and can achieve unbiased estimation according to our theory. For completeness, we document the
automatic annotation pipeline and more related research about PRM in Appendix A.

MDP RL for LLMs. Although the outcome reward model has advanced LLMs by applying re-
inforcement learning algorithms in bandit settings, it contradicts the auto-regressive nature of text
generation and the step-by-step reasoning process. Recent studies (Rafailov et al., 2024a; Zhong
et al., 2024; Xie et al., 2024; Zeng et al., 2024) introduced theoretically sound RL algorithms de-
signed for LLMs in MDP settings. Although these efforts bridge the theoretical discrepancy in
algorithms, they still rely, at least partially, on ORMs. Hence, the process reward model remains
underexplored in MDP-based RL for LLMs. Orthogonal to our exploration, several works (Lu et al.,
2024b; Lai et al., 2024; Chen et al.; Zhang et al., 2024b) adapt DPO (Rafailov et al., 2024b) to
step-level preference optimization for reasoning tasks. We discuss the potential of integrating such
methods into our framework in Appendix D.

6 CONCLUSION

In this paper, we introduce the Process Q-value Model (PQM), a new approach to model process re-
wards via optimization Q-value ranking. Unlike existing classification-based methods, which treat
intermediate steps independently, PQM captures the interdependencies among steps. To effectively
optimize the Q-value rankings, we propose a margin-based comparative training objective and vali-
date its effectiveness through comprehensive experiments. Our results demonstrate that PQM signif-
icantly outperforms previous baselines, achieving an 11.6% accuracy improvement when verifying
solutions generated by LLama-3-70B-Instruction on the MATH500 dataset, and consistently deliv-
ering robust results across various backbone scales, policy models, and datasets. We hope our work
inspires more future investigation on process reward modeling that better captures the complexities
of multi-step reasoning processes.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/blob/
main/MODEL CARD.md.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Giani-
nazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, and Torsten Hoe-
fler. Graph of thoughts: Solving elaborate problems with large language models. In Thirty-Eighth
AAAI Conference on Artificial Intelligence, pp. 17682–17690, 2024a.

Maciej Besta, Florim Memedi, Zhenyu Zhang, Robert Gerstenberger, Nils Blach, Piotr Nyczyk,
Marcin Copik, Grzegorz Kwasniewski, Jürgen Müller, Lukas Gianinazzi, Ales Kubicek, Hubert
Niewiadomski, Onur Mutlu, and Torsten Hoefler. Topologies of reasoning: Demystifying chains,
trees, and graphs of thoughts. arXiv preprint arXiv:2401.14295, 2024b.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Step-level value preference optimization
for mathematical reasoning. arXiv preprint arXiv:2406.10858.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompting:
Disentangling computation from reasoning for numerical reasoning tasks. Trans. Mach. Learn.
Res., 2023, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Jianqing Fan, Zhaoran Wang, Yuchen Xie, and Zhuoran Yang. A theoretical analysis of deep q-
learning. In Alexandre M. Bayen, Ali Jadbabaie, George J. Pappas, Pablo A. Parrilo, Benjamin
Recht, Claire J. Tomlin, and Melanie N. Zeilinger (eds.), Proceedings of the 2nd Annual Confer-
ence on Learning for Dynamics and Control, L4DC 2020, Online Event, Berkeley, CA, USA, 11-
12 June 2020, volume 120 of Proceedings of Machine Learning Research, pp. 486–489. PMLR,
2020.

Shibo Hao, Yi Gu, Haotian Luo, Tianyang Liu, Xiyan Shao, Xinyuan Wang, Shuhua Xie, Haodi Ma,
Adithya Samavedhi, Qiyue Gao, et al. Llm reasoners: New evaluation, library, and analysis of
step-by-step reasoning with large language models. In ICLR 2024 Workshop on Large Language
Model Agents, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks,
2021.

Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xiangru Peng, and Jiaya Jia. Step-dpo: Step-
wise preference optimization for long-chain reasoning of llms. arXiv preprint arXiv:2406.18629,
2024.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie Lu, Thomas Mesnard, Colton Bishop, Victor
Carbune, and Abhinav Rastogi. RLAIF: scaling reinforcement learning from human feedback
with AI feedback. arXiv preprint arXiv:2309.00267, 2023.

Chengpeng Li, Zheng Yuan, Hongyi Yuan, Guanting Dong, Keming Lu, Jiancan Wu, Chuanqi Tan,
Xiang Wang, and Chang Zhou. Query and response augmentation cannot help out-of-domain
math reasoning generalization. arXiv preprint arXiv:2310.05506, 2023a.

Qintong Li, Leyang Cui, Xueliang Zhao, Lingpeng Kong, and Wei Bi. Gsm-plus: A comprehensive
benchmark for evaluating the robustness of llms as mathematical problem solvers. arXiv preprint
arXiv:2402.19225, 2024.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Making
language models better reasoners with step-aware verifier. In Anna Rogers, Jordan L. Boyd-
Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-
14, 2023, pp. 5315–5333. Association for Computational Linguistics, 2023b. doi: 10.18653/V1/
2023.ACL-LONG.291. URL https://doi.org/10.18653/v1/2023.acl-long.291.

11

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://doi.org/10.18653/v1/2023.acl-long.291

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024.

Jianqiao Lu, Zhiyang Dou, Hongru Wang, Zeyu Cao, Jianbo Dai, Yingjia Wan, Yinya Huang, and
Zhijiang Guo. Autocv: Empowering reasoning with automated process labeling via confidence
variation. arXiv preprint arXiv:2405.16802, 2024a.

Zimu Lu, Aojun Zhou, Ke Wang, Houxing Ren, Weikang Shi, Junting Pan, Mingjie Zhan, and Hong-
sheng Li. Step-controlled dpo: Leveraging stepwise error for enhanced mathematical reasoning.
arXiv preprint arXiv:2407.00782, 2024b.

R Duncan Luce. Individual choice behavior, volume 4. Wiley New York, 1959.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun
Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi. Improve mathematical reasoning in language
models by automated process supervision. arXiv preprint arXiv:2406.06592, 2024.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement learning. CoRR,
abs/1312.5602, 2013.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In International Conference on Machine Learning,
1999.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Robin L Plackett. The analysis of permutations. Journal of the Royal Statistical Society Series C:
Applied Statistics, 24(2):193–202, 1975.

Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn. From r to q*: Your language model is
secretly a q-function. arXiv preprint arXiv:2404.12358, 2024a.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024b.

Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar. Rl on
incorrect synthetic data scales the efficiency of llm math reasoning by eight-fold. arXiv preprint
arXiv:2406.14532, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li,
Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300, 2024.

Jonathan Uesato, Nate Kushman, Ramana Kumar, H. Francis Song, Noah Y. Siegel, Lisa Wang,
Antonia Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-
and outcome-based feedback. CoRR, abs/2211.14275, 2022.

Chaojie Wang, Yanchen Deng, Zhiyi Lv, Shuicheng Yan, and An Bo. Q*: Improving multi-step
reasoning for llms with deliberative planning. arXiv preprint arXiv:2406.14283, 2024.

Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai Dai, Yifei Li, Deli Chen, Y. Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. arXiv
preprint arXiv:2312.08935, 2023a.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The International Conference on Learning Representations, 2023b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Tengyang Xie, Dylan J. Foster, Akshay Krishnamurthy, Corby Rosset, Ahmed Awadallah, and
Alexander Rakhlin. Exploratory preference optimization: Harnessing implicit q*-approximation
for sample-efficient rlhf. arXiv preprint arXiv:2405.21046, 2024.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In Ad-
vances in Neural Information Processing Systems, 2023.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
questions for large language models. In International Conference on Learning Representations,
2024.

Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding, Xingyao Wang, Jia Deng, Boji Shan, Huimin
Chen, Ruobing Xie, Yankai Lin, Zhenghao Liu, Bowen Zhou, Hao Peng, Zhiyuan Liu, and
Maosong Sun. Advancing LLM reasoning generalists with preference trees. arXiv preprint
arXiv:2404.02078, 2024.

Yongcheng Zeng, Guoqing Liu, Weiyu Ma, Ning Yang, Haifeng Zhang, and Jun Wang. Token-level
direct preference optimization. arXiv preprint arXiv:2404.11999, 2024.

Dan Zhang, Sining Zhoubian, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm self-
training via process reward guided tree search. arXiv preprint arXiv:2406.03816, 2024a.

Xuan Zhang, Chao Du, Tianyu Pang, Qian Liu, Wei Gao, and Min Lin. Chain of preference op-
timization: Improving chain-of-thought reasoning in llms. arXiv preprint arXiv:2406.09136,
2024b.

Han Zhong, Guhao Feng, Wei Xiong, Li Zhao, Di He, Jiang Bian, and Liwei Wang. Dpo meets ppo:
Reinforced token optimization for rlhf. arXiv preprint arXiv:2404.18922, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A RELATED WORKS

Several techniques have been developed to accelerate the data collection pipeline for training PRMs
(Luo et al., 2024; Lu et al., 2024a). To simplify understanding, we first introduce the fundamental
version proposed in Wang et al. (2023a). In this approach, the quality of an intermediate step is
evaluated based on its potential to lead to the correct final answer. The pipeline can be summarized
as follows:

• For a given question x ∼ ρ, several trajectories are sampled by an LLM: τ1, · · · , τN ∼
π1(·|x). Each trajectory τ = {a1, a2, . . . , aH} consists of a sequence of steps, and the
correctness of these steps is annotated through the following procedure.

• For a trajectory τ = {a1, a2, . . . , aH}, we generate n completions for each step from a1 to
an. Specifically, to annotate ai, we sample n completions by π2(·|x, a1:i). The correctness
of each completion is evaluated by final answer string matching.

• For each step ai, if any completion of it achieves the correct final answer. We regard ai as
correct, otherwise wrong. If ai is wrong, the subsequent steps ai+1, · · · , an are all regarded
as incorrect.

There have been several research trying to promote the pipeline efficiency. For example, Lu et al.
(2024a) trains an additional confidence module to simplify the automatic annotations, Luo et al.
(2024) performs a binary search to identify the first error location.

B IMPLEMENTATION DETAILS

All training is conducted on 8 NVIDIA A100-SXM4-80GB GPUs. We list the ver-
sion of the important external packages as follows: torch==2.3.1, trl==0.8.0,
flashattn==2.6.2, transformers==4.34.0, accelerate==0.33.0, deepspeed==0.13.1,
nvidia-nccl-cu12==2.20.5. We use the ZeRO-3 optimization stage of the deepspeed with
bfloat16 precision. The hyperparameters for the ablation studies are provided in Table 5, and each
training session for the ablation study took approximately 4.5 hours. For the main experiments,
some training data has tokenized sequences longer than 2048 tokens, which limited the batch size
and reduced training efficiency. To address this, we divide the training corpus into three groups
based on tokenized length: sequences shorter than 512 tokens, between 512 and 1024 tokens,
and greater than 1024 tokens. The batch sizes were set to 64, 24, and 8, respectively, for these
groups. This strategy reduced the training time from about eleven hours to six hours. To generate
the trajectories for Best-of-n sampling, we use the VLLM pipeline with the temperature set to
1, top-p set to 1, and max length set to 2048. For MCTS baseline, we fix the policy model as
Qwen2-math-7B-Instruct, and utilize iterative MCTS search to train PRM. For a fair comparison,
we use a half of the Math-Shepherd corpus and its hard-estimated labels to construct DV0 (refer to
the original paper (Zhang et al., 2024a)), and train an initial PRM. Then we conduct MCTS search
on questions of the remaining corpus. To keep the scale of the training set as the same, we randomly
sample trajectories with the quantity of 1/2 Math-Shepherd from the MCTS tree.

hyper-parameter value

scheduler cosine
warm up ratio 0.1
learning rate 2e-6

optimizer AdamW
batch size per GPU 64

gradient accumulation steps 4
gradient checkpointing True

Table 5: Experimental settings for ablation studies.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Methods MetaMath-Mistral-7B MuggleMath-13B Llama-3-70B-Instruct
@8 @16 @32 @64 @128 @8 @16 @32 @64 @128 @8 @16 @32 @64 @128

L, ζ = 8 36.4 40.2 41.2 43.8 44.6 30.8 33.8 37.2 38.8 38.8 47.0 47.0 47.8 46.2 46.0
L, ζ = 4 36.8 40.6 41.8 44.4 44.6 32.0 33.6 36.8 38.4 37.4 47.4 47.0 45.6 47.8 48.2
L, ζ = 2 35.8 39.0 40.8 43.4 43.8 30.2 32.8 34.2 36.8 37.4 47.4 49.0 50.6 51.2 50.4

Lablate, ζ = 8 34.4 37.4 39.6 42.0 41.0 31.2 34.8 36.8 38.4 37.6 47.6 49.0 50.4 52.0 50.8
Lablate, ζ = 4 33.0 37.6 40.0 41.6 40.8 30.0 34.4 36.4 39.0 38.6 47.6 49.4 50.8 52.4 49.8
Lablate, ζ = 2 31.6 34.8 37.0 40.0 38.4 30.4 33.4 32.6 35.6 35.2 44.4 45.4 45.0 47.0 46.0
Lablate, ζ = 0 31.6 34.8 37.0 40.0 38.4 30.4 33.4 32.6 35.6 35.2 44.4 45.4 45.0 47.0 46.0

Table 6: Ablation results. The BON@1 of MATH500 for MetaMath-Mistral-7B is 24.4, for Llama-
3-70B-Instruct is 37.4. L,Lablate refers to Eq.10, and Eq.12 respectively. The detailed hyperparam-
eters for experiments of this table are shown in Appendix B.

0 50 100 150 200 250 300 350 400
steps

2

4

6

8

10

lo
ss

16
8
4
2
0
theory-16
theory-8
theory-4
theory-2
theory-0

Figure 5: The loss curves for ablation studies in Table 3.

C ADDITIONAL EXPERIMENTS

Loss variation. Here, we explore what if we only emphasize the first incorrect step in the ranking.
The loss variant is as follows,

Lablate = − 1

|C|

|C|∑
t=0

log
exp(Qct)∑t

q=0 expQcq + exp(Qw1
+ ζ)

, (12)

which promotes Q∗
w1

≪ Q∗
0 < Q∗

c1 < Q∗
c2 < · · · < Q∗

c|C|
. As shown in Table 6, focusing only on

the first negative step, which is verified by automatic annotation, the performance remains relatively
stable, suggesting the limited utility of subsequent negative steps.

@1 @8 @16 @32 @64 @128

20

30

40

50

60

70

80

90

BO
N

Pass-1
Pass-2
Pass-3
Pass-1
Pass-2
Pass-3

Figure 6: The ceiling perfor-
mance and the best verification
performance of three policy mod-
els on MATH500.

Comparison with ceiling performance. We evaluate the ceil-
ing performance of various policy models and compare how PQM
stands against this benchmark. Figure 6 presents the Pass@N met-
ric alongside the best achievable verification performance for three
distinct policy models. This comparison illustrates the upper limits
of verification accuracy for each policy model and highlights the
existing performance gaps. Specifically, the comparison suggests
that current PRMs, including PQM, have not yet reached their full
potential. These findings underscore the need for further advance-
ments and refinements in PRM techniques to close the gap and ap-
proach the ceiling performance more closely.

Empirical validation for Assumption 3.1 and Theorem 3.5. To
empirically validate our Theorem 3.5, we use Llama-3.1-70B-
Instruct to substitute the optimal model π∗. We sample 256 tra-
jectories from Math-Step-DPO-10K (Lai et al., 2024), comprising
128 correct and 128 incorrect trajectories respectively. Each trajec-
tory consists of more than six steps. If the reasoning state is included in a rejected answer, we regard

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Methods Data Size MetaMath-Mistral-7B MuggleMath-13B Llama-3-70B-Instruct
@8 @16 @32 @64 @128 @8 @16 @32 @64 @128 @8 @16 @32 @64 @128

BCE

25% 19.6 21.0 18.2 19.0 17.8 17.6 16.8 15.8 15.2 13.8 37.2 35.6 34.2 34.6 30.0
50% 23.6 24.2 22.8 22.4 19.8 17.2 17.8 17.0 14.2 13.0 37.6 35.4 32.6 31.8 29.0
75% 32.4 31.8 34.0 34.6 33.6 28.4 28.4 31.0 31.6 31.6 40.6 38.8 37.0 38.4 38.8
100% 33.6 37.0 39.2 40.8 42.0 30.4 31.4 33.4 36.4 37.0 43.6 41.4 41.6 42.4 39.8

PQM

25% 21.4 21.6 19.8 19.8 19.2 18.0 15.4 17.0 14.8 14.0 37.4 36.6 37.2 38.4 35.6
50% 21.0 22.0 20.2 20.2 19.4 18.6 16.8 16.6 14.0 14.2 37.4 36.4 34.4 34.2 32.6
75% 33.4 36.4 37.0 39.6 38.0 29.2 32.4 35.0 37.2 37.4 46.8 47.8 47.0 47.2 46.0
100% 36.2 38.2 41.0 44.2 44.6 30.0 34.8 36.2 39.2 39.0 47.2 48.2 50.0 46.0 47.8

Table 9: The Best-of-n performance of PRMs trained on different data size. The comparisons are
conducted on classification-based PRM (BCE loss) and our PQM. The BON@1 of MATH500 for
MetaMath-Mistral-7B is 24.4, for MuggleMath-13B is 18.4, for Llama-3-70B-Instruct is 37.4.

this reasoning state as incorrect. For each reasoning state a1:i in each trajectory, we sample 32 com-
pletions with τ ∼ π∗(a1:i). The correctness of next-step ai+1 is annotated automatically as in Wang
et al. (2023a) with Qwen2-Math-Instruct-7B. We use statistics after fifth step to avoid Qwen2-Math-
Instruct-7B having larger possibility to self-correct the step, hence misleading the label. We also
count the correctness of each whole trajectory to approximate Qσ for a1:i as defined in Eq. 2. In
Fig. 4, we count the correctness proportionality of correct completions according to the position i
of the reasoning state a1:i. According to the left subgraph of Fig. 4, the approximated Qσ ascend
with the continuation of the correct steps. The right subgraph illustrates that the latter wrong steps
generally have smaller Q-values than the previous wrong steps. Moreover, there is a noticeable dis-
crepancy between the Q-value of correct steps with Qσ generally over 0.5 and incorrect steps with
Qσ generally below 0.15.

Policy Models Pass@1 BCE PQM

Llama-3.1-8B-Instruct 17.2 26.4 31.6
Eurus-7b-sft 19.4 24.2 29.2

Table 7: The performance of PRM-guided beam
search on MATH500.

Objective ζ = 1 ζ = 2 ζ = 4 ζ = 8 ζ = 16

L 26.4 27.8 28.8 28.4 25.6
Ltheorem 24.8 26.0 28.0 28.2 26.6

Table 8: Ablation Studies of PQM-guided beam
search on MATH500. The sample policy is Eurus-
7b-sft.

PRM-guided beam search. To further
validate the effectiveness of our PQM,
we have conducted additional experiments
on PRM-guided beam search. The com-
parison is conducted between PQM and
classification-based PRMs with BCE loss.
We set the beam size as 8, and the gener-
ative temperature as 0.7. The evaluation is
conducted on MATH500 across two policy
models, Llama-3-8B-Instruct (AI@Meta,
2024) and Eurus-7b-sft (Yuan et al., 2024).
The results are reported in Tabel 7, which
demonstrate that PQM can more effectively
guide the LLM to reason. For ablations, we
compare the performance of PQMs trained
with Ltheorem and different ζ values as in
§4.3. We use Eurus-7b-sft as the policy model. The results in Table 8 align with the findings from
the Best-of-N experiments, showing that a sufficiently large range of ζ leads to strong performance
in PRM-guided beam search, with optimal values typically falling in the middle of the range.

Sample-efficiency of PQM. To examine whether PQM robustly outperforms classification-based
PRM across different dataset sizes, we randomly sample 25%, 50%, 75% of the original dataset
to train PRMs with BCE loss and PQM loss. We keep most of the hyperparameters as in our main
experiments, and set ζ as 4. As shown in Table 9, the results suggest that PQM generally outperforms
BCE on all ranges of data sizes, and is more sample efficient.

Comparison of ranking behaviors between PQM and BCE. We first highlight behavioral dif-
ferences based on the qualitative example in Table 4. (1) BCE produces probabilities that are
monotonically decreasing for correct steps (step 1: 0.916 → step 2: 0.882 → step 3: 0.848).
This behavior contradicts the desired property established in Theorem 3.5, which proves that values
should increase (rather than decrease) for correct reasoning steps. (2) BCE does not produce a
large transition in values between correct and incorrect steps. For example, in Table 4, the prob-

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

ability only slightly decreases from 0.848 (step 3) to 0.628 (step 4), failing to sharply differentiate
between correct and incorrect steps. In contrast, our PQM framework produces Q-values with a sig-
nificant drop from correct to incorrect steps, better aligning with the desired behavior. For example,
in Table 4, the Qσ value drops substantially from 0.482 to 0.004 between steps 3 and 4.

Statistically, we conduct an empirical study to confirm whether BCE and PQM result in different
rankings on test steps. We calculate the proportion of solutions where classification-based PRM
and PQM produce the same rankings across steps. In testset, only 29.18% of solutions shared
the same rankings. Furthermore, when comparing rankings across different solutions for the same
question (Best-of-N results), we observed that 0% of test questions had identical rankings. We
also randomly sample 2048 cases from the training set. Statistically, classification-based PRMs
and PQM yield different ranking behaviors on 62.79% training cases. These statistics indicate a
significant behavioral difference between BCE and PQM.

D INTER-SOLUTION COMPARISON

The comparison introduced in the main paper can be termed as intra-solution comparison, since
two compared reasoning steps are within a single trajectory. This is partially because the format
of currently available corpora for PRM, which generally treats a single trajectory as a data point.
Nevertheless, Theorem. 3.5 can seamlessly apply to comparison among different trajectories, i.e.,
inter-solution comparison. For instance, if two trajectories are diverged from t-th step with a com-
mon correct prior a1:t−1, the comparison will proceed between two different t-th steps. Here, we
denote act is the correct one while awt is the wrong one. In this setting, we can derive the following
corollary (note that Q represents the optimal Q-function Q∗ if no ambiguity.
Corollary D.1 (Q-value ranking for inter-solution comparison). Formally, for two trajectories
with the same correct prior a1:t−1 and act ≻ awt , the Q-value rankings among these steps are as
follows, Qw

t ≪ Q0 < Q1 < · · · < Qt−1 < Qc
t , where Q0 = V (x).

There have been several offline step-level DPO methods (Lu et al., 2024b; Lai et al., 2024; Chen
et al.; Zhang et al., 2024b) concurrent to our research. Though not focused on PRM, their theo-
retical derivations can also be encompassed by the inter-solution comparison as in Corollary D.1.
Moreover, they (Lai et al., 2024) generally only utilize Qw

t ≪ Qc
t and discard the ranking relation-

ships among intermediate steps.
Corollary D.2 (Q-value ranking for inter-solution comparison (General Version)). Formally,
for a trajectory τ with successive H step pairs, [(ac1, a

w
1), (a

c
2, a

w
2), · · · , (acH , awH)], where the t-th

step is conditioned on previous correct steps, i.e. at ∼ π(·|ac1:t−1). We have Qw
H < · · · < Qw

2 <
Qw

1 ≪ Q0 < Qc
1 < · · · < Qc

t−1 < Qc
H where Q0 = V (x).

Some step-level optimization are based on tree-structured data as in Corollary D.2, however, existing
research (Chen et al.; Zhang et al., 2024b) generally considers each step pair independently, i.e.
Qw

1 < Qc
1, · · · ,Qw

H < Qc
H , neglecting the integral Q-value rankings within the tree. We believe

the above corollaries can shed some light on step-level offline optimization.

E CASE STUDIES

We show more qualatative examples in Table 10 and Table 11. We directly report Q∗ to show the
value transition. The predicted values generally have a slight increase among correct steps. When
encountering the wrong step, the predicted value will have a sharp decrease.

F LIMITATIONS & FUTURE WORKS

Notably, as shown in Luo et al. (2024), the data quality of Math-shepherd is restricted due to the
noise introduced by automatic annotation. We believe that more advanced datasets could signifi-
cantly improve the verification capabilities of PRMs. As shown in Appendix C, there remains a
considerable gap between the current performance of PRMs and the ceiling performance, under-
scoring the need for further advancements in PRM techniques. Additionally, while PRMs have
garnered increasing research attention, there is a lack of systematic studies on corresponding online

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

RL algorithms that leverage PRMs. The potential for fully utilizing PRMs in this context remains
largely unexplored.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Question: What is the smallest positive perfect cube that can be written as the sum of three
consecutive integers? Correct Answer: 27

Step 1: Do some research about cubes and about consecutive integers.The equation we are
looking for is in the form of x3 = y + (y + 1) + (y + 2). (-1.703125)
Step 2: Add y+(y+1)+(y+2), the sum of the 3 consecutive integers.y+(y+1)+(y+2)=3y+3
(-0.97265625)
Step 3: Make the equations equal to each other.x3 = 3y + 3 (-1.0625)
Step 4: Subtract 3 out of both sides.x3 − 3 = 3y (-0.796875)
Step 5: Divide both sides by 3.x

3−3
3 = y (-0.79296875)

Step 6: Since y has to be an integer, look for a perfect cube that, when subtracted by 3, it results
in a multiple of 3.Our smallest option is to try 1, but it doesn’t work.Our next option is to try 2,
but it doesn’t work.Our next option is to try 3, but it doesn’t work.Our next option is to try 4,
which results in 61.Our next option is to try 5, which results in 106. (-3.234375)
Step 7: Check which one works. 61 isn’t a multiple of 3, but 106 is. Final Answer: The final
answer is 125. I hope it is correct. (-5.03125)

Step 1: Write an expression for three consecutive integers. Call them a − 1, a, and a + 1.
(-0.53515625)
Step 2: Write an expression for their sum. The sum of the three is a − 1 + a + a + 1 = 3a.
(-0.302734375)
Step 3: We want this sum to be a perfect cube, so let 3a = n3. Divide both sides by 3 to get
a = n3

3 . (-0.265625)
Step 4: Since we want a to be an integer, it must be that n is a multiple of 3. Therefore, we

have n = 3k, where k is an integer. Substitute this back into a = n3

3 to get a = (3k)3

3 = 32k3.
(-0.33203125)
Step 5: From here, we just guess and check for values of k to find our answer. When k = 1,

then a = 32(1)3 = 9 and a−1 = 8, a = 9, and a+1 = 10. The sum of these three consecutive
integers is 8 + 9 + 10 = 27 = 33. Therefore, the smallest positive perfect cube that can be
written as the sum of three consecutive integers is 27 . Final Answer: The final answer is 27.
I hope it is correct. (-1.6015625)

Step 1: Let n, n + 1, n + 2 be three consecutive integers, such that their sum is equal to k3, a
perfect cube. In other words, n+ (n+ 1) + (n+ 2) = k3. (-0.734375)
Step 2: Rearranging the terms in the equation, we obtain: 3n+ 3 = k3. (-0.255859375)

Step 3: Substracting 3 from both sides, we get: 3n = k3 − 3. (-0.177734375)
Step 4: Dividing both sides by 3, we obtain: n = k3−3

3 . (-0.376953125)
Step 5: Since n must be an integer, then k3 − 3 must be divisible by 3. (-0.451171875)
Step 6: Adding 3 to both sides, we get: k3 = k3 − 3+ 3, k3 = k3 − 3+ 3, k3 = (k3 − 3)+ 3.
(-2.3125)
Step 7: The smallest perfect cube that is 3 greater than a multiple of 3 is k3 = 64. (-5.46875)

Step 8: Plugging in k3 = 64 to our equation in Step 4, we get: n = 64−3
3 = 61

3 = 20 + 1
3 .

(-5.71875)
Step 9: Since n must be an integer, then we must increase k3 to k3 = 125 to get an integer
value of n. (-5.0625)
Step 10: Plugging in k3 = 125 to our equation in Step 4, we get: n = 125−3

3 = 122
3 =

40 + 2
3 . (-5.34375)

Step 11: Since n must be an integer, then we must increase k3 to k3 = 216 to get an integer
value of n. (-4.625)
Step 12: Plugging in k3 = 216 to our equation in Step 4, we get: n = 216−3

3 = 213
3 = 71. (-

4.0625)
Step 13: We found an integer value of n, which is our goal. We will not need to increase k3

any further. (-1.8359375)
Step 14: Plugging in n = 71 to our initial equation, we get: 71+72+73 = k3, 216 = k3, k3 =
216. Final Answer: The smallest positive perfect cube that can be written as the sum of three
consecutive integers is 216. I hope it is correct. (-4.84375)

Table 10: A case of MATH500 sampled by Llama-3-70B-Instruct. The red value represents the
predicted Q∗ provided by PQM.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Question: Find all values of x that satisfy the equation x =
√
11− 2x+ 4. Correct Answer: 5

Step 1: Subtract 4 on both sides of the equation to isolate the radical.x − 4 =
√
11− 2x

(-0.349609375)
Step 2: Square both sides to get rid of the radical.(x− 4)2 = 11− 2x (-0.12353515625)
Step 3: Expand, combine like terms, and rewrite the equation in standard form (leading

coefficient of 1) to have a quadratic in x. x2 − 10x + 21 = 0,x2 − 7x − 3x + 21 = 0,
x(x− 7)− 3(x− 7) = 0,(x− 7)(x− 3) = 0 (-1.28125)
Step 4: Factor out the solutions to the equation.x − 7 = 0 or x − 3 = 0,x = 7 or x = 3 (-

1.3984375)
Step 5: Check the solutions in the original equation to see if they satisfy the equation. When
x = 7,7 =

√
11− 14 + 4,7 =

√
−3 + 4 No real solution for x = 7. When x = 3,3 =√

11− 6 + 4,3 =
√
5 + 4,3 − 4 =

√
5,−1 =

√
5. No real solution for x = 3 either.Final

Answer: The final answer is there is no solution. I hope it is correct. (-3.640625)

Step 1: Isolate the radical x− 4 =
√
11− 2x. (-0.251953125)

Step 2: Square both sides (x− 4)2 = (
√
11− 2x)2. (-0.01080322265625)

Step 3: Simplify x2 − 8x+ 16 = 11− 2x. (-0.022216796875)
Step 4: Write in standard form x2 − 6x+ 5 = 0. (0.0849609375)

Step 5: Factor (x− 5)(x− 1) = 0.. (0.1630859375)
Step 6: Solve for x, x = 1, 5 . (-0.44140625)
Step 7: Check solutions: x = 1 is extraneous. Final Answer: The final answer is 5. I hope it is
correct. (-1.40625)

Step 1: We want to first isolate the square root on the right hand side. Subtract 4 from both
sides to get x− 4 =

√
11− 2x. (0.0390625)

Step 2: Now we square both sides to get(x− 4)2 = 11− 2x. (0.09521484375)
Step 3: Multiply out to getx2 − 8x+ 16 = 11− 2x.(0.2275390625)

Step 4: Move all terms to the left and combine like terms to getx2 − 10x+ 5 = 0.(-4.375)
Step 5: We now factor the equation to get (x− 5)(x− 1) = 0.(-4.5)
Step 6: And we solve for x by setting each factor equal to 0: x = 1 or x = 5. Final Answer:
The final answer is x = 1 or x = 5 . I hope it is correct. (-6.5)

Step 1: Subtract 4 from both sides of the equation.x− 4 =
√
11− 2x (-0.296875)

Step 2: Square both sides of the equation.(x− 4)2 = 11− 2x (-0.0341796875)
Step 3: Expand and simplify both sides of the equation.x2 − 8x + 16 = 11 − 2x,x2 − 8x +
2x− 16 + 11 = 0,x2 − 6x− 5 = 0,(x− 5)(x+ 1) = 0 (-4.875)
Step 4: Solve for both values of x.x− 5 = 0,x = 5 ,x+ 1 = 0,x = −1 (-5.5)
Step 5: Check both answers in the original equation to ensure they are valid.Final Answer: The
final answers are 5 and -1. I hope it is correct. (-6.375)

Table 11: Case studies on MATH500. Solutions are sampled from Llama-3-70B-Instruct. The red
value represents the predicted Q∗ provided by PQM.

20

	Introduction
	Preliminaries
	PQM: Process Reward Model with Q-Value Rankings
	Deterministic MDP for LLMs
	Defining Q-function Implicitly Defines a Reward Function
	Optimal Q-Value Ranking
	Comparative Loss Function for Optimizing Q-Value Rankings
	Classification-based PRM is a special case of Q-value approximators

	Experiments
	Experimental Settings
	Main Results
	Further Studies

	Related Works
	Conclusion
	Related Works
	Implementation Details
	Additional Experiments
	Inter-solution Comparison
	Case studies
	Limitations & Future Works

