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ABSTRACT

We present a principled approach to incorporating labels in variational autoencoders
(VAEs) that captures the rich characteristic information associated with those
labels. While prior work has typically conflated these by learning latent variables
that directly correspond to label values, we argue this is contrary to the intended
effect of supervision in VAEs—capturing rich label characteristics with the latents.
For example, we may want to capture the characteristics of a face that make it
look young, rather than just the age of the person. To this end, we develop the
characteristic capturing VAE (CCVAE), a novel VAE model and concomitant
variational objective which captures label characteristics explicitly in the latent
space, eschewing direct correspondences between label values and latents. Through
judicious structuring of mappings between such characteristic latents and labels,
we show that the CCVAE can effectively learn meaningful representations of the
characteristics of interest across a variety of supervision schemes. In particular, we
show that the CCVAE allows for more effective and more general interventions to
be performed, such as smooth traversals within the characteristics for a given label,
diverse conditional generation, and transferring characteristics across datapoints.

1 INTRODUCTION

Learning the characteristic factors of perceptual observations has long been desired for effective
machine intelligence (Brooks, 1991; Bengio et al., 2013; Hinton & Salakhutdinov, 2006; Tenenbaum,
1998). In particular, the ability to learn meaningful factors—capturing human-understandable charac-
teristics from data—has been of interest from the perspective of human-like learning (Tenenbaum &
Freeman, 2000; Lake et al., 2015) and improving decision making and generalization across tasks
(Bengio et al., 2013; Tenenbaum & Freeman, 2000).

At its heart, learning meaningful representations of data allows one to not only make predictions, but
critically also to manipulate factors of a datapoint. For example, we might want to manipulate the
age of a person in an image. Such manipulations allow for the expression of causal effects between
the meaning of factors and their corresponding realizations in the data. They can be categorized into
conditional generation—the ability to construct whole exemplar data instances with characteristics
dictated by constraining relevant factors—and intervention—the ability to manipulate just particular
factors for a given data point, and subsequently affect only the associated characteristics.

A particularly flexible framework within which to explore the learning of meaningful representations
are variational autoencoders (VAEs), a class of deep generative models where representations of data
are captured in the underlying latent variables. A variety of methods have been proposed for inducing
meaningful factors in this framework (Kim & Mnih, 2018; Mathieu et al., 2019; Mao et al., 2019;
Kingma et al., 2014; Siddharth et al., 2017; Vedantam et al., 2018), and it has been argued that the
most effective generally exploit available labels to (partially) supervise the training process (Locatello
et al., 2019). Such approaches aim to associate certain factors of the representation (or equivalently
factors of the generative model) with the labels, such that the former encapsulate the latter—providing
a mechanism for manipulation via targeted adjustments of relevant factors.
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Prior approaches have looked to achieve this by directly associating certain latent variables with
labels (Kingma et al., 2014; Siddharth et al., 2017; Maaløe et al., 2016). Originally motivated by the
desiderata of semi–supervised classification, each label is given a corresponding latent variable of the
same type (e.g. categorical), whose value is fixed to that of the label when the label is observed and
imputed by the encoder when it is not.

Though natural, we argue that this assumption is not just unnecessary but actively harmful from a
representation-learning perspective, particularly in the context of performing manipulations. To allow
manipulations, we want to learn latent factors that capture the characteristic information associated
with a label, which is typically much richer than just the label value itself. For example, there are

Figure 1: Manipulating label character-
istics for “hair color” and “smile”.

various visual characteristics of people’s faces associated with
the label “young,” but simply knowing the label is insufficient
to reconstruct these characteristics for any particular instance.
Learning a meaningful representation that captures these charac-
teristics, and isolates them from others, requires encoding more
than just the label value itself, as illustrated in Figure 1.

The key idea of our work is to use labels to help capture and
isolate this related characteristic information in a VAE’s repre-
sentation. We do this by exploiting the interplay between the
labels and inputs to capture more information than the labels
alone convey; information that will be lost (or at least entangled)
if we directly encode the label itself. Specifically, we introduce
the characteristic capturing VAE (CCVAE) framework, which
employs a novel VAE formulation which captures label char-
acteristics explicitly in the latent space. For each label, we
introduce a set of characteristic latents that are induced into
capturing the characteristic information associated with that label. By coupling this with a principled
variational objective and carefully structuring the characteristic-latent and label variables , we show
that CCVAEs successfully capture meaningful representations, enabling better performance on
manipulation tasks, while matching previous approaches for prediction tasks. In particular, they
permit certain manipulation tasks that cannot be performed with conventional approaches, such as
manipulating characteristics without changing the labels themselves and producing multiple distinct
samples consistent with the desired intervention. We summarize our contributions as follows:

i) showing how labels can be used to capture and isolate rich characteristic information;
ii) formulating CCVAEs, a novel model class and objective for supervised and semi-supervised

learning in VAEs that allows this information to be captured effectively;
iii) demonstrating CCVAEs’ ability to successfully learn meaningful representations in practice.

2 BACKGROUND

VAEs (Kingma & Welling, 2013; Rezende et al., 2014) are a powerful and flexible class of model that
combine the unsupervised representation-learning capabilities of deep autoencoders (Hinton & Zemel,
1994) with generative latent-variable models—a popular tool to capture factored low-dimensional
representations of higher-dimensional observations. In contrast to deep autoencoders, generative
models capture representations of data not as distinct values corresponding to observations, but rather
as distributions of values. A generative model defines a joint distribution over observed data x and
latent variables z as pθ(x, z) = p(z)pθ(x | z). Given a model, learning representations of data can
be viewed as performing inference—learning the posterior distribution pθ(z | x) that constructs the
distribution of latent values for a given observation.

VAEs employ amortized variational inference (VI) (Wainwright & Jordan, 2008; Kingma & Welling,
2013) using the encoder and decoder of an autoencoder to transform this setup by i) taking the model
likelihood pθ(x | z) to be parameterized by a neural network using the decoder, and ii) constructing
an amortized variational approximation qφ(z | x) to the (intractable) posterior pθ(z | x) using
the encoder. The variational approximation of the posterior enables effective estimation of the
objective—maximizing the marginal likelihood—through importance sampling. The objective is
obtained through invoking Jensen’s inequality to derive the evidence lower bound (ELBO) of the

2



Published as a conference paper at ICLR 2021

model which is given as:

log pθ(x) = logEqφ(z|x)
[
pθ(z,x)

qφ(z | x)

]
≥ Eqφ(z|x)

[
log

pθ(z,x)

qφ(z | x)

]
≡ L(x;φ, θ). (1)

Given observations D = {x1, . . . ,xN} taken to be realizations of random variables generated
from an unknown distribution pD(x), the overall objective is 1

N

∑
n L(xn; θ, φ). Hierarchical

VAEs Sønderby et al. (2016) impose a hierarchy of latent variables improving the flexibility of the
approximate posterior, however we do not consider these models in this work.

Semi-supervised VAEs (SSVAEs) (Kingma et al., 2014; Maaløe et al., 2016; Siddharth et al., 2017)
consider the setting where a subset of data S ⊂ D is assumed to also have corresponding labels y.
Denoting the (unlabeled) data as U = D\S, the log-marginal likelihood is decomposed as

log p (D) =
∑

(x,y)∈S
log pθ(x,y) +

∑
x∈U

log pθ(x),

where the individual log-likelihoods are lower bounded by their ELBOs. Standard practice is then to
treat y as a latent variable to marginalize over whenever the label is not provided. More specifically,
most approaches consider splitting the latent space in z = {zy, z\y} and then directly fix zy = y
whenever the label is provided, such that each dimension of zy explicitly represents a predicted
value of a label, with this value known exactly only for the labeled datapoints. Much of the original
motivation for this (Kingma et al., 2014) was based around performing semi–supervised classification
of the labels, with the encoder being used to impute the values of zy for the unlabeled datapoints.
However, the framework is also regularly used as a basis for learning meaningful representations
and performing manipulations, exploiting the presence of the decoder to generate new datapoints
after intervening on the labels via changes to zy . Our focus lies on the latter, for which we show this
standard formulation leads to serious pathologies. Our primary goal is not to improve the fidelity
of generations, but instead to demonstrate how label information can be used to structure the latent
space such that it encapsulates and disentangles the characteristics associated with the labels.

3 RETHINKING SUPERVISION

As we explained in the last section, the de facto assumption for most approaches to supervision
in VAEs is that the labels correspond to a partially observed augmentation of the latent space,
zy. However, this can cause a number of issues if we want the latent space to encapsulate not
just the labels themselves, but also the characteristics associated with these labels. For example,
encapsulating the youthful characteristics of a face, not just the fact that it is a “young” face. At an
abstract level, such an approach fails to capture the relationship between the inputs and labels: it fails
to isolate characteristic information associated with each label from the other information required to
reconstruct data. More specifically, it fails to deal with the following issues.

Firstly, the information in a datapoint associated with a label is richer than stored by the (typically
categorical) label itself. That is not to say such information is absent when we impose zy = y, but
here it is entangled with the other latent variables z\y , which simultaneously contain the associated
information for all the labels. Moreover, when y is categorical, it can be difficult to ensure that
the VAE actually uses zy, rather than just capturing information relevant to reconstruction in the
higher-capacity, continuous, z\y . Overcoming this is challenging and generally requires additional
heuristics and hyper-parameters.

Second, we may wish to manipulate characteristics without fully changing the categorical label
itself. For example, making a CelebA image depict more or less ‘smiling’ without fully changing its
“smile” label. Here we do not know how to manipulate the latents to achieve this desired effect:
we can only do the binary operation of changing the relevant variable in zy . Also, we often wish to
keep a level of diversity when carrying out conditional generation and, in particular, interventions.
For example, if we want to add a smile, there is no single correct answer for how the smile would
look, but taking zy = "smile" only allows for a single point estimate for the change.

Finally, taking the labels to be explicit latent variables can cause a mismatch between the VAE prior
p(z) and the pushforward distribution of the data to the latent space q(z) = EpD(x)[qφ(z | x)].
During training, latents are effectively generated according to q(z), but once learned, p(z) is used to
make generations; variations between the two effectively corresponds to a train-test mismatch. As
there is a ground truth data distribution over the labels (which are typically not independent), taking
the latents as the labels themselves implies that there will be a ground truth q(zy). However, as this
is not generally known a priori, we will inevitably end up with a mismatch.
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What do we want from supervision? Given these issues, it is natural to ask whether having latents
directly correspond to labels is actually necessary. To answer this, we need to think about exactly
what it is we are hoping to achieve through the supervision itself. Along with uses of VAEs more
generally, the three most prevalent tasks are: a) Classification, predicting the labels of inputs where
these are not known a priori; b) Conditional Generation, generating new examples conditioned
on those examples conforming to certain desired labels; and c) Intervention, manipulating certain
desired characteristics of a data point before reconstructing it.

Inspecting these tasks, we see that for classification we need a classifier form z to y, for conditional
generation we need a mechanism for sampling z given y, and for inventions we need to know how to
manipulate z to bring about a desired change. None of these require us to have the labels directly
correspond to latent variables. Moreover, as we previously explained, this assumption can be actively
harmful, such as restricting the range of interventions that can be performed.

4 CHARACTERISTIC CAPTURING VARIATIONAL AUTOENCODERS

To correct the issues discussed in the last section, we suggest eschewing the treatment of labels as
direct components of the latent space and instead employ them to condition latent variables which
are designed to capture the characteristics. To this end, we similarly split the latent space into two
components, z = {zc, z\c}, but where zc, the characteristic latent, is now designed to capture
the characteristics associated with labels, rather than directly encode the labels themselves. In this
breakdown, z\c is intended only to capture information not directly associated with any of the labels,
unlike z\y which was still tasked with capturing the characteristic information.

For the purposes of exposition and purely to demonstrate how one might apply this schema, we
first consider a standard VAE, with a latent space z = {zc, z\c}. The latent representation of the
VAE will implicitly contain characteristic information required to perform classification, however
the structure of the latent space will be arranged to optimize for reconstruction and characteristic
information may be entangled between zc and z\c. If we were now to jointly learn a classifier—from
zc to y—with the VAE, resulting in the following objective:

J =
∑

x∈U
LVAE(x) +

∑
(x,y)∈S

(
LVAE(x) + αEqφ(z|x) [log qϕ(y | zc)]

)
, (2)

where α is a hyperparameter, there will be pressure on the encoder to place characteristic information
in zc, which can be interpreted as a stochastic layer containing the information needed for classifica-
tion and reconstruction1. The classifier thus acts as a tool allowing y to influence the structure of z,
it is this high level concept, i.e. using y to structure z, that we utilize in this work.

However, in general, the characteristics of different labels will be entangled within zc. Though it
will contain the required information, the latents will typically be uninterpretable, and it is unclear
how we could perform conditional generation or interventions. To disentangle the characteristics of
different labels, we further partition the latent space, such that the classification of particular labels yi
only has access to particular latents zic and thus log qϕ(y | zc) =

∑
i log qϕi(y

i | zic). This has the
critical effect of forcing the characteristic information needed to classify yi to be stored only in the
corresponding zic, providing a means to encapsulate such information for each label separately. We
further see that it addresses many of the prior issues: there are no measure-theoretic issues as zic is
not discrete, diversity in interventions is achieved by sampling different zic for a given label, zic can
be manipulated while remaining within class decision boundaries, and a mismatch between p(zc)
and q(zc) does not manifest as there is no ground truth for q(zc).

How to conditionally generate or intervene when training with (2) is not immediately obvious though.
However, the classifier implicitly contains the requisite information to do this via inference in an
implied Bayesian model. For example, conditional generation needs samples from p(zc) that classify
to the desired labels, e.g. through rejection sampling. See Appendix A for further details.

4.1 THE CHARACTERISTIC CAPTURING VAE

One way to address the need for inference is to introduce a conditional generative model pψ(zc | y),
simultaneously learned alongside the classifier introduced in (2), along with a prior p(y). This

1Though, for convenience, we implicitly assume here, and through the rest of the paper, that the labels are
categorical such that the mapping zc → y is a classifier, we note that the ideas apply equally well if some labels
are actually continuous, such that this mapping is now a probabilistic regression.
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approach, which we term the CCVAE, allows the required sampling for conditional generations and
interventions directly. Further, by persisting with the latent partitioning above, we can introduce
a factorized set of generative models p(zc | y) =

∏
i p(z

i
c | yi), enabling easy generation and

manipulation of zic individually. CCVAE ensures that labels remain a part of the model for unlabeled
datapoints, which transpires to be important for effective learning in practice.

x

z\c zc
1 . . . zc

L

y1 . . . yL

pθ(x | z) qφ(z | x)

Figure 2: CCVAE graphical model.

To address the issue of learning, we perform variational inference,
treating y as a partially observed auxiliary variable. The final
graphical model is illustrated in Figure 2. The CCVAE can be
seen as a way of combining top-down and bottom-up information
to obtain a structured latent representation. However, it is important
to highlight that CCVAE does not contain a hierarchy of latent
variables. Unlike a hierarchical VAE, reconstruction is performed
only from z ∼ qφ(z | x) without going through the “deeper” y, as
doing so would lead to a loss of information due to the bottleneck of
y. By enforcing each label variable to link to different characteristic-
latent dimensions, we are able to isolate the generative factors
corresponding to different label characteristics.

4.2 MODEL OBJECTIVE

We now construct an objective function that encapsulates the model described above, by deriving a
lower bound on the full model log-likelihood which factors over the supervised and unsupervised
subsets as discussed in § 2. The supervised objective can be defined as

log pθ,ψ(x,y) ≥ Eqϕ,φ(z|x,y)
[
log

pθ(x | z)pψ(z | y)p(y)

qϕ,φ(z | x,y)

]
≡ LCCVAE(x,y), (3)

with pψ(z | y) = p(z\c)pψ(zc | y). Here, we avoid directly modeling qϕ,φ(z | x,y); instead
leveraging the conditional independence x ⊥⊥ y | z, along with Bayes rule, to give

qϕ,φ(z | x,y) =
qϕ(y | zc)qφ(z | x)

qϕ,φ(y | x)
, where qϕ,φ(y | x) =

∫
qϕ(y | zc)qφ(z | x)dz.

Using this equivalence in (3) yields (see Appendix B.1 for a derivation and numerical details)

LCCVAE(x,y)=Eqφ(z|x)
[
qϕ(y | zc)

qϕ,φ(y | x)
log

pθ(x | z)pψ(z | y)

qϕ(y | zc)qφ(z | x)

]
+log qϕ,φ(y | x)+log p(y). (4)

Note that a classifier term log qϕ,φ(y | x) falls out naturally from the derivation, unlike previous
models (e.g. Kingma et al. (2014); Siddharth et al. (2017)). Not placing the labels directly in the latent
space is crucial for this feature. When defining latents to directly correspond to labels, observing
both x and y detaches the mapping qϕ,φ(y | x) between them, resulting in the parameters (ϕ, φ) not
being learned—motivating addition of an explicit (weighted) classifier. Here, however, observing
both x and y does not detach any mapping, since they are always connected via an unobserved
random variable zc, and hence do not need additional terms. From an implementation perspective,
this classifier strength can be increased, we experimented with this, but found that adjusting the
strength had little effect on the overall classification accuracies. We consider this insensitivity to be
a significant strength of this approach, as the model is able to apply enough pressure to the latent
space to obtain high classification accuracies without having to hand tune parameter values. We find
that the gradient norm of the classifier parameters suffers from a high variance during training, we
find that not reparameterizing through zc in qϕ(y | zc) reduces this affect and aides training, see
Appendix C.3.1 for details.

For the datapoints without labels, we can again perform variational inference, treating the labels
as random variables. Specifically, the unsupervised objective, LCCVAE(x), derives as the standard
(unsupervised) ELBO. However, it requires marginalising over labels as p(z) = p(zc)p(z\c) =
p(z\c)

∑
y p(zc|y)p(y). This can be computed exactly, but doing so can be prohibitively expensive

if the number of possible label combinations is large. In such cases, we apply Jensen’s inequality
a second time to the expectation over y (see Appendix B.2) to produce a looser, but cheaper to
calculate, ELBO given as

LCCVAE(x) = Eqφ(z|x)qϕ(y|zc)

[
log

(
pθ(x | z)pψ(z | y)p(y)

qϕ(y | zc)qφ(z | x)

)]
. (5)
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Combining (4) and (5), we get the following lower bound on the log probability of the data

log p (D) ≥
∑

(x,y)∈S
LCCVAE(x,y) +

∑
x∈U
LCCVAE(x), (6)

that unlike prior approaches faithfully captures the variational free energy of the model. As shown in
§ 6, this enables a range of new capabilities and behaviors to encapsulate label characteristics.

5 RELATED WORK

The seminal work of Kingma et al. (2014) was the first to consider supervision in the VAEs setting,
introducing the M2 model for semi–supervised classification which was also approach to place labels
directly in the latent space. The related approach of Maaløe et al. (2016) augments the encoding dis-
tribution with an additional, unobserved latent variable, enabling better semi-supervised classification
accuracies. Siddharth et al. (2017) extended the above work to automatically derive the regularised
objective for models with arbitrary (pre-defined) latent dependency structures. The approach of
placing labels directly in the latent space was also adopted in Li et al. (2019). Regarding the disparity
between continuous and discrete latent variables in the typical semi-supervised VAEs, Dupont (2018)
provide an approach to enable effective unsupervised learning in this setting.

From a purely modeling perspective, there also exists prior work on VAEs involving hierarchies of
latent variables, exploring richer higher-order inference and issues with redundancy among latent
variables both in unsupervised (Ranganath et al., 2016; Zhao et al., 2017) and semi-supervised (Maaløe
et al., 2017; 2019) settings. In the unsupervised case, these hierarchical variables do not have a
direct interpretation, but exist merely to improve the flexibility of the encoder. The semi-supervised
approaches extend the basic M2 model to hierarchical VAEs by incorporating the labels as an
additional latent (see Appendix F in Maaløe et al., 2019, for example), and hence must incorporate
additional regularisers in the form of classifiers as in the case of M2. Moreover, by virtue of the typical
dependencies assumed between labels and latents, it is difficult to disentangle the characteristics just
associated with the label from the characteristics associated with the rest of the data—something we
capture using our simpler split latents (zc, z\c).

From a more conceptual standpoint, Mueller et al. (2017) introduces interventions (called revisions)
on VAEs for text data, regressing to auxiliary sentiment scores as a means of influencing the latent
variables. This formulation is similar to (2) in spirit, although in practice they employ a range of
additional factoring and regularizations particular to their domain of interest, in addition to training
models in stages, involving different objective terms. Nonetheless, they share our desire to enforce
meaningfulness in the latent representations through auxiliary supervision.

Another related approach involves explicitly treating labels as another data modality (Vedantam et al.,
2018; Suzuki et al., 2017; Wu & Goodman, 2018; Shi et al., 2019). This work is motivated by the need
to learn latent representations that jointly encode data from different modalities. Looking back to (3),
by refactoring p(z | y)p(y) as p(y | z)p(z), and taking q(z | x,y) = G(q(z | x), q(z | y)), one
derives multi-modal VAEs, where G can construct a product (Wu & Goodman, 2018) or mixture (Shi
et al., 2019) of experts. Of these, the MVAE (Wu & Goodman, 2018) is more closely related to our
setup here, as it explicitly targets cases where alternate data modalities are labels. However, they
differ in that the latent representations are not structured explicitly to map to distinct classifiers, and
do not explore the question of explicitly capturing the label characteristics. The JLVM model of Adel
et al. (2018) is similar to the MVAE, but is motivated from an interpretability perspective—with labels
providing ‘side-channel’ information to constrain latents. They adopt a flexible normalising-flow
posterior from data x, along with a multi-component objective that is additionally regularised with
the information bottleneck between data x, latent z, and label y.

DIVA (Ilse et al., 2019) introduces a similar graphical model to ours, but is motivated to learn a
generalized classifier for different domains. The objective is formed of a classifier which is regularized
by a variational term, requiring additional hyper-parameters and preventing the ability to disentangle
the representations. In Appendix C.4 we propose some modifications to DIVA that allow it to be
applied in our problem domain.

In terms of interoperability, the work of Ainsworth et al. (2018) is closely related to ours, but they
focus primarily on group data and not introducing labels. Here the authors employ sparsity in
the multiple linear transforms for each decoder (one for each group) to encourage certain latent
dimensions to encapsulate certain factors in the sample, thus introducing interoperability into the
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model. Tangentially to VAEs, similar objectives of structuring the latent space using GANs also
exist Xiao et al. (2017; 2018), although they focus purely on interventions and cannot perform
conditional generations, classification, or estimate likelihoods.

6 EXPERIMENTS

Following our reasoning in § 3 we now showcase the efficacy of CCVAE for the three broad aims of
(a) intervention, (b) conditional generation and (c) classification for a variety of supervision rates,
denoted by f . Specifically, we demonstrate that CCVAE is able to: encapsulate characteristics
for each label in an isolated manner; introduce diversity in the conditional generations; permit a
finer control on interventions; and match traditional metrics of baseline models. Furthermore, we
demonstrate that no existing method is able to perform all of the above,2 highlighting its sophistication
over existing methods. We compare against: M2 (Kingma et al., 2014); MVAE (Wu & Goodman,
2018); and our modified version of DIVA (Ilse et al., 2019). See Appendix C.4 for details.

To demonstrate the capture of label characteristics, we consider the multi-label setting and utilise
the Chexpert (Irvin et al., 2019) and CelebA (Liu et al., 2015) datasets.3 For CelebA, we re-
strict ourselves to the 18 labels which are distinguishable in reconstructions; see Appendix C.1
for details. We use the architectures from Higgins et al. (2016) for the encoder and decoder. The
label-predictive distribution qϕ(y | zc) is defined as Ber(y | πϕ(zc)) with a diagonal transforma-
tion πϕ(·) enforcing qϕ(y | zc) =

∏
i qϕi(yi | zci). The conditional prior pψ(zc | y) is then defined

as N (zc|µψ(y), diag(σ2
ψ(y))) with appropriate factorization, and has its parameters also derived

through MLPs. See Appendix C.3 for further details.

6.1 INTERVENTIONS

If CCVAE encapsulates characteristics of a label in a single latent (or small set of latents), then it
should be able to smoothly manipulate these characteristics without severely affecting others. This
allows for finer control during interventions, which is not possible when the latent variables directly
correspond to labels. To demonstrate this, we traverse two dimensions of the latent space and display
the reconstructions in Figure 3. These examples indicate that CCVAE is indeed able to smoothly
manipulate characteristics. For example, in b) we are able to induce varying skin tones rather than
have this be a binary intervention on paleskin, unlike DIVA in a). In c), the zic associated with the
necktie label has also managed to encapsulate information about whether someone is wearing a
shirt or is bare-necked. No such traversals are possible for M2 and it is not clear how one would do
them for MVAE; additional results, including traversals for DIVA, are given in Appendix D.2.

Figure 3: Continuous interventions through traversal of zc. From left to right, a) DIVA paleskin and
young; b) CCVAE paleskin and young; c) CCVAE smiling and necktie; d) CCVAE Pleural
Effusion and Cardiomegaly.

6.2 DIVERSITY OF GENERATIONS

Label characteristics naturally encapsulate diversity (e.g. there are many ways to smile) which
should be present in the learned representations. By virtue of the structured mappings between labels
and characteristic latents, and since zc is parameterized by continuous distributions, CCVAE is
able to capture diversity in representations, allowing exploration for an attribute (e.g. smile) while

2DIVA can perform the same tasks as CCVAE but only with the modifications we ourselves suggest and still
not to a comparable quality.

3CCVAE is well-suited to multi-label problems, but also works on multi-class problems. See Appendix D.6
for results and analyses on MNIST and FashionMNIST.
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Figure 4: Diverse conditional generations for CCVAE, y is held constant along each row and each column
represents a different sample for zc ∼ p(zc|y). z\c is held constant over the entire figure.

Figure 5: Variance in reconstructions when intervening on a single label. [Top two] CelebA, from left to
right: reconstruction, bangs, eyeglasses, paleskin, smiling, necktie.. [Bottom] Chexpert:
reconstruction, cardiomegaly, edema, consolidation, atelectasis, pleuraleffusion.

preserving other characteristics. This is not possible with labels directly defined as latents, as only
discrete choices can be made—diversity can only be introduced here by sampling from the unlabeled
latent space—which necessarily affects all other characteristics. To demonstrate this, we reconstruct
multiple times with z = {zc ∼ pψ(zc | y), z\c} for a fixed z\c. We provide qualitative results
in Figure 4.

If several samples are taken from zc ∼ pψ(zc | y) when intervening on only a single characteristic,
the resulting variations in pixel values should be focused around the locations relevant to that
characteristic, e.g. pixel variations should be focused around the neck when intervening on necktie.
To demonstrate this, we perform single interventions on each class, and take multiple samples of
zc ∼ pψ(zc | y). We then display the variance of each pixel in the reconstruction in green in Figure 5,
where it can be seen that generally there is only variance in the spatial locations expected. Interestingly,
for the class smile (2nd from right), there is variance in the jaw line, suggesting that the model is
able capture more subtle components of variation that just the mouth.

6.3 CLASSIFICATION

To demonstrate that reparameterizing the labels in the latent space does not hinder classification
accuracy, we inspect the predictive ability of CCVAE across a range of supervision rates, given in
Table 1. It can be observed that CCVAE generally obtains prediction accuracies slightly superior to
other models. We emphasize here that CCVAE’s primary purpose is not to achieve better classification
accuracies; we are simply checking that it does not harm them, which it most clearly does not.

Table 1: Classification accuracies.

CelebA Chexpert

Model f = 0.004 f = 0.06 f = 0.2 f = 1.0 f = 0.004 f = 0.06 f = 0.2 f = 1.0

CCVAE 0.832 0.862 0.878 0.900 0.809 0.792 0.794 0.826
M2 0.794 0.862 0.877 0.893 0.799 0.779 0.777 0.774

DIVA 0.807 0.860 0.867 0.877 0.747 0.786 0.781 0.775
MVAE 0.793 0.828 0.847 0.864 0.759 0.787 0.767 0.715

6.4 DISENTANGLEMENT OF LABELED AND UNLABELED LATENTS

If a model can correctly disentangle the label characteristics from other generative factors, then
manipulating z\c should not change the label characteristics of the reconstruction. To demonstrate
this, we perform “characteristic swaps,” where we first obtain z = {zc, z\c} for a given image, then
swap in the characteristics zc to another image before reconstructing. This should apply the exact
characteristics, not just the label, to the scene/background of the other image (cf. Figure 6).
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⊕
=

{zc, z\c} {zc, z\c} {zc, z\c}
Figure 6: Characteristic swap, where the characteristics of the first image (blond hair, smiling,
heavy makeup, female, no necktie, no glasses etc.) are transfered to the unlabeled char-
acteristics of the second (red background etc.).

Comparing CCVAE to our baselines in Figure 7, we see that CCVAE is able to transfer the exact
characteristics to a greater extent than other models. Particular attention is drawn to the preservation
of labeled characteristics in each row, where CCVAE is able to preserve characteristics, like the
precise skin tone and hair color of the pictures on the left. We see that M2 is only able to preserve the
label and not the exact characteristic, while MVAE performs very poorly, effectively ignoring the
attributes entirely. Our modified DIVA variant performs reasonably well, but less reliably and at the
cost of reconstruction fidelity compared to CCVAE.

unlabeled contextual attributes, z\c
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Figure 7: Characteristic swaps. Characteristics (smiling, brown hair, skin tone, etc) of the left
image should be preserved along the row while background information should be preserved along the column.

An ideal characteristic swap should not change the probability assigned by a pre-trained classifier
between the original image and a swapped one. We employ this as a quantitative measure, reporting
the average difference in log probabilities for multiple swaps in Table 2. CCVAE is able to preserve
the characteristics to a greater extent than other models. DIVA’s performance is largely due to its
heavier weighting on the classifier, which adversely affects reconstructions, as seen earlier.

Table 2: Difference in log-probabilities of pre-trained classifier from denotation swaps, lower is better.
CelebA Chexpert

Model f = 0.004 f = 0.06 f = 0.2 f = 1.0 f = 0.004 f = 0.06 f = 0.2 f = 1.0

CCVAE 1.177 0.890 0.790 0.758 1.142 1.221 1.078 1.084
M2 2.118 1.194 1.179 1.143 1.624 1.43 1.41 1.415

DIVA 1.489 0.976 0.996 0.941 1.36 1.25 1.199 1.259
MVAE 2.114 2.113 2.088 2.121 1.618 1.624 1.618 1.601

7 DISCUSSION

We have presented a novel mechanism for faithfully capturing label characteristics in VAEs, the
characteristic capturing VAE (CCVAE), which captures label characteristics explicitly in the latent
space while eschewing direct correspondences between label values and latents. This has allowed us
to encapsulate and disentangle the characteristics associated with labels, rather than just the label
values. We are able to do so without affecting the ability to perform the tasks one typically does in
the (semi-)supervised setting—namely classification, conditional generation, and intervention. In
particular, we have shown that, not only does this lead to more effective conventional label-switch
interventions, it also allows for more fine-grained interventions to be performed, such as producing
diverse sets of samples consistent with an intervened label value, or performing characteristic swaps
between datapoints that retain relevant features.

9



Published as a conference paper at ICLR 2021

8 ACKNOWLEDGMENTS

TJ, PHST, and NS were supported by the ERC grant ERC-2012-AdG 321162-HELIOS, EPSRC grant
Seebibyte EP/M013774/1 and EPSRC/MURI grant EP/N019474/1. Toshiba Research Europe also
support TJ. TJ would also like to thank Dr. M. Stoddart. PHST would also like to acknowledge the
Royal Academy of Engineering and FiveAI.

SMS was partially supported by the Engineering and Physical Sciences Research Council (EPSRC)
grant EP/K503113/1.

TR’s research leading to these results has received funding from a Christ Church Oxford Junior
Research Fellowship and from Tencent AI Labs.

REFERENCES

Tameem Adel, Zoubin Ghahramani, and Adrian Weller. Discovering interpretable representations
for both deep generative and discriminative models. In International Conference on Machine
Learning, pp. 50–59, 2018.

Samuel K. Ainsworth, Nicholas J. Foti, Adrian K.C. Lee, and Emily B. Fox. Interpretable VAEs for
nonlinear group factor analysis. ICML, 2018.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE Trans. Pattern Anal. Mach. Intell., 35(8):1798–1828, August 2013. ISSN
0162-8828.

Rodney A Brooks. Intelligence without representation. Artificial intelligence, 47(1-3):139–159,
1991.

Emilien Dupont. Learning disentangled joint continuous and discrete representations. In Advances in
Neural Information Processing Systems, pp. 710–720, 2018.

Yarin Gal. Uncertainty in deep learning. PhD thesis, University of Cambridge, 2016. Unpublished
doctoral dissertation.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. In Advances in neural
information processing systems, pp. 6626–6637, 2017.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning basic visual concepts with a
constrained variational framework. In Proceedings of the International Conference on Learning
Representations, 2016.

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural
networks. science, 313(5786):504–507, 2006.

Geoffrey E Hinton and Richard S Zemel. Autoencoders, minimum description length and helmholtz
free energy. In Advances in neural information processing systems, pp. 3–10, 1994.

Maximilian Ilse, Jakub M Tomczak, Christos Louizos, and Max Welling. Diva: Domain invariant
variational autoencoders. arXiv preprint arXiv:1905.10427, 2019.

Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Silviana Ciurea-Ilcus, Chris Chute, Henrik
Marklund, Behzad Haghgoo, Robyn Ball, Katie Shpanskaya, et al. Chexpert: A large chest
radiograph dataset with uncertainty labels and expert comparison. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pp. 590–597, 2019.

Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In International Conference on
Machine Learning, pp. 2649–2658, 2018.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

10



Published as a conference paper at ICLR 2021

Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised
learning with deep generative models. In Advances in neural information processing systems, pp.
3581–3589, 2014.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

Yang Li, Quan Pan, Suhang Wang, Haiyun Peng, Tao Yang, and Erik Cambria. Disentangled
variational auto-encoder for semi-supervised learning. Information Sciences, 482:73–85, 2019.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard Schölkopf,
and Olivier Bachem. Challenging common assumptions in the unsupervised learning of dis-
entangled representations. In International Conference on Machine Learning, pp. 4114–4124,
2019.

Lars Maaløe, Casper Kaae Sønderby, Søren Kaae Sønderby, and Ole Winther. Auxiliary deep
generative models. arXiv preprint arXiv:1602.05473, 2016.

Lars Maaløe, Marco Fraccaro, and Ole Winther. Semi-supervised generation with cluster-aware
generative models. arXiv preprint arXiv:1704.00637, 2017.

Lars Maaløe, Marco Fraccaro, Valentin Liévin, and Ole Winther. Biva: A very deep hierarchy of
latent variables for generative modeling. In Advances in Neural Information Processing Systems,
volume 32, pp. 6551–6562. Curran Associates, Inc., 2019.

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B Tenenbaum, and Jiajun Wu. The neuro-
symbolic concept learner: Interpreting scenes, words, and sentences from natural supervision.
arXiv preprint arXiv:1904.12584, 2019.

Emile Mathieu, Tom Rainforth, N Siddharth, and Yee Whye Teh. Disentangling disentanglement in
variational autoencoders. In International Conference on Machine Learning, pp. 4402–4412, 2019.

Jonas Mueller, David Gifford, and Tommi Jaakkola. Sequence to better sequence: continuous revision
of combinatorial structures. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pp. 2536–2544. JMLR. org, 2017.

Rajesh Ranganath, Dustin Tran, and David Blei. Hierarchical variational models. In International
Conference on Machine Learning, pp. 324–333, 2016.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In International Conference on Machine
Learning, pp. 1278–1286, 2014.

Yuge Shi, N. Siddharth, Brooks Paige, and Philip H. S. Torr. Variational mixture-of-experts autoen-
coders for multi-modal deep generative models. In Advances in Neural Information Processing
Systems (NeurIPS), pp. 15692–15703, December 2019.

N. Siddharth, T Brooks Paige, Jan-Willem Van de Meent, Alban Desmaison, Noah Goodman,
Pushmeet Kohli, Frank Wood, and Philip Torr. Learning disentangled representations with semi-
supervised deep generative models. In Advances in Neural Information Processing Systems, pp.
5925–5935, 2017.

Lewis Smith and Yarin Gal. Understanding measures of uncertainty for adversarial example detection.
arXiv preprint arXiv:1803.08533, 2018.

Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther. Ladder
variational autoencoders. In Advances in neural information processing systems, pp. 3738–3746,
2016.

Masahiro Suzuki, Kotaro Nakayama, and Yutaka Matsuo. Joint multimodal learning with deep
generative models. In International Conference on Learning Representations Workshop, 2017.

11



Published as a conference paper at ICLR 2021

Joshua B Tenenbaum. Mapping a manifold of perceptual observations. In Advances in neural
information processing systems, pp. 682–688, 1998.

Joshua B Tenenbaum and William T Freeman. Separating style and content with bilinear models.
Neural computation, 12(6):1247–1283, 2000.

Ramakrishna Vedantam, Ian Fischer, Jonathan Huang, and Kevin Murphy. Generative models of
visually grounded imagination. In Proceedings of the International Conference on Learning
Representations, 2018.

Martin J Wainwright and Michael I Jordan. Graphical models, exponential families, and variational
inference. Foundations and Trends® in Machine Learning, 1(1-2):1–305, 2008.

Mike Wu and Noah Goodman. Multimodal generative models for scalable weakly-supervised
learning. In Advances in Neural Information Processing Systems, pp. 5580–5590, 2018.

Taihong Xiao, Jiapeng Hong, and Jinwen Ma. Dna-gan: Learning disentangled representations from
multi-attribute images. arXiv preprint arXiv:1711.05415, 2017.

Taihong Xiao, Jiapeng Hong, and Jinwen Ma. Elegant: Exchanging latent encodings with gan for
transferring multiple face attributes. In Proceedings of the European conference on computer
vision (ECCV), pp. 168–184, 2018.

Shengjia Zhao, Jiaming Song, and Stefano Ermon. Learning hierarchical features from deep genera-
tive models. In International Conference on Machine Learning, pp. 4091–4099, 2017.

12



Published as a conference paper at ICLR 2021

A CONDITIONAL GENERATION AND INTERVENTION FOR EQUATION (2)
For the model trained using (2) as the objective to be usable, we must consider whether it can carry
out the classification, conditional generation, and intervention tasks outlined previously. Of these,
classification is straightforward, but it is less apparent how the others could be performed. The key
here is to realize that the classifier itself implicitly contains the information required to perform these
tasks.

Consider first conditional generation and note that we still have access to the prior p(z) as per a
standard VAE. One simple way of performing conditional generation would be to conduct a rejection
sampling where we draw samples ẑ ∼ p(z) and then accept these if and only if they lead to the
classifier predicting the desired labels up to a desired level of confidence, i.e. qφ(y | ẑc) > λ where
0 < λ < 1 is some chosen confidence threshold. Though such an approach is likely to be highly
inefficient for any general p(z) due to the curse of dimensionality, in the standard setting where
each dimension of z is independent, this rejection sampling can be performed separately for each
zic, making it relatively efficient. More generally, we have that conditional generation becomes an
inference problem where we wish to draw samples from

p (z | {qφ(y | zc) > λ}) ∝ p(z)I (qφ(y | zc) > λ) .

Interventions can also be performed in an analogous manner. Namely, for a conventional intervention
where we change one or more labels, we can simply resample the zic associated we those labels,
thereby sampling new characteristics to match the new labels. Further, unlike prior approaches, we
can perform alternative interventions too. For example, we might attempt to find the closest zic to the
original that leads to the class label changing; this can be done in a manner akin to how adversarial
attacks are performed. Alternatively, we might look to manipulate the zic without actually changing
the class itself to see what other characteristics are consistent with the labels.

To summarize, (2) yields an objective which provides a way of learning a semi-supervised VAEs
that avoids the pitfalls of directly fixing the latents to correspond to labels. It still allows us to
perform all the tasks usually associated with semi-supervised VAEs and in fact allows a more general
form of interventions to be performed. However, this comes at the cost of requiring inference to
perform conditional generation or interventions. Further, as the label variables y are absent when
the labels are unobserved, there may be empirical complications with forcing all the denotational
information to be encoded to the appropriate characteristic latent zic. In particular, we still have a
hyperparameter α that must be carefully tuned to ensure the appropriate balance between classification
and reconstruction.

B MODEL FORMULATION

B.1 VARIATIONAL LOWER BOUND

In this section we provide the mathematical details of our objective functions. We show how to
derive it as a lower bound to the marginal model likelihood and show how we estimate the model
components.

The variational lower bound for the generative model in Figure 2, is given as

LCCVAE =
∑
x∈U
LCCVAE(x) +

∑
(x,y)∈S

LCCVAE(x,y)

LCCVAE(x,y) = Eqφ(z|x)

[
qϕ(y | zc)
qϕ,φ(y | x)

log

(
pθ(x | z)pψ(z | y)

qϕ(y | zc)qφ(z | x)

)]
+ log qϕ,φ(y | x) + log p(y),

LCCVAE(x) = Eqφ(z|x)qϕ(y|zc)

[
log

(
pθ(x | z)pψ(zc | y)p(y)

qϕ(y | zc)qφ(z | x)

)]
.

The overall likelihood in the semi-supervised case is given as

pθ(x,y) =
∏

(x,y)∈S

pθ(x,y)
∏
x∈U

pθ(x),

To derive a lower bound for the overall objective, we need to obtain lower bounds on log pθ(x) and
log pθ(x,y). When the labels are unobserved the latent state will consist of z and y. Using the
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factorization according to the graph in Figure 2 yields

log pθ(x) ≥ Eqφ(z|x)qϕ(y|zc)
[
log

(
pθ(x | z)pψ(z | y)p(y)

qϕ(y | zc)qφ(z | x)

)]
,

where pψ(z | y) = p(z\c)pψ(zc | y). For supervised data points we consider a lower bound on the
likelihood pθ(x,y),

log pθ(x,y) ≥
∫

log
pθ(x | z)pψ(z | y)p(y)

qϕ,φ(z | x,y)
qϕ,φ(z | x,y)dz,

in order to make sense of the term qϕ,φ(z | x,y), which is usually different from qφ(z | x) we
consider the inference model

qϕ,φ(z | x,y) =
qϕ(y | zc)qφ(z | x)

qϕ,φ(y | x)
, where qϕ,φ(y | x) =

∫
qϕ(y | zc)qφ(z | x)dz.

Returning to the lower bound on log pθ(x,y) we obtain

log pθ(x,y) ≥
∫

log
pθ(x | z)pψ(z | y)p(y)

q(z | x,y)
q(z | x,y)dz

=

∫
log

(
pθ(x | z)pψ(z | y)p(y)qϕ,φ(y | x)

qϕ(y | zc)qφ(z | x)

)
qϕ(y | zc)qφ(z | x)

qϕ,φ(y | x)
dz

= Eqφ(z|x)

[
qϕ(y | zc)
qϕ,φ(y | x)

log

(
p(x | z)pψ(zc | y)

qϕ(y | zc)qφ(z | x)

)]
+ log qϕ,φ(y | x) + log p(y),

where qϕ(y | zc)/qϕ,φ(y | x) denotes the Radon-Nikodym derivative of qϕ,φ(z | x,y) with respect
to qφ(z | x).

B.2 ALTERNATIVE DERIVATION OF UNSUPERVISED BOUND

The bound for the unsupervised case can alternatively be derived by applying Jensen’s inequality
twice. First, use the standard (unsupervised) ELBO

log pθ(x) ≥ Eqφ(z|x)
[
log

pθ(x | z)p(z)

qφ(z | x)

]
.

Now, since calculating p(z) = p(zc)p(z\c) = p(z\c)
∑

y p(zc | y)p(y) can be expensive we can
apply Jensen’s inequality a second time to the expectation over zc to obtain

log p(zc) ≥ Eqϕ(y|zc)
[
log

pψ(zs | y)p(y)

qϕ(y | zs)

]
.

Substituting this bound into the unsupervised ELBO yields again our bound

log p(x) ≥ Eqφ(z|x)qϕ(y|zc)
[
log

pθ(x | z)p(z | y)

qφ(z | x)qϕ(y | zc)

]
+ log p(y) (7)

C IMPLEMENTATION

C.1 CELEBA

We chose to use only a subset of the labels present in CelebA, since not all attributes are vi-
sually distinguishable in the reconstructions e.g. (earrings). As such we limited ourselves
to the following labels: arched eyebrows, bags under eyes, bangs, black hair,
blond hair, brown hair, bushy eyebrows, chubby, eyeglasses, heavy makeup,
male, no beard, pale skin, receding hairline, smiling, wavy hair, wearing
necktie, young. No images were omitted or cropped, the only modifications were keeping the
aforementioned labels and resizing the images to be 64 × 64 in dimension.

C.2 CHEXPERT

The Chexpert dataset comprises of chest X-rays taken from a variety of patients. We down-sampled
each image to be 64 × 64 and used the same networks from the CelebA experiments. The five main
attributes for Chexpert are: cardiomegaly, edema, consolidation, atelectasis,
pleuraleffusion. Which for non medical experts can be interpreted as: enlargement of the
heart; fluid in the alveoli; fluid in the lungs; collapsed lung; fluid in the corners of the lungs.
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C.3 IMPLEMENTATION DETAILS

For our experiments we define the generative and inference networks as follows. The approxi-
mate posterior is represented as qφ(z | x) = N (zc, z\c | µφ(x), diag(σ2

φ(x))) with µφ(x) and
diag(σ2

φ(x)) being the architecture from Higgins et al. (2016). The generative model pθ(x | z)
is represented by a Laplace distribution, again parametrized using the architecture from Higgins
et al. (2016). The label predictive distribution qϕ(y | zc) is represented as Ber(y | πϕ(zc)) with
πϕ(zc) being a diagonal transformation forcing the factorisation qϕ(y | zc) =

∏
i qψi(yi | zci).

The conditional prior is given as pψ(zc | y) = N (zc | µψ(y), diag(σ2
ψ(y))), with the appropriate

factorisation, where the parameters are represented by an MLP. Finally, the prior placed on the portion
of the latent space reserved for unlabelled latent variables is p(z\c) = N (z\c | 0, I)). For the latent
space zc ∈ Rmc and z\c ∈ Rm\c , where m = mc +m\c with mc = 18 and m\c = 27 for CelebA.
The architectures are given in and Table 3.

Encoder Decoder
Input 32 x 32 x 3 channel image Input ∈ Rm

32× 3× 4× 4 Conv2d stride 2 & ReLU m × 256 Linear layer
32× 32× 4× 4 Conv2d stride 2 & ReLU 128× 256× 4× 4 ConvTranspose2d stride 1 & ReLU
64× 32× 4× 4 Conv2d stride 2 & ReLU 64× 128× 4× 4 ConvTranspose2d stride 2 & ReLU
128× 64× 4× 4 Conv2d stride 2 & ReLU 32× 64× 4× 4 ConvTranspose2d stride 2 & ReLU
256× 128× 4× 4 Conv2d stride 1 & ReLU 32× 32× 4× 4 ConvTranspose2d stride 2 & ReLU

256 × (2×m) Linear layer 3× 32× 4× 4 ConvTranspose2d stride 2 & Sigmoid

Classifier Conditional Prior
Input ∈ Rmc Input ∈ Rmc
mc ×mc Diagonal layer mc ×mc Diagonal layer

Table 3: Architectures for CelebA and Chexpert.

Optimization We trained the models on a GeForce GTX Titan GPU. Training consumed ∼ 2Gb
for CelebA and Chexpert, taking around 2 hours to complete 100 epochs respectively. Both models
were optimized using Adam with a learning rate of 2× 10−4 for CelebA respectively.

C.3.1 HIGH VARIANCE OF CLASSIFIER GRADIENTS

The gradients of the classifier parameters ϕ suffer from a high variance during training. We find that
not reparameterizing zc for qϕ(y | zc) reduces this issue:

LCCVAE(x,y)=Eqφ(z|x)
[
qϕ(y | z̄c)

qϕ,φ(y | x)
log

pθ(x | z)pψ(z | y)

qϕ(y | z̄c)qφ(z | x)

]
+log qϕ,φ(y | x)+log p(y). (8)

Figure 8: Gradient norms of classifier.

where z̄c indicates that we do not reparameter-
ize the sample. This significantly reduces the
variance of the magnitude of the gradient norm
∇ϕ, allowing the classifier to learn appropriate
weights and structure the latent space. This can
be seen in Figure 8, where we plot the gradient
norm of ϕ for when we do reparameterize zc
(blue) and when we do not (orange). Clearly not
reparameterizing leads to a lower variance in the
gradient norm of the classifier, which aides learn-
ing. To a certain extent these gradients can be
viewed as redundant, as there is already gradients
to update the predictive distribution due to the
log qϕ,φ(y | x) term anyway.
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x ycyd

z\c zczd

x ycyd

z\c zczd

Figure 9: Left: Generative model for DIVA, Right: Inference model where dashed line indicates auxiliary
classifier.

C.4 MODIFIED DIVA

The primary goal of DIVA is domain invariant classification and not to obtain representations of
individual characteristics like we do here. The objective is essentially a classifier which is regularized
by a variational objective. However, to achieve domain generalization, the authors aim to disentangle
the domain, class and other generative factors. This motivation leads to a graphical model that is
similar in spirit to ours ( Figure 9), in that the latent variables are used to predict labels, and the
introduction of the inductive bias to partition the latent space. As such, DIVA can be modified to
suit our problem of encapsulating characteristics. The first modification we need to consider is
the removal of zd, as we are not considering multi-domain problems. Secondly, we introduce the
factorization present in CCVAE, namely qϕ(y | zc) =

∏
i qψi(yi |zci). With these two modifications

an alternative objective can now be constructed, with the supervised given as

LSDIV A(x,y) = Eqφ(z|x) log pθ(x | z)− βKL(qφ(z\c|x)||p(z\c))

− βKL(qφ(zc|x)||pψ(zc | y)),

and the unsupervised as

LUDIV A(x) = Eqφ(z|x) log pθ(x | z)− βKL(qφ(z\c|x)||p(z\c))

+ βEqφ(zc|x)qϕ(y|zc)[log pψ(zc | y)− log qφ(zc|x)],

+ βEqφ(zc|x)qϕ(y|zc)[log p(y)− log qϕ(y | zc)],
where y has to be imputed. The final objective for DIVA is then given as

log pθ (D) ≥
∑

(x,y)∈S
LSDIV A(x,y) +

∑
x∈U

[
LUDIV A(x) + αEq(zc|x) log qϕ(y | zc)

]
.

It is interesting to note the differences to the objective of CCVAE, namely, there is no emergence of
a natural classifier in the supervised case, and y has to be imputed in the unsupervised case instead of
relying on variational inference as in CCVAE. Clearly such differences have a significant impact on
performance as demonstrated by the main results of this paper.

D ADDITIONAL RESULTS

D.1 SINGLE INTERVENTIONS

Here we demonstrate single interventions where we change the binary value for the desired attributes.
To quantitatively evaluate the single interventions, we intervene on a single label and report the
changes in log-probabilities assigned by a pre-trained classifier. If the single intervention only affects
the characteristics of the chosen label, then there should be no change in other classes and only a
change on the chosen label. Intervening on all possible labels yields a confusion matrix, with the
optimal results being a diagonal matrix with zero off-diagonal elements. We also report the condition
number for the confusion matrices, given in the titles.

It is interesting to note that the interventions for CCVAE are subtle, this is due to the latent zic ∼
p(zic|yi), which will be centered around the mean. More striking intervention can be achieved by
traversing along zic.
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Figure 10: Confusion matrices for CCVAE for (from top left clockwise) f = 0.004, 0.06, 0.2, 1.0
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f = 0.004

f = 0.06

f = 0.2

f = 1.0

Figure 11: CCVAE. From left to right: original, reconstruction, then interventions from switching on
the following labels: arched eyebrows, bags under eyes, bangs, black hair, blond hair, brown hair, bushy
eyebrows, chubby, eyeglasses, heavy makeup, male, no beard, pale skin, receding hairline, smiling, wavy
hair, wearing necktie, young.
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Figure 12: Confusion matrices for M2 for (from top left clockwise) f = 0.004, 0.06, 0.2, 1.0
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f = 0.004

f = 0.06

f = 0.2

f = 1.0

Figure 13: M2. From left to right: original, reconstruction, then interventions from switching on the
following labels: arched eyebrows, bags under eyes, bangs, black hair, blond hair, brown hair, bushy
eyebrows, chubby, eyeglasses, heavy makeup, male, no beard, pale skin, receding hairline, smiling, wavy
hair, wearing necktie, young.
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Figure 14: Confusion matrices for DIVA for (from top left clockwise) f = 0.004, 0.06, 0.2, 1.0
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f = 0.004

f = 0.06

f = 0.2

f = 1.0

Figure 15: DIVA. From left to right: original, reconstruction, then interventions from switching on the
following labels: arched eyebrows, bags under eyes, bangs, black hair, blond hair, brown hair, bushy
eyebrows, chubby, eyeglasses, heavy makeup, male, no beard, pale skin, receding hairline, smiling, wavy
hair, wearing necktie, young.
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Figure 16: Confusion matrices for MVAE for (from top left clockwise) f = 0.004, 0.06, 0.2, 1.0
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f = 0.004

f = 0.06

f = 0.2

f = 1.0

Figure 17: MVAE. From left to right: original, reconstruction, then interventions from switching on the
following labels: arched eyebrows, bags under eyes, bangs, black hair, blond hair, brown hair, bushy
eyebrows, chubby, eyeglasses, heavy makeup, male, no beard, pale skin, receding hairline, smiling, wavy
hair, wearing necktie, young.
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D.2 LATENT TRAVERSALS

Here we provide more latent traversals for CCVAE in Figure 18 and for DIVA in Figure 19. CCVAE
is able to smoothly alter characteristics, indicating that it is able to encapsulate characteristics in a
single dimension, unlike DIVA which is unable to alter the characteristics effectively, suggesting it
cannot encapsulate the characteristics.

D.3 GENERATION

We provide results for the fidelity of image generation on CelebA. To do this we use the FID
metric Heusel et al. (2017), we omitted results for Chexpert as the inception model used in FID has
not been trained on the typical features associated with X-Rays. The results are given in Table 4,
interestingly for low supervision rates MVAE obtains the best performance but for higher supervision
rates M2 outperforms MVAE. We posit that this is due to MVAE having little structure imposed on
the latent space, as such the POE can structure the representation purely for reconstruction without
considering the labels, something which is not possible as the supervision rate is increased. CCVAE
obtains competitive results with respect to M2. It is important to note that generative fidelity is not
the focus of this work as we focus purely on how to structure the latent space using labels. It is no
surprise then that the generations are bad as structuring the latent space will potentially be at odds
with the reconstruction term in the loss.

Table 4: CelebA FID scores.

Model f = 0.004 f = 0.06 f = 0.2 f = 1.0

CCVAE 127.956 121.84 121.751 120.457
M2 127.719 122.521 120.406 119.228

DIVA 192.448 230.522 218.774 201.484
MVAE 118.308 115.947 128.867 137.461

D.4 CONDITIONAL GENERATION

To asses conditional generation, we first train an independent classifier for both datasets. We then
conditionally generate samples given labels and evaluate them using this pre-trained classifier. Results
provided in Table 5. CCVAE and M2 are comparable in generative abilities, but DIVA and MVAE
perform poorly, indicated by random guessing.

Table 5: Generations accuracies.

CelebA Chexpert

Model f = 0.004 f = 0.06 f = 0.2 f = 1.0 f = 0.004 f = 0.06 f = 0.2 f = 1.0

CCVAE 0.513 0.605 0.612 0.596 0.516 0.563 0.549 0.542
M2 0.499 0.61 0.612 0.611 0.503 0.547 0.547 0.558

DIVA 0.501 0.501 0.501 0.501 0.499 0.503 0.503 0.503
MVAE 0.501 0.501 0.501 0.501 0.499 0.499 0.499 0.499

D.5 DIVERSITY OF CONDITIONAL GENERATIONS

We also report more examples for diversity, as in Figure 5, in Figure 20.

D.6 MULTI-CLASS SETTING

Here we provide results for the multi-class setting of MNIST and FashionMNIST. The multi-class
setting is somewhat tangential to our work, but we include it for completeness. For CCVAE, we have
some flexibility over the size of the latent space. Trying to encapsulate representations for each label
is not well suited for this setting, as it’s not clear how you could alter the representation of an image
being a 6, whilst preserving the representation of it being an 8. In fact, there is really only one label
for this setting, but it takes multiple values. With this in mind, we can now make an explicit choice
about how the latent space will be structured, we can set zc ∈ R or zc ∈ RN , or conversely, store all
of the representation in zc, i.e. z\c = ∅. Furthermore, we do not need to enforce the factorization
qϕ(y | zc) =

∏
i q(yi|zic), and instead can be parameterized by a function F : RN → RM where M

is the number of possible classes.

Classification We provide the classification results in Table 6.
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Figure 18: Various latent traversals for CCVAE.
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Figure 19: Various latent traversals for DIVA.
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Figure 20: CCVAE, variance in reconstructions when intervening on a single label. From left to right:
reconstruction, then interventions from switching on the following labels: arched eyebrows, bags under

eyes, bangs, black hair, blond hair, brown hair, bushy eyebrows, chubby, eyeglasses, heavy makeup, male,
no beard, pale skin, receding hairline, smiling, wavy hair, wearing necktie, young.

Table 6: Additional classification accuracies.

MNIST FashionMNIST

Model f = 0.004 f = 0.06 f = 0.2 f = 1.0 f = 0.004 f = 0.06 f = 0.2 f = 1.0

CCVAE 0.927 0.974 0.979 0.988 0.741 0.865 0.879 0.901
M2 0.918 0.962 0.968 0.981 0.756 0.848 0.860 0.892

Conditional Generation We provide classification accuracies for pre-trained classifier using
conditional generated samples as input and the condition as a label. We also report the mutual
information to give an indication of how out-of-distribution the samples are. In order to estimate
the uncertainty, we transform a fixed pre-trained classifier into a Bayesian predictive classifier that
integrates over the posterior distribution of parameters ω as p(y | x,D) =

∫
p(y | x, ω)p(ω |

D)dω. The utility of classifier uncertainties for out-of-distribution detection has previously been
explored Smith & Gal (2018), where dropout is also used at test time to estimate the mutual
information (MI) between the predicted label y and parameters ω (Gal, 2016; Smith & Gal, 2018)
as

I(y, ω | x,D) = H[p(y | x,D)]− Ep(ω|D) [H[p(y | x, ω)]] .

However, the Monte Carlo (MC) dropout approach has the disadvantage of requiring ensembling
over multiple instances of the classifier for a robust estimate and repeated forward passes through
the classifier to estimate MI. To mitigate this, we instead employ a sparse variational GP (with 200
inducing points) as a replacement for the last linear layer of the classifier, fitting just the GP to
the data and labels while holding the rest of the classifier fixed. This, in our experience, provides
a more robust and cheaper alternative to MC-dropout for estimating MI. Results are provided in
Table 7.

Latent Traversals We can also perform latent traversals for the multi-class setting. Here, we
perform linear interpolation on the polytope where the corners are obtained from the network µψ(y)
for four different classes. We provide the reconstructions in Figure 21.
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Table 7: Pre-trained classifier accuracies and MI for MNIST (top) and FashionMNIST (bottom).

Model f = 0.004 f = 0.06 f = 0.2 f = 1.0

Acc MI Acc MI Acc MI Acc MI

M
CCVAE 0.910 0.020 0.954 0.014 0.961 0.013 0.973 0.010

M2 0.883 0.035 0.929 0.026 0.934 0.024 0.948 0.020
F

CCVAE 0.734 0.025 0.806 0.024 0.801 0.028 0.798 0.029
M2 0.750 0.032 0.792 0.032 0.787 0.032 0.789 0.031

Figure 21: CCVAE latent traversals for MNIST and FashionMNIST. It is interesting to see how one class
transforms into another, e.g. for MNIST we see the end of the 5 curling around to form an 8 and a steady
elongation of the torso when traversing from t-shirt to dress.

Diversity in Conditional Generations Here we show how we can introduce diversity in the condi-
tional generations whilst keeping attributes such as pen-stroke and orientation constant. Inspecting
the M2 results Figure 22 and Figure 23, where we have to sample from z to introduce diversity,
indicates that we are unable to introduce diversity without affecting other attributes.

Interventions We can also perform interventions on individual classes, as showed in Fig-
ure 24.

Figure 22: CCVAE conditional generations with z\c fixed. Here we can see that CCVAE is able to introduce
diversity whilst preserving the “style” of the digit, e.g. pen width and tilt.
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Figure 23: M2 conditional generations. Here we can see that M2 is unable to introduce diversity without altering
the “style” of the digit, e.g. pen width and tilt.

Figure 24: Left: CCVAE, right: M2. As with other approaches, we can also perform wholesale interventions on
each class whilst preserving the style.
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