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ABSTRACT

Despite the rise to dominance of deep learning in unstructured data domains,
tree-based methods such as Random Forests (RF) and Gradient Boosted Decision
Trees (GBDT) are still the workhorses for handling discriminative tasks on tabular
data. We explore generative extensions of these popular algorithms with a focus
on explicitly modeling the data density (up to a normalization constant), thus
enabling other applications besides sampling. As our main contribution we propose
an energy-based generative boosting algorithm that is analogous to the second-
order boosting implemented in popular libraries like XGBoost. We show that,
despite producing a generative model capable of handling inference tasks over
any input variable, our proposed algorithm can achieve similar discriminative
performance to GBDT on a number of real world tabular datasets, outperforming
alternative generative approaches. At the same time, we show that it is also
competitive with neural-network-based models for sampling. Code is available at
https://github.com/ajoo/nrgboost.

1 INTRODUCTION

Generative models have achieved tremendous success in computer vision and natural language
processing, where the ability to generate synthetic data guided by user prompts opens up many
exciting possibilities. While generating synthetic table records does not necessarily enjoy the same
wide appeal, this problem has still received considerable attention as a potential avenue for bypassing
privacy concerns when sharing data. Estimating the data density, p(x), is another typical application
of generative models which enables a host of different use cases that can be particularly interesting
for tabular data. Unlike discriminative models, which are trained to perform inference over a single
target variable, density models can be used more flexibly for inference over different variables or for
out-of-distribution detection. They can also handle inference with missing data in a principled way
by marginalizing over unobserved variables.

The development of generative models for tabular data has mirrored its progression in computer
vision, with many of its deep learning approaches being adapted to the tabular domain (Jordon et al.,
2018; Xu et al., 2019; Engelmann & Lessmann, 2021; Fan et al., 2020; Zhao et al., 2021; Kotelnikov
et al., 2023). Unfortunately, these methods are only useful for sampling as they either do not
model the density explicitly or can not evaluate it efficiently due to intractable marginalization over
high-dimensional latent variable spaces. Furthermore, despite growing in popularity, deep learning
has still failed to displace tree-based ensemble methods as the tool of choice for handling tabular
discriminative tasks, with gradient boosting still being found to outperform neural-network-based
methods in many real world datasets (Grinsztajn et al., 2022; Borisov et al., 2022a).

While there have been recent efforts to extend the success of tree-based models to generative modeling
(Correia et al., 2020; Wen & Hang, 2022; Nock & Guillame-Bert, 2022; Watson et al., 2023; Nock &
Guillame-Bert, 2023; Jolicoeur-Martineau et al., 2024; McCarter, 2024), direct extensions of Random
Forests (RF) and Gradient Boosted Decision Trees (GBDT) are still missing. We try to address this
gap, seeking to keep the general algorithmic structure of these popular algorithms but replacing the
optimization of their discriminative objective with a generative counterpart. Our main contributions
in this regard are:
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Figure 1: Overview of an NRGBoost training iteration: 1) Draw new samples from an ensemble of
trees representing a current energy function, f , and add them to the sample pool. 2) Fit a new weak
learner (tree) representing a model update, δf . 3) Update the model. 4) Use rejection sampling to
discard samples from the sample pool that conform poorly to the new model.

• We propose NRGBoost, a novel energy-based generative boosting model that is trained to
maximize a local second-order approximation to the log-likelihood at each boosting round.

• We propose an amortized sampling approach that significantly reduces the training time of
NRGBoost, which, like other energy-based models, is often dominated by the Markov chain
Monte Carlo sampling required for training.

• We explore the use of bagged ensembles of Density Estimation Trees (Ram & Gray, 2011)
with feature subsampling as a generative counterpart to Random Forests.

The longstanding popularity of GBDT models in machine learning practice can, in part, be attributed
to the strength of its empirical results and the efficiency of its existing implementations. We therefore
focus on an experimental evaluation in real world datasets spanning a range of use cases, number of
samples and features. On smaller datasets, our implementation of NRGBoost can be trained in a few
minutes on a typical consumer CPU and achieves similar discriminative performance to a standard
GBDT model, while remaining competitive with other generative models for sampling.

2 ENERGY BASED MODELS

An Energy-Based Model (EBM) parametrizes the logarithm of a probability density function directly
(up to an unspecified normalizing constant):

qf (x) =
exp (f(x))

Z[f ]
. (1)

Here, f(x) : X → R is a real function over the input domain.1 We will avoid introducing any
parametrization and instead treat the function f ∈ F(X ), lying in an appropriate function space
over the input domain, as our model parameter directly. Z[f ] =

∑
x∈X exp (f(x)), known as the

partition function, is then a functional of f giving us the necessary normalizing constant.

This is the most flexible way one could represent a probability density function, making essentially
no compromises on its structure. It can seamlessly handle input domains comprising a mixture of
continuous and categorical features, making it a natural choice for tabular data. The downside to
this is that, for most interesting choices of F , computing the normalizing constant is intractable
which makes training these models difficult. Their unnormalized nature, however, does not prevent
EBMs from being useful in a number of applications besides sampling, such as performing joint
inference over small enough groups of variables. For example, by splitting the input domain into a

1We will assume that X is finite and discrete to simplify the notation and exposition but everything is
applicable to bounded continuous input spaces, replacing the sums with integrals as appropriate.
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set of observed variables, xo, and unobserved variables, xu, we have

qf (xu|xo) =
exp (f(xu,xo))∑
x′
u
exp (f(x′

u,xo))
, (2)

which only involves normalizing (i.e., computing a softmax) over all of the possible values of the
unobserved variables. EBMs can also handle inference with missing data in a principled manner by
marginalizing over unobserved variables. Furthermore, for anomaly or out-of-distribution detection,
knowledge of the normalizing constant is not necessary.

One common way to train an energy-based model to approximate a data generating distribution, p(x),
is to minimize the Kullback-Leibler divergence between p and qf , or equivalently, maximize the
expected log-likelihood functional:

L[f ] = Ex∼p log qf (x) = Ex∼pf(x)− logZ[f ] . (3)
This optimization is typically carried out by gradient descent over the parameters of f . However, due
to the intractability of the partition function, one must rely on Markov chain Monte Carlo (MCMC)
sampling to estimate the gradients (Song & Kingma, 2021).

3 NRGBOOST

Expanding the increase in log-likelihood in Equation 3 due to a variation δf around an energy
function f up to second order (see Appendix A), we have

L[f + δf ]− L[f ] ≈ Ex∼pδf(x)− Ex∼qf δf(x)−
1

2
Varx∼qf δf(x) =: ∆Lf [δf ] . (4)

The δf that maximizes this quadratic approximation should thus have a large positive difference
between the expected value under the data and under qf , while having low variance under qf . Note
that, just like the original log-likelihood, this Taylor expansion is invariant to adding a constant to δf
(i.e., ∆Lf [δf + c] = ∆Lf [δf ] for a constant function c). This means that, in maximizing Equation
4, we can restrict our attention to functions that have zero expectation under qf , in which case we can
simplify ∆Lf as

∆Lf [δf ] = Ex∼pδf(x)−
1

2
Ex∼qf δf

2(x) . (5)

We can thus formulate a boosting algorithm that, at each boosting iteration, t, improves upon a current
energy function, ft, by finding an optimal step, δf∗

t , that maximizes ∆Lft :
δf∗

t = argmax
δf∈Ht

∆Lft [δf ] , (6)

where Ht is an appropriate space of functions (satisfying Ex∼qft
δf(x) = 0 if Equation 5 is used).

The solution to this problem can be interpreted as a Newton step in the space of energy functions.
Because, for an EBM, the Fisher information matrix for the energy function and the Hessian of the
expected log-likelihood are the same, we can also interpret this solution as a natural gradient step
(see Appendix A). This approach is analogous to the second-order step implemented in modern
discriminative gradient boosting libraries such as XGBoost (Chen & Guestrin, 2016) and LightGBM
(Ke et al., 2017) and which can be traced back to Friedman et al. (2000).

In updating the current iterate, ft+1 = ft + αt · δf∗
t , we scale δf∗

t by an additional scalar step-size
αt. This can be interpreted as a globalization strategy to account for the fact that the quadratic
approximation in Equation 4 is not necessarily valid over large steps in function space. A common
strategy in nonlinear optimization would be to select αt via a line search based on the original
log-likelihood. Common practice in discriminative boosting, however, is to interpret this step-size as
a regularization parameter and to select a fixed value in ]0, 1], with (more) smaller steps typically
outperforming fewer larger ones when it comes to generalization. We choose to adopt a hybrid
strategy, first selecting an optimal step-size by line search and then shrinking it by a fixed factor. We
find that this typically accelerates convergence, allowing the algorithm to take comparatively larger
steps that increase the likelihood in the initial phase of boosting.

For a starting point, f0, we can choose the logarithm of any probability distribution over X , as long
as it is easy to evaluate. Sensible choices are a uniform distribution (i.e., f ≡ 0), the product of
marginals for the training set or any mixture distribution between these two. In Figure 2 we show an
example of NRGBoost starting from a uniform distribution and learning a toy 2D data density.
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Model, t = 1 Model, t = 3 Model, t = 10 Model, t = 100 Data

Figure 2: Density learned by NRGBoost at different boosting iterations (1, 3, 10 and 100), starting
from a uniform distribution. The data distribution is depicted on the right (see Appendix D.1 for
details). Weak learners are piecewise constant functions given by binary trees with 16 leaves.

3.1 WEAK LEARNERS

As a weak learner we will consider piecewise constant functions defined by binary trees over the
input space. Letting

⋃J
j=1 Xj = X be the partitioning of the input space induced by the leaves of a

binary tree whose internal nodes represent a split along one dimension into two disjoint partitions,
we takeH as the set of functions such as

δf(x) =

J∑
j=1

wj1Xj (x) . (7)

Here, 1X denotes the indicator function of a subset X and wj are values associated with each
leaf j ∈ [1..J ]. In a standard decision tree, these values would typically encode an estimate of
p(y|x ∈ Xj), with y being a special target variable that is never considered for splitting. In our
generative approach, they encode unconditional densities (or more precisely energies) over each leaf’s
support and every variable can be used for splitting. Note that the δf functions are thus parametrized
by the values, wj , as well as the structure of the tree and the variables and thresholds for the split at
each node, which ultimately determine the Xj . We omit these dependencies for brevity.

By substituting the definition from Equation 7 into our objective (Equation 5) we get the following
optimization problem to find the optimal binary tree:

max
w1,...,wJ ,X1,...,XJ

J∑
j=1

(
wjP (Xj)−

1

2
w2

jQf (Xj)

)

s.t.
J∑

j=1

wjQf (Xj) = 0 ,

(8)

where P (Xj) and Qf (Xj) denote the probability of the event x ∈ Xj under the respective distribution
and the constraint ensures that δf has zero expectation under qf . With respect to the leaf weights,
this is a quadratic program whose optimal solution and objective values are respectively given by

w∗
j =

P (Xj)

Qf (Xj)
− 1 , ∆L∗

f (X1, . . . , XJ) =
1

2

 J∑
j=1

P 2(Xj)

Qf (Xj)
− 1

 . (9)

Because carrying out the maximization of this optimal value over the tree structure that determines
the Xj is hard, we approximate its solution by greedily growing a tree that maximizes it when
considering how to split each node individually. A parent leaf with support XP is thus split into two
child leaves, with disjoint support XL ∪XR = XP , so as to maximize over all possible partitionings
along a single dimension, P (XP ), the following objective:

max
XL,XR∈P(XP )

P 2(XL)

Qf (XL)
+

P 2(XR)

Qf (XR)
− P 2(XP )

Qf (XP )
. (10)

Note that, when using parametric weak learners, computing a second-order step would typically
involve solving a linear system with a full Hessian. As we can see, this is not the case when the
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weak learners are binary trees, where the optimal value to assign to a leaf j does not depend on any
information from other leaves and, likewise, the optimal objective value is a sum of terms, each
depending only on information from a single leaf. This would not have been the case had we tried to
optimize the log-likelihood functional in Equation 3 directly, instead of its quadratic approximation.

3.2 AMORTIZED SAMPLING

To compute the leaf values in Equation 9 and the splitting criterion in Equation 10 we would have to
know P (X) and be able to compute Qf (X), which is infeasible due to the intractable normalization
constant. We therefore estimate these quantities, with recourse to empirical data for P (X) and to
samples approximately drawn from the model with MCMC. Because, even if the input space is not
partially discrete, f is still discontinuous and constant almost everywhere, we can not use gradient
based samplers. We therefore rely on Gibbs sampling, which only requires evaluating each ft along
one dimension at a time, while keeping all others fixed. Importantly, this can be computed efficiently
for a tree by traversing it only once. However, since our energy function at boosting iteration t is
given by a sum of t trees, this computation scales linearly with the iteration number. As a result, the
total computational cost of sampling, over the course of training a model, scales quadratically in the
number of boosting iterations, thus precluding us from training models with a large number of trees.

In order to reduce the burden associated with this sampling, which dominates the runtime of training
the model, we propose a new sampling approach that leverages the cumulative nature of boosting.
The intuition behind this approach is that the set of samples used in the previous boosting round are
(approximately) drawn from a distribution that is already close to the current model distribution. It
could, therefore, be helpful to keep some of those samples, especially those that conform best to the
current model. Rejection sampling allows us to do just that. The boosting update in terms of the
densities takes the following multiplicative form:

qt+1(x) = kt qt(x) exp (αtδft(x)) . (11)

Here, kt is an unknown multiplicative constant and since δft is given by a tree, we can easily bound
the exponential factor by finding the leaf with the largest value. To sample from qt+1, we can
therefore use the previous model, qt, as a proposal distribution for which we already have a set of
samples. We retain each of these previous samples, x, with an acceptance probability of

paccept(x) = exp
[
αt

(
δft(x)−max

x
δft(x)

)]
, (12)

noting that knowledge of the normalizing constant, kt, is not necessary for its computation.

Our proposed sampling strategy is to maintain a fixed-size pool of approximate samples from the
model. At the end of each boosting round, we use rejection sampling to remove samples from the
pool and draw new samples from the updated model using Gibbs sampling. Figure 1 depicts a
representation of the training loop with this amortized sampling approach. Note that q0 is typically a
simple model for which we can both directly evaluate the desired quantities (i.e., Q0(X) for a given
partition X) and efficiently draw exact samples. As such, no samples are required for the first round
of boosting. For the second round, we can initialize the sample pool by drawing exact samples from
q1 with rejection sampling, using q0 as a proposal distribution.

This amortized sampling approach works better when either the range of δft or the step sizes αt

are small, as this leads to larger acceptance probabilities. Note that, in practice, it can be helpful
to independently refresh a fixed fraction of samples, prefresh, at each round of boosting in order to
encourage a more diverse set of samples between rounds. This can be accomplished by keeping each
sample with a probability paccept(x)(1− prefresh) instead. Please refer to Algorithm 1 in Appendix
A.3 for a high level algorithmic description of the training process with amortized sampling.

3.3 REGULARIZATION

The simplest way to regularize a boosting model is to stop training when overfitting is detected by
monitoring a suitable performance metric on a validation set. For NRGBoost this could be the increase
in log-likelihood at each boosting round (see Appendix A.1). However, estimating this quantity
would require drawing additional validation samples from the model. A viable alternative validation
strategy which needs no additional samples is to simply monitor a discriminative performance metric.
This amounts to monitoring the quality of qf (xi|x−i) instead of the full qf (x).
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Besides early stopping, the binary trees themselves can be regularized by limiting the depth or total
number of leaves in each tree. Additionally, we can rely on other strategies, such as disregarding
splits that would result in a leaf with too little training data, P (X), model data, Qf (X), volume,
V (X), or too high of a ratio between training and model data, P (X)/Qf (X). We found the latter to be
the most effective of these, not only yielding better generalization performance than other approaches,
but also having the added benefit of allowing us to lower bound the acceptance probability of our
rejection sampling scheme. Furthermore, as we show in Appendix A.2, limiting this ratio guarantees
that a small enough step size produces an increase in training likelihood at each boosting round.

4 RELATED WORK

Generative Boosting Most prior work on generative boosting focuses on unstructured data and
the use of parametric weak learners and is split between two approaches: (i) Additive methods that
model the density function as an additive mixture of weak learners such as Rosset & Segal (2002);
Tolstikhin et al. (2017). (ii) Those that take a multiplicative approach, modeling the density function
as an unnormalized product of weak learners. The latter is equivalent to the energy-based approach
that writes the energy function (log-density) as an additive sum of weak learners. Welling et al.
(2002), in particular, also approaches boosting from the point of view of functional optimization
of the log-likelihood or the logistic loss of an energy-based model. However, it relies on a first
order local approximation of the objective given that it focuses on parametric weak learners, such as
restricted Boltzmann machines, for which a second-order step would be impractical.

Another more direct multiplicative boosting framework was first proposed by Tu (2007). At each
boosting round, a discriminative classifier is trained to distinguish between empirical data and data
generated by the current model, by estimating the likelihood ratio p(x)/qt(x). This estimated ratio is
used as a direct multiplicative factor to update a current model, qt. In ideal conditions, this greedy
procedure would converge in a single iteration (when using a step size of 1). While Tu (2007) does
not prescribe a particular choice of classifier, Grover & Ermon (2018) proposes a similar concept
where the ratio is estimated based on a variational bound for an f -divergence and Cranko & Nock
(2019) provides additional analysis on this method. We note that the main difference between this
greedy approach and NRGBoost is that the latter attempts to update the current density proportionally
to an exponential of the likelihood ratio, exp (αt · p(x)/qt(x)), instead of (p(x)/qt(x))

αt directly. In
Appendix C we explore the differences between NRGBoost and this approach, when it is adapted to
use trees as weak learners.

Tabular Energy-Based Models Ma et al. (2024) proposes reinterpreting the logits of a TabPFN
classifier (Hollmann et al., 2022) as an energy function over the input space. Similarly, Margeloiu
et al. (2024) relies on auxiliary binary classification tasks, reinterpreting the logits of the classifiers as
class-conditional energy functions. These approaches, while not as principled as maximum likelihood,
avoid the need for MCMC sampling and were shown to work well empirically. However, their reliance
on TabPFN can limit their applicability to larger datasets. Furthermore, both approaches rely on
having a categorical target variable, which further limits their applicability and could introduce an
inherent bias given that this variable is not treated in the same way as the others.

Tree-Based Density Models Density Estimation Trees (DET) were proposed by Ram & Gray
(2011) as an alternative to histograms and kernel density estimation. They model the density function
as a constant value over the support of each leaf in a binary tree, q(x) =

∑J
j=1

P̂ (Xj)
V (Xj)

1Xj
(x), with

V (X) denoting the volume of X . The partitioning of the input space is determined directly by greedy
optimization of a generative objective (ISE). Despite allowing for efficient exact sampling, DETs have
received little attention as generative models. In Appendix B, we explore extensions of this method to
maximum likelihood estimation. In our experiments, we also test the natural idea to ensemble DET
models through bagging, leading to a generative algorithm analogous to Random Forests.

Other authors have proposed similar tree-based density models (Nock & Guillame-Bert, 2022) or
additive mixtures of tree-based models (Correia et al., 2020; Wen & Hang, 2022; Watson et al., 2023).
Distinguishing features of some of these alternative approaches are: (i) Not relying on a density
estimation goal to drive the partitioning of the input space. Correia et al. (2020) leverages a standard
discriminative Random Forest, therefore giving special treatment to a particular input variable whose
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conditional estimation drives the choice of partitions and Wen & Hang (2022) proposes using a
mid-point random tree partitioning. (ii) Leveraging more complex models for the data in the leaf
of a tree instead of a uniform density (Correia et al., 2020; Watson et al., 2023). This approach can
allow for the use of trees that are more representative with a smaller number of leaves. (iii) Nock
& Guillame-Bert (2022) and Watson et al. (2023) both propose generative adversarial frameworks
where the generator and discriminator are both a tree or an ensemble of trees respectively. While this
also leads to an iterative approach, unlike with boosting or bagging the new model trained at each
round doesn’t add to the previous one but replaces it instead.

Nock & Guillame-Bert (2023) proposes a different ensemble approach where trees do not have their
own leaf values that are added or multiplied to produce a final density, but instead collectively define
the partitioning of the input space. To train such models the authors propose a framework where,
rather than adding a new tree to the ensemble at every iteration, the model is initialized with a fixed
number of tree root nodes and each iteration adds a split to an existing leaf node. Jolicoeur-Martineau
et al. (2024) proposes diffusion and conditional flow matching approaches where a tree-based model
(e.g., GBDT) is used to learn the score function or vector field. However, these approaches do not
support efficient density estimation. McCarter (2024) leverages the autoregressive framework of
TabMT (Gulati & Roysdon, 2024), replacing transformers with XGBoost based predictors. While
this approach is capable of density estimation, it requires training one predictor (consisting of one or
more XGBoost models) per input variable. Furthermore, these models are trained on datasets created
from multiple copies of the original dataset with different missing data patterns, which could limit
their applicability to larger datasets.

5 EXPERIMENTS

We evaluate NRGBoost on five tabular datasets from the UCI Machine Learning Repository (Dheeru
& Karra Taniskidou, 2017): Abalone (AB), Physicochemical Properties of Protein Tertiary Structure
(PR), Adult (AD), MiniBooNE (MBNE) and Covertype (CT) as well as the California Housing
(CH) dataset available through scikit-learn (Pedregosa et al., 2011). We also include a downsampled
version of MNIST (by 2x along each dimension), which allows us to visually assess the quality of
individual samples, something that is generally difficult with structured tabular data. More details
about these datasets are given in Appendix D.1.

We split our experiments into two sections, the first to evaluate the quality of density models directly
on a single-variable inference task and the second to compare the performance of our proposed model
on sampling use cases against more specialized models.

5.1 SINGLE-VARIABLE INFERENCE

We test the ability of a generative model, trained to learn the density over all input variables, q(x), to
infer the value of a single one given the others. Specifically, we evaluate the quality of its estimate
of q(xi|x−i). For this purpose we pick xi = y as the original target of the dataset, noting that the
models that we train do not treat this variable in any special way, except when selecting the best
model in validation. As such, we would expect that a model’s performance in inference over this
particular variable is indicative of its strength on any other single-variable inference task and also
indicative of the quality of the full q(x), from which the conditional probability estimate is derived.

We use XGBoost (Chen & Guestrin, 2016) as a baseline for what should be achievable by a strong
discriminative model. Note that this model is trained to maximize the discriminative likelihood,
Ex∼p log q(xi|x−i), not wasting model capacity in learning other aspects of the full data distribution.
Because generative models provide an estimate of the full conditional distribution for the regression
datasets, rather than a single point estimate like XGBoost, we also include NGBoost (Duan et al.,
2020) as another discriminative baseline that can estimate the full q(xi|x−i) on these datasets. Note,
however, that NGBoost relies on a parametric assumption about this conditional distribution, that
needs to hold for any x−i. We use the default assumption of a Normal distribution for all datasets.

We compare NRGBoost against a bagging ensemble of DET models (Ram & Gray, 2011), which
we call Density Estimation Forests (DEF), trained for minimizing either ISE or KL divergence (see
Appendix B). We also include two other tree-based generative baselines: RFDE (Wen & Hang, 2022)
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Table 1: Discriminative performance of different methods at inferring the value of a target variable.
We use R2 for regression tasks, AUC for binary classification and accuracy for multiclass classifi-
cation. The reported values are means and standard errors over 5 cross-validation folds. The best
generative method for each dataset is highlighted in bold and other methods that are not significantly
worse (as determined by a paired t-test at a 95% confidence level) are underlined.

R2 ↑ AUC ↑ Accuracy ↑
AB CH PR AD MBNE MNIST CT

XGBoost 0.552 ±0.035 0.849 ±0.009 0.678 ±0.004 0.927 ±0.000 0.987 ±0.000 0.976 ±0.002 0.971 ±0.001

NGBoost 0.546 ±0.040 0.829 ±0.009 0.621 ±0.005 - - - -

RFDE 0.071 ±0.096 0.340 ±0.004 0.059 ±0.007 0.862 ±0.002 0.668 ±0.008 0.302 ±0.010 0.679 ±0.002

ARF 0.531 ±0.032 0.758 ±0.009 0.591 ±0.007 0.893 ±0.002 0.968 ±0.001 -∗ 0.938 ±0.005

DEF (ISE) 0.467 ±0.037 0.737 ±0.008 0.566 ±0.002 0.854 ±0.003 0.653 ±0.011 0.206 ±0.011 0.790 ±0.003

DEF (KL) 0.482 ±0.027 0.801 ±0.008 0.639 ±0.004 0.892 ±0.001 0.939 ±0.001 0.487 ±0.007 0.852 ±0.002

NRGBoost 0.547 ±0.036 0.850 ±0.011 0.676 ±0.009 0.920 ±0.001 0.974 ±0.001 0.966 ±0.001 0.948 ±0.001

∗ Due to the discrete nature of the MNIST dataset and the fact that the ARF algorithm tries to fit continuous
distributions for numerical variables at the leaves, we could not obtain a reasonable density model for this
dataset.

and ARF (Watson et al., 2023). The former allows us to gauge the impact of the guided partitioning
used in DEF models over a random partitioning of the input space.

We use random search to tune the hyperparameters of XGBoost and NGBoost and a grid search to
tune the most important hyperparameters of each generative density model. We employ 5-fold cross-
validation, repeating the hyperparameter tuning on each fold. For the full details of the experimental
protocol please refer to Appendix D.

We find that NRGBoost outperforms the remaining generative models (see Table 1), even achieving
comparable performance to XGBoost on the smaller datasets and with a small gap on the three larger
ones (MBNE, MNIST and CT). Furthermore, in Appendix E.3 we show that, for the same tasks
but in the presence of a missing covariate, NRGBoost can outperform XGBoost relying on popular
imputation strategies due to its principled handling of missing data through marginalization.

5.2 SAMPLING

We evaluate two different aspects of the quality of generated samples: their utility for training a
machine learning model and how distinguishable they are from real data. In addition to the previous
ARF and DEF (KL) baselines, we compare against TVAE (Xu et al., 2019) and TabDDPM (Kotelnikov
et al., 2023), two deep-learning-based generative models, as well as Forest-Flow (Jolicoeur-Martineau
et al., 2024), a tree-based conditional flow matching model.

Machine Learning Efficiency Machine learning (ML) efficiency has been a popular way to
measure the quality of generative models for sampling (Xu et al., 2019; Kotelnikov et al., 2023;
Borisov et al., 2022b). It relies on using samples from the model to train a discriminative model
which is then evaluated on real data, and is thus similar to the single-variable inference performance
that we use to compare density models in Section 5.1. In fact, if the discriminative model is flexible
enough, one would expect it to recover the generator’s q(y|x), and therefore its performance, in the
limit where infinite generated data is used to train it.

We use XGBoost as the discriminative model and train it on the same number of synthetic samples
as in the original training data. For the density models, we generate the samples from the best
model found in the previous section. For TVAE and TabDDPM, we select their hyperparameters
by evaluating the ML efficiency in the real validation set (full details of the hyperparameter tuning
are provided in Appendix D.3). Note that this leaves these models at a potential advantage since the
hyperparameter selection is based on the metric that is being evaluated.

We repeat all experiments 5 times, with different generated datatsets from each model and report the
performance of the discriminative model in Table 2. We find that NRGBoost and TabDDPM alternate
as the best-performing model depending on the dataset (with two inconclusive cases), and NRGBoost
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Table 2: Performance of an XGBoost model trained on synthetic data and on real data (for reference).
For consistency, we use the same discriminative metrics as in Table 1 for evaluating its performance.
Reported values are the averages and standard errors over 5 synthetic datasets generated by the same
generative model. The best generative method for each dataset is highlighted in bold and methods
that are not significantly worse (as determined by a t-test at a 95% confidence level) are underlined.

R2 ↑ AUC ↑ Accuracy ↑
AB CH PR AD MBNE MNIST CT

Real Data 0.554 0.838 0.682 0.927 0.987 0.976 0.972

TVAE 0.483 ±0.006 0.758 ±0.005 0.365 ±0.005 0.898 ±0.001 0.975 ±0.000 0.770 ±0.009 0.750 ±0.002

TabDDPM 0.539 ±0.018 0.807 ±0.005 0.596 ±0.007 0.910 ±0.001 0.984 ±0.000 - 0.818 ±0.001

Forest-Flow 0.418 ±0.019 0.716 ±0.003 0.412 ±0.009 0.879 ±0.003 0.964 ±0.001 0.224 ±0.010 0.705 ±0.002

ARF 0.504 ±0.020 0.739 ±0.003 0.524 ±0.003 0.901 ±0.001 0.971 ±0.001 0.908 ±0.002 0.848 ±0.002

DEF (KL) 0.450 ±0.013 0.762 ±0.006 0.498 ±0.007 0.892 ±0.001 0.943 ±0.002 0.230 ±0.028 0.753 ±0.002

NRGBoost 0.528 ±0.016 0.801 ±0.001 0.573 ±0.008 0.914 ±0.001 0.977 ±0.001 0.959 ±0.001 0.895 ±0.001
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Figure 3: Joint histogram for the latitude and longitude for the California Housing dataset.

is never ranked lower than second on any dataset. We also note that, despite our best efforts with
additional manual tuning, we could not obtain a reasonable model with TabDDPM on MNIST.

Discriminator Measure Similar to Borisov et al. (2022b) we test the capacity of a discriminative
model to distinguish between real and generated data. We use the original validation set as the real
part of the training data for the discriminator in order to avoid benefiting generative methods that
overfit their original training set. A new validation set is carved out of the original test set (20%) and
used to tune the hyperparameters of an XGBoost model which we use as our discriminator. We report
the AUC of this model on the remainder of the test data in Table 3, which shows that NRGBoost
outperforms other methods except on the PR (where the result is inconclusive) and MBNE datasets.

In Appendix E.1 we report a Wasserstein distance estimate computed using a similar setup to
Jolicoeur-Martineau et al. (2024) as an alternative measure of the statistical distance between real and
model distributions. This evaluation also shows NRGBoost as ranking the best on average across
datasets. Qualitatively speaking, its samples also look visually similar to the real data in both the
California and MNIST datasets (see Figures 3 and 4).
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Training Data NRGBoost Forest-Flow ARF TVAE

Figure 4: Downsampled MNIST samples generated by the best generative models on this dataset.
Despite being a simple dataset that would pose no challenges to image models, it is hard for tabular
generative models due to the high dimensionality and complex structure of correlations between
features. We find NRGBoost to be the only tabular model that is able to generate passable samples.

Table 3: AUC of an XGBoost model trained to distinguish real from generated data (lower is better).
Reported values are the averages and standard errors over 5 synthetic datasets generated by the same
model. The best generative method for each dataset is highlighted in bold and methods that are not
significantly worse (as determined by a t-test at a 95% confidence level) are underlined.

AB CH PR AD MBNE MNIST CT

TVAE 0.971 ±0.004 0.834 ±0.006 0.940 ±0.002 0.898 ±0.001 1.000 ±0.000 1.000 ±0.000 0.999 ±0.000

TabDDPM 0.818 ±0.015 0.667 ±0.005 0.628 ±0.004 0.604 ±0.002 0.789 ±0.002 - 0.915 ±0.007

Forest-Flow 0.987 ±0.002 0.926 ±0.002 0.885 ±0.002 0.932 ±0.002 1.000 ±0.000 1.000 ±0.000 0.985 ±0.001

ARF 0.975 ±0.005 0.973 ±0.004 0.795 ±0.008 0.992 ±0.000 0.998 ±0.000 1.000 ±0.000 0.989 ±0.001

DEF (KL) 0.823 ±0.013 0.751 ±0.008 0.877 ±0.002 0.956 ±0.002 1.000 ±0.000 1.000 ±0.000 0.999 ±0.000

NRGBoost 0.625 ±0.017 0.574 ±0.012 0.631 ±0.006 0.559 ±0.003 0.993 ±0.001 0.943 ±0.003 0.724 ±0.006

6 DISCUSSION

While additive tree ensemble models like DEF require no sampling to train and are easy to sample
from, we find that, in practice, they require very deep trees to model the data well and still offer
subpar performance for sampling and density estimation.

In contrast, NRGBoost was able to model the data better, while using fewer and shallower trees. Its
main drawback is that it can only be sampled from approximately using more expensive MCMC
and also requires sampling during the training process. Our fast Gibbs sampling implementation,
coupled with our proposed amortized sampling approach, were able to mitigate the slow training,
making these models more practical. Unfortunately, they remain cumbersome to use for sampling, as
autocorrelation between samples from the same Markov chain makes them inefficient in scenarios
requiring independent samples. We argue, however, that unlike in image or text generation, where fast
sampling is necessary for an interactive user experience, this can be less of a concern when generating
synthetic datasets, where the one-time cost of sampling can be less important than faithfully capturing
the data-generating distribution.

One advantage of the energy-based approach that we did not explore is that it allows for arbitrary
conditional sampling, requiring only that one clamps the values of conditioning variables during
Gibbs sampling. In contrast, other methods, such as diffusion-based approaches, are less flexible,
since conditioning variables typically need to be predetermined at training time.

7 CONCLUSION

We extend the two most popular tree-based discriminative methods for use in generative modeling.
We find that our boosting approach, in particular, offers generally good discriminative performance
and competitive sampling performance to more specialized alternatives. We hope that these results
encourage further research into generative boosting approaches for tabular data, particularly in
exploring other applications beyond sampling that are enabled by density models.
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A THEORY

The expected log-likelihood for an energy-based model (EBM),

qf (x) =
exp (f(x))

Z[f ]
, (13)

is given by

L[f ] = Ex∼p log qf (x) = Ex∼pf(x)− logZ[f ] . (14)

The first variation of L can be computed as

δL[f ; g] :=
dL[f + ϵg]

dϵ

∣∣∣∣
ϵ=0

= Ex∼p g(x)− δ logZ[f ; g] = Ex∼p g(x)− Ex∼qf g(x) . (15)

This is a linear functional of its second argument, g, and can be regarded as a directional derivative
of L at f along a variation g. The last equality comes from the following computation of the first
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variation of the log-partition function:

δ logZ[f ; g] =
δZ[f ; g]

Z[f ]
(16)

=
1

Z[f ]

∑
x

exp′ (f(x)) g(x) (17)

=
∑
x

exp (f(x))

Z[f ]
g(x) (18)

= Ex∼qf g(x) . (19)

Analogous to a Hessian, we can differentiate Equation 15 again along a second independent variation
h of f , yielding a symmetric bilinear functional which we will write as δ2L[f ; g, h]. Note that the
first term in Equation 14 is linear in f and thus has no curvature, so we only have to consider the
log-partition function itself:

δ2L[f ; g, h] :=
∂2L[f + ϵg + εh]

∂ϵ∂ε

∣∣∣∣
(ϵ,ε)=0

(20)

= −δ2 logZ[f ; g, h] = −δ {δ logZ[f ; g]} [f ;h] (21)

= −δ

{
1

Z[f ]

∑
x

exp (f(x)) g(x)

}
[f ;h] (22)

=
δZ[f ;h]

Z2[f ]

∑
x

exp (f(x)) g(x)− 1

Z[f ]

∑
x

exp′ (f(x)) g(x)h(x) (23)

=
δZ[f ;h]

Z[f ]
· Ex∼qf g(x)−

1

Z[f ]

∑
x

exp (f(x)) g(x)h(x) (24)

= Ex∼qfh(x) · Ex∼qf g(x)− Ex∼qfh(x)g(x) (25)

= −Covx∼qf (g(x), h(x)) . (26)

Note that this functional is negative semi-definite for all f . In other words, we have δ2L[f ;h, h] ≤ 0
for any variation h, meaning that the log-likelihood is a concave functional of f .

Using these results, we can now compute the Taylor expansion of the increment in log-likelihood L
from a change f → f + δf up to second order in δf :

∆Lf [δf ] = δL[f ; δf ] +
1

2
δ2L[f ; δf, δf ] (27)

= Ex∼pδf(x)− Ex∼qf δf(x)−
1

2
Varx∼qf δf(x) . (28)

As an aside, defining the functional derivative, δJ[f ]
δf(x) , of a functional J implicitly by∑

x

δJ [f ]

δf(x)
g(x) = δJ [f ; g] , (29)

we can formally define, by analogy with the parametric case, the Fisher information "matrix" at f , as
the following bilinear functional of two independent variations g and h:

F [f ; g, h] := −
∑
y,z

[
Ex∼qf

δ2 log qf (x)

δf(y)δf(z)

]
g(y)h(z) (30)

=
∑
y,z

δ2 logZ[f ]

δf(y)δf(z)
g(y)h(z) (31)

= δ2 logZ[f ; g, h] = −δ2L[f ; g, h] . (32)

To summarize, we have that the Fisher information is the same as the negative Hessian of the log-
likelihood for these models. This is essentially due to the fact that the only term in log qf (x) that
is non-linear in f is the log-partition, which is not a function of x, and therefore it doesn’t matter
whether the expectation is taken under p or qf .
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A.1 APPLICATION TO PIECEWISE CONSTANT FUNCTIONS

Considering a weak learner such as

δf(x) =

J∑
j=1

wj1Xj
(x) , (33)

where the subsets Xj are disjoint and cover the entire input space, X , we have that

Ex∼qδf(x) =
∑
x∈X

q(x)

J∑
j=1

wj1Xj
(x) (34)

=

J∑
j=1

wj

∑
x∈Xj

q(x) =

J∑
j=1

wjQ(Xj) . (35)

Similarly, making use of the fact that 1Xi
(x)1Xj

(x) = δij1Xi
(x), we can compute

Ex∼qδf
2(x) =

∑
x∈X

q(x)

 J∑
j=1

wj1Xj
(x)

2

=

J∑
j=1

w2
jQ(Xj) . (36)

In fact, we can extend this to any ordinary function of δf :

Ex∼q g (δf(x)) =
∑
x∈X

q(x)

J∑
j=1

1Xj
(x)g (δf(x)) (37)

=

J∑
j=1

∑
x∈Xj

q(x)g(wj) (38)

=

J∑
j=1

g(wj)Q(Xj) , (39)

where we made use of the fact that the 1Xj
constitute a partition of unity:

1 =

J∑
j=1

1Xj (x) ∀x ∈ X . (40)

Finally, we can compute the increase in log-likelihood from a step f → f + α · δf as

L[f + α · δf ]− L[f ] = Ex∼p [α · δf(x)]− logZ[f + α · δf ] + logZ[f ] (41)
= αEx∼pδf(x)− logEx∼qf exp(αδf(x)) (42)

= α

J∑
j=1

wjP (Xj)− log

J∑
j=1

Qf (Xj) exp (αwj) , (43)

where in Equation 42 we made use of the equality:

logZ[f + α · δf ]− logZ[f ] = log

∑
x exp(f(x) + αδf(x))

Z[f ]
= log

∑
x

qf (x) exp(αδf(x)) ,

(44)

and of the result in Equation 39 in the final step. This result can be used to conduct a line search
over the step-size using training data and to estimate an increase in log-likelihood at each round of
boosting, for the purpose of early stopping, using validation data.
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A.2 A SIMPLE CONVERGENCE RESULT

We can take the results from the last subsection to show that each boosting round improves the
likelihood of the model under ideal conditions. Substituting the NRGBoost leaf values, wj =
P (Xj)/Qf (Xj)− 1, in Equation 43 we get:

L[f + α · δf ]− L[f ] = α

 J∑
j=1

P 2 (Xj)

Qf (Xj)
− 1

− log

J∑
j=1

Qf (Xj) exp

[
α

(
P (Xj)

Qf (Xj)
− 1

)]
(45)

= αχ2(P∥Qf )− logE exp (αW ) , (46)

where, with some abuse of notation, we denote by χ2(P∥Qf ) the χ2-divergence between two discrete
distributions over [1..J ] induced by the partitioning obtained in the current boosting round. This
value is always non-negative, and can only be zero if P (Xj) = Qf (Xj) for all leaves. It therefore
corresponds to an increase in likelihood that is as large as one can make the difference between the
induced P and Qf distributions by a judicious choice of partitioning, Xj . Note that this quantity is
precisely the objective that NRGBoost tries to greedily maximize (see Equation 9).

The second term in Equation 46 can be interpreted as the log of a moment generating function for
a centered random variable W that takes values in {P (Xj)/Qf (Xj)− 1}j∈[1..J] (i.e., the set of the
leaf values), with probabilities {Qf (Xj)}j∈[1..J]. With our proposed regularization approach, we
limit the ratio P (Xj)/Qf (Xj) in our choice of Xj to a maximum value R and therefore we have that
W ∈ [−1, R− 1]. Given that W is bounded, by Hoeffding’s Lemma (1963), it is sub-gaussian with
variance proxy R2/4 and the log of its moment generating function is thus upper bounded by:

logE exp (αW ) ≤ α2R2

8
. (47)

As a result, we have the following lower bound on the log-likelihood increase:

L[f + α · δf ]− L[f ] ≥ α

[
χ2(P∥Qf )− α

R2

8

]
. (48)

As long as, in the current round of boosting, a partitioning of the input space can be found that yields
a non-zero χ2(P∥Qf ), the likelihood is guaranteed to increase as long as we choose a small enough
step size, α < 8

R2χ
2(P∥Qf ). In particular, choosing a step size α = 4

R2χ
2(P∥Qf ) produces an

increase in likelihood of at least 2
[
χ2(P∥Qf )/R

]2
.

We note that this result, while insightful, assumes that one uses the exact probabilities under the
model distribution in the NRGBoost update. In practice, we would only be able to approximately
estimate these with MCMC. We leave further analysis for future work.

A.3 NRGBOOST ALGORITHM

In Algorithm 1 we provide a high-level overview of the training loop for NRGBoost.

B DENSITY ESTIMATION TREES AND DENSITY ESTIMATION FORESTS

Density Estimation Trees (DET), introduced by Ram & Gray (2011), model the density function as a
piecewise constant function,

q(x) =

J∑
j=1

vj1Xj
(x) , (49)

where the Xj are given by a partitioning of the input space, X , induced by a binary tree and the vj
are the density values associated with each leaf that, for the time being, we will only require to be
such that q(x) sums to one. Note that it is possible to draw an exact sample from this type of model
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Algorithm 1 NRGBoost training

Input: Empirical training distribution p̂, initial model distribution q0, size of the sample pool M ,
fraction of samples to independently drop at each round prefresh ∈ [0, 1], number of boosting
rounds T , maximum number of leaves in each tree J , maximum probability ratio in each leaf
R > 1, shrinkage parameter γ ∈ ]0, 1].

Output: Energy function f .
f ← log q0
for t← 1 to T do

if t = 1 then ▷ No sampling needed since q0 is normalized
q̂ ← q0

else if t = 2 then ▷ Initialize sample pool
q̂ ← {xi}i∈[M ] ∼iid exp f ▷ By rejection sampling using q0 as a proposal distribution

else
q̂ ← Drop samples from q̂ randomly with probability prefresh
q̂ ← Keep each sample, xi, from q̂ with probability given by Equation 12 using δft−1

q̂ ← Add M − |q̂| samples to q̂ by Gibbs sampling from exp f
end if
δft ← FitTree(p̂, q̂; J,R) ▷ Greedily grow tree using Equation 10 as a splitting criterion
αt ← argmaxα ∆Lf [α · δft] ▷ Line search on training likelihood (Equation 43)
f ← f + γ · αt · δft

end for

by randomly selecting a leaf, j ∈ [1..J ], given probabilities vj , and then drawing a sample from a
uniform distribution over Xj .

To fit a DET, Ram & Gray (2011) proposes optimizing the Integrated Squared Error (ISE) between
the data generating distribution, p(x) and the model:

min
q∈Q

∑
x∈X

(p(x)− q(x))
2
. (50)

Noting that
⋃J

j=1 Xj = X , we can rewrite this as

min
v1,...,vJ ,X1,...,XJ

∑
x∈X

p2(x) +

J∑
j=1

∑
x∈Xj

(
v2j − 2vjp(x)

)
s.t.

J∑
j=1

∑
x∈Xj

vj = 1 .

(51)

Since the first term in the objective does not depend on the model, this optimization problem can be
further simplified as

min
v1,...,vJ ,X1,...,XJ

J∑
j=1

(
v2jV (Xj)− 2vjP (Xj)

)
s.t.

J∑
j=1

vjV (Xj) = 1 ,

(52)

where V (X) denotes the volume of a subset X . Solving this quadratic program for the vj we obtain
the following optimal leaf values and objective:

v∗j =
P (Xj)

V (Xj)
, ISE∗ (X1, . . . , XJ) = −

J∑
j=1

P 2(Xj)

Vf (Xj)
. (53)

One can therefore grow a tree by greedily choosing to split a parent leaf, with support XP , into two
leaves, with supports XL and XR, so as to maximize the following criterion:

max
XL,XR∈P(XP )

P 2(XL)

V (XL)
+

P 2(XR)

V (XR)
− P 2(XP )

V (XP )
. (54)
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This leads to a similar splitting criterion to Equation 10, but replacing the previous model’s distribution
with the volume measure V , which can be interpreted as the uniform distribution on X (up to a
multiplicative constant).

Maximum Likelihood Often, generative models are trained to maximize the log-likelihood of the
observed data,

max
q

Ex∼p log q(x) , (55)

rather than the ISE. This was left for future work in Ram & Gray (2011) but, following a similar
approach to the above, the optimization problem to solve is:

max
v1,...,vJ ,X1,...,XJ

J∑
j=1

P (Xj) log vj

s.t.
J∑

j=1

vjV (Xj) = 1 .

(56)

This is, again, easy to solve for vj since it is separable over j after removing the constraint using
Lagrange multipliers. The optimal leaf values and objective are, in this case:

v∗j =
P (Xj)

V (Xj)
, L∗ (X1, . . . , XJ) =

J∑
j=1

P (Xj) log
P (Xj)

Vf (Xj)
. (57)

The only change is, therefore, to the splitting criterion which should become:

max
XL,XR∈P(XP )

P (XL) log
P (XL)

V (XL)
+ P (XR) log

P (XR)

V (XR)
− P (XP ) log

P (XP )

V (XP )
. (58)

This choice of splitting criterion can be seen as analogous to the choice between Gini impurity and
Shannon entropy in the computation of the information gain in decision trees.

Bagging and Feature Subsampling Following the common approach in decision trees, Ram &
Gray (2011) suggests the use of pruning for regularization of DET models. Practice has, however,
evolved to prefer bagging as a form of regularization rather than relying on single decision trees. We
employ the same principle for DETs, by fitting many trees on bootstrap samples of the data. We
also adopt the common practice from Random Forests of randomly sampling a subset of features
to consider when splitting any leaf node, in order to encourage independence between the different
trees in the ensemble. The ensemble model, which we call Density Estimation Forests (DEF), is thus
an additive mixture of DETs with uniform weights, therefore still allowing for normalized density
computation and exact sampling.

C GREEDY TREE-BASED MULTIPLICATIVE BOOSTING

In multiplicative generative boosting, an unnormalized current density model, q̃t−1(x), is updated at
each boosting round by multiplication with a new factor δqαt

t (x):

q̃t(x) = q̃t−1(x) · δqαt
t (x) . (59)

For our proposed NRGBoost, this factor is chosen in order to maximize a local quadratic approx-
imation of the log-likelihood around qt−1, as a functional of the log-density (see Section 3). The
motivation behind the greedy approach of Tu (2007) and Grover & Ermon (2018) is to instead make
the update factor δqt(x) proportional to the likelihood ratio rt(x) := p(x)/qt−1(x) directly. Under
ideal conditions, this would mean that the method converges immediately when choosing a step
size αt = 1. In a more realistic setting, however, this method has been shown to converge under
conditions on the performance of the individual δqt as discriminators between real and generated
data (Tu, 2007; Grover & Ermon, 2018; Cranko & Nock, 2019).

In principle, this desired rt(x) could be derived from any binary classifier that is trained to predict
a probability of a datapoint being generated (e.g., by training it to minimize a strictly proper loss).
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Table 4: Comparison of splitting criterion and leaf weights for the different versions of boosting.

Splitting Criterion Leaf Values (Density)

Greedy (KL) P log (P/Q) P/Q
Greedy (χ2) P 2

/Q P/Q
NRGBoost P 2

/Q exp (P/Q− 1)

Grover & Ermon (2018), however, proposes relying on the following variational bound of an f -
divergence to derive an estimator for this ratio:

Df (P∥Qt−1) ≥ sup
u∈Ut

[
Ex∼p u(x)− Ex∼qt−1f

∗(u(x))
]
, (60)

where f∗ denotes the convex conjugate of f . This bound is tight, with the optimum being achieved
for u∗

t (x) = f ′(p(x)/qt−1(x)) if Ut contains this function. (f ′)
−1

(u∗
t (x)) can thus be interpreted as

an approximation of the desired rt(x).

Adapting this method to use trees as weak learners can be accomplished by considering Ut in Equation
60 to be defined by tree functions u = 1/J

∑J
j=1 wj1Xj

, with leaf values wj and leaf supports Xj .
At each boosting iteration, a new tree, u∗

t , can be grown to greedily optimize the lower bound in the
r.h.s. of Equation 60, and setting δqt(x) = (f ′)

−1
(u∗

t (x)). This means that δqt is also given by a
tree with the same leaf supports and leaf values vj := (f ′)

−1
(wj), leading to the following separable

optimization problem:

max
w1,...,wJ ,X1,...,XJ

J∑
j

[P (Xj)wj −Q(Xj)f
∗(wj)] . (61)

Note that we drop the iteration indices from this point onward for brevity. Maximizing over wj with
the Xj fixed, we have that w∗

j = f ′ (P (Xj)/Q(Xj)), which yields the optimal value

J∗(X1, . . . , Xj) =
∑
j

[
P (Xj)f

′
(
P (Xj)

Q(Xj)

)
−Q(Xj)(f

∗ ◦ f ′)

(
P (Xj)

Q(Xj)

)]
. (62)

This, in turn, determines the splitting criterion as a function of the choice of f . Finally, the optimal
density values for the leaves are given by

v∗j = (f ′)
−1

(w∗
j ) =

P (Xj)

Q(Xj)
. (63)

It is interesting to note two particular choices of f -divergences. For the KL divergence, f(t) = t log t

and f ′(t) = 1 + log t = (f∗)
−1

(t), which leads to

JKL(X1, . . . , Xj) =
∑
j

P (Xj) log
P (Xj)

Q(Xj)
(64)

as the splitting criterion. The Pearson χ2 divergence, with f(t) = (t− 1)2, leads to the same splitting
criterion as NRGBoost. Note, however, that for NRGBoost the leaf values for the multiplicative
update of the density are proportional to exp (P (Xj)/Q(Xj)) instead of the ratio directly. Table 4
summarizes these results.

Another interesting observation is that a DET model can be interpreted as a single round of greedy
multiplicative boosting, starting from a uniform initial model. The choice of the ISE as the criterion
to optimize the DET corresponds to the choice of Pearson’s χ2 divergence and log-likelihood to the
choice of KL divergence.

D REPRODUCIBILITY

D.1 DATASETS

We use 5 datasets from the UCI Machine Learning Repository (Dheeru & Karra Taniskidou, 2017):
Abalone, Physicochemical Properties of Protein Tertiary Structure (from hereon referred to as
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Protein), Adult, MiniBooNE and Covertype. We also use the California Housing dataset which was
downloaded through the Scikit-Learn package Pedregosa et al. (2011) and a downsampled version of
the MNIST dataset Deng (2012). Table 5 summarizes the main details of these datasets as well as the
number of samples used for train/validation/test for the first cross-validation fold.

Table 5: Dataset Information. We respect the original test sets of each dataset when provided,
otherwise we set aside 20% of the original dataset as a test set. 20% of the remaining data is set aside
as a validation set used for hyperparameter tuning.

Abbr Name Train + Val Test Num Cat Target Cardinality

AB Abalone 3342 835 7 1 Num 29
CH California Housing 16512 4128 8 0 Num Continuous
PR Protein 36584 9146 9 0 Num Continuous
AD Adult 32560 16280∗ 6 8 Cat 2
MBNE MiniBooNE 104051 26013 50 0 Cat 2
MNIST MNIST (downsampled) 60000 10000∗ 196 0 Cat 10
CT Covertype 464810 116202 10 2 Cat 7

∗ Original test set was respected.

The toy data distribution used in Figure 2 consists of a mixture of eight isotropic Gaussians with
standard deviation of 1, placed around a circle with a radius of 8. To obtain a discrete input domain,
we discretize the input space in 100 equally spaced bins between -11 and 11.

D.2 DEF AND NRGBOOST IMPLEMENTATION DETAILS

Discretization In our practical implementation of tree based methods, we first discretize the input
space by binning continuous numerical variables by quantiles. Furthermore, we also bin discrete
numerical variables in order to keep their cardinalities smaller than 256. This can also be interpreted
as establishing a priori a set of discrete values to consider when splitting on each numerical variable
and is done for computational efficiency, being inspired by LightGBM (Ke et al., 2017).

Categorical Splitting For splitting on a categorical variable, we once again take inspiration from
LightGBM. Rather than relying on one-vs-all splits, we found it better to first order the possible
categorical values at a leaf according to a pre-defined sorting function and then choose the optimal
many-vs-many split as if the variable was numerical. The function used to sort the values is the leaf
value function. For splitting on a categorical variable, xi, we order each possible categorical value k
by P̂ (xi=k,X−i)/Q̂(xi=k,X−i), where X−i denotes the leaf support over the remaining variables.

Tree Growth Strategy We always grow trees in best-first order, meaning that we split the current
leaf node that yields the maximum gain in the chosen objective value.

Line Search As mentioned in Section 3, we perform a line search to find the optimal step size after
each round of boosting in order to maximize the likelihood gain in Equation 43. Because evaluating
multiple possible step sizes, αt, is inexpensive, we simply do a grid search over 101 different step
sizes, split evenly in log-space over [10−3, 10].

Code Our implementation of the proposed tree-based methods is mostly Python code using the
NumPy library (Harris et al., 2020) and Numba. We implement the tree evaluation and Gibbs
sampling in C, making use of the PCG library (O’Neill, 2014) for random number generation.

D.3 HYPERPARAMETER TUNING

D.3.1 XGBOOST

To tune the hyperparameters of XGBoost we use 100 trials of random search with the search space
defined in Table 6.
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Table 6: XGBoost hyperparameter tuning search space. δ(0) denotes a point mass distribution at 0.

Parameter Distribution or Value

learning_rate LogUniform
([
10−3, 1.0

])
max_leaves Uniform ({16, 32, 64, 128, 256, 512, 1024})
min_child_weight LogUniform

([
10−1, 103

])
reg_lambda 0.5 · δ(0) + 0.5 · LogUniform

([
10−3, 10

])
reg_alpha 0.5 · δ(0) + 0.5 · LogUniform

([
10−3, 10

])
max_leaves 0 (we already limit the number of leaves)
grow_policy lossguide

tree_method hist

Each model is trained for 1000 boosting rounds on regression and binary classification tasks. For
multi-class classification tasks a maximum number of 200 rounds of boosting was used due to the
larger size of the datasets and because a separate tree is built at every round for each class. The
best model was selected based on the validation set, together with the boosting round where the best
performance was attained. The test metrics reported correspond to the performance of the selected
model at that boosting round on the test set.

D.3.2 NGBOOST

To tune the hyperparameters of NGBoost we use 100 trials of random search with the search space
defined in Table 7. We use a maximum of 500 rounds of boosting and early stopping with a patience
of 50 rounds. For consistency with the hyperparameter tuning setup for the other models, we select
the model that achieves the best R2 score in validation.

Table 7: NGBoost hyperparameter tuning search space.

Parameter Distribution

learning_rate LogUniform
([
10−3, 1.0

])
max_depth Uniform ([2..10])

min_samples_leaf Uniform ([1..10])

D.3.3 RFDE

We implement the RFDE method (Wen & Hang, 2022) after quantile discretization of the dataset
and therefore split at the midpoint of the discretized dimension instead of the original one. When a
leaf support has odd cardinality over the splitting dimension, a random choice is made over the two
possible splitting values. Finally, the original paper does not mention how to split over categorical
domains. We therefore choose to randomly split the possible categorical values for a leaf evenly as
we found that this yielded slightly better results than a random one-vs-all split.

For RFDE models we train a total of 1000 trees. The only hyperparameter that we tune is the
maximum number of leaves per tree, for which we test the values [26, 27, . . . , 214]. For the Adult
dataset, due to limitations of our tree evaluation implementation, we only test values up to 213.

D.3.4 DEF

We train ensembles with 1000 DET models. Only three hyperparameters are tuned, using three nested
loops, with each loop running over the possible values of a single parameter in a pre-defined order.
These are, in order of outermost to innermost:

1. The maximum number of leaves per tree, for which we test the values [214, 212, 210, 28].
For the Adult dataset we use 213 instead of 214.
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2. The fraction of features to consider when splitting a node. We test the values
[d−1/2, d−1/4, 1] with d being the dimension of the dataset.

3. The minimum number of data points per leaf. We test the values [0, 1, 3, 10, 30].

To speed up the hyperparameter tuning process, we exit each loop early when the best value found for
the objective does not improve between consecutive iterations. For example, if for 212 leaves per tree,
and a feature fraction of d−1/2, the objective does not improve when going from 3 minimum points
per leaf to 10, we move on to the next value of the feature fraction. Similarly, if the best objective
found for a feature fraction of d−1/4 (when considering possible values of minimum number of points
per leaf) does not improve over that for d−1/2, we move on to the next value of number of leaves.

D.3.5 ARF

For ARF we used the official python implementation of the algorithm (Blesch & Wright, 2023). Due
to memory (and time) concerns we train models with a maximum of 100 trees for up to 10 adversarial
iterations. We use a similar grid-search setup to DEF (with early stopping), tuning only the following
two parameters:

1. The maximum number of leaves per tree, for which we test the values [26, 27, . . . , 212,∞]
(∞ denotes unconstrained).

2. The minimum number of examples per leaf, for which we test the values
[3, 5, 10, 30, 50, 100].

D.3.6 NRGBOOST

We train NRGBoost models for a maximum of 200 rounds of boosting. We tune only two parameters,
using a similar early stopping setup in the outer loop:

1. The maximum number of leaves, for which we try the values [26, 28, 210, 212] in order. For
the CT dataset we also include 214 in the values to test.

2. The constant factor by which the optimal step size determined by the line search is shrunk
at each round of boosting. This is essentially the learning rate parameter. To tune it, we
perform a Golden-section search for the log of its value using a total of 6 evaluations. The
range we use for this search is [0.01, 0.5].

For regularization we limit the ratio between empirical data density and model data density on each
leaf to a maximum of 2. We observed that smaller values of this regularization parameter tend to
perform better, but that it otherwise plays a similar role to the shrinkage factor. Therefore, we choose
to tune only the latter.

For sampling, we use a sample pool of 80,000 samples for all datasets except for Covertype where
we use 320,000. These values are chosen so that the number of samples in the pool are, at minimum,
similar to the training set size, which we found to be a good rule of thumb. At each round of boosting,
samples are removed from the pool according to our rejection sampling approach (using Equation
12), after independently removing 10% at random. These samples are replaced by samples from the
current model using Gibbs sampling.

The starting point of each NRGBoost model was selected as a mixture model between a uniform
distribution (10%) and the product of training marginals (90%) on the discretized input space.
However, we observed that this mixture coefficient does not have much impact on the results.

D.3.7 TVAE

We use the implementation of TVAE from the SDV package.2 To tune its hyperparameters we use 50
trials of random search with the search spaces defined in Table 8.

2https://github.com/sdv-dev/SDV
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Table 8: TVAE hyperparameter tuning search space. We set both compress_dims and
decompress_dims to have the number of layers specified by num_layers, with hidden_dim
hidden units in each layer. We use larger batch sizes and smaller number of epochs for the larger
datasets (MBNE, MNIST, CT) since these can take significantly longer to run a single epoch.

Parameter Datasets Distribution or Value

epochs small Uniform ([100..500])

large Uniform ([50..200])

batch_size small Uniform ({100, 200, . . . , 500})
large Uniform ({500, 1000, . . . , 2500})

embedding_dim all Uniform ({32, 64, 128, 256, 512})
hidden_dim all Uniform ({32, 64, 128, 256, 512})
num_layers all Uniform ({1, 2, 3})
compress_dims all (hidden_dim,) * num_layers

decompress_dims all (hidden_dim,) * num_layers

D.3.8 TABDDPM

We used the official implementation of TabDDPM,3 adapted to use our datasets and validation setup.
To tune the hyperparameters of TabDDPM we use 50 trials of random search with the same search
space used by Kotelnikov et al. (2023).

D.3.9 FOREST-FLOW

We use the official implementation of Forest-Flow.4 The only hyperparameters with impact on
performance that the Forest-Flow documentation recommends tuning are the number of diffusion
timesteps (default of 50) and the number of noise values per sample (default of 100). Due to the fact
that Forest-Flow models already take significantly longer to train than the other models, and that
increasing either value would lead to slower training, we opted to use these default values.

D.4 EVALUATION SETUP

Single-variable inference For the single-variable inference evaluation, the best models are selected
by their discriminative performance on a validation set. The entire setup is repeated five times with
different cross-validation folds and with different seeds for all sources of randomness. For the Adult
and MNIST datasets the test set is fixed but training and validation splits are still rotated.

Sampling For the sampling evaluation, we use a single train/validation/test split of the real data
(corresponding to the first fold in the previous setup) for training the generative models. The density
models used are those previously selected based on their single-variable inference performance on
the validation set. For the sampling models (TVAE and TabDDPM) we directly evaluate their ML
efficiency using the validation data.

ML Efficiency For each selected model we sample a train and validation sets with the same number
of samples as those used in the original data. For NRGBoost we generate these samples by running
64 chains in parallel with 100 steps of burn in and downsampling their outputs by 30 (for the smaller
datasets) or 10 (for MBNE, MNIST and CT). For every synthetic dataset, an XGBoost model is
trained using the best hyperparameters found on the real data and using a synthetic validation set to
select the best stopping round for XGBoost. The setup is repeated 5 times with different datasets
being generated for each method and dataset.

Discriminator Measure We create the training, validation and test sets to train an XGBoost model
to discriminate between real and generated data using the following process:

3https://github.com/yandex-research/tab-ddpm
4https://github.com/SamsungSAILMontreal/ForestDiffusion
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• The original validation set is used as the real part of the training set in order to avoid
benefiting generative methods that overfit their training set.

• The original test set is split 20%/80%. The 20% portion is used as the real part of the
validation set and the 80% portion as the real part of the test set.

• To form the generated part of the training, validation and test sets for the smaller datasets
(AB, CH, PR, AD) we sample data according to the original number of samples in the train,
validation and test splits on the real data respectivelly. Note that this makes the ratio of
real to synthetic data 1:4 in the training set. This is deliberate, because for these smaller
datasets the original validation has few samples and adding extra synthetic data helps the
discriminator.

• For the larger datasets (MBNE, MNIST, CT) we generate the same number of synthetic
samples as there are real samples on each split, therefore making every ratio 1:1, because
the discriminator is typically already too powerful without adding additional synthetic data.

Because, in contrast to the previous metric, having a lower number of effective samples helps rather
than hurts, we take extra precautions to not generate correlated data with NRGBoost. We draw each
sample by running its own independent chain for 100 steps, starting from an independent sample
from the initial model, which is a rather slow process. The setup is repeated 5 times with 5 different
sets of generated samples from each method.

D.5 COMPUTATIONAL RESOURCES

The experiments were run on a Linux machine equipped with an AMD Ryzen 7 7700X 8 core CPU
and 32 GB of RAM. The comparisons with TVAE and TabDDPM additionally made use of a GeForce
RTX 3060 GPU with 12 GB of VRAM.

E ADDITIONAL RESULTS

E.1 STATISTICAL DISTANCE MEASURE

As an additional measure of the statistical dissimilarity between data and model distributions, we
evaluate a Wasserstein distance using a similar setup to Jolicoeur-Martineau et al. (2024). Namely,
we min-max scale numerical variables, and one-hot encode categorical variables, scaling the latter
by 1/2. We use a L1 distance in the formulation of the optimal transport problem, which we solve
using the POT python library. Since finding the optimal solution scales cubically with the sample
size in the worst case, we sub-sample at most 5,000 samples from the original train or test sets and
use an equal number of synthetic samples. We repeat the evaluation for each method and dataset 5
times, using different synthetic data and also different subsampling seeds for the real data (where
applicable). Our results for the distance between empirical training and test distribution and synthetic
samples from each model are reported in Tables 9 and 10 respectively.

Table 9: Wasserstein distance between empirical train distribution and synthetic samples. Reported
results are averages and standard errors over 5 repeated experiments. Smaller is better.

AB CH PR AD MBNE MNIST CT

TVAE 0.299 ±0.005 0.195 ±0.010 0.274 ±0.011 1.075 ±0.024 0.366 ±0.055 20.59 ±0.041 0.808 ±0.029

TabDDPM 0.467 ±0.021 0.153 ±0.007 0.190 ±0.005 0.895 ±0.019 109.6 ±93.14 - 0.640 ±0.016

Forest-Flow 0.234 ±0.020 0.192 ±0.007 0.238 ±0.009 1.239 ±0.024 4.214 ±3.683 20.73 ±0.574 0.896 ±0.022

ARF 0.199 ±0.015 0.233 ±0.009 0.232 ±0.007 1.363 ±0.018 0.698 ±0.684 18.14 ±0.060 0.703 ±0.019

DEF (KL) 0.320 ±0.006 0.199 ±0.012 0.260 ±0.010 1.682 ±0.024 18.21 ±14.92 261.0 ±15.60 0.933 ±0.025

NRGBoost 0.509 ±0.047 0.170 ±0.012 0.230 ±0.011 1.028 ±0.015 22.25 ±20.09 15.60 ±0.212 0.600 ±0.016

We found these results to be somewhat sensitive to the choice of normalization of the numericals and
categoricals, as well as to the choice of distance in this normalized space. Despite NRGBoost not
being as dominant as in the discriminator measure, it still fares well, obtaining the best average rank
over all datasets and experiments.

25



Published as a conference paper at ICLR 2025

Table 10: Wasserstein distance between empirical test distribution and synthetic samples. Reported
results are averages and standard errors over 5 repeated experiments. Smaller is better.

AB CH PR AD MBNE MNIST CT

TVAE 0.302 ±0.005 0.206 ±0.010 0.274 ±0.008 1.086 ±0.023 0.425 ±0.032 20.61 ±0.042 0.807 ±0.023

TabDDPM 0.500 ±0.023 0.169 ±0.009 0.195 ±0.003 0.938 ±0.029 109.5 ±93.13 - 0.646 ±0.022

Forest-Flow 0.248 ±0.020 0.205 ±0.009 0.231 ±0.008 1.243 ±0.029 4.295 ±3.697 20.73 ±0.574 0.893 ±0.021

ARF 0.218 ±0.015 0.240 ±0.009 0.238 ±0.006 1.378 ±0.020 0.732 ±0.664 18.14 ±0.060 0.709 ±0.018

DEF (KL) 0.337 ±0.006 0.210 ±0.012 0.264 ±0.011 1.696 ±0.023 18.29 ±14.90 261.0 ±35.01 0.935 ±0.024

NRGBoost 0.502 ±0.045 0.178 ±0.011 0.225 ±0.010 1.051 ±0.013 22.33 ±20.11 15.70 ±0.188 0.602 ±0.015

Table 11: (C)RPS and MAE results. The reported values are means and standard errors over 5
cross-validation folds. The best method for each dataset is highlighted in bold and other methods that
are not significantly worse (as determined by a paired t-test at a 95% confidence level) are underlined.

AB CH PR

RPS ↓ MAE ↓ CRPS ↓ MAE ↓ CRPS ↓ MAE ↓
XGBoost N/A 1.524 ±0.032 N/A 0.290 ±0.009 N/A 2.282 ±0.045

NGBoost 1.094 ±0.020 1.525 ±0.032 0.238 ±0.013 0.314 ±0.011 1.976 ±0.018 2.665 ±0.057

NRGBoost 1.075 ±0.011 1.569 ±0.025 0.201 ±0.008 0.276 ±0.010 1.490 ±0.023 2.063 ±0.036

E.2 UNCERTAINTY ESTIMATION IN REGRESSION TASKS

One advantage of density models over discriminative regression models like XGBoost is that they
estimate the full conditional distribution, p(y|x), rather than provide a point estimate. In Section 5.1,
we focused on a metric that evaluates the point estimate E[y|x]. To further evaluate the quality of the
models’ probabilistic predictions, in Table 11 we report two other metrics:

• MAE: We compute the average Mean Absolute Error given a point estimate of y. For
NGBoost and NRGBoost, we use the median of the estimated q(y|x) since this is the point
estimate that minimizes MAE. Note that, while it is possible to train XGBoost to directly
optimize this metric instead of MSE, models estimating q(y|x) are flexible to choose a
different point estimate post-training.

• (C)RPS: The Continuous Ranked Probability Score is a proper scoring rule commonly
used to evaluate a probabilistic forecast (Gneiting & Raftery, 2007). For both NGBoost
and NRGBoost, we evaluate this score analytically for the forecasted q(y|xi) of every test
point. Because the Abalone dataset has discrete numerical targets, we compute RPS for this
dataset instead. For this purpose, the continuous distribution obtained with NGBoost is first
discretized by rounding to the nearest discrete value within the domain of the target.

Note that we omit the results for ARF from this analysis because the Python implementation does not
provide neither conditional nor unconditional density evaluation at the time of writing. For the results
reported in Table 1, we implemented our own evaluation of E[y|x] for these models. Extending this
implementation to compute the median or the CRPS analytically is, however, not trivial due to ARF
fitting more complex continuous distributions at the leaves than the other tree-based models.

On MAE, we find that NRGBoost outperforms XGBoost convincingly in the California Housing
and Protein datasets, in part due to the use of a better point estimate for this metric. The Abalone
dataset is the only dataset where predicting the mean of the forecasting distribution would outperform
the median for MAE. We also find that NRGBoost achieves a lower (C)RPS than NGBoost on
all datasets, which we attribute to the parametric choice made for NGBoost not necessarily being
the most well-suited for these datasets. This highlights a key drawback of parametric approaches
compared to non-parametric ones: they require domain expertise to avoid suboptimal results.
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Table 12: Results for inference with a missing covariate. The original results of each method when
having access to the full data are also reported for reference. The best approach for dealing with
missing data in each scenario is highlighted in bold.

Model Imputation CH (R2 ↑) AD (AUC ↑) CT (Accuracy ↑)

XGBoost Full Data 0.849 ±0.009 0.927 ±0.000 0.971 ±0.001

Mean -0.283 ±0.107 N/A 0.610 ±0.004

Median/Mode -0.117 ±0.107 0.914 ±0.003 0.621 ±0.002

KNN (K=5) 0.150 ±0.107 0.910 ±0.003 0.883 ±0.001

NRGBoost Full Data 0.850 ±0.011 0.920 ±0.001 0.948 ±0.001

Marginalization 0.773 ±0.010 0.920 ±0.001 0.923 ±0.001

E.3 INFERENCE WITH MISSING DATA

Generative density models can be used more flexibly for inference than their discriminative counter-
parts. In this section we present a case study on a problem of inference in the presence of a missing
covariate that highlights this advantage.

For each type of task, we choose a dataset and remove an important feature from the respective
test set (Longitude for the California dataset, education for the Adult dataset and Elevation for the
Covertype dataset). We then attempt to predict the value of the target variable using XGBoost with
the help of several imputation techniques that are popular with data science practitioners:

• Mean and median imputation (for a missing numerical feature).

• Mode imputation (for a missing categorical feature).

• Imputation with the mean or mode of the 5 nearest neighbors on the training data. Note that
this imputation requires one to have access to the entire training set at test time.

NRGBoost can handle this type of problem in a principled manner by marginalizing over the possible
values of the missing feature, rather than relying on ad-hoc imputation. Our results, in Table 12,
show that this approach is able to outperform imputation, even on datasets where a performance gap
between NRGBoost and XGBoost existed on the full data.

E.4 OTHER CHALLENGING TASKS

In order to test the limits of NRGBoost, we compare its performance to XGBoost on the following
two challenging tasks taken from Gorishniy et al. (2021):

• ALOI: This is an image classification dataset with 128 features and 100k examples dis-
tributed evenly over 1000 classes. Because our implementation of NRGBoost is limited to
variables with a cardinality of 255, we consider only data for the first 250 classes. This still
constitutes 25 times more classes than MNIST, presenting a challenge to both discriminative
and generative models.

• Microsoft: This regression task contains both a large number of samples (1.2M) and features
(136), making it one order of magnitude larger than MNIST and Covertype in terms of the
product of the two. Because of this, we found that our usual hyperparameter tuning protocol
for NRGBoost to be impractical and had to resort to manual tuning instead. The best model
we found had 256 leaves and was trained for 500 boosting iterations with a maximum ratio
in each leaf of 4 and a shrinkage factor of 0.1.

We use the same train, validation and test splits used in Gorishniy et al. (2021) and report the same
metrics in Table 13. We find that NRGBoost outperforms XGBoost in the ALOI dataset but that there
is still a significant gap between the best NRGBoost model that we were able to find on the Microsoft
dataset and XGBoost.
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Table 13: Comparison of XGBoost and NRGBoost on ALOI and Microsoft datasets.

ALOI (Accuracy ↑) Microsoft (RMSE ↓)

XGBoost 0.943 0.744
NRGBoost 0.962 0.787

Figure 5: Downsampled MNIST samples generated by Gibbs sampling from an NRGBoost model.
Each row corresponds to an independent chain initialized with a sample from the initial model f0
(first column). Each column represents a consecutive sample from the chain.

E.5 MCMC CHAIN CONVERGENCE ON MNIST

Figure 5 shows the convergence of Gibbs sampling from an NRGBoost model. In only a few samples
each chain appears to have converged to the data manifold after starting at a random sample from
the initial model (a mixture between the product of training marginals and a uniform). Note how
consecutive samples are autocorrelated. In particular it can be rare for a chain to switch between two
different modes of the distribution (e.g., switching digits) even though a few such transitions can be
observed.

E.6 COMPUTATIONAL EFFORT

E.6.1 TRAINING

In Figure 6 we report the training times for NRGBoost, as well as the other methods, for the best
model selected by hyperparameter tuning. We do not report the training times for the RFDE method
because it is virtually free when compared to the other methods given that the splitting process is
random and does not depend on the data, only on the input domain.

Note that the biggest computational cost for training an NRGBoost model is the Gibbs sampling,
accounting for roughly 70% of the training time on average. This could potentially be improved by
leveraging higher parallelism than what we used (16 virtual cores).

We note also that we believe that there is still plenty of margin for optimizing the tree-fitting code
used for DEF models. As such, the results presented here are merely indicative.

The computational effort required for fitting a tree-based model should scale linearly with both the
number of samples and the number of features. This is the main source of variation for the training
times across datasets. However, we note that larger datasets can benefit more from larger models
(e.g., with a larger number of leaves) which also take a longer time to train.

E.6.2 SAMPLING

In Table 14, we report the time required to draw 10,000 independent samples from each model on
each dataset. We do not report sampling times for DEF models because our current implementation
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Figure 6: Wall time required to train the best model for each method.

Table 14: Time required to draw 10000 independent samples in seconds. The last columns shows
how much faster a method is compared to NRGBoost in the median case. We find that TabDDPM,
the only method that realistically competes with NRGBoost in sample quality is, in the median case,
10x faster for sampling.

AB CH PR AD MBNE MNIST CT × Faster (Median)

TVAE 0.06 0.05 0.04 0.05 0.22 1.33 0.07 984.0
TabDDPM 42.3 7.36 6.82 1.68 1.13 - 9.69 9.67
ARF 0.38 0.22 0.40 2.62 3.84 - 4.47 55.7

NRGBoost 23.1 49.2 54.6 65.0 194.2 622.4 109.9 -

of this procedure is very suboptimal, taking even longer than sampling from NRGBoost. We believe,
however, that a more optimized approach would, at most, be somewhat slower than sampling from
ARF models, since the DEF ensembles are larger.

For NRGBoost, independent samples are generated by starting from an independent sample from q0
and then running a fixed number, B, of Gibbs sampling iterations, taking only the last iterate as a
sample. However, this process only produces an approximate sample from the energy model, as it
remains biased by the initial sample, which is drawn from an incorrect distribution. The larger B is,
compared to the Markov chain’s mixing time, the more independent the final sample is from the initial
one and the smaller this bias. This parameter, therefore, trades-off correctness for computational time,
which scales linearly with B.

In our experiments we always set B = 100, but this may be excessive for some datasets. We find that
B = 30 already leads to similar ML efficiency results on most datasets, while cutting down sampling
times by a factor of three. Note also that the process of drawing samples is embarrassingly parallel.
The numbers we report correspond to running 16 chains in parallel on a CPU with 16 virtual cores. If
we were to leverage a CPU with higher core count, we could similarly cut down on sampling times.
In fact, the process of sampling from an EBM is not dissimilar to the process of sampling from a
diffusion model like TabDDPM, but the latter can leverage the massive parallelism afforded by GPUs.
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