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ABSTRACT

Process Reward Modeling (PRM) is critical for complex reasoning and decision-
making tasks where the accuracy of intermediate steps significantly influences the
overall outcome. Existing PRM approaches, primarily framed as classification
problems, employ cross-entropy loss to independently evaluate each step’s cor-
rectness. This method can lead to suboptimal reward distribution and does not
adequately address the interdependencies among steps. To address these limita-
tions, we introduce the Process Q-value Model (PQM), a novel framework that
redefines PRM in the context of a Markov Decision Process. PQM optimizes Q-
value rankings based on a novel comparative loss function, enhancing the model’s
ability to capture the intricate dynamics among sequential decisions. This ap-
proach provides a more granular and theoretically grounded methodology for pro-
cess rewards. Our extensive empirical evaluations across various sampling poli-
cies, language model backbones, and multi-step reasoning benchmarks show that
PQM outperforms classification-based PRMs. The effectiveness of the compara-
tive loss function is highlighted in our comprehensive ablation studies, confirming
PQM’s practical efficacy and theoretical advantage. Our codes can be found at
https://anonymous.4open.science/r/PQM-4446

1 INTRODUCTION

Process reward modeling (PRM) plays a crucial role in tasks where the quality of intermediate steps
is pivotal to achieving the final outcome (Lightman et al., 2024). In complex problem-solving sce-
narios, such as mathematical reasoning or multi-step decision-making (Shao et al., 2024; Yu et al.,
2024; Hao et al., 2024), the accuracy and effectiveness of each intermediate action can significantly
influence the overall success. Unlike outcome reward models (ORM) (Cobbe et al., 2021), which
focus solely on the final result, PRM provides detailed feedback at each stage of the process. By
capturing the value of intermediate steps, PRM allows for a deeper understanding of how each action
contributes to the overall goal. This granular approach supports the development of more sophisti-
cated and reliable systems that can navigate complex tasks with greater accuracy.

Existing research typically frames PRM as a classification problem (Wang et al., 2023a; Shao et al.,
2024; Lightman et al., 2024; Luo et al., 2024), where each intermediate state is classified as correct
or incorrect. Specifically, for a trajectory {x, a1, a2, . . . , aH} where x, a,H represent a question,
a reasoning step, and the trajectory horizon, a reasoning state si = (x, a1:i−1) comprises the in-
struction x and text pieces previously generated (e.g. reasoning steps in reasoning tasks). Current
research uses cross-entropy loss to maximize the probability p(ci|si) for each reasoning state, where
ci is the label indicating whether si is correct. While this approach has shown empirical success,
it has notable limitations. Classification-based methods treat each state independently and do not
account for the dependencies and nuances among states within a trajectory. This can lead to subop-
timal reward assignments, as these methods often ignore the relative importance of different steps
and their influence on the overall process. Furthermore, these approaches lack theoretical grounding
on how they approximate the desired reward function.

To address the challenges, we propose a novel framework—Process Q-value Model (PQM)—which
frames PRM as a Q-value ranking problem. This framework allows us to capture the interdependen-
cies among states and provides a more nuanced evaluation of each step’s contribution to the overall
process. Specifically, our framework is grounded in the Markov Dynamic Process, where each ac-
tion ah is a text piece generated based on the current state sh = (x, a1:h−1). The LLM policy
π(ah|x, a1:h−1) maps the observed state to a distribution over the action space. The process reward
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Figure 1: Illustration of our proposed framework Process Q-value Model (PQM). The example highlights a
solution trajectory with six steps, where the first three steps are correct and the last three steps are incorrect.

model intuitively scores each action ah based on the instruction x and previous generations a1:h−1.
In the context of reasoning tasks, we introduce a Q-value function for each state-action pair (sh, ah)
as the probability of success in achieving the correct final answer. Importantly, the Q-value function
implicitly defines a reward function for intermediate steps. Under this characterization, we formally
derive the optimal Q-value rankings among reasoning steps, by which we then train PRMs to ap-
proximate these rankings with a specialized comparative loss function. According to Theorem 3.5,
Q-values ascend with the continuation of correct steps and descend as wrong steps proceed, while
having a prominent gap between correct and wrong steps (see Fig. 1). We further prove that the
previous classification-based PRM can be cast as a special case of our theoretical framework under
certain conditions.

We conduct comprehensive experiments, revealing the significant advantages of the PQM over prior
methods. Following prior research (Wang et al., 2023a; Lightman et al., 2024; Luo et al., 2024), we
evaluate PRMs based on their verification ability through best-of-n sampling. The metric assesses
the correctness of the most preferred trajectory selected by the PRM from n candidates for each
question. Compared to classification-based PRMs, our ranking-based method PQM demonstrates
superior accuracy in verification, highlighting its effectiveness in capturing nuanced dependencies
among steps. For example, when verifying solutions sampled from the Llama-3-70B-Instruct model,
PQM improves the accuracy from 39.8% to 51.4%, a direct 11.6% improvement on the challenging
MATH500 benchmark (Hendrycks et al., 2021). These results are consistent across diverse datasets,
sampling policys, and LLM backbones, underscoring PQM’s effectiveness and generalizability.

To summarize, our main contributions are as follows:

1. We present a new framework for PRM by framing it as a Q-value ranking problem, provid-
ing a theoretical basis for process reward modeling that captures inter-dependencies among
reasoning states.We also show that prior classification-based PRM can be cast as a special
case under our framework.

2. We offer a detailed theoretical analysis of PQM and validate its effectiveness through com-
prehensive experiments on a wide range of sampling policies, LLM backbones, and differ-
ent test sets.

3. We perform extensive ablation studies on the proposed comparative training objective, and
analyze its variations to understand their impact on the model’s performance and design.

2 PRELIMINARIES

LLMs for reasoning. Large language models have demonstrated impressive abilities on challenging
reasoning tasks across a wide range of math, science, and coding challenges. Chain of thought (Wei
et al., 2022) and related techniques (Wang et al., 2023b; Yao et al., 2023; Besta et al., 2024a;b) have
emerged as dominant methods, linking the question and the final answer by a series of intermediate
reasoning steps. For a given question x and its corresponding answer y, extensive studies (Wei et al.,
2022; Chen et al., 2023; Yao et al., 2023; Besta et al., 2024a;b) have shown that prompting LLMs to
arrive at solutions via intermediate steps {a1, a2, . . . } can produce more interpretable and accurate
results. To generate the final answer, each intermediate step is sampled in an auto-regressive manner:
at ∼ πθ(·|x, a1:t−1), where πθ denotes an LLM policy parameterized by θ. The final answer is then
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generated by y ∼ πθ(·|x, a1, a2, · · · ). Note that the final answer can be considered the last reasoning
step, so we omit y in our subsequent discussion.

ORM vs. PRM. Outcome reward model (ORM) and process reward model (PRM) represent two
distinct approaches to reward assignment in decision-making tasks, particularly in the context of
reinforcement learning and language models. ORMs focus on the final outcome, assigning rewards
based solely on the end state (Cobbe et al., 2021), which is advantageous when the end goal is clear
and well-defined. For example, this approach has been popularly used in LLM alignment frame-
works for learning human preferences, where the emphasis is on aligning the model’s final output
with human judgments (Ouyang et al., 2022; Lee et al., 2023; Rafailov et al., 2024b). However,
ORMs often overlook the nuances of the process that leads to the final outcome, potentially ignor-
ing valuable information embedded in the intermediate steps for multi-step reasoning tasks (Uesato
et al., 2022).

In contrast, OpenAI’s recent work on PRM (Lightman et al., 2024) has shown promise in assigning
rewards based on the quality or characteristics of the intermediate steps. PRMs are particularly
useful in tasks that require complex reasoning or multi-step problem-solving, where the path taken to
reach the solution is as important as the solution itself. By rewarding intermediate steps, PRMs can
encourage more interpretable and structured problem-solving processes, offering a more granular
training signal that captures the intricacies of the decision-making process.

Process reward modeling with BCE loss. For a question and a trajectory with several steps, τ =
(x, a1, a2, . . . , aH), current research on process reward models (Wang et al., 2023a; Shao et al.,
2024; Lightman et al., 2024; Luo et al., 2024) typically frames PRMs as a classification problem.
This approach aims to maximize the predicted correctness of each reasoning state using a binary
cross-entropy (BCE) loss,

LBCE(τ) = − 1

H

H∑
i=1

(
ci log pθ(ci|si) + (1− ci) log(1− pθ(ci|si))

)
, (1)

where ci is the gold classification label of i-th step, equal to 1 when si is a correct intermediate
state otherwise 0. Despite its effectiveness, BCE loss treats each intermediate state independently
and does not account for the interdependencies among the reasoning states within a trajectory. By
treating each state in isolation, BCE loss overlooks the relative contribution each step makes. More-
over, the theoretical support for PRM formulation is also lacking. These limitations motivate our
approach of formulating process reward modeling as a Q-value ranking problem grounded in the
Markov Dynamic Process, where the focus shifts to evaluating the relative quality of different steps
in a solution trajectory, thus capturing the interdependencies among steps and providing a more
holistic approach to reward assignment.

3 PQM: PROCESS REWARD MODEL WITH Q-VALUE RANKINGS

In this section, we introduce our framework PQM, which frames process reward modeling as a
Q-value ranking problem. In what follows, we first define a Q-value function for reasoning tasks,
which implicitly defines a reward function for each intermediate step (Section 3.2). Then, we derive
the desirable Q-value rankings among intermediate reasoning steps (Section 3.3), by which we can
train PRMs to approximate the intermediate Q-values by a comparison-based loss (Section 3.4).
Lastly, we demonstrate that classification-based PRMs can be viewed as a special case within our
theoretical framework (Section 3.5).

3.1 DETERMINISTIC MDP FOR LLMS

Formulations of MDP. A standard Markov Dynamic Process can be formulated as M =
(S,A, T , r, ρ,H), where S is the state space, A is the action space, T : S × A → ∆(S) is the
transition kernel, r is the reward function, ρ denotes the initial state distribution, and H is the max-
imal number of interaction steps. A policy in MDPs, denoted by π : S → ∆(A), maps each state
to a distribution over actions. The interaction between the environment M and the agent can be
described as follows. Initially, the starting state s1 is sampled from the initial distribution ρ. At
each step t, the agent observes the current state st and selects an action at based on its policy. The

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

environment then transits to the next state st+1, which is sampled from the distribution T (·|st, at).
This process continues until a termination condition is met, which will be triggered within H steps.

Deterministic MDP for LLMs. In text generation scenarios, the transition kernel T is deterministic,
as each new state is formed by concatenating the previous tokens with the current output. The
length limit for LLM outputs is characterized by H . Initially, an instruction x is sampled from an
initial distribution ρ. Each subsequent state st = (x, a1:t−1) comprises the instruction x and text
pieces previously generated (e.g. reasoning steps in reasoning tasks). Each action at is a text piece
generated based on the current state st. The LLM policy π(at|x, a1:t−1) maps the observed state
to a distribution over the action space. The process reward model, r : S × A → R, intuitively
scores each action at based on the instruction x and previous generations a1:t−1. For simplicity, the
instruction x is omitted in the state notation (x, a1:t) thereafter when no ambiguity arises.

3.2 DEFINING Q-FUNCTION IMPLICITLY DEFINES A REWARD FUNCTION

Recall that the state-action value Q(s, a) (Mnih et al., 2013; Fan et al., 2020; Setlur et al., 2024)
typically represents the expected benefit of taking a specific action a to achieve a correct answer. In
the context of reasoning tasks, we define the Q-value function as the success probability of achieving
the correct final answer. Specifically, the Q-value function is defined as

Qπ(a1:t−1, at) := σ−1
(
Eat+1:H∼π(·|a1:t)I(x, a1:H)

)
, (2)

where π is a policy, H is the maximum step number, σ is the sigmoid function and σ−1 is its inverse
function to ensure Q ∈ R. I is an indicator function, which equals 1 if the trajectory reaches the
correct answer of x, and 0 otherwise. For simplicity, we also denote Q(a1:t−1, at) as Qt when there
is no ambiguity.
Lemma 3.1. (Ng et al., 1999) For two reward functions r(st, at) and r′(st, at), if there exists
a potential function Φ(s) satisfying r′(st, at) = r(st, at) + Φ(st+1) − Φ(st), these two reward
functions results in the same optimal policy.

Given this lemma, defining the Q-value function implicitly defines a corresponding reward function.
Lemma 3.2. Under deterministic MDP, the advantage function of the optimal policy π∗ can function
the same as the reward function leading to π∗.

Proof. Due to the deterministic MDP setting, we have A∗(st, at) = r(st, at) + V ∗(st+1)− V∗(st)
where we denote the Q,V -value under the optimal policy π∗ as Q∗, V ∗. Hence, with Lemma 3.1,
we have the advantage function of the optimal policy functions the same as the reward function.

With the definition in Eq. 2, the advantage function of the optimal policy can be formulated as
A∗(st, at) = Q∗(st, at)− Eat∼π∗(·|st)Q

∗(st, at) = Q∗(st, at)−Q∗(st−1, at−1)

Thus, our objective is to approximate the Q-function of the optimal policy. However, the optimal
policy is not known in advance and varies across different algorithms. To establish the relationships
between Q-values at intermediate steps, we introduce the following mild assumption regarding ideal
optimal policies.
Assumption 3.1. For an ideal optimal policy π∗, the next step based on a correct state is more likely
to be correct than be wrong, i.e. P∗(at+1|a1:t) ≫ P∗(at+1|a1:t), which follows achieving correct
answer from a correct state is much easier than from a wrong state, i.e. P∗(τ |s) > P∗(τ |s).

In Section 4.3, we will further empirically validate this assumption. For the parameter notations of
Pπ(·), we use the original notations to represent the correctness of states and an overline to indicate
incorrectness. For example, Pπ(at+1|a1:t) denotes the probability that policy π will produce an
incorrect next step given the correct state sequence a1:t, and Pπ(τ |s) represents the probability that
the policy π generates a correct trajectory from an incorrect state s. P∗ is shorthand for Pπ∗

, where
π∗ is the optimal policy. Using the above definitions and assumptions, we can collect comparative
labels to approximate Q-values, which will be introduced next.

3.3 OPTIMAL Q-VALUE RANKING

In this subsection, we derive the Q-value rankings among intermediate reasoning steps. In our main
Theorem 3.5, we establish that Q-values ascend with the continuation of correct steps and descend
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as wrong steps proceed, while maintaining a significant gap between correct and wrong steps. To
arrive at this result, we first derive the pairwise relationship between Q-values of an earlier step and
a later step in Lemma 3.3. Next we show the relationship between the first correct step and the
first incorrect step in Lemma 3.4. Finally, we combine these intermediate relationships to derive an
integrated ranking across the entire trajectory.

We start by introducing a few lemmas that are useful for deriving our main Theorem 3.5. For any
two actions an, am s.t. n < m in a solution trajectory τ = (x, a1, a2, ...aH), we have

P∗(τ |a1:n) = P∗(a1:m|a1:n)P∗(τ |a1:m) + P∗(a1:m|a1:n)P∗(τ |a1:m), (3)
P∗(τ |a1:n) = P∗(a1:m|a1:n)P∗(τ |a1:m) + P∗(a1:m|a1:n)P∗(τ |a1:m), (4)

which directly follows the Bayesian factorization. P∗(a1:m|a1:n) denotes the possibility that policy
generate correct state a1:m conditioned on a wrong state a1:n. For a solution τ = (x, a1, a2, ...aH),
recall the Q function in Eq.2, we define Q∗

σ(a1:t−1, at) = σ(Q∗(a1:t−1, at)) = P∗(τ |a1:t)
where σ is the sigmoid function. Since σ is a monotonically increasing function, hence when
Q∗

σ(a1:m−1, am) > Q∗
σ(a1:n−1, an) for any two steps am, an, we have Q∗(a1:m−1, am) >

Q∗(a1:n−1, an). Then we can obtain the following lemma.
Lemma 3.3. For two steps an, am in a solution τ where n < m, if they are both correct, we
have Q∗(a1:n−1, an) < Q∗(a1:m−1, am). If an, am are both wrong, we have Q∗(a1:n−1, an) >
Q∗(a1:m−1, am).

Proof. We first analyze the difference between the two correct steps as follows,

Q∗
σ(a1:n−1, an)−Q∗

σ(a1:m−1, am)

= P∗(am|a1:n)P∗(τ |a1:m) + P∗(am|a1:n)P∗(τ |a1:m)− P∗(τ |a1:m)

= P∗(am|a1:n)[P∗(τ |a1:m)− P∗(τ |a1:m)], (5)

where the first equation uses the Q-function definition and Eq. 4, the second equation uses
P∗(am|a1:n) +P∗(am|a1:n) = 1. With the Assumption 3.1, we have P∗(τ |a1:m)−P∗(τ |a1:m) <
0. Hence, when an and am are both correct, we have Q∗(a1:n−1, an) < Q∗(a1:m−1, am). Similar
to the above proof, we can factorize the Q-value difference between two incorrect steps as follows,

Q∗
σ(a1:n−1, an)−Q∗

σ(a1:m−1, am) = P∗(am|a1:n)[P∗(τ |a1:m)− P∗(τ |a1:m)]. (6)

With the Assumption 3.1 where P∗(τ |a1:m) > P∗(τ |a1:m), if an, am are both incorrect, we have
Q∗(a1:n−1, an) > Q∗(a1:m−1, am).

Additionally, considering the initial situation intermediate steps and V∗(x), we have the following
lemma.
Lemma 3.4. For the first correct step an and the first incorrect step am, we have Q∗(a1:n−1, an) >
V∗(x) ≫ Q∗(a1:m−1, am).

Proofs. Considering the first correct step an, similar to the proof in Lemma 3.3, we have

Q∗
σ(a1:n−1, an)− V∗

σ(x) = P∗(τ |a1:n)− P∗(τ |x) = P∗(an|x)(P∗(τ |a1:n)− P∗(τ |a1:n)) (7)
Q∗

σ(a1:m−1, am)− V∗
σ(x) = P∗(τ |a1:m)− P∗(τ |x) = P∗(am|x)(P∗(τ |a1:m)− P∗(τ |a1:m))

(8)

Hence, we have Q∗(a1:m−1, am) < V∗(x) < Q∗(a1:n−1, an). Now, we obtain the ordering of the
Q-value difference, but the specific discrepancy between intermediate steps have not been discussed
yet. With Assumption 3.1, for an ideal π∗, we have P∗(an|x) ≪ P∗(am|x). Hence, the difference
between V∗(x) and the Q-value of the first correct step is much smaller than difference between
V∗(x) and the Q-value of the first incorrect step.

Based on the above derivations, we can rank the state-action Q-values for the whole trajectory. We
formalize the ranking in the following theorem.

Theorem 3.5 (Q-value ranking among reasoning steps). Formally, for a trajectory τ with H
steps, C = [c1, c2, . . . , c|C|] denotes the index list of the correct intermediate steps, where c1 <
c2 < · · · < c|C|, W = [w1, w2, . . . , w|W |] denotes the index list of the wrong intermediate steps,
where w1 < w2 < · · · < w|W |, we have

Q∗
w|W |

< · · · < Q∗
w2

< Q∗
w1

≪ Q∗
0 < Q∗

c1 < Q∗
c2 < · · · < Q∗

c|C|
,

where Q∗
0 = V ∗(x), | · | denotes the length of the list, and |C|+ |W | = H .

5
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3.4 COMPARATIVE LOSS FUNCTION FOR OPTIMIZING Q-VALUE RANKINGS

Given the optimal Q-value ranking derived in Theorem 3.5, we now propose a new comparative loss
that trains RPM to approximate the intermediate Q-values. While the ranking relationship can be
captured by the classical Plackett-Luce (PL) ranking model (Plackett, 1975; Luce, 1959), there are
significant limitations when using the canonical PL loss directly in this context. The standard PL
loss is designed to handle general ranking scenarios without accounting for the varying degrees of
discrepancy within the ranking. However, in our case, the Q-value gaps between correct and incor-
rect steps are often highly pronounced (cf. Lemma 3.4), leading to a situation where the standard PL
model may not adequately capture the importance of these differences. As discussed in Section 4.3,
this results in suboptimal performance, since the PL loss does not differentiate sufficiently between
steps that are only marginally different in rank versus those with substantial Q-value gaps.

Comparative loss with Q-value margin. To address the limitation, we adapt the vanilla PL loss
to better reflect these discrepancies. Our proposed loss function is designed to emphasize the signifi-
cant gaps in Q-values, ensuring that the model learns to prioritize these differences in a theoretically
justified manner. The loss is defined as:

Ltheorem = − 1

H

[ |W |∑
t=2

log
exp(Qwt)∑t
q=1 expQwq

+

|C|∑
t=0

log
exp(Qct)∑t

q=0 expQcq +
∑

w∈W exp(Qw + ζ)

]
, (9)

where ζ is a margin hyperparameter introduced to emphasize the gap between correct and incorrect
steps, and 0 is inserted at the beginning of C for clarity.

Practically, prior research (Wang et al., 2023a; Shao et al., 2024) often treats all steps following
the first incorrect step as wrong. Specifically, for a given trajectory τ = {a1, . . . , al−1, al, . . . , aH}
where a1:l−1 are correct steps and al is the first incorrect step, existing data corpora typically catego-
rize all subsequent steps al:H as incorrect. This approach leads to a situation where the wrong steps
are not necessarily accurately annotated, as they are all uniformly marked as incorrect. To address
this issue and explore a practically effective loss function, we investigate several variations of the
comparative loss function. Our practical implementation, which will be discussed in Section 4.3, is
designed to better handle this scenario. The proposed loss function is:

L = − 1

|C|

|C|∑
t=0

log
exp(Qct)∑t

q=0 expQcq +
∑

w∈W exp(Qw + ζ)
. (10)

In this formulation, ζ is a positive scalar that adjusts the relative importance of incorrect steps,
and Q0 is set to 0 to simplify the computation. Comparing to Ltheorem, this objective disregards
the internal rankings among incorrect steps, focusing solely on the relative rankings among cor-
rect steps and the substantial discrepancy between the Q-values of correct and incorrect steps, i.e.
{Q∗

w|W |
, . . . ,Q∗

w2
,Q∗

w1
} ≪ Q∗

0 < Q∗
c1 < Q∗

c2 < · · · < Q∗
c|C|

. We will perform extensive ablation
comparing L and Ltheorem in Section 4.3.

3.5 CLASSIFICATION-BASED PRM IS A SPECIAL CASE OF Q-VALUE APPROXIMATORS

We show that the previous classification-based PRM can be cast as a special case of our framework
under certain conditions. To illustrate this, consider an extreme scenario where the assumptions
outlined in Assumption 3.1 are satisfied, namely, when P∗(at+1|a1:t) → 1 and P∗(at+1|a1:t) → 1.
According to the Q-function definition provided in Eq. 2 and leveraging Bayesian Factorization, it
follows that classification-based PRMs approximate Q-value rankings under these conditions.
Lemma 3.6. Formally, when P∗(at+1|a1:t) → 1 and P∗(at+1|a1:t) → 1 for any t, we have
Q∗

σ(a1:m−1, am) = 1 for any correct step am and Q∗
σ(a1:n−1, an) = 0 for any wrong step an.

Proof. This result can be derived directly from Bayesian Factorization, which states:

P∗(τ |a1:m) =

H∏
t=m+1

P∗(at|a1:t−1),P∗(τ |a1:n) =
H∏

t=n+1

P∗(at|a1:t−1). (11)

Therefore, for a correct step, we have Q∗
σ(a1:m−1, am) = P∗(τ |a1:m) = 1 and for a wrong step,

we have Q∗
σ(a1:n−1, an) = 1−P∗(τ |a1:n) = 0. Thus, the cross-entropy loss used in classification-

based PRMs can be interpreted as estimating the Q-value without bias.

6
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Sampling
Policy Methods Dataset: MATH500 Dataset: GSM-Plus

@8 @16 @32 @64 @128 @8 @16 @32 @64 @128

MetaMath-
Mistral-7B

ORM 32.8 34.8 36.2 39.0 38.2 56.58 57.63 57.17 57.63 58.33
MSE1-0 33.2 36.2 37.6 38.8 38.4 58.21 58.75 58.71 58.50 58.17

MSEMCTS 24.2 25.2 26.4 25.0 27.0 50.91 51.67 50.08 49.58 49.79
BCE 33.6 37.0 39.2 40.8 42.0 59.25 60.29 61.16 61.88 61.72

PQM ζ = 2 34.8 37.0 39.6 41.8 41.2 62.42 64.04 64.92 65.25 66.00
PQM ζ = 4 36.2 38.2 41.0 44.2 44.6 62.04 63.58 64.50 64.96 65.20

Muggle-
Math-13B

ORM 24.0 28.0 27.0 28.8 28.2 55.41 55.83 56.83 54.83 54.45
MSE1-0 28.2 30.2 33.0 33.6 34.0 56.42 58.42 58.38 58.67 59.08

MSEMCTS 21.2 24.2 22.0 23.8 26.8 42.75 45.83 46.95 45.67 46.33
BCE 30.4 31.4 33.4 36.4 37.0 57.50 59.79 61.16 62.00 62.17

PQM ζ = 2 30.0 33.4 34.4 36.8 35.0 60.58 62.54 64.25 64.79 65.62
PQM ζ = 4 30.0 34.8 36.2 39.2 39.0 61.00 62.66 64.08 64.79 65.54

Llama-3-
70B-Instruct

ORM 45.0 46.0 43.4 42.4 43.2 71.66 71.50 72.00 71.66 71.13
MSE1-0 41.6 42.2 40.0 36.8 38.0 71.79 71.67 71.96 71.25 71.04

MSEMCTS 39.6 40.4 40.0 41.2 41.4 68.46 69.70 67.79 71.13 70.66
BCE 43.6 41.4 41.6 42.4 39.8 72.16 71.83 72.04 71.38 70.75

PQM ζ = 2 47.6 49.0 50.4 48.4 51.4 72.04 71.95 72.70 72.33 72.33
PQM ζ = 4 47.2 48.2 50.0 46.0 47.8 72.54 73.25 73.38 72.79 71.96

Table 1: Main results measured by best-of-n (BON@n) accuracy. The BON@1 of MATH500 for
MetaMath-Mistral-7B is 24.4, for MuggleMath-13B is 18.4, for Llama-3-70B-Instruct is 37.4. The
BON@1 of GSM-Plus for MetaMath-Mistral-7B is 48.0, for MuggleMath-13B is 43.16, for Llama-
3-70B-Instruct is 67.875. Boldface and underline indicate the best two results.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets and metrics. Following previous research (Wang et al., 2023a; Lightman et al., 2024;
Luo et al., 2024), we evaluate PRMs based on their verification ability through best-of-n sampling.
The metric, BON@n, assesses the correctness of the most preferred trajectory selected by the PRM
from n candidates for each question. During the evaluation, the PRM first scores every step within
each trajectory. Consistent with prior studies (Wang et al., 2023a), the final score of a trajectory is
determined by the minimum score of its individual steps. The test corpus includes 128 solutions
for each question from GSM-Plus (Li et al., 2024) and MATH500 (Hendrycks et al., 2021) datasets.
These solutions are sampled from three policy models with strong performance in math tasks with
different scales: MetaMath-Mistral-7B (Yu et al., 2024), MuggleMath-13B (Li et al., 2023a), Llama-
3-70B-Instruct (AI@Meta, 2024). We utilize the existing off-shelf corpus, Math-Shepherd (Wang
et al., 2023a), as our training corpus.

Baselines and implementation details. Consistent with prior works (Wang et al., 2023a; Lightman
et al., 2024), we evaluate the performance of PRM by comparing it against the outcome reward
model (ORM). We also compare our comparative loss with the BCE loss, which is employed in
Math-Shepherd. Additionally, some research (Zhang et al., 2024a; Wang et al., 2024) adopt more
strict MSE loss to minimize the distance between the predicted value and the label. We implement
MSE loss with two versions: 0-1 label and iterative Monte Carlo Tree Search (MCTS) to estimate
the continuous label for MSE loss as in Zhang et al. (2024a). For the model architecture, we adopt
general reward model frameworks, incorporating a value head on top of the Deepseek-7B-base LLM
(Shao et al., 2024). This value head projects the latent representation of the model into a scalar value,
facilitating the evaluation of intermediate steps and trajectories. More detailed implementation in-
formation, including specific configurations and experimental setups, can be found in Appendix B.

4.2 MAIN RESULTS

Verification performance across different policy models. Experimental results are shown in Ta-
ble 1. Our proposed PQM demonstrates significant performance improvements over all baselines.
Firstly, PQM outperforms the outcome reward model, which is consistent with prior findings that
process-based methods provide a more nuanced evaluation of intermediate steps. Moreover, when
compared to classification-based PRM models using BCE or MSE loss, PQM shows a notable ad-
vantage. For example, when verifying solutions sampled from the Llama-3-70B-Instruct model,

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Backbone for PQM MetaMath-Mistral-7B MuggleMath-13B Llama-3-70B-Instruct
@8 @16 @32 @64 @128 @8 @16 @32 @64 @128 @8 @16 @32 @64 @128

Deepseek-math-7b-base 36.2 38.2 41.0 44.2 44.6 30.0 34.8 36.2 39.2 39.0 47.2 48.2 50.0 46.0 47.8
Deepseek-math-7b-rl 38.0 40.8 42.8 45.4 44.2 31.8 34.6 38.6 37.2 37.4 49.8 50.8 53.2 53.8 55.0

Qwen2-math-1.5b 31.4 32.8 34.6 33.8 33.2 25.4 28.2 30.4 35.2 32.4 41.2 39.2 40.0 40.2 39.4
Qwen2-math-1.5b-inst 38.6 41.2 43.8 46.4 47.6 30.6 34.2 37.6 40.6 41.4 50.8 49.4 50.0 49.6 51.0

Metamath-7b 30.4 32.8 32.8 31.2 33.8 26.2 30.6 29.6 30.2 30.0 42.0 44.8 45.4 44.8 44.0
Metamath-13b 32.6 32.4 33.4 33.6 34.2 29.4 30.6 31.4 31.8 31.4 45.0 45.2 45.0 46.8 45.8

Table 2: Results of PQM across six different LLM backbones on MATH500. ζ is set to 4.
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Figure 2: Integration of our approach PQM with self-consistency (SC) on three policy models,
MetaMath-7B-Mistral (left), MuggleMath-13B (middle), Llama-3-70B-Instruct (right). The evalu-
ation is conducted on MATH500. Numbers in brackets denote the value of ζ.

PQM improves the accuracy from 39.8% (BCE) to 51.4%, a direct 11.6% improvement on the chal-
lenging MATH500 benchmark. This result underscores the effectiveness of PQM in capturing the
relative quality of different steps within a trajectory, addressing the limitations of BCE loss which
treats each step independently without considering their interdependencies. PQM outperforms MSE
loss with either 0-1 label or MCTS search. Compared to 0-1 label, MCTS search requires more
computational resources but only leads to marginal performance enhancement. This may stem from
its Q-value definition with sophisticated heuristics, and theoretically biased estimation of Q-values
in MCTS. Other results on both the MATH500 and GSM-Plus datasets across three policy models
further confirm the efficacy of PQM. In these benchmarks, PQM consistently outperforms existing
methods, demonstrating superior performance across different policy scales and test sets, validating
the efficacy of ranking-based process reward modeling.

PQM performance can be boosted by self-consistency (Wang et al., 2023b). By sampling mul-
tiple trajectories and then selecting the final answer that appears most frequently, self-consistency
can further enhance the reliability of LLMs. In Figure 2, we report performance when combining
self-consistency with our method PQM under both ζ = 2 and ζ = 4. This integration capitalizes on
the strengths of self-consistency to further enhance the verification. The performance gap between
PQM and SC+PQM increases as we move to the right in Figure 2, since the large capacity model
tends to reinforce the effectiveness of SC, leading to the increased performance gap observed in the
figure. Our results reveal that this combination can boost performance, underscoring that blending
self-consistency with process reward modeling provides a more effective verification strategy.

PQM remains effective under different LLM backbones. To explore the generalization of our
approach, we train with PQM on additional LLM backbones, including Qwen2-Math-1.5B, Qwen2-
Math-1.5B-Instruct (Yang et al., 2024), Deepseek-Math-7B-rl (Shao et al., 2024), Metamath-7B and
Metamath-13B (Yu et al., 2024). As shown in Table 2, stronger backbones generally lead to better
overall performance under the same sampling policy model. Moreover, Qwen2-Math-1.5B-Instruct
achieves impressive results among six backbones, which indicates that a small-scale PQM can also
provide effective verification if the backbone is specialized in mathematics.

4.3 FURTHER STUDIES

In ablation studies, we keep most of the experimental settings consistent with the main experiments,
except that we use data with a length of less than 512 tokens, totaling 390k data out of 440k data, to
save the training cost. The detailed hyperparameters are shown in Appendix B.

Impact of margin ζ. In this ablation, we investigate how the margin ζ in our loss function influ-
ences the performance. We implement several variations with ζ = 0, 2, 4, 8, 16. The experimental
results are shown in Table 3, along with loss curves in Figure 5 (Appendix). Our experiments reveal
that ζ has a minimal effect on the convergence of training, as the loss curves for all values flatten out
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Methods MetaMath-Mistral-7B MuggleMath-13B Llama-3-70B-Instruct
@8 @16 @32 @64 @128 @8 @16 @32 @64 @128 @8 @16 @32 @64 @128

L, ζ = 16 34.6 36.4 38.2 40.2 39.2 29.6 32.4 34.6 35.4 35.0 42.4 43.6 40.2 40.2 39.0
L, ζ = 8 36.4 40.2 41.2 43.8 44.6 30.8 33.8 37.2 38.8 38.8 47.0 47.0 47.8 46.2 46.0
L, ζ = 4 36.8 40.6 41.8 44.4 44.6 32.0 33.6 36.8 38.4 37.4 47.4 47.0 45.6 47.8 48.2
L, ζ = 2 35.8 39.0 40.8 43.4 43.8 30.2 32.8 34.2 36.8 37.4 47.4 49.0 50.6 51.2 50.4
L, ζ = 0 32.8 37.0 36.2 35.8 36.4 26.2 27.4 29.2 29.2 28.0 44.6 44.4 45.4 44.2 46.6

Ltheorem, ζ = 16 33.2 34.6 35.0 37.2 38.0 28.8 30.6 32.4 32.6 32.6 46.2 45.4 44.8 44.8 44.2
Ltheorem, ζ = 8 33.6 34.4 35.0 35.4 35.6 29.0 29.4 30.0 31.4 32.6 43.8 42.6 41.0 38.2 37.4
Ltheorem, ζ = 4 35.4 38.2 39.0 40.0 40.2 31.6 33.2 34.8 36.4 34.8 44.8 45.2 46.4 47.8 46.0
Ltheorem, ζ = 2 33.8 35.8 37.6 37.6 38.0 28.4 29.4 31.0 31.4 32.0 43.0 44.8 46.0 47.8 48.6
Ltheorem, ζ = 0 30.4 29.8 30.6 31.8 33.0 24.0 26.8 29.0 28.8 26.2 41.6 40.4 40.6 40.4 37.4

Table 3: Ablation results. The BON@1 of MATH500 for MetaMath-Mistral-7B is 24.4, for
MuggleMath-13B is 18.4, for Llama-3-70B-Instruct is 37.4. L,Ltheorem refers to Eq.10 and Eq.9
respectively. Boldface and underline indicate the best two results.
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Figure 3: Empirical validation for Assump-
tion 3.1.
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Figure 4: Empirical evidence for Theorem 3.5.

after approximately 200 steps. However, the choice of ζ impacts the effectiveness of our method.
As shown in Table 3, extreme values of ζ—either too large or too small—lead to suboptimal perfor-
mance. Specifically, ζ values of 2,4,8 yield the best results, whereas ζ values of 0 and 16 perform
less effectively. When ζ is too large, the comparative loss overweighs the discrepancy between the
correct steps and wrong steps while neglecting the ascending relationship among Q-values of cor-
rect steps. Conversely, when ζ is too small, the loss function fails to adequately capture Q-value
discrepancies, leading to suboptimal performance. These findings align with our theoretical expec-
tations and underscore the importance of choosing an appropriate ζ to balance the comparative loss
and capture meaningful Q-value distinctions.

Impact of loss design. Since the empirical training dataset automatically marks all steps after the
first incorrect one as negative steps, we ablate the impact of these pseudo-negative steps by com-
paring our loss function with the theoretical version as delineated in Eq. 9. The findings, presented
in Table 3, reveal the existence of noise in negative annotations. Specifically, when applying the
theoretical loss as in Eq. 9, there is a marked decline in performance. We also explored another
variant which emphasize the first negative step since the first negative annotation is verified by the
automatic annotation. The experimental results and analysis are supplemented in Appendix C.

Empirical validation of Assumption 3.1 and Theorem 3.5. To empirically validate the Assump-
tion 3.1 and Theorem 3.5, we use Llama-3.1-70B-Instruct to substitute the optimal model π∗. We
sample 256 trajectories from Math-Step-DPO-10K (Lai et al., 2024), each consisting of more than
six steps. For each step ai in each trajectory, we sample 32 times by τ ∼ π∗(·|a1:i). In Fig. 3, the
left panel’s y-axis shows the proportion of correct next steps, while the right panel’s y-axis displays
the proportion of correct trajectories. The x-axis indicates whether the generation is conditioned
on a correct state or an incorrect state. The plot demonstrates that when conditioned on a correct
reasoning state, there is a higher probability of generating a correct subsequent step or completing
a correct trajectory. This validates our Assumption 3.1. In Fig. 4, x-axis represents the i-th correct
step (left) or wrong step (right), and y-axis represents the approximated Qσ . According to the graph,
the approximated Q-values ascend with the continuation of the correct steps. Meanwhile, the latter
wrong steps generally have smaller Q-values than the previous wrong steps. Moreover, there is a
noticeable discrepancy between Q-value of correct steps (generally over 0.5) and incorrect steps
(generally below 0.15). Implementation details and more discussions can be found in Appendix C.

Qualitative example. For each step in the solution, we display the predicted probability of achiev-
ing the correct final answer by ORM, classification-based PRM, and PQM in Table 4. We also show
the original Q value predicted by PQM, along with Qσ = σ(Q). The Q-value predicted by PQM

9
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Q: Find all values of x that satisfy the equation x=
√
11− 2x+ 4. ORM BCE Qσ Q

Step 1: Subtract 4 from both sides of the equation.x− 4 =
√
11− 2x - 0.916 0.424 -0.308

Step 2: Square both sides of the equation. (x− 4)2 = (
√
11− 2x)2 - 0.882 0.487 -0.053

Step 3: Simplify.x2 − 8x+ 16 = 11− 2x - 0.848 0.482 -0.070
Step 4: Subtract 11 from both sides of the equation. x2−8x+5=2x - 0.628 0.004 -5.445
Step 5: Subtract 2x from both sides of the equation.x2 − 10x+5 = 0 - 0.584 0.004 -5.493
Step 6: Factor the quadratic.(x− 5)(x− 1) = 0 - 0.489 0.002 -6.164
Step 7: The final answer is 5 and 1. I hope it is correct. 0.475 0.399 0.001 -6.811

Table 4: A case study on MATH500. The solution is sampled by Llama3-70B-Instruct. For each
step, we display Q-value predicted by PQM(Q) and estimated probability of achieving the correct
answer by ORM, BCE, and our PQM(Qσ). The steps after the first error (Step 4) are in gray.

has a sharp decrease at Step 4, which accurately locates the error. In contrast, the predicted proba-
bility of classification-based PRM only decreases smoothly and exhibits large values even for wrong
steps. We show more qualitative examples in Appendix E.

5 RELATED WORKS

Process Reward Models. Process supervision (Uesato et al., 2022; Li et al., 2023b), represented
by PRMs, can provide more precise feedback, which is easier for humans to interpret, and more
directly rewards models in step-by-step reasoning tasks. Most existing research (Lightman et al.,
2024; Wang et al., 2023a; Shao et al., 2024; Luo et al., 2024) formulates PRM as a classification
problem, where the process reward is modeled as the probability of correctness of each step. We
show that the prior approach can be cast as a special case under our theoretical framework. Due to
the labor-intensive nature of dense annotations, several recent methods have introduced automatic
annotation strategies (Wang et al., 2023a; Luo et al., 2024; Lu et al., 2024a). In these approaches, a
step is deemed correct if a valid completion can be sampled from the LLM policy within k trials, see
details in Appendix A. Generally, the subsequent steps after the first error are all treated as wrong
steps in this line of methods. Additionally, Zhang et al. (2024a); Wang et al. (2024) estimate the Q-
value of intermediate steps by iterative Monte Carlo Tree Search (MCTS) and MSE loss. However,
their Q-value designs are different from ours, which generally incorporate sophisticated heuristics,
e.g., reasoning distance and quality value. Moreover, their works necessitate a dense online search
over the large action space. Besides being costly, the distribution shift between the sampling policy
and the optimal π∗ will result in biased estimation. In contrast, our comparative loss is easy to use,
and can achieve unbiased estimation according to our theory. For completeness, we document the
automatic annotation pipeline and more related research about PRM in Appendix A.

MDP RL for LLMs. Although the outcome reward model has advanced LLMs by applying re-
inforcement learning algorithms in bandit settings, it contradicts the auto-regressive nature of text
generation and the step-by-step reasoning process. Recent studies (Rafailov et al., 2024a; Zhong
et al., 2024; Xie et al., 2024; Zeng et al., 2024) introduced theoretically sound RL algorithms de-
signed for LLMs in MDP settings. Although these efforts bridge the theoretical discrepancy in
algorithms, they still rely, at least partially, on ORMs. Hence, the process reward model remains
underexplored in MDP-based RL for LLMs. Orthogonal to our exploration, several works (Lu et al.,
2024b; Lai et al., 2024; Chen et al.; Zhang et al., 2024b) adapt DPO (Rafailov et al., 2024b) to
step-level preference optimization for reasoning tasks. We discuss the potential of integrating such
methods into our framework in Appendix D.

6 CONCLUSION

In this paper, we introduce the Process Q-value Model (PQM), a new approach to model process re-
wards via optimization Q-value ranking. Unlike existing classification-based methods, which treat
intermediate steps independently, PQM captures the interdependencies among steps. To effectively
optimize the Q-value rankings, we propose a margin-based comparative training objective and vali-
date its effectiveness through comprehensive experiments. Our results demonstrate that PQM signif-
icantly outperforms previous baselines, achieving an 11.6% accuracy improvement when verifying
solutions generated by LLama-3-70B-Instruction on the MATH500 dataset, and consistently deliv-
ering robust results across various backbone scales, policy models, and datasets. We hope our work
inspires more future investigation on process reward modeling that better captures the complexities
of multi-step reasoning processes.
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A RELATED WORKS

Several techniques have been developed to accelerate the data collection pipeline for training PRMs
(Luo et al., 2024; Lu et al., 2024a). To simplify understanding, we first introduce the fundamental
version proposed in Wang et al. (2023a). In this approach, the quality of an intermediate step is
evaluated based on its potential to lead to the correct final answer. The pipeline can be summarized
as follows:

• For a given question x ∼ ρ, several trajectories are sampled by an LLM: τ1, · · · , τN ∼
π1(·|x). Each trajectory τ = {a1, a2, . . . , aH} consists of a sequence of steps, and the
correctness of these steps is annotated through the following procedure.

• For a trajectory τ = {a1, a2, . . . , aH}, we generate n completions for each step from a1 to
an. Specifically, to annotate ai, we sample n completions by π2(·|x, a1:i). The correctness
of each completion is evaluated by final answer string matching.

• For each step ai, if any completion of it achieves the correct final answer. We regard ai as
correct, otherwise wrong. If ai is wrong, the subsequent steps ai+1, · · · , an are all regarded
as incorrect.

There have been several research trying to promote the pipeline efficiency. For example, Lu et al.
(2024a) trains an additional confidence module to simplify the automatic annotations, Luo et al.
(2024) performs a binary search to identify the first error location.

B IMPLEMENTATION DETAILS

All training is conducted on 8 NVIDIA A100-SXM4-80GB GPUs. We list the ver-
sion of the important external packages as follows: torch==2.3.1, trl==0.8.0,
flashattn==2.6.2, transformers==4.34.0, accelerate==0.33.0, deepspeed==0.13.1,
nvidia-nccl-cu12==2.20.5. We use the ZeRO-3 optimization stage of the deepspeed with
bfloat16 precision. The hyperparameters for the ablation studies are provided in Table 5, and each
training session for the ablation study took approximately 4.5 hours. For the main experiments,
some training data has tokenized sequences longer than 2048 tokens, which limited the batch size
and reduced training efficiency. To address this, we divide the training corpus into three groups
based on tokenized length: sequences shorter than 512 tokens, between 512 and 1024 tokens,
and greater than 1024 tokens. The batch sizes were set to 64, 24, and 8, respectively, for these
groups. This strategy reduced the training time from about eleven hours to six hours. To generate
the trajectories for Best-of-n sampling, we use the VLLM pipeline with the temperature set to
1, top-p set to 1, and max length set to 2048. For MCTS baseline, we fix the policy model as
Qwen2-math-7B-Instruct, and utilize iterative MCTS search to train PRM. For a fair comparison,
we use a half of the Math-Shepherd corpus and its hard-estimated labels to construct DV0 (refer to
the original paper (Zhang et al., 2024a)), and train an initial PRM. Then we conduct MCTS search
on questions of the remaining corpus. To keep the scale of the training set as the same, we randomly
sample trajectories with the quantity of 1/2 Math-Shepherd from the MCTS tree.

hyper-parameter value

scheduler cosine
warm up ratio 0.1
learning rate 2e-6

optimizer AdamW
batch size per GPU 64

gradient accumulation steps 4
gradient checkpointing True

Table 5: Experimental settings for ablation studies.
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Methods MetaMath-Mistral-7B MuggleMath-13B Llama-3-70B-Instruct
@8 @16 @32 @64 @128 @8 @16 @32 @64 @128 @8 @16 @32 @64 @128

L, ζ = 8 36.4 40.2 41.2 43.8 44.6 30.8 33.8 37.2 38.8 38.8 47.0 47.0 47.8 46.2 46.0
L, ζ = 4 36.8 40.6 41.8 44.4 44.6 32.0 33.6 36.8 38.4 37.4 47.4 47.0 45.6 47.8 48.2
L, ζ = 2 35.8 39.0 40.8 43.4 43.8 30.2 32.8 34.2 36.8 37.4 47.4 49.0 50.6 51.2 50.4

Lablate, ζ = 8 34.4 37.4 39.6 42.0 41.0 31.2 34.8 36.8 38.4 37.6 47.6 49.0 50.4 52.0 50.8
Lablate, ζ = 4 33.0 37.6 40.0 41.6 40.8 30.0 34.4 36.4 39.0 38.6 47.6 49.4 50.8 52.4 49.8
Lablate, ζ = 2 31.6 34.8 37.0 40.0 38.4 30.4 33.4 32.6 35.6 35.2 44.4 45.4 45.0 47.0 46.0
Lablate, ζ = 0 31.6 34.8 37.0 40.0 38.4 30.4 33.4 32.6 35.6 35.2 44.4 45.4 45.0 47.0 46.0

Table 6: Ablation results. The BON@1 of MATH500 for MetaMath-Mistral-7B is 24.4, for Llama-
3-70B-Instruct is 37.4. L,Lablate refers to Eq.10, and Eq.12 respectively. The detailed hyperparam-
eters for experiments of this table are shown in Appendix B.
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Figure 5: The loss curves for ablation studies in Table 3.

C ADDITIONAL EXPERIMENTS

Loss variation. Here, we explore what if we only emphasize the first incorrect step in the ranking.
The loss variant is as follows,

Lablate = − 1

|C|

|C|∑
t=0

log
exp(Qct)∑t

q=0 expQcq + exp(Qw1
+ ζ)

, (12)

which promotes Q∗
w1

≪ Q∗
0 < Q∗

c1 < Q∗
c2 < · · · < Q∗

c|C|
. As shown in Table 6, focusing only on

the first negative step, which is verified by automatic annotation, the performance remains relatively
stable, suggesting the limited utility of subsequent negative steps.
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Figure 6: The ceiling perfor-
mance and the best verification
performance of three policy mod-
els on MATH500.

Comparison with ceiling performance. We evaluate the ceil-
ing performance of various policy models and compare how PQM
stands against this benchmark. Figure 6 presents the Pass@N met-
ric alongside the best achievable verification performance for three
distinct policy models. This comparison illustrates the upper limits
of verification accuracy for each policy model and highlights the
existing performance gaps. Specifically, the comparison suggests
that current PRMs, including PQM, have not yet reached their full
potential. These findings underscore the need for further advance-
ments and refinements in PRM techniques to close the gap and ap-
proach the ceiling performance more closely.

Empirical validation for Assumption 3.1 and Theorem 3.5. To
empirically validate our Theorem 3.5, we use Llama-3.1-70B-
Instruct to substitute the optimal model π∗. We sample 256 tra-
jectories from Math-Step-DPO-10K (Lai et al., 2024), comprising
128 correct and 128 incorrect trajectories respectively. Each trajec-
tory consists of more than six steps. If the reasoning state is included in a rejected answer, we regard
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Methods Data Size MetaMath-Mistral-7B MuggleMath-13B Llama-3-70B-Instruct
@8 @16 @32 @64 @128 @8 @16 @32 @64 @128 @8 @16 @32 @64 @128

BCE

25% 19.6 21.0 18.2 19.0 17.8 17.6 16.8 15.8 15.2 13.8 37.2 35.6 34.2 34.6 30.0
50% 23.6 24.2 22.8 22.4 19.8 17.2 17.8 17.0 14.2 13.0 37.6 35.4 32.6 31.8 29.0
75% 32.4 31.8 34.0 34.6 33.6 28.4 28.4 31.0 31.6 31.6 40.6 38.8 37.0 38.4 38.8
100% 33.6 37.0 39.2 40.8 42.0 30.4 31.4 33.4 36.4 37.0 43.6 41.4 41.6 42.4 39.8

PQM

25% 21.4 21.6 19.8 19.8 19.2 18.0 15.4 17.0 14.8 14.0 37.4 36.6 37.2 38.4 35.6
50% 21.0 22.0 20.2 20.2 19.4 18.6 16.8 16.6 14.0 14.2 37.4 36.4 34.4 34.2 32.6
75% 33.4 36.4 37.0 39.6 38.0 29.2 32.4 35.0 37.2 37.4 46.8 47.8 47.0 47.2 46.0
100% 36.2 38.2 41.0 44.2 44.6 30.0 34.8 36.2 39.2 39.0 47.2 48.2 50.0 46.0 47.8

Table 9: The Best-of-n performance of PRMs trained on different data size. The comparisons are
conducted on classification-based PRM (BCE loss) and our PQM. The BON@1 of MATH500 for
MetaMath-Mistral-7B is 24.4, for MuggleMath-13B is 18.4, for Llama-3-70B-Instruct is 37.4.

this reasoning state as incorrect. For each reasoning state a1:i in each trajectory, we sample 32 com-
pletions with τ ∼ π∗(a1:i). The correctness of next-step ai+1 is annotated automatically as in Wang
et al. (2023a) with Qwen2-Math-Instruct-7B. We use statistics after fifth step to avoid Qwen2-Math-
Instruct-7B having larger possibility to self-correct the step, hence misleading the label. We also
count the correctness of each whole trajectory to approximate Qσ for a1:i as defined in Eq. 2. In
Fig. 4, we count the correctness proportionality of correct completions according to the position i
of the reasoning state a1:i. According to the left subgraph of Fig. 4, the approximated Qσ ascend
with the continuation of the correct steps. The right subgraph illustrates that the latter wrong steps
generally have smaller Q-values than the previous wrong steps. Moreover, there is a noticeable dis-
crepancy between the Q-value of correct steps with Qσ generally over 0.5 and incorrect steps with
Qσ generally below 0.15.

Policy Models Pass@1 BCE PQM

Llama-3.1-8B-Instruct 17.2 26.4 31.6
Eurus-7b-sft 19.4 24.2 29.2

Table 7: The performance of PRM-guided beam
search on MATH500.

Objective ζ = 1 ζ = 2 ζ = 4 ζ = 8 ζ = 16

L 26.4 27.8 28.8 28.4 25.6
Ltheorem 24.8 26.0 28.0 28.2 26.6

Table 8: Ablation Studies of PQM-guided beam
search on MATH500. The sample policy is Eurus-
7b-sft.

PRM-guided beam search. To further
validate the effectiveness of our PQM,
we have conducted additional experiments
on PRM-guided beam search. The com-
parison is conducted between PQM and
classification-based PRMs with BCE loss.
We set the beam size as 8, and the gener-
ative temperature as 0.7. The evaluation is
conducted on MATH500 across two policy
models, Llama-3-8B-Instruct (AI@Meta,
2024) and Eurus-7b-sft (Yuan et al., 2024).
The results are reported in Tabel 7, which
demonstrate that PQM can more effectively
guide the LLM to reason. For ablations, we
compare the performance of PQMs trained
with Ltheorem and different ζ values as in
§4.3. We use Eurus-7b-sft as the policy model. The results in Table 8 align with the findings from
the Best-of-N experiments, showing that a sufficiently large range of ζ leads to strong performance
in PRM-guided beam search, with optimal values typically falling in the middle of the range.

Sample-efficiency of PQM. To examine whether PQM robustly outperforms classification-based
PRM across different dataset sizes, we randomly sample 25%, 50%, 75% of the original dataset
to train PRMs with BCE loss and PQM loss. We keep most of the hyperparameters as in our main
experiments, and set ζ as 4. As shown in Table 9, the results suggest that PQM generally outperforms
BCE on all ranges of data sizes, and is more sample efficient.

Comparison of ranking behaviors between PQM and BCE. We first highlight behavioral dif-
ferences based on the qualitative example in Table 4. (1) BCE produces probabilities that are
monotonically decreasing for correct steps (step 1: 0.916 → step 2: 0.882 → step 3: 0.848).
This behavior contradicts the desired property established in Theorem 3.5, which proves that values
should increase (rather than decrease) for correct reasoning steps. (2) BCE does not produce a
large transition in values between correct and incorrect steps. For example, in Table 4, the prob-
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ability only slightly decreases from 0.848 (step 3) to 0.628 (step 4), failing to sharply differentiate
between correct and incorrect steps. In contrast, our PQM framework produces Q-values with a sig-
nificant drop from correct to incorrect steps, better aligning with the desired behavior. For example,
in Table 4, the Qσ value drops substantially from 0.482 to 0.004 between steps 3 and 4.

Statistically, we conduct an empirical study to confirm whether BCE and PQM result in different
rankings on test steps. We calculate the proportion of solutions where classification-based PRM
and PQM produce the same rankings across steps. In testset, only 29.18% of solutions shared
the same rankings. Furthermore, when comparing rankings across different solutions for the same
question (Best-of-N results), we observed that 0% of test questions had identical rankings. We
also randomly sample 2048 cases from the training set. Statistically, classification-based PRMs
and PQM yield different ranking behaviors on 62.79% training cases. These statistics indicate a
significant behavioral difference between BCE and PQM.

D INTER-SOLUTION COMPARISON

The comparison introduced in the main paper can be termed as intra-solution comparison, since
two compared reasoning steps are within a single trajectory. This is partially because the format
of currently available corpora for PRM, which generally treats a single trajectory as a data point.
Nevertheless, Theorem. 3.5 can seamlessly apply to comparison among different trajectories, i.e.,
inter-solution comparison. For instance, if two trajectories are diverged from t-th step with a com-
mon correct prior a1:t−1, the comparison will proceed between two different t-th steps. Here, we
denote act is the correct one while awt is the wrong one. In this setting, we can derive the following
corollary (note that Q represents the optimal Q-function Q∗ if no ambiguity.
Corollary D.1 (Q-value ranking for inter-solution comparison). Formally, for two trajectories
with the same correct prior a1:t−1 and act ≻ awt , the Q-value rankings among these steps are as
follows, Qw

t ≪ Q0 < Q1 < · · · < Qt−1 < Qc
t , where Q0 = V (x).

There have been several offline step-level DPO methods (Lu et al., 2024b; Lai et al., 2024; Chen
et al.; Zhang et al., 2024b) concurrent to our research. Though not focused on PRM, their theo-
retical derivations can also be encompassed by the inter-solution comparison as in Corollary D.1.
Moreover, they (Lai et al., 2024) generally only utilize Qw

t ≪ Qc
t and discard the ranking relation-

ships among intermediate steps.
Corollary D.2 (Q-value ranking for inter-solution comparison (General Version)). Formally,
for a trajectory τ with successive H step pairs, [(ac1, a

w
1 ), (a

c
2, a

w
2 ), · · · , (acH , awH)], where the t-th

step is conditioned on previous correct steps, i.e. at ∼ π(·|ac1:t−1). We have Qw
H < · · · < Qw

2 <
Qw

1 ≪ Q0 < Qc
1 < · · · < Qc

t−1 < Qc
H where Q0 = V (x).

Some step-level optimization are based on tree-structured data as in Corollary D.2, however, existing
research (Chen et al.; Zhang et al., 2024b) generally considers each step pair independently, i.e.
Qw

1 < Qc
1, · · · ,Qw

H < Qc
H , neglecting the integral Q-value rankings within the tree. We believe

the above corollaries can shed some light on step-level offline optimization.

E CASE STUDIES

We show more qualatative examples in Table 10 and Table 11. We directly report Q∗ to show the
value transition. The predicted values generally have a slight increase among correct steps. When
encountering the wrong step, the predicted value will have a sharp decrease.

F LIMITATIONS & FUTURE WORKS

Notably, as shown in Luo et al. (2024), the data quality of Math-shepherd is restricted due to the
noise introduced by automatic annotation. We believe that more advanced datasets could signifi-
cantly improve the verification capabilities of PRMs. As shown in Appendix C, there remains a
considerable gap between the current performance of PRMs and the ceiling performance, under-
scoring the need for further advancements in PRM techniques. Additionally, while PRMs have
garnered increasing research attention, there is a lack of systematic studies on corresponding online
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RL algorithms that leverage PRMs. The potential for fully utilizing PRMs in this context remains
largely unexplored.
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Question: What is the smallest positive perfect cube that can be written as the sum of three
consecutive integers? Correct Answer: 27

Step 1: Do some research about cubes and about consecutive integers.The equation we are
looking for is in the form of x3 = y + (y + 1) + (y + 2). (-1.703125)
Step 2: Add y+(y+1)+(y+2), the sum of the 3 consecutive integers.y+(y+1)+(y+2)=3y+3
(-0.97265625)
Step 3: Make the equations equal to each other.x3 = 3y + 3 (-1.0625)
Step 4: Subtract 3 out of both sides.x3 − 3 = 3y (-0.796875)
Step 5: Divide both sides by 3.x

3−3
3 = y (-0.79296875)

Step 6: Since y has to be an integer, look for a perfect cube that, when subtracted by 3, it results
in a multiple of 3.Our smallest option is to try 1, but it doesn’t work.Our next option is to try 2,
but it doesn’t work.Our next option is to try 3, but it doesn’t work.Our next option is to try 4,
which results in 61.Our next option is to try 5, which results in 106. (-3.234375)
Step 7: Check which one works. 61 isn’t a multiple of 3, but 106 is. Final Answer: The final
answer is 125. I hope it is correct. (-5.03125)

Step 1: Write an expression for three consecutive integers. Call them a − 1, a, and a + 1.
(-0.53515625)
Step 2: Write an expression for their sum. The sum of the three is a − 1 + a + a + 1 = 3a.
(-0.302734375)
Step 3: We want this sum to be a perfect cube, so let 3a = n3. Divide both sides by 3 to get
a = n3

3 . (-0.265625)
Step 4: Since we want a to be an integer, it must be that n is a multiple of 3. Therefore, we

have n = 3k, where k is an integer. Substitute this back into a = n3

3 to get a = (3k)3

3 = 32k3.
(-0.33203125)
Step 5: From here, we just guess and check for values of k to find our answer. When k = 1,

then a = 32(1)3 = 9 and a−1 = 8, a = 9, and a+1 = 10. The sum of these three consecutive
integers is 8 + 9 + 10 = 27 = 33. Therefore, the smallest positive perfect cube that can be
written as the sum of three consecutive integers is 27 . Final Answer: The final answer is 27.
I hope it is correct. (-1.6015625)

Step 1: Let n, n + 1, n + 2 be three consecutive integers, such that their sum is equal to k3, a
perfect cube. In other words, n+ (n+ 1) + (n+ 2) = k3. (-0.734375)
Step 2: Rearranging the terms in the equation, we obtain: 3n+ 3 = k3. (-0.255859375)

Step 3: Substracting 3 from both sides, we get: 3n = k3 − 3. (-0.177734375)
Step 4: Dividing both sides by 3, we obtain: n = k3−3

3 . (-0.376953125)
Step 5: Since n must be an integer, then k3 − 3 must be divisible by 3. (-0.451171875)
Step 6: Adding 3 to both sides, we get: k3 = k3 − 3+ 3, k3 = k3 − 3+ 3, k3 = (k3 − 3)+ 3.
(-2.3125)
Step 7: The smallest perfect cube that is 3 greater than a multiple of 3 is k3 = 64. (-5.46875)

Step 8: Plugging in k3 = 64 to our equation in Step 4, we get: n = 64−3
3 = 61

3 = 20 + 1
3 .

(-5.71875)
Step 9: Since n must be an integer, then we must increase k3 to k3 = 125 to get an integer
value of n. (-5.0625)
Step 10: Plugging in k3 = 125 to our equation in Step 4, we get: n = 125−3

3 = 122
3 =

40 + 2
3 . (-5.34375)

Step 11: Since n must be an integer, then we must increase k3 to k3 = 216 to get an integer
value of n. (-4.625)
Step 12: Plugging in k3 = 216 to our equation in Step 4, we get: n = 216−3

3 = 213
3 = 71. (-

4.0625)
Step 13: We found an integer value of n, which is our goal. We will not need to increase k3

any further. (-1.8359375)
Step 14: Plugging in n = 71 to our initial equation, we get: 71+72+73 = k3, 216 = k3, k3 =
216. Final Answer: The smallest positive perfect cube that can be written as the sum of three
consecutive integers is 216. I hope it is correct. (-4.84375)

Table 10: A case of MATH500 sampled by Llama-3-70B-Instruct. The red value represents the
predicted Q∗ provided by PQM.
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Question: Find all values of x that satisfy the equation x =
√
11− 2x+ 4. Correct Answer: 5

Step 1: Subtract 4 on both sides of the equation to isolate the radical.x − 4 =
√
11− 2x

(-0.349609375)
Step 2: Square both sides to get rid of the radical.(x− 4)2 = 11− 2x (-0.12353515625)
Step 3: Expand, combine like terms, and rewrite the equation in standard form (leading

coefficient of 1) to have a quadratic in x. x2 − 10x + 21 = 0,x2 − 7x − 3x + 21 = 0,
x(x− 7)− 3(x− 7) = 0,(x− 7)(x− 3) = 0 (-1.28125)
Step 4: Factor out the solutions to the equation.x − 7 = 0 or x − 3 = 0,x = 7 or x = 3 (-

1.3984375)
Step 5: Check the solutions in the original equation to see if they satisfy the equation. When
x = 7,7 =

√
11− 14 + 4,7 =

√
−3 + 4 No real solution for x = 7. When x = 3,3 =√

11− 6 + 4,3 =
√
5 + 4,3 − 4 =

√
5,−1 =

√
5. No real solution for x = 3 either.Final

Answer: The final answer is there is no solution. I hope it is correct. (-3.640625)

Step 1: Isolate the radical x− 4 =
√
11− 2x. (-0.251953125)

Step 2: Square both sides (x− 4)2 = (
√
11− 2x)2. (-0.01080322265625)

Step 3: Simplify x2 − 8x+ 16 = 11− 2x. (-0.022216796875)
Step 4: Write in standard form x2 − 6x+ 5 = 0. (0.0849609375)

Step 5: Factor (x− 5)(x− 1) = 0.. (0.1630859375)
Step 6: Solve for x, x = 1, 5 . (-0.44140625)
Step 7: Check solutions: x = 1 is extraneous. Final Answer: The final answer is 5. I hope it is
correct. (-1.40625)

Step 1: We want to first isolate the square root on the right hand side. Subtract 4 from both
sides to get x− 4 =

√
11− 2x. (0.0390625)

Step 2: Now we square both sides to get(x− 4)2 = 11− 2x. (0.09521484375)
Step 3: Multiply out to getx2 − 8x+ 16 = 11− 2x.(0.2275390625)

Step 4: Move all terms to the left and combine like terms to getx2 − 10x+ 5 = 0.(-4.375)
Step 5: We now factor the equation to get (x− 5)(x− 1) = 0.(-4.5)
Step 6: And we solve for x by setting each factor equal to 0: x = 1 or x = 5. Final Answer:
The final answer is x = 1 or x = 5 . I hope it is correct. (-6.5)

Step 1: Subtract 4 from both sides of the equation.x− 4 =
√
11− 2x (-0.296875)

Step 2: Square both sides of the equation.(x− 4)2 = 11− 2x (-0.0341796875)
Step 3: Expand and simplify both sides of the equation.x2 − 8x + 16 = 11 − 2x,x2 − 8x +
2x− 16 + 11 = 0,x2 − 6x− 5 = 0,(x− 5)(x+ 1) = 0 (-4.875)
Step 4: Solve for both values of x.x− 5 = 0,x = 5 ,x+ 1 = 0,x = −1 (-5.5)
Step 5: Check both answers in the original equation to ensure they are valid.Final Answer: The
final answers are 5 and -1. I hope it is correct. (-6.375)

Table 11: Case studies on MATH500. Solutions are sampled from Llama-3-70B-Instruct. The red
value represents the predicted Q∗ provided by PQM.
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